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Abstract
Enthusiasm regarding the “digital agriculture” revolution is widespread, yet objective 
research on how commercial farms actually use data and data services remains limited. 
The purpose of this research is to better understand the current positioning of U.S. com-
mercial corn and soybean farms within the farm data lifecycle, including the collection, 
use, and impact of farm data. Using survey data from a sample of 800 commercial-scale 
U.S. corn and soybean farms, the factors associated with progression within the farm data 
lifecycle are examined. Results indicate that the majority of commercial U.S. corn and 
soybean farms collect data, indicate that the data they collect influences their decisions, 
and perceive positive yield benefits as a result of their data-informed decisions. However, 
farms vary in intensity of their data usage. Investments in data management and analysis 
resources are associated with progression within the farm data lifecycle. These investments 
comprise software products that manage and analyze data, including creating GPS maps, 
layering different data sources, and generating recommendations. Investments in human 
capital, either in on-farm employees with designated data responsibilities or in trusted off-
farm service providers, are also associated with progression within the farm data lifecy-
cle. Farms that have not yet invested in these types of data management and data analysis 
resources may be forfeiting the potential benefits associated with using their farm’s data to 
improve on-farm decision making.

Keywords  Commercial farms · Corn and soybeans · Digital agriculture · Farm data 
lifecycle · Precision agriculture

Introduction

A great deal of enthusiasm over “digital agriculture” and “big data” in agriculture has 
emerged among industry, venture capital, and an eager farm press. Several large-scale 
acquisitions suggest the value of farm data to be vast. Monsanto described their purchase 
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of The Climate Corporation for over $900  million in 2013 as their “entry ticket into a 
$20  billion market opportunity,” while John Deere believed precision agriculture could 
help increase their company’s value by $25 billion (Plume, 2014). Similar enthusiasm has 
also permeated the academic literature in recent years (e.g., Coble et al., 2018; Weersink 
et al., 2018; Woodard et al., 2018).

Despite widespread interest, there is a noticeable deficit of objective research on how 
commercial farms actually use data and data services. For example, what kinds of data are 
farmers actually collecting? What software platforms do producers subscribe to and what 
features do these software solutions offer? Do producers share their data with outside ser-
vice providers? Most importantly, how do these data and software services integrate into 
existing production systems to impact decision making and, subsequently, farm outcomes 
(e.g., yield, efficiency, profit)? There is a clear need to better understand how commercial 
farms in the United States use the data they collect and the value that data brings to their 
operations relative to the technical, and sometimes impractical, offerings of data service 
providers. Researchers and extension educators can better serve agricultural producers, ser-
vice providers, and developers by addressing these questions.

Previous research has largely focused on adoption of precision agriculture hardware 
(e.g., Schimmelpfennig, 2016; Zhou et al., 2017; Lowenberg-Deboer & Erickson, 2019). 
Hardware adoption is an important component of a digital agriculture system and is a nec-
essary step for implementing advanced data-intensive technologies (Khanna et al., 1999). 
However, hardware adoption by itself does not directly measure farmers’ use of the data 
they collect. Some studies have implicitly sought to quantify data use by evaluating the 
adoption of precision agriculture technology bundles (Lambert et al., 2015; Schimmelpfen-
nig & Ebel, 2016; Griffin et al., 2017; Miller et al., 2017, 2019). That is, combinations of 
precision agriculture technologies likely serve as a proxy for the transition from data col-
lection to data use (e.g., yield monitor and variable rate technology [VRT]). While evaluat-
ing the adoption of technology bundles lends some insight into the progression from data 
collection to data use, it still focuses on hardware adoption, and only implies data use.

Schimmelpfennig (2016) characterizes this relationship between data collection and 
data use through the concept of “information flows.” For example, producers must first 
collect geo-referenced yield data using a yield monitor; that information is then used to 
create a yield map using farm software or a service provider; the yield map is then used 
to create prescriptions for VRT input applications, such as seed or fertilizer. Using USDA 
Agricultural Resource Management Survey (ARMS) data, Schimmelpfennig (2016) shows 
that in 2010 48% (70%) of U.S. corn farms (acres) owned a yield monitor, but just 25% 
(44%) made a geo-referenced yield map and only 19% (28%) applied inputs using VRT. It 
is important to point out that yield monitor data can be used for purposes other than mak-
ing yield maps and VRT prescriptions. For example, USDA ARMS data indicate that in 
2010 U.S. corn farmers used yield monitor data to monitor crop moisture (52% of corn 
acres), conduct on-farm experiments (20%), and document yields (28%) (USDA Economic 
Research Service [ERS], 2020). In addition, in some cases yield monitor data may not indi-
cate that VRT input applications are warranted. In any case, it is evident that not all farms 
collecting data are using it to make actionable decisions on their farms. The question that 
remains is to what extent has the gap between data collection and data use narrowed and 
what factors are influencing progress?

