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Abstract
Hedgerow orchard is an olive growing system where trees are planted at a super high-den-
sity higher than 20-fold (i.e., 1200–2500 trees  ha−1) compared to the traditional density of 
olive orchards (usually 50 to 160 trees  ha−1). It is dominating a great proportion of new 
plantations because harvesting can be fully mechanized, it is early bearing and has a rela-
tively constant high productivity. However, there are a limited number of cultivars with 
sufficiently low vigour to be suitable for such plantation densities. For that reason, a set of 
low vigour cultivars and breeding selections has been used in a field experiment as root-
stocks for reducing the vigour of “Picual”, the most frequent cultivar planted in Spain. Tree 
vigour was characterized by measuring crown height, projected and side areas, and volume 
through the analysis of photogrammetric point clouds created from images acquired with 
an unmanned aerial vehicle. A significant reduction of the ‘Picual’ vigour was observed in 
most of the rootstocks tested, with canopy volume reduced up to one half. High variability 
on vigour, first harvesting and their relative relationship was observed between the differ-
ent rootstocks used. This indicates there might be enough genetic variability to perform 
breeding selection for dwarfing rootstocks on ‘Picual’ olive cultivar.
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Introduction

Olive (Olea europaea L.) is the most widespread tree fruit planted in the Mediterranean 
basin. Out of 10.6 Mha cultivated worldwide, 24.60%, 15.19% and 10.77% are in Spain, 
Tunisia and Italy, respectively (FAOSTAT, 2021). Hedgerow orchard is a recent olive 
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growing system where trees are planted at much higher density (i.e., 1200–2500 trees 
 ha−1) than the high-density (around 400 trees  ha−1) or than traditional widely-spaced olive 
orchards (usually 50 to 160 trees  ha−1). This intensive cropping system is nowadays being 
widely adopted not only in typical olive countries located in the Mediterranean Region, but 
also it is becoming the most common orchard design in new plantings in non-traditional 
production zones away from the Mediterranean Region, such as Argentina, Chile, Perú and 
Australia (Centeno et al., 2019; Connor et al., 2014; Torres et al., 2017). This is mainly 
due to advantages related to the fact that they are adapted to fully mechanized harvesting, 
easy disease and pest control, early bearing, and a relatively constant high productivity 
(Fernández-Escobar et al., 2013). However, the main drawback of this growing system is 
that super high-density planting leads to the need for low vigour cultivars with good pro-
ductivity level; there is a scarcity of varieties with these characteristics. In Spain, 270 olive 
cultivars are available (Barranco & Rallo, 2000; Barranco et  al., 2000) and ‘Arbequina’ 
and ‘Arbosana’ varieties together with ‘Koroneiki’ to a minor extent are the only unique 
traditional cultivars that are really suitable for this hedgerow system (De la Rosa et  al., 
2007; Marino et al., 2017). Few attempts have been made to develop low vigour cultivars 
specifically adapted to this cropping system, such as ‘Askal’ in Israel (Lavee et al., 2003) or 
‘Sikitita’ in Spain (Rallo et al., 2008). This shortage is mainly due to the high heterozygo-
sity of this species, which produces a high variability on the breeding crosses making it dif-
ficult to find a genotype having all the desirable traits; and to the extended juvenile period 
of olives that makes the breeding selection process very long. These factors have hampered 
the obtaining of new cultivars through the combination of good adaptation to super-high 
density with other traits such as high oil quality or resistance to pests and diseases.

