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Abstract
Nutrient assessment of plants, a key aspect of agricultural crop management and varietal 
development programs, traditionally is time demanding and labor-intensive. This study 
proposes a novel methodology to determine leaf nutrient concentrations of citrus trees by 
using unmanned aerial vehicle (UAV) multispectral imagery and artificial intelligence (AI). 
The study was conducted in four different citrus field trials, located in Highlands County 
and in Polk County, Florida, USA. In each location, trials contained either ‘Hamlin’ or 
‘Valencia’ sweet orange scion grafted on more than 30 different rootstocks. Leaves were 
collected and analyzed in the laboratory to determine macro- and micronutrient concentra-
tion using traditional chemical methods. Spectral data from tree canopies were obtained 
in five different bands (red, green, blue, red edge and near-infrared wavelengths) using a 
UAV equipped with a multispectral camera. The estimation model was developed using a 
gradient boosting regression tree and evaluated using several metrics including mean abso-
lute percentage error (MAPE), root mean square error, MAPE-coefficient of variance (CV) 
ratio and difference plot. This novel model determined macronutrients (nitrogen, phos-
phorus, potassium, magnesium, calcium and sulfur) with high precision (less than 9% and 
17% average error for the ‘Hamlin’ and ‘Valencia’ trials, respectively) and micro-nutrients 
with moderate precision (less than 16% and 30% average error for ‘Hamlin’ and ‘Valencia’ 
trials, respectively). Overall, this UAV- and AI-based methodology was efficient to deter-
mine nutrient concentrations and generate nutrient maps in commercial citrus orchards and 
could be applied to other crop species.
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Introduction

Adoption of best management practices and development of superior food crop culti-
vars are necessary to cope with pressures imposed by different biotic and abiotic fac-
tors (e.g., pests, diseases, drought, water logging, salinity, nutrient deficiencies, extreme 
temperatures, etc.) and secure food production. General agricultural management prac-
tices include nutrient management, pest and disease management, irrigation and drain-
age (Boman, 2012; Vincent et  al., 2021). These practices require regular field moni-
toring to identify problems and examine crop responses to management. This is often 
accompanied by specialized laboratory analyses to assess crop physiological responses, 
which are costly and time-consuming.

Recent advances in plant breeding have accelerated the development of new crop cul-
tivars to cope with a rapidly changing production environment affected by diseases and 
other plant stresses (Lenaerts et al., 2019). These new cultivars require evaluation on a 
large-scale in a commercial production setting to assess their horticultural traits, physi-
ological needs and economic potential before being released for widespread commercial 
adoption. Identification of plant physiological needs through field scouting and hand 
sampling of tissues for laboratory analysis has been the traditional way to evaluate new 
cultivars and fine-tune management practices. As these processes are laborious, costly 
and prone to human error, new phenotyping techniques are needed to advance crop 
selection and improve crop production (Li et al., 2014). New high-throughput phenotyp-
ing techniques are now available that utilize unmanned aerial vehicle (UAVs) (Abdul-
ridha et  al., 2020a, b; Costa et  al., 2020a) or ground-based remote sensing and artifi-
cial intelligence (Burud et  al., 2017; Cruz et  al., 2019; Reynolds et  al., 2019). These 
techniques have been used to determine various horticultural traits in several crops. For 
example, the correlation of different models and crop indices based on spectral reflec-
tance data has been studied to assess crop yield in wheat (Hassan et al., 2019; Mirasi 
et al., 2019), biomass in oat (Coelho et al., 2018), leaf area index in wheat (Xie et al., 
2014), plant nutrient content in citrus and grapevine (Osco et al., 2019; Moghimi et al., 
2020), detection of pests and diseases in citrus and avocado (Abdulridha et al., 2019a; 
Partel et al., 2019a, b).

In citrus, remote sensing and AI have also been used to determine crop yield (Vijay-
akumar et  al., 2021; Ye et  al., 2007) and canopy volume (Ampatzidis et  al., 2019), 
to count trees (Csillik et  al., 2018; Ampatzidis et  al., 2020), determine leaf stomatal 
properties (Costa et  al., 2021) and to detect diseases such as huanglongbing (Cerreta 
et al., 2018; Garza et al., 2020), canker (Abdulridha et al., 2019b) and foot rot (Garza 
et al., 2020). In this study, citrus was used as a model system for developing novel high-
throughput phenotyping techniques utilizing UAV imagery and machine learning to 
accelerate cultivar selection and improve crop production.