It is also important to point out that the 2010 ARMS data referenced here are the most 
recent ARMS data publicly available for corn via the ARMS Tailored Reports (USDA 
ERS, 2020). The 2016 ARMS survey is the most recent iteration of the ARMS survey 
for corn, but data from this survey are not yet publicly available. Lowenberg-DeBoer and 
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Erickson (2019) summarize some of the general precision agriculture adoption rates for the 
2016 ARMS corn survey.

The current research seeks to move beyond the study of hardware adoption towards bet-
ter understanding of the farm data lifecycle. Instead of focusing on the adoption of hard-
ware, this study employs a survey instrument where respondents are explicitly asked what 
types of data they collect (i.e., data collection), the degree to which the data they collect 
influences their farm management decisions (i.e., data use), and finally, their perception of 
the outcomes from their data-informed decisions (i.e., data impact). The objective of this 
study is to identify where commercial U.S. corn and soybean farms lie in the farm data 
lifecycle and to determine the factors associated with producers’ progress in the collection, 
use, and impact of farm data on their operations. The research hypothesis motivating the 
current study is that data collection is common among commercial farms, but the extent to 
which farm data is used to make actionable decisions lags behind data collection. It is also 
hypothesized that farm/farmer demographics, data management and analysis resources, 
technology use, and data sharing will be associated with progression within the various 
stages of the farm data lifecycle.

Materials and methods

A data lifecycle provides a high-level framework for representing the stages of data 
throughout their life (Demestichas & Daskalakis, 2020). Adapting and extending Schim-
melpfennig’s (2016) concept of “information flows,” the farm data lifecycle described here 
is simplified into a three-stage process (Fig. 1):

1.	 Stage #1: Data collection—farms choose to collect data or not.
2.	 Stage #2: Data use—farms that collect data decide the extent to which their data will 

influence their decision making.
3.	 Stage #3: Data impact—farms whose data influences their decisions evaluate the impact 

of data-informed decisions on farm output, efficiency, profitability, etc.

In practice, there are a variety of farm data types that can be collected in stage #1. For 
simplicity, this research focuses on three types of data: yield data, grid or zone soil sample 
data, and aerial or satellite imagery data. It is important to point out that different farm 
data types may have different lifespans. For example, soil organic matter (SOM) changes 
slowly. Therefore, SOM data may be collected once and that data may influence decisions 
for several years. Conversely, satellite/aerial imagery data may be used to detect and man-
age in-season crop deficiencies, but may be irrelevant to next year’s management decisions. 
Further, other data types, such as yield monitor data, may be collected annually for several 
years and layered to enhance its decision value. While the issue of data lifespan and the 
role of data collection frequency in decision making is not taken up directly in this study, 
it is an important aspect of the farm data lifecycle to be explored in more detail in future 
research.

Similar to the various data types in stage #1, a number of decisions could be influ-
enced by data in stage #2 of the farm data lifecycle. Respondents indicating they col-
lected one or more of the queried types of data were asked in stage #2 about the extent 
to which that data influenced three different decisions: seeding rate decisions, nutri-
ent management decisions, and drainage investment decisions. In practice, there is a 



1688	 Precision Agriculture (2021) 22:1685–1710

1 3

continuous scale of the degree to which farm data can influence decision making. How-
ever, for simplicity, respondents were given three potential levels of impact: not at all, 
somewhat, or a lot.

Finally, in stage #3 of the farm data lifecycle the impact of data-informed decisions 
on farm output was assessed for each of the three possible decisions in stage #2 (seed-
ing rate, nutrient management, drainage investment). For example, if a respondent indi-
cated the data they collected influenced their seeding rate decisions somewhat or a lot, 
they were asked whether their data-informed seeding rate decisions decreased, did not 
change, or increased their farm yield. Again, the range of yield impacts associated with 
data-informed decisions span a continuous scale, but discrete yield impacts (decrease, 
no change, or increase) were used to simplify the survey. Notice that the third and final 
stage of the farm data lifecycle described here does not necessarily imply that the data 
“die.” Instead, stage #3 initiates the next iteration of the cycle as data impacts can only 
be evaluated through additional data collection (stage #1). Death of data relates to data 
lifespan, which was not examined in this research.

While a variety of measures could be used to evaluate the impact of data-informed 
decisions, yield was used in this study as it is the value for which respondents were 
expected to have the easiest recall. An economic measure, such as profit or efficiency, 
would be preferred. However, few farms have directly estimated the return on invest-
ment for precision agriculture technology or data investments (Pope & Sonka, 2020). 
Therefore, it was expected that asking farmers to recall or mentally account for the profit 
impact of their data-informed decisions would be laborious and subject to significant 

Stage #1: Data 
Collec�on

•The farm decides to 
collect data or not.