One of the most interesting cultivars to be adapted for hedgerows could be ‘Picual’, the 
most widely planted cultivar in Spain (University of Jaén, 2020). This is related to its high 
productivity, easiness of harvesting by trunk shakers (due to its low fruit removal force 
and large fruit size) and good adaptation to the environmental conditions. Besides, the oil 
composition of ‘Picual’, with high oleic acid and high phenol content is highly appreci-
ated (León et  al., 2011).So far, hedgerow field experiments including ‘Picual’ have not 
reported acceptable results because irrigation increases the tree volume, leading to the 
necessity of frequent pruning (Barranco et al., 2000). On the other hand, there are a wide 
range of traditional olive cultivars that, although not suitable for high-density orchards due 
to their high vigour, could have other characteristics such as high oil content or high oleic 
acid in oil that, together with their adaptation to different agroclimatic conditions, could 
make them very interesting for being used in breeding programs for hedgerow plantations 
(Navas-López et  al., 2019, 2020). Therefore, looking for dwarfing rootstocks that could 
reduce the canopy vigour of some traditional cultivars, so that they could fit in to the mod-
ern hedgerow olive orchards, would be of great interest for this emerging olive growing 
system. This would permit having a wide range of olive cultivars able to be planted in 
hedgerow orchards and the ability to design multi-varietal orchards. This could have many 
advantages such as production of olive oils with a wide range of composition and organo-
leptic properties (Navas-López et al., 2020) and different sources of resistance to pests and 
diseases (Fernández-Escobar et al., 2013). Other advantages of the availability of a wider 
range of olive cultivars would be the possibility of combine pollinators and a higher effi-
ciency in the use of machinery related to a potential lengthening of the harvest period.

In other fruit trees, especially apple, dwarfing rootstocks have been used for a very long 
time as a way to reduce tree canopy and vigour, and thus increase planting density (Lordan 
et  al., 2018; Vyvyan, 1955). However, rootstocks have been scarcely used on olive trees 
due to the ease of self-rooting of this species (Warschefsky et al., 2016), although some 
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rootstocks have been selected for Verticillium Wilt (Jiménez‐Fernández et al., 2016) and 
frost (Pérez-López et  al., 2008) resistance. Several attempts at selecting dwarfing root-
stocks in olive have also been made as reviewed by Rugini and Pace (2016). This included 
a long-term evaluation of the vigour and productivity of ‘Arbequina’ when grafted in 18 
different olive cultivars and trained in vase formation (Romero et al., 2014). However, their 
final suitability for hedgerow olive orchards has not yet been reported and, in any previ-
ous work, dwarfing rootstock has been used to increase the ability of traditional vigorous 
olive cultivars to be planted in high-density hedgerow orchards. Only one recent work has 
reported a high variability on the initial growth of 1 year old potted plants of ‘Picual’ when 
grafted with a collection of wild genotypes (Díaz-Rueda et al., 2020).

Evaluation of the dwarfing effect of the different rootstocks in breeding field experi-
ments requires the measurement of the geometrical properties of every tree crown. Manual 
measurement of the plant properties is a laborious task especially in the case of the olive 
tree, whose crown has an irregular geometry (Rallo et al., 2020). To efficiently alleviate 
the hard manual work required in phenotyping experiments, different technologies have 
been used in recent years for the acquisition of 3D information (Paulus, 2019). Among the 
technological alternatives, one of those recently used is the generation of 3D point clouds 
representing the crops through the application of photogrammetric techniques to images 
acquired with an unmanned aerial vehicle (UAV). In these point clouds, each point pro-
vides a set of X, Y, Z coordinates representing the surface of the crop and the soil. UAV 
photogrammetry has been successfully used in phenotyping of herbaceous crops such as 
maize (Herrmann et al., 2020), sorghum (Watanabe et al., 2017) and rice (Kawamura et al., 
2020), and of woody crops such as almond (López-Granados et al., 2019) and olive (León 
et al., 2017; Rallo et al., 2020). The usually large amount of points in the cloud generated 
through the use of these new technological tools in breeding experiments (e.g., 4782 points 
 m−2, (de Castro et  al., 2019)) requires robust and efficient analysis algorithms (Guijun 
et al., 2017; Perez-Sanz et al., 2017). The object based image analysis (OBIA) paradigm, 
based on the segmentation of images or point clouds, has been used in the creation of anal-
ysis algorithms of point clouds in phenotyping experiments in almond (Torres-Sánchez 
et al., 2018) and olive (de Castro et al., 2019).