Nutrient management is one of the most important factors in citrus production as 
it directly influences tree health and productivity (Galvez-Sola et al., 2015; Morgan & 
Graham, 2019). The plant nutrient status is influenced by the nutrient uptake efficiency 
of the plant, which is affected by many factors including rootstock cultivar (Uygur & 
Yetisir, 2009; Toplu et al., 2011; Yilmaz et al., 2018), soil type, season and plant devel-
opmental stage (Scagel et  al., 2007) as well as soil-borne and other diseases such as 
huanglongbing (Cao et al., 2015; Morgan & Graham, 2019). To determine the nutrient 
status of a plant and correct potential deficiencies, regular analysis of leaf nutrient con-
centrations is essential (Galvez-Sola et al., 2015; Stammer & Mallarino, 2018). Because 
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the nutrient status of a plant is variable, multi-monthly and multi-annual analyses may 
be necessary to assess plant responses to environmental factors and management prac-
tices accurately.

Plant nutrient analysis requires the chemical analysis of leaf samples in a specialized 
laboratory, which is expensive and uses toxic chemicals with negative impacts on the envi-
ronment (Galvez-Sola et  al., 2015). Moreover, it is prone to human error resulting from 
inconsistencies and bias during leaf sampling and during the analysis process, which may 
compromise interpretation and significance of the data. Faster, cheaper and more environ-
mentally friendly alternatives to conventional nutrient analysis methods are being devel-
oped at a rapid pace. Qamar-uz-Zaman & Schumann (2006) calculated NDVI using aerial 
photography and correlated it with citrus leaf macro and micronutrient concentrations. 
Machine learning regression models were used with close-range spectroscopy devices to 
scan leaves and determine concentrations of leaf nitrogen and other leaf nutrients in citrus 
(Galvez-Sola et  al., 2015; Osco et  al., 2019, 2020). These methods may help overcome 
some of the limitations of the traditional method of leaf nutrient analysis or complement it. 
However, some of these methodologies were developed for specific nutrients and are there-
fore not applicable to assess all nutrients simultaneously. Moreover, some approaches (e.g., 
Osco et al., 2020), although precise, use expensive ground-based sensors (e.g., spectrora-
diometer) for data collection, which requires more resources (e.g., driver, sensor operator) 
and time to scan large orchards than a UAV-based sensing system. Developing a more effi-
cient methodology using novel machine learning algorithms and UAV-based sensing may 
help improve the overall consistency and data collection speed.

The objectives of this study were to: (i) develop a novel high-throughput method to 
determine leaf nutrient concentrations in citrus (as a case study), (ii) utilize this method 
to identify nutrient deficient zones and (iii) create fertility maps compatible with variable 
rate technologies (e.g., variable rate fertilizers) for zone-based management. The proposed 
technique and model can be applied to different crops and production systems.

Materials and methods

Study site

Four field trials with 5-year-old grafted sweet orange (Citrus sinensis) trees growing in 
a commercial citrus production system in Florida, USA (Lykes Bros. Inc.) were used for 
nutrient analysis and model development. Trees were composed of 2 different scion cul-
tivars and more than 30 different rootstock cultivars. The scion cultivars were ‘Hamlin’ 
orange, an early maturing cultivar, and ‘Valencia’ orange, a late maturing cultivar. The 
rootstocks included more than 30 commercial and experimental cultivars with different 
taxonomic backgrounds (Kunwar et al., 2021; Ampatzidis et al., 2019).

Trials A (10.76  ha) and B (11.25  ha) were located in Southeast Florida near Fort 
Basinger, Highlands County (27° 22′ 16.0′′ N 81° 08′ 08.0′′ W), and trials C (8.78 ha) and 
D (two areas with 6.10 ha and 3.43 ha) were located in Central Florida near Lake Wales, 
Polk County (27° 56′ 07.4′′ N 81° 30′ 00.1′′ W) (Fig. 1). The soil type in trials A and B is a 
poorly drained sandy Entisol with Spodosol-like properties (Mylavarapu et al., 2016), and 
trees were planted in double-rows on raised beds separated by furrows at a spacing of 2.4 m 
along the rows and 7.6 m between the rows. The soil in trials C and D is a well-drained 
sandy Entisol, and trees were planted in single rows without beds at a spacing of 2.4 m 
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along the rows and 6.7 m between the rows. Trees in all trials were produced in a commer-
cial citrus nursery (Lykes Bros. Inc., Basinger, FL, USA) and were planted in 2015. Trees 
in trials A and C were composed of ‘Hamlin’ scion on 32 and 35 different rootstock culti-
vars, and trees in trials B and D were composed of ‘Valencia’ scion on 32 and 35 rootstock 
cultivars (Table 1). The experimental design was randomized with rootstocks replicated as 
linear plots of eight trees. Irrigation was by under-tree micro-sprinklers. Nutrient, disease 
and weed management was per the grower’s standards, as outlined in Kunwar et al., (2021) 
and was similar for all the trials.

