CORRECTION

Correction to: Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments

Muhammad Hammad Saleem¹ • Johan Potgieter² · Khalid Mahmood Arif¹

Published online: 21 June 2021 © Springer Science+Business Media, LLC, part of Springer Nature 2021

Correction to: Precision Agriculture

https://doi.org/10.1007/s11119-021-09806-x

The original version of this article unfortunately contained mistakes. The presentation of Figs. 6, 7, 8, 9 was incorrect. The correct versions are given below.

The original article has also been corrected.

The original article can be found online at https://doi.org/10.1007/s11119-021-09806-x.

Massey Agritech Partnership Research Centre, School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand

Khalid Mahmood Arif k.arif@massey.ac.nz

Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology, Massey University, Auckland 0632, New Zealand

Fig. 6 Performance plots (in %) of ML/DL models used in robotic systems for plant disease detection (horizontal bars) and plant recognition (diagonal bars) tasks

Fig. 7 Performance plots (in %) of ML/DL models used in robotic systems for crop/weed discrimination task

Fig. 8 Performance plots (in %) of ML/DL models used in robotic systems for fruit recognition and harvesting tasks

Fig. 9 Performance plots (in %) of ML/DL models used in robotic systems for the land cover classification

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