In this context, the goal of the present work was to test the ability of a set of low vigour 
cultivars together with breeding selections as rootstocks in reducing the vigour of ‘Picual’ 
cultivar, and therefore, to increase the suitability of that cultivar for high-density hedgerow 
orchards. For that purpose, a UAV-photogrammetric point cloud and OBIA algorithm were 
used to quantify geometric parameters such as height, projected and transversal areas, and 
volume of every olive tree belonging to different rootstock-scion combinations to correctly 
select those able to induce a dwarfing effect on the ‘Picual’ cultivar. UAV data were com-
pared to direct tree measurements at ground level in their ability to identify the dwarfing 
effect of the tested rootstocks.

Materials and methods

Study site

In 2015, one-year-old olive plants of eight seedlings of ‘Sikitita’ × ‘Arbosana’ cross 
of the olive breeding program of IFAPA-Alameda del Obispo-Córdoba (Spain), six 
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cultivars and two wild olives (Table  1) were used as rootstocks for the ‘Picual’ cul-
tivar. The eight seedlings were selected as coming from the cross of two low vigour 
cultivars suitable for high-density orchards (De la Rosa et al., 2007; Rallo et al., 2008). 
Four out of the six cultivars included are common for high-density orchards (‘Arbe-
quina’, ‘Arbosana’, ‘Sikitita’, ‘Tosca’), while the other is a high vigour cultivar (‘Fran-
toio’). ‘Picual’ was also included in order to study the effect of self-grafting. The two 
wild rootstocks were included to test the effect on vigour of non-cultivated germplasm. 
Grafted plants were grown in the greenhouse together with additional ‘Picual’ plants 
on their own roots. All this plant material was used to set up a field comparative trial 
in April 2016. A randomized design with three blocks and with a number of plants per 
experimental plot, depending on plant availability, was set up. The trial was planted at a 
typical hedgerow density of 4 × 1.5 m (1666 trees  ha−1) with 1000  m3  ha−1 of yearly drip 
irrigation and located at the experimental farm of IFAPA (37.853252 N, 4.805569 W, 
WGS84) previously mentioned. Fertilization was applied to promote early growth of 
the plants to form the hedgerow and consisted of 40, 13 and 26 units per ha and year of 
nitrogen, phosphorous and potassium, respectively. The only frequent disease in the area 
of cultivation was peacock eye and preventive treatments with copper sulphate were 

Table 1  Plant material used in the study, including rootstocks for ‘Picual’ scion and ‘Picual’ on its own 
roots

a Letters have been added to Picual trees to distinguish between Picual grafted on Picual rootstock (Picual-
R) from Picual on its own roots (Picual-C)

Plant material grafted with Picual scion

Origin of the rootstock Rootstock Number 
of trees

‘Sikitita’ × ‘Arbosana’ 77–36 14
78–5 5
78–6 8
82–2 9
82–4 10
82–8 7
83–7 14
90–5 5

Cultivars Arbequina 18
Arbosana 17
Sikitita 18
Frantoio 18
Picual (Picual-R)a 17
Tosca 6

Wild olives FV15 6
GM25 5

Non-grafted Plant material

Cultivar Number of trees

Picual (Picual-C)a 17
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applied three times a year. Plants were not pruned in order to evaluate the genetic effect 
of each rootstock and cultivar on the canopy volume.

Field data acquisition and processing

In April 2018, tree height and canopy volume were measured for each tree. Canopy volume 
was estimated based on the measurement of three canopy diameters including one vertical 
(V) and two horizontal (perpendicular) ones (H1 and H2) using the following formula:

All fruits were handpicked for each tree to measure yield as previously reported (León 
et al., 2007).