Study workflow

The framework of this study was divided into two main phases (Fig. 2). In the data acqui-
sition phase (Fig.  2, green), the spectral measurements of the canopy reflectance were 
acquired using a UAV-based multispectral camera (red, green, blue, red edge and near-
infrared wavelengths), and leaf samples were collected and analyzed in a laboratory 
as described in the next paragraph to generate the dataset. The second phase (Fig.  2, 
blue) consisted of: (i) pre-analysis to evaluate the dataset for each nutrient; (ii) model 

Fig. 1  Aerial views of a trial A, b trial B, c trial C, and d trial D-east
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development using the multispectral bands as inputs and 5-fold cross-validation (80% of 
samples for training and validation of the model, 20% for testing) to ensure the repeatabil-
ity of the methodology used; and (iii) with the model generated, the evaluation metrics of 
mean absolute percentage error (MAPE), root mean square error (RMSE), MAPE-CV ratio 
and difference plot were applied to evaluate the results.

Leaf nutrient analysis

Six replications per scion/rootstock combination in each trial were used for leaf nutrient 
analysis using traditional procedures. A random sample of 16 mature leaves (4 from each 
cardinal direction) from the most recent spring flush was collected from the 3rd and the 
6th trees from each replicated plot in September 2019. Because there were more than six 
replications of each scion/rootstock combination in each trial, not all areas at each trial site 
were equally sampled. Leaf samples from the two trees were pooled to generate one leaf 
sample for analysis. In total, 804 leaf samples were collected, 192 from each trial at the 
Polk County location and 210 from each trial at the Highlands County location (402 leaf 
samples each from ‘Hamlin’ and ‘Valencia’ scion). Leaf nutrient analysis was conducted 
by a commercial analysis service (Waters Agricultural Laboratories, Georgia, USA). Total 
leaf nitrogen (N) was determined using the Dumas combustion method slightly modified 
by Sweeny (1989), which measures all forms of nitrogen (ammonium, nitrate, heterocyclic 
and protein). For the other nutrients—phosphorus (P), sulfur (S), potassium (K), zinc (Zn), 
magnesium (Mg), calcium (Ca), iron (Fe), manganese (Mn), copper (Cu) and boron (B) 

Fig. 2  Workflow of the development of the estimation model for nutrient analysis that includes dataset col-
lection and analysis, and model development and evaluation (Color figure online)
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- leaf samples were first digested using nitric acid and hydrogen peroxide solution followed 
by inductively coupled argon plasma (ICAP) analysis (Havlin & Soltanpour, 1980).

Spectral data acquisition

The canopy reflectance of trees was measured with a 5-band multispectral camera 
(Micasense Altum, Micasense, USA) [blue (465–485 nm), green (550–570 nm), red 
(663–673 nm), red edge (712–722 nm) and near-infrared (820–1000 nm)] mounted on a 
quadcopter UAV (Matrice 210, DJI, Shenzehen, China). For UAV flight planning and mis-
sion control, the Pix4DCapture (Pix4D S.A., Prilly, Switzerland) software app was used on 
an iPad (Apple, Cupertino, CA, USA) connected to the remote controller of the UAV. All 
flights were conducted around solar noontime with a clear sky to minimize atmospheric 
interference. The UAV flew at 122 m height. The generated ortho-mosaic map had a reso-
lution of 50 mm/pixel. Figure 3 presents the workflow of data collection to generate the 
study’s dataset. The dataset was divided into (1) ‘Hamlin’ scion (containing all rootstock 
cultivars), and (2) ‘Valencia’ scion (containing all rootstock cultivars).

5‑Fold cross‑validation

A 5-fold cross-validation scheme was used to validate the model’s ability to estimate the 
objectives. It is a popular strategy since it is straightforward to understand and produces 
a less biased or optimistic estimate of model competence than other approaches, such as 

Fig. 3  Data collection and dataset generation workflow
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a simple train/test split. The general procedure of the 5-fold cross-validation used is pre-
sented in Fig. 4.

Data analysis

The dataset was analyzed using standard statistical procedures to obtain the mean, standard 
deviation, skewness and coefficient of variation (CV) values. The skewness evaluates the 
distribution of the data, where zero corresponds to a symmetric distribution. Negative and 
positive skewness presents a distribution of values clustered on smaller values (negative) or 
higher values (positive). The coefficient of variation is presented in percent and shows the 
variability of the dataset concerning its mean value.