Aerial data acquisition and processing

A UAV flight was carried out over the study field on 12/04/2018; it was a sunny day with 
low wind speed. The UAV platform was a quadcopter model MD4-1000 (microdrones 
GmbH, Siegen, Germany) equipped with a Sony ILCE-6000 camera (Sony Corporation, 
Tokyo, Japan). The camera has a 23.5 × 15.6 mm APS-C CMOS sensor with a resolution 
of 24 megapixels (6000 × 4000 pixels) and is equipped with a 20 mm lens. The UAV flight 
was carried out at noon on a cloudless day to minimize shadow effects, at an altitude of 
30 m above-ground level, and with a grid pattern following a trajectory designed to spa-
tially cover the entire study site with forward and side overlaps of 91% and 60%, respec-
tively. The imagery spatial resolution was 6 mm per pixel.

The aerial images were processed using PhotoScan Professional Edition (Agisoft LLC, 
St. Petersburg, Russia) version 1.2.4 for the creation of the photogrammetric point cloud. 
The process was fully automatic, with the only exception being the manual location of 
five ground control points. Coordinates of these points were registered using a real time 
kinematic (RTK) GNSS linked to a reference station from the GNSS network from the 
Institute for Statistics and Cartography of Andalusia (IECA), Spain. The accuracy of the 
GNSS-RTK system was about 0.02 m in the X–Y axis directions and 0.03 m in the Z-axis 
direction. At the end of the process, the point cloud was stored in “.las” format, an open 
binary format specified by the American Society for Photogrammetry and Remote Sensing. 
Readers can find more information about the processing parameters in Torres-Sánchez et al 
(2018).

OBIA algorithm

The 3D information of the olive trees was automatically extracted from the photogram-
metric point cloud using an automatic OBIA algorithm. It does not need any user inter-
vention, and was designed using Cognition Network programming language in eCognition 
Developer 9.3 software (Trimble GeoSpatial, Munich, Germany). The algorithm was cre-
ated for the analysis of vineyards in trellis systems (López-Granados et al., 2020), but it 
was adapted and re-parameterized to be applied in an olive hedgerow scenario due to the 
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similarity of this orchard structure with vineyards under a trellis system. The algorithm can 
be divided in to the following steps, although more information can be found in López-
Granados et al (2020):

1. Digital terrain model (DTM) generation the point cloud was segmented following a 
2 × 2 m grid pattern. The points in each 2 × 2 m square that belong to the 15% of points 
with lower height were assumed to belong to the soil. Their average height was calcu-
lated and stored in an image layer called “DTM”. This approach has been successfully 
used and validated in other woody crops (de Castro et al., 2019; Torres-Sánchez et al., 
2018).

2. Olive hedgerow classification a chessboard pattern was overlaid over the point cloud to 
split it in to 0.1 × 0.1 m squares. The squares containing points with a height over the 
DTM greater than 1 m were classified as “olive”. The points higher than 0.5 m inside 
the “olive area” were stored in a new point cloud.

3. Point cloud slicing the new point cloud was split in to 0.1 m height slices following the 
Z-axis direction. As the point cloud was already divided in to 0.1 m squares, it follows 
that the olive point cloud was segmented in voxels (i.e., 3D pixels) with 0.1 m side. A 
new image layer stored the number of voxels with olive points that share x,y coordinates 
with each one of the 0.1 m squares created in the first step. As the volume of the voxels 
was known (0.1 × 0.1 × 0.1  m3), it was possible to calculate the volume occupied by the 
olives in every pixel of the new layer. The slicing of the point cloud with this voxel size 
has been successfully used in previous research (de Castro et al., 2019; López-Granados 
et al., 2019).

4. Hedgerow segmentation the olive hedgerows were split in to 0.1 m length slices along 
the hedgerow direction.

5. Hedgerow segments characterization the volume of each hedgerow slice was estimated 
by counting the number of voxels including “olive points” that were inside the slice. For 
every slice, the height was the point with maximum height over the DTM. In addition, 
the slice projected area was derived from the classification carried out in the “olive 
hedgerow classification” step of the algorithm.