The recommended ranges for each nutrient based on the University of Florida’s (UF) 
Institute of Food and Agricultural Sciences (IFAS) guidelines for citrus nutrient manage-
ment (Kadyampakeni & Morgan, 2020) are presented in Table 2. These values were used 
as guidelines for data interpretation in this study.

Regression model

The collected spectral reflectance (five bands) from the multispectral camera was used 
to generate a regression model capable of using these five inputs to estimate the nutri-
ent concentrations of the crop. For this study, multiple regression algorithms such as Elas-
ticNet, Lasso regression, Linear SVM, PLSR, Random Forest and Ridge regression were 

Fig. 4  General procedure for a 
5-fold cross-validation

Table 2  Guidelines for 
interpretation of leaf analysis 
based on 4-6 month-old spring 
flush from non-fruiting twigs 
(based on Kadyampakeni & 
Morgan 2020)

Nutrients Deficient Low Optimum High Excess

N [%] < 2.2 2.2–2.4 2.5–2.7 2.8–3.0 > 3.0
P [%] < 0.09 0.09–0.11 0.12–0.16 0.17–0.30 > 0.30
K [%] < 0.7 0.7–1.1 1.2–1.7 1.8–2.4 > 2.4
Mg [%] < 0.20 0.20–0.29 0.30–0.49 0.50–0.70 > 0.70
S [%] < 0.14 0.14–0.20 0.20–0.40 0.40–0.60 > 0.60
Ca [%] < 1.5 1.5–2.9 3.0–4.9 5.0–7.0 > 7.0
B [ppm] < 20 20–35 36–100 101–200 > 200
Zn [ppm] < 18 18–24 25–100 101–300 > 300
Mn [ppm] < 18 18–24 25–100 101–300 > 300
Fe [ppm] < 35 35–59 60–120 121–200 > 200
Cu [ppm] < 3 3–4 5–16 17–20 > 20
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evaluated on their ability to generate a model in this dataset without overfitting or with 
acceptable error. The gradient boosting regression model proved to have the best results 
and therefore is used in this study.

Gradient boosting regression tree

The gradient boosting regression tree is an ensemble model. Ensemble-based models con-
sist of multiple base models (in this case, regression trees) where each base model provides 
a solution to the problem, whose outputs are combined in some way (typically by weighted 
or unweighted voting or averaging) to produce the final ensemble model output (Zhang 
& Haghani, 2015). The success of the ensemble comes from the reduced total error by 
correcting the mistakes of individual models. Combining individual base models with dif-
ferent errors can reduce the final error of the ensemble model. Trees are one type of base 
model that is commonly used for ensembles. They are sensitive to small variability in the 
training data. This unique property makes them good candidates for ensembles (Zhang & 
Haghani, 2015).

A single tree regression model is partitioned in nodes occupied each by a simple con-
stant model. In these nodes, a decision is made based on the value of the variable being 
analyzed. For each subsequent node, a new decision is based on an input variable until it 
reaches the end of the tree and gives the output. Figure 5a presents a schematic plot for a 
simple regression tree with decision nodes, where X1 and X2 are the variables being ana-
lyzed, b1, b2, b3 and b4 are values of the simple constant function, and Ya, Yb, Yc, Yd, Ye 
are the possible outputs of the model. Figure 5b presents a schematic example of an ensem-
ble model composed of multiple regression trees where B1, B2, B3, B4 and B5 represent 
each a base model (single regression tree) and the output Y is the weighted (w1, w2, w3, 
w4, w5) vote of them.

The gradient boosting methodology generates base models sequentially. Estimation 
accuracy is improved by emphasizing on the training cases that are more difficult to esti-
mate. In the boosting process, examples that are harder to determine appear more often in 
the training phase. Each new base model is designed to correct the mistakes made by its 
previous base models.

Fig. 5  a Single regression tree example; and b ensemble model example
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The purpose of resampling of the training data is to provide the most useful informa-
tion for each consecutive model. The adjusted distribution for each step of training is based 
on the error produced by the previous models. Figure 6 presents the steps of the gradient 
boosting algorithm.

Evaluation metrics

Mean absolute percentage error (MAPE), root mean squared error (RMSE), and MAPE‑CV 
ratio The mean absolute percentage error (MAPE) is the computed average of absolute per-
centage errors by which outputs of a model differ from actual values of what is being esti-
mated. The MAPE is given by the sum of the absolute difference between both the ground 
truth (Gt) and the model output (Y) divided by the ground truth, which is then divided by the 
number of individuals (n). The formula for the MAPE is presented in Eq. 1.

The root-mean-squared error (RMSE) is the root of the squared difference between the 
ground truth (Gt) and output value (Y), divided by the number of individuals (n) (Eq. 2).

When analyzing the performance of different algorithms and models, the quality of the 
dataset must also be considered. Datasets with high CV values present a greater challenge 
for regression algorithms, as the possible outputs are spread into a larger range. In con-
trast, datasets with low CV values present a lesser challenge for regression algorithms. In 
these cases, a good analysis is the MAPE-CV ratio given in Eq. 3, which is a ratio of error 
by challenge level, an indicator of performance where smaller values correspond to better 
performance.

Measure of agreement The agreement between measurements refers to the degree of 
concordance between two sets of measurements of the same individual by two differ-
ent methodologies. The Pearson correlation coefficient is often inappropriately used to 
evaluate for agreement since it is an incorrect measure of reproducibility or repeatability 
(Watson & Petrie, 2010). This invalidates the approach for comparison between other 
works with different datasets. Statistical methods to test agreement are used to decide 

(1)MAPE = 1∕n
∑||||

Gt − Y

Gt

||||

(2)RMSE =
√��

(Gt − Y)2∕n
�

(3)MAPE − CVRatio = MAPE∕CV

Fig. 6  Work flow of the gradient 
boosting algorithm
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whether one technique for measuring a variable can substitute another (Ranganathan 
et al., 2017).

The difference plot is a display of the pattern and agreement of one variable being 
measured by two different methodologies (Watson & Petrie, 2010). The diagram plots 
the difference between a measurement pair on the vertical axis and the mean of the pair 
on the horizontal axis. To determine the repeatability of the proposed approach, the 
method assumes a normal distribution of differences, where 95% of them are expected 
to lie between d ± 1.96 s , where d is the mean of observed differences and s is the stand-
ard deviation, generating an error in a confidence range (95%).

Interpretation

Given all evaluation metrics, an important step is understanding how to interpret these 
results. MAPE presents the absolute regression error in percentage, being suited to com-
pare the results when the datasets have different units or magnitudes. RMSE presents 
the same absolute regression error in the original units used in the dataset, being suited 
for comparing different regressions in the same dataset. The MAPE-CV ratio is a score 
of regression performance, being the ratio between efficacy and challenge.

Lastly, the difference plot presents the agreement between two sets of variables. This 
also generates an error range in a confidence level (95% in this study). Essentially, this 
is the maximum error expected for each regression with a 95% confidence. The key 
interpretation here is the difference between this range and the MAPE, where the first 
is the worst-case scenario for a single estimation, while the latter is the average error 
expected for a large number of estimations. These metrics are suited for specifically 
scaled comparisons; the error range should be used as the error of a small-scale estima-
tion (for example, when comparing the estimation of nutrient content between two cit-
rus trees), and the MAPE should be used on a large-scale estimation (for example, when 
comparing the average nutrient content of two groves, each containing more than 5,000 
citrus trees).

Results

Dataset analysis

‘Hamlin’ dataset

Table 3 presents the leaf nutrient data (lab chemical analysis) for the ‘Hamlin’ trials. In this 
case, N, P and S returned low variability, but the data are still viable as these are the nor-
mal ranges for each of the nutrients for these trees. As this low variability could force the 
model to overfit, to evaluate this possibility, the MAPE of the model created was compared 
to the CV of the data itself. This was used to verify that the model was aiming to determine 
the correct values.

The larger values of CV, namely for Fe and Cu, present a dataset with larger vari-
ability, which could mean that these nutrients present a more challenging problem for the 
model to determine the correct value. Based on the nutrient recommendations for citrus 
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(Kadyampakeni & Morgan, 2020), the average leaf nutrient concentrations for the ‘Ham-
lin’ trees were in the optimal to high range, except for Ca, which was low, and Cu, which 
was in excess.

‘Valencia’ dataset

Table 4 presents the leaf nutrient data for the ‘Valencia’ trials. Although the mean, mini-
mum and maximum values are similar to the ‘Hamlin’ dataset, the data were more spread 
(larger CV). This can produce a larger error in the model, which had to be investigated fur-
ther in the model evaluation. Based on Kadyampakeni and Morgan (2020), the average leaf 
nutrient concentrations for the ‘Valencia’ trees were in the optimal to high range, except for 
Cu, which was in excess.