The hedgerow segments were grouped to isolate individual trees taking into account the 
planting pattern. The algorithm detected the extreme of the hedgerow and grouped the row 
slices every 1.5 m. Data analysis was performed on the 3D parameters of the trees rather 
than the parameters of the slices. For the aggregation of the slices, the sum of the values 
was calculated for volume and area, while the maximum was computed for height, and 
width at different heights. The combination of the width of the tree slices with their height 
resulted in a set of rectangles depicting the transversal section of the tree (Fig.  1). The 
aggregation of the areas of these rectangles gave the transversal area of the tree.

Data analysis

Average transversal sections for each rootstock were created to visualise the shape differ-
ences among them. Since not all the rootstocks had the same number of trees, five trees 
were randomly selected for each rootstock in order to make the data more comparable. 
These figures were made using bar charts to represent the width of the trees at different 
heights. To create a representation of the tree silhouette for each rootstock (Fig.  1), the 
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value of the width at every height slice was halved, and every half was represented in a side 
of the x-axis.

The main architectural parameters (height, projected area, volume and transversal area) 
were subjected to analysis of variance to test the effect of rootstock. Welch’s test was 
selected for studying this effect because volume and transversal area values did not com-
ply with the requirement of homoscedasticity required for applying an ANOVA test. Fur-
thermore, the correlation between yield and tree volume was studied. All the statistical 
analyses and charts were carried out using R software 3.5.3 (R Core Team, 2019) with the 
packages “ggplot2” (Wickham, 2016), “dplyr” (Wickham et al., 2019), and “userfriendly-
science” (Peters, 2018).

Fig. 1  Graphical representation of the average ‘Picual’ canopy width at different heights for the rootstocks 
studied, including ‘Picual’ self-grafted (Picual-R). ‘Picual’ self-rooted (Picual-C) was also included. Data 
from five randomly selected trees per rootstock were used. Black lines indicate the standard deviation of the 
width among trees of the same rootstock or cultivar
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Results

Differences in architectural parameters among rootstocks

The data from the analysis of the point cloud were used to fully characterize the canopy of 
the different ‘Picual’/rootstock combinations. This allowed identification of a wide vari-
ability on the average canopy transversal section of ‘Picual’ between the different root-
stocks, from tall and slender trees such the case where ‘Arbosana’ was used as rootstock, 
to low and stocky trees such as ‘GM25 ‘ rootstock (Fig. 1). ‘Picual’ self-grafted showed a 
similar canopy transversal section to ‘Picual’ own rooted. This result suggests that some 
‘Picual’/rootstock combinations are more stable in their geometrical properties than oth-
ers, as they have less standard deviation of the canopy transversal section measures (Fig. 1; 
Table 2). For example, ’82-2’ or ’78-5 ‘ rootstocks showed lower standard deviation values 
for the width at different heights, while ’82-8’ or ‘Frantoio ‘ rootstocks presented higher 
standard deviation values.

An analysis of variance was applied to determine the effect of the ‘Picual’/rootstock 
combinations on the canopy variables. Table 3 presents the results of the Welch’s test for 
height, projected area, volume and transversal area. The analysis was applied to the UAV 
and the field data, except for transversal area that was not estimated from field data. The 
kind of ‘Picual’/rootstock combination significantly affected all the studied geometric vari-
ables, regardless of whether the data came from UAV estimations or from field measured 
data. This confirms in a quantitative way what was inferred from Fig.  1 for height and 
width. The fact that UAV and field data gave similar ANOVA statistics seems to indicate 
a high correlation among them. This correlation was confirmed by the calculation of the 

Table 2  Average of the standard 
deviation values of the’Picual’ 
canopy width when grafted on 
to different rootstocks, including 
‘Picual’ self-grafted (Picual-R). 
‘Picual’ self-rooted (Picual-C) 
was also included

Rootstock Average width 
standard devia-
tion

78–5 0.19
82–2 0.23
Picual-R 0.24
Sikitita 0.25
GM25 0.25
Picual-C 0.25
78–6 0.27
Arbequina 0.29
77–36 0.30
82–4 0.30
Tosca 0.31
90–5 0.32
FV15 0.36
83–7 0.38
Arbosana 0.40
Frantoio 0.40
82–8 0.42
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Spearman correlation coefficient, that was equal or higher than 0.79 (p < 0.001) for height, 
projected area and volume.

The UAV derived variables analysed through the Welch’s test are represented in Fig. 2 
for a clearer vision of the influence of the ‘Picual’/rootstock combination on the develop-
ment of the olive trees. The ‘Picual’ canopy geometric variables measured greatly varied 
among the rootstock evaluated. Wild olive GM25 reduced the ‘Picual’ canopy more than 
the rest of the genotypes. Rootstocks 78-5, 82-2, 82-4, coming from ‘Sikitita’ x ‘Arbosana’ 
breeding cross, and the other wild FV15 also gave lower values for the canopy variables 
than ‘Picual’ self-rooted (Picual-C). Other rootstocks showed high variability among the 
replicates evaluated, especially cultivars ‘Frantoio’ and, to a lesser extent, ‘Arbosana’.

Tree volume and yield

The correlation between tree volume and yield was assessed using the mean values per 
rootstock-scion combination. ‘GM25 ‘ was removed from the dataset since it was not pro-
ductive. With the remaining data, tree volume and yield were found to be significantly cor-
related, with a Pearson correlation coefficient r(14) = 0.71, p < 0.01, 95% CI [0.33, 0.89]. 
Figure 3 is a graphical representation of the comparison between yield and UAV estimated 
tree volume. It can be seen that there were differences among genotypes; e.g., ‘Tosca’ and 
‘Arbequina’ were the only two rootstocks promoting higher canopy volume and yield in 
‘Picual’ relative to this cultivar on its own roots. Rootstock ’78-5 ‘ seems to be interesting 
as promoting a very low canopy volume in ‘Picual’ with only a small decrease in yield. 
The wild ‘FV15’ was the rootstock with less volume and yield.

Discussion

The rootstocks here used to graft ‘Picual’ cultivars produced a wide variability in can-
opy volume and transversal section. This variability included several genotypes which 
conferred a lower canopy volume to ‘Picual’ than the cultivar grown on its own roots. 

Table 3  Results for the Welch’s tests on the estimated and measured variables among ‘Picual’/rootstock 
combinations. “Df num” and “Df den” refer to the degrees of freedom of numerator and denominator, 
respectively

Height (m) Projected area  (m2) Volume  (m3) Transversal area  (m2)

UAV data
 F ratio 14.10 8.45 15.99 14.39
 Df num 16 16 16 16
 Df den 48.75 48.02 48.33 48.52
 Prob > F p < 0.001 p < 0.001 p < 0.001 p < 0.001