Model: ‘Hamlin’ dataset (UAV imagery)

The models were generated using the open-source library scikit-learn for Python. The 
five-fold cross validation ensures that all data points were used for training and testing, 
where the average error for all five folds is considered the overall error of the model and 

Table 3  Mean, minimum and 
maximum, CV and skewness of 
the ‘Hamlin’ dataset

Nutrient Mean Min–Max CV Skewness

Nitrogen (N) [%] 2.88 1.53–3.47 9.34% − 2.14
Phosphorus (P) [%] 0.18 0.13–0.38 9.28% 2.47
Potassium (K) [%] 1.77 1.05–3.43 18.03% − 0.08
Magnesium (Mg) [%] 0.34 0.25–0.66 13.76% 1.59
Calcium (Ca) [%] 2.82 1.93–4.82 13.25% 0.44
Sulfur (S) [%] 0.35 0.27–0.64 10.87% 1.20
Boron (B) [ppm] 100.87 62.00–173.72 13.95% 0.41
Zinc (Zn) [ppm] 27.99 12.00–69.00 32.08% 0.61
Manganese (Mn) [ppm] 50.98 22.58–99.00 23.16% 0.67
Iron (Fe) [ppm] 101.15 43.00–530.00 56.01% 2.78
Copper (Cu) [ppm] 186.76 22.46–456.80 51.94% 0.30

Table 4  Mean, minimum and 
maximum, CV and skewness of 
the ‘Valencia’ dataset

Nutrient Mean Min–Max CV Skewness

Nitrogen (N) 2.78 1.53–3.47 11.70% − 1.66
Phosphorus (P) 0.18 0.14–0.24 8.86% 0.29
Potassium (K) 1.68 1.05–2.54 23.77% 0.31
Magnesium (Mg) 0.37 0.25–0.59 13.54% 1.09
Calcium (Ca) 3.04 2.03–4.15 10.79% − 0.11
Sulfur (S) 0.37 0.30–0.49 8.65% 0.43
Boron (B) 97.02 62.00–150.00 16.39% 0.72
Zinc (Zn) 27.01 12.00–69.00 39.92% 0.84
Manganese (Mn) 50.86 26.00–99.00 24.96% 0.86
Iron (Fe) 109.33 43.00–530.00 69.06% 2.06
Copper (Cu) 128.37 32.00–455.00 59.79% 0.89
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algorithm. Table 5 shows the MAPE values for all nutrients for each validation (five-
fold), the average MAPE, the average RMSE and MAPE-CV ratio.

Nutrients like N, P and S, which had a lower variability in the dataset (lower CV in 
Table 3), also had lower MAPE values (Table 5), while nutrients with higher variability 
in the dataset (higher CV in Table 3) had higher MAPE values (Table 5). A lower vari-
ability in the dataset will usually generate models with higher precision, as these values 
are spread in smaller ranges and therefore generate smaller errors. In such cases with 
different variabilities, the MAPE-CV ratio is useful to compare results, with a smaller 
ratio indicating a better performance.

Overall, the MAPE shows a good regression for most of the nutrients, with errors 
under 10%. For Zn, Mn, Fe and Cu, which returned larger errors (Table 5), the model 
was less accurate, but satisfactory, considering that data acquisition was done by UAV 
(and not by time-consuming and laborious laboratory analysis). The error distribution is 
shown in Fig. 7. For N and S, the spread of errors is under 10% of the absolute error. For 
P, K, Mg, Ca and B, the model resulted in errors of less than 20%. These are encourag-
ing results for a procedure that uses UAV imagery.

Fig. 7  Whisker plot of the distribution of errors for each nutrient in the ‘Hamlin’ dataset

Fig. 8  Difference plot for 
nitrogen measurements in the 
‘Hamlin’ (UAV) dataset
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The difference plots were used to compare the standard method of measuring nutri-
ent concentrations (lab chemical analysis) with the new proposed UAV- and AI-based 
method. Figure 8 shows the difference plot for N as an example. It shows that the oper-
ating range for N determination by spectral canopy reflectance analysis works on a 
± 0.25 range of error for the percentage of the nutrient in the plant. This is equivalent to 
a ± 8.39% range of error in operation.

The difference plot was applied to all nutrients. Table 6 shows the upper and bottom 
range of operation in their nutrient concentrations and equivalent values in percentage. 
The table shows that the maximum error for almost half of the nutrients was less than 
20%.

Model: ‘Valencia’ dataset (UAV imagery)

This model was generated following the same procedures described for the ‘Hamlin’ 
model. Table 7 shows the MAPE for all nutrients for all five-fold validations, the aver-
age MAPE, RMSE and MAPE-CV ratio. It shows a larger error for the estimation as 
expected from a dataset with more variability, but the average MAPE for most nutrients 
can be considered precise enough for a UAV-based measurement. The same pattern was 
found for the distribution of errors, where the larger CV in the dataset analysis shows a 
higher average MAPE.

The error distributions are presented in Fig. 9. Although errors are larger compared 
with the ‘Hamlin’ model, the errors for N, P and K are still less than 20%. The error dis-
tribution for Fe and Cu are shown as infinite, possibly due to outliers in the dataset. The 
MAPE-CV ratio for this dataset is larger, showing a poorer performance.