Field data
 F ratio 9.84 6.79 11.74 –
 Df num 16 16 16 –
 Df den 47.97 49.84 50.34 –
 Prob > F p < 0.001 p < 0.001 p < 0.001 –
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Fig. 2  Boxplots comparing the variables studied from UAV data among rootstocks and cultivars: a height, 
b projected area, c volume, d transversal area
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This is the case of some of the seedlings of the ‘Sikitita’ × ‘Arbosana’ cross and also the 
two wild genotypes used in the present study. It is worth noticing that low vigour culti-
vars such as ‘Tosca’ (Abenoza et al., 2014) or ‘Arbequina’ (De la Rosa et al., 2007) pro-
duced a high canopy volume in ‘Picual’ while ‘Frantoio’, a high vigour cultivar (León 
et al., 2007), produced a vigour canopy volume in ‘Picual’ similar to that cultivar grown 
on its own roots. This fact suggests that there is not a direct relationship between the 
vigour of the cultivar and its dwarfing effect. This effect of the rootstock on the scion 
might be caused by a reduction in root hydraulic conductance (Nardini et  al., 2006). 
This means that the dwarfing rootstock has a higher resistance to water flow in roots 
which causes a reduction of the total leaf surface area of the scion. Another mechanism 
that could partly explain the dwarfing effect is that the rootstocks might be affecting 
the expression of genes related to canopy growth of the scion. This has been described 
for apple vigour where MdFT genes of M.9 rootstock seems to promote earlier shoot 
termination (reduction in growth) in the scion as a part of the rootstock dwarfing effect 
(Foster et al., 2014).

Previous works on olive have also evaluated the dwarfing effect of ‘Leccino Dwarf’, and 
genetic variability of this character in olive has been previously reported in ‘Arbequina’ 
olive in vase formation when grafted with 18 olive cultivars (Di Vaio et al., 2012; Romero 
et al., 2014). In relation to canopy dimensions, high variability of tree height and canopy 
spread due to different rootstocks has been found for’Fuji’ and’McIntosh’ apple cultivars 
(Autio et al., 2011) and cherry (Blažková et al., 2020).

The evaluation of the genetic variability has allowed identification of a high correlation 
between canopy volume and first harvest, which could be related with earliness of bearing 
that the different rootstocks produce on the ‘Picual’ cultivar. Therefore, the yield/volume 
ratio was more or less constant for most of the rootstocks evaluated, for the first harvest 
here evaluated. A positive correlation between vigour and yield has also been found when 
using dwarfing rootstocks in apple (Costes et  al., 2006). This could be explained by the 

Fig. 3  Graphical comparison of UAV estimated volume and yield using the mean values per rootstock-scion 
combination
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positive correlation between light interception and yield response previously reported for 
olive (Gómez-del-Campo et  al., 2020); although this should be confirmed with further 
experiments with more years of crop evaluation. However, some genotypes showed a much 
lower yield/volume ratio than the general ratio, such as ’83-7’ and ‘Frantoio’. From the 
two wild genotypes evaluated,’FV15’ also showed a very low yield/volume ratio, while the 
other wild genotype did not show any yield at all. This could be due to problems associ-
ated with graft compatibility as widely reported in other fruit crops usually propagated by 
grafting, such as the case of almond (Rubio-Cabetas et al., 2017). On the other hand,’78-5’ 
seedling showed a high yield with respect to the canopy volume. Other genotypes such 
as’82-4’,’82-2’ and’77-36’ seem also to reduce canopy volume, keeping a yield in first har-
vest comparable to ‘Picual’ when self-rooted.

Another interesting parameter to be considered is the homogeneity of the canopy traits 
measured among trees grafted with the same rootstock. Interestingly, the above mentioned 
seedlings which had low vigour and high yield (’78-5’,’82-2’,’82-4’ and’77-36’) also 
showed a reduced variance among trees. In contrast, most of the cultivars used showed a 
high variance for the canopy parameters evaluated. It is worth mentioning that a homoge-
neous hedgerow is a desirable trait to facilitate access to straddle machinery for harvest-
ing, pruning and phytosanitary treatments and even for fertigation (Connor et  al., 2014; 
Fernández-Escobar et al., 2013).

However, it has to be taken into account that this is an early work on the initial variabil-
ity of the dwarfing effect of different olive rootstocks on ‘Picual’. Before any genotype can 
be considered as having a consistent dwarfing effect and a satisfactory productivity, more 
work is needed to confirm the promising dwarfing effect of’78-5’,’82-2’,’82-4’ and’77-36’ 
rootstocks and including a wider number of replicates per rootstock. Especially, as previ-
ously mentioned, the variability among replicates of the same rootstock is of paramount 
importance given the necessity of having a homogeneous hedgerow for easier manage-
ment of mechanized operations (Fernández-Escobar et al., 2013). This, together with other 
rootstocks such as ‘Tosca’ or ‘Arbequina’, seem to promote high vigour in ‘Picual’, while 
others might be producing a decrease in fruit yield such as the two wilds ‘GM25’ and 
‘FV15’. Additionally, it should be tested in further field experiments whether the dwarfing 
effect is similar in different cultivars used as scion or if there would be a scion/rootstock 
interaction as reported for other fruit species (Tworkoski & Miller, 2007). In these planned 
experiments, it will be tested whether the dwarfing effect on traditional cultivars is enough 
for long-term viability of high density orchards. Other parameters such as branching habit 
(Rosati et  al., 2013) and branch flexibility should be also evaluated as they could limit 
the ability of a dwarfed traditional cultivar from being mechanically managed in hedgerow 
orchards.

The use of UAV-RGB technology together with the workflow developed has shown to 
be of great help as it can timely characterize, in a high throughput way, the olive tree vig-
our and volume by the analysis of photogrammetric point clouds for evaluating the dwarf-
ing effect between the different rootstocks used on ‘Picual’ cultivar. Guijun et  al (2017) 
reviewed the use of UAV imagery for crop phenotyping. They mentioned that 88.5% of the 
surveyed references focused on field phenotyping using UAV were published in the last 
5 years, and they also discussed the opportunities for wider applications. As an example 
of these other applications, the present work has been centred on the phenotyping of the 
dwarfing effect of some rootstocks rather than in the use of the UAV photogrammetry for 
olive phenotyping in breeding experiments as thoroughly studied and validated in previous 
work (León et al., 2017; López-Granados et al., 2019; Rallo et al., 2020).
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The high degree of correlation achieved in the comparison between UAV-derived geo-
metric traits and on-ground measurements has shown the suitability of procedures herein 
presented which contribute to alleviate the traditional intensive field work carried out in 
breeding experiments. That could improve the bottleneck of characterizing phenotypic var-
iation of individual olive crowns in high-density olive orchards in an efficient, non-destruc-
tive and inexpensive way, and overcoming the potential effects of overlapping crowns 
of neighbouring olives. Another of the main advantages of this workflow in comparison 
with on-ground laborious approaches is the ability to generate a large amount of useful 
on time not only for mapping geometric tree features but also for digitizing and precision 
management applications allowing the optimized application of agronomic tasks such as 
pruning, fertilization, irrigation or pesticide use. For example, this 3D information can be 
potentially used as a baseline tool for the design of site-specific tree management according 
to the tree location and crown architecture in the case that negative canopy circumstance 
occurs during the breeding program, e.g., a fungal foliar disease. As previously mentioned, 
the technology presented here could generate economic and environmental benefits in the 
context of breeding programs and precision agriculture.

Conclusions

In summary, the wide variability observed in the different rootstocks evaluated for the vig-
our that they transmit to ‘Picual’ as scion indicates that selection for dwarfing rootstocks 
is a motivating topic for olive breeding that could enlarge the limited number of cultivars 
suitable for high-density growing systems. For that matter, as mentioned above, further 
experiments with breeding selections’78-5’,’82-2’,’82-4’ and’77-36’ should be done with a 
higher number of replicates and more traditional cultivars as scions. The use of UAV tech-
nology to evaluate canopy vigour and its variability is a cost-effective and more accurate 
alternative to on-ground measurements and therefore could improve the rootstock selec-
tion process. The results herein presented also have special interest due to both reducing 
the time for field characterization of olive traits, increasing the whole efficiency in human 
resources and duration of the selection processes. In addition, the use of dwarfing root-
stocks would improve the availability of frequently required cultivars from breeders and 
emerging super-high density olive companies.
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