The difference plot was again applied to all nutrient data. Table 8 presents the upper 
and bottom range of operation in their nutrient concentrations and equivalent values in 
percentage. This model presents a larger error range of operation, expected from a wider 
spread of errors. When comparing to the other UAV model (‘Hamlin’ dataset), these 
ranges show that the presence of outliers can be highly influential. This can be mini-
mized by collecting a larger dataset to better represent these outliers.

Table 6  Upper and bottom range 
for the difference plot for each 
nutrient in the ‘Hamlin’ dataset

Nutrient Upper range Bottom range Range in percent-
age

Nitrogen (N) 0.25 − 0.25 8.39% − 8.39%
Phosphorus (P) 0.03 − 0.03 17.06% − 17.06%
Potassium (K) 0.34 − 0.33 18.31% − 17.77%
Magnesium (Mg) 0.06 − 0.07 18.60% − 21.70%
Calcium (Ca) 0.51 − 0.50 19.61% − 19.22%
Sulfur (S) 0.05 − 0.05 15.41% − 15.41%
Boron (B) 18.08 − 18.35 17.27% − 17.53%
Zinc (Zn) 8.68 − 8.50 29.97% − 29.34%
Manganese (Mn) 16.38 − 16.48 32.06% − 32.25%
Iron (Fe) 29.03 − 28.99 31.22% − 31.18%
Copper (Cu) 106.37 − 105.42 43.41% − 43.03%
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Discussion

To evaluate the performance of the proposed model, leaf nutrient data were used from two 
different citrus scion cultivars grafted on more than 30 different rootstock cultivars and 
growing in two field locations with different soil and environmental conditions. The best 
overall fit was found for N, for which the model achieved an 8.39% range of operational 
error (difference plot range) for the ‘Hamlin’ dataset, and a 25.51% error for the ‘Valencia’ 
dataset. For the other nutrients (P, K, Mg, Ca, S and B), the error ranges were less than 
20% for the ‘Hamlin’ dataset, and up to 40% for the ‘Valencia’ dataset. The model was 
not able to achieve acceptable errors for the micro-nutrients Zn, Mn, Fe and Cu. However, 
on a large-scale analysis, the MAPE better presents the model’s estimation accuracy (see 
“Evaluation metrics” section); the model determined N with a 3.82% MAPE and 9.85% 
MAPE for the ‘Hamlin’ and ‘Valencia’ datasets, respectively.

Assessing leaf nutrient concentrations of citrus trees is important for determining 
the nutrient status of the plants, which can fluctuate depending on the developmental 

Fig. 9  Whisker plot of the distribution of errors for each nutrient in the ‘Valencia’ (UAV) dataset

Table 8  Upper and bottom range for the difference plot for each nutrient in the ‘Valencia’ (UAV) dataset

Nutrient Upper range Bottom range Range in percentage

Nitrogen (N) 0.71 − 0.68 25.51% − 23.60%
Phosphorus (P) 0.04 − 0.04 21.72% − 22.21%
Potassium (K) 0.68 − 0.68 40.38% − 38.40%
Magnesium (Mg) 0.12 − 0.11 32.52% − 31.81%
Calcium (Ca) 0.75 − 0.79 24.65% − 28.00%
Sulfur (S) 0.07 − 0.07 18.69% − 20.03%
Boron (B) 32.40 − 32.43 33.39% − 32.15%
Zinc (Zn) 20.03 − 20.03 74.17% − 71.57%
Manganese (Mn) 27.48 − 26.99 54.03% − 52.94%
Iron (Fe) 164.1 − 175.46 150.10% − 173.47%
Copper (Cu) 152.08 − 158.36 118.47% − 123.36%
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stage of the plant, environmental conditions and pest/disease pressure. Regular nutri-
ent analysis is important in crop production to identify and correct potential nutrient 
deficiencies and prevent production losses (Shaw et  al., 2002; Kadyampakeni & Mor-
gan, 2020; Bahtiar et  al., 2020). Rather than collecting leaves manually and subject-
ing them to costly chemical analysis procedures, combining UAV imaging (spectral leaf 
reflectance measurements) and AI is less laborious, safer for the environment and more 
cost-efficient. This approach not only allows determination of the crop nutrient status 
but also development of fertility maps for variable rate fertilizer applications for further 
cost savings and environmental benefits. The aerial maps produced may also identify 
other problems. These include differences in the topography or micro-environment of 
the production site as well as disease zones that may affect nutrient availability, uptake 
or retention, or technical problems that may have arisen from malfunctions of machin-
ery and other equipment associated with crop management.

To demonstrate the development of fertility maps, and the correlation of the canopy 
reflectance data and the nutrient concentrations obtained by chemical analysis, nitrogen 
maps were generated for the ‘Hamlin’ trees in trial B (Fig. 10). These maps and zones 
were based on the UF/IFAS guidelines for nutrient ranges of citrus trees (Table 2). One 
map (Fig.  10a) was generated using the proposed methodology (AI-based estimation 
model) based on canopy spectral reflectance values for all 4925 trees that are part of 
the trial in that location, and the second map (Fig. 10b) was generated using the ground 
truth data (laboratory chemical analysis) from a subset of 192 tree samples (red dots 
represent individual tree samples in the study site).

The major advantage of the proposed methodology is that large populations of plants 
can be assessed quickly and at low cost, while also reducing inaccuracies resulting from 
sampling a limited subset of plants. This is demonstrated in Fig. 10b. It can be seen that 
there is a larger discrepancy between maps in the areas where fewer trees were sampled 
(red dots). For example, only three leaf samples were obtained from the northeast area 
of this trial site, which contained 202 trees. Similarly, only three samples were collected 

Fig. 10  Nitrogen maps based on UF/IFAS guidelines (Table  2), with optimum (green), high (blue), and 
excess (pink) zones: a map developed by the proposed methodology; and b map developed from ground 
truth samples (chemical analysis; red dots represent sample points) (Color figure online)
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from the southeast area, which contained 307 trees. This difference in sampling fre-
quency is likely the major reason for the discrepancy of the two maps in these areas of 
the trial.

In addition to aiding growers in nutrient management and disease identification, the pro-
posed technology could be used in breeding programs to study cultivar performance and 
assess nutritional requirements and cultivar adaptation to different environmental condi-
tions and diseases. A recent study by Osco et al., (2020) presented a framework based on 
machine learning algorithms to assess leaf nutrient concentration based on ground-based 
hyperspectral imaging. The study used different algorithms such as k-nearest neighbor 
(KNN), lasso regression, ridge regression, support vector machine (SVM), artificial neural 
network (ANN), decision tree (DT) and random forest (RF). Leaf nutrient determination 
with the proposed UAV-based methodology presented here yielded results comparable to 
those obtained by all algorithms used in Osco et al., (2020). For example, in that study, 
the best regression achieved for N was with a MAPE of 2.39%. In contrast, the methodol-
ogy proposed in this study achieved a MAPE of 3.82%. Although most nutrient values in 
the dataset were similar to values measured by Osco et al., (2020), Cu concentrations dif-
fered considerably (157.57 ppm in current dataset, and 72.20 ppm in Osco et al., 2020) as 
did CVs (44.01% in current dataset, and 36.14% in Osco et al., 2020). The reason for the 
higher Cu concentrations and variance measured in this study is the frequent foliar sprays 
of this element to combat the bacterial disease citrus canker (Behlau et al., 2010). Achiev-
ing 80–90% accuracy of measurement for most of the other nutrients demonstrates the 
superiority of the proposed UAV- and AI-based methodology compared to the methodol-
ogy used by Osco et al. (2020). The UAV based approach is ideal for evaluation of large-
scale commercial fields, where larger areas can be covered by UAVs in considerably less 
time than by ground-based sensing systems.

In this study, the difference plots were incorporated into the analysis to evaluate accu-
racy of the model. Difference plots better represent accuracy of an application by consid-
ering most of the errors and eliminating some outliers to generate a range of operational 
errors. This is useful when comparing different datasets, as demonstrated in this study.

Conclusions

Herein, a methodology for generating and applying regression models for determining 
nutrient concentrations of citrus trees was developed. Different datasets including two dif-
ferent scion cultivars (‘Valencia’ and ‘Hamlin’) in combination with more than 30 different 
rootstock cultivars and two different locations were used. The proposed method incorpo-
rated a gradient boosting regression tree to determine different macro- and micro-nutrients 
and was evaluated with a cross validation method for overall errors and by a difference 
plot. This approach developed a precise estimation model, with less than 15% MAPE for 
most of the nutrients analyzed. The gradient boosting regression algorithm proved to be 
suitable for small datasets (less than 400 individuals) with both larger and smaller CV. 
For this analysis, it surpassed other regression algorithms without overfitting the data. It 
is a reliable methodology for crop spectral analysis, as larger datasets are difficult to cre-
ate. Although this model was tested in commercial citrus production systems, it could be 
adapted to other crop systems. This new technology will allow the generation of prescrip-
tion maps for variable rate application of fertilizers based on UAV imagery.
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