Stage #2: Data Use
•If the farm decides to collect data, they 
must decide to what extent the data 
they collect will influence their decison 
making.

Stage #3: Data Impact
•If the farm decides to use 
the data it collects to 
make decisions, they can 
then determine the 
impact of data­informed 
decisions on farm 
outcomes (e.g., yield, 
profit, efficiency, etc.). 
through addi�onal data 
collec�on. 

Fig. 1   Farm data lifecycle
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measurement error. Conversely, farms are often conversant regarding yield impacts of 
their decisions and can easily recall these values. Nonetheless, yield impacts ascribed to 
data-informed decision making reported here likely represent respondent perceptions of 
yield impacts, as opposed to actual yield impacts, given the complexity associated with 
causally identifying the impact of these data-informed decisions on farm outcomes. 
Nonetheless, farmer perceptions are often what determine adoption (or disadoption) 
decisions (Pannell et al., 2006), and despite their limitations, are an important part of 
examining the current state of the farm data lifecycle.

In addition to questions regarding the farm data lifecycle, respondents were asked sev-
eral questions regarding data management and sharing practices to gauge the farm’s invest-
ment in a data strategy. Demographic questions were included in the survey to collect 
information about the farm.

A phone survey of U.S. commercial corn and soybean producers conducted from 
August 5, 2019, to August 30, 2019 was used to collect the data for this study. Institutional 
Review Board (IRB) approval was obtained for the study from Purdue University (IRB 
Protocol #1906022382). The survey list frame of commercial corn and soybean producers 
was purchased from Farm Journal, and the survey was administered by PRISM Marketing 
Group by phone. All enumerators read from the same survey script to ensure consistency. 
Given that data collection was done by phone, the survey was designed to be completed by 
respondents in less than 10 min. Questions were made to be short and easy to understand 
to encourage producer responses. Participation was voluntary and no compensation was 
provided for participating. A copy of the survey is available in the supplementary appendix 
(Appendix A).

The survey was intentionally targeted toward commercial U.S. corn and soybean farms 
defined as operations with farmland of 1000 acres or more. This targeted approach is taken 
given the propensity of large operations to collect these types of data. To ensure operation 
size diversity within the sample, quotas were imposed for survey sampling procedures. The 
USDA’s 2017 Census of Agriculture reported 172,793 farms with more than 1000 acres of 
farmland operated in the United States (USDA NASS, 2020). Notice, this size classifica-
tion is based on farmland acres operated which is distinct from cropland acres or corn and 
soybean acres. Given this population, a survey sample size of 383 is necessary to ensure 
a sample with a confidence level of 95% and a margin error of 5%. However, over half of 
farms with more than 1000 acres of farmland operated (87,666 farms) have less than 2000 
acres of farmland operated (USDA NASS, 2020). To ensure that the sample was repre-
sentative of larger-scale farms, and not just those operating less than 2000 acres of farm-
land, quotas were imposed on the data collection process that required the final sample to 
include at least 400 respondents farming between 1000 and 1999 acres of farmland and at 
least 400 responses farming 2000 acres or more.

The list frame was filtered based on farm size information available in the frame to help 
reach respondents that met the size criteria. Observations were randomly drawn from the 
filtered list frame, and farm size quotas were implemented using a screening question at 
the beginning of the survey, “How many total acres do you operate? Less than 1000 acres, 
1000–1999 acres, 2000–4999 acres, or 5000 or more acres.” In total, 7841 farmers were 
contacted that met the size criteria. Of those, 934 started the survey and 800 completed 
the survey for a response rate of 10% – 400 in the 1000–1999 acre category and 400 in the 
≥ 2000 acre category.

Data are summarized and Fisher’s (1922) exact test, a variation of the χ2 test, is used 
to determine if the responses across subsamples are statistically different. Significant 
relationships identified using Fisher’s exact test represent associations between variables. 
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However, it is important to point out that these relationships do not imply causality. Rather, 
the Fisher (1922) approach can reveal useful correlations between a farm’s stage in the data 
lifecycle and the farm data tools and practices employed by the farm, as well as key farm 
and operator characteristics.

Results and discussion

Summary statistics for the full sample are reported in Table 1. Per sampling quotas, half 
of the farms surveyed operate between 1000 and 1999 acres, and half operate 2000 acres 
or more (36% are between 2000 and 4999 acres and 14% have 5000 acres or more). It is 
important to reiterate that the sample is intentionally not representative of all U.S. farms. 
Instead, the sample is specifically focused on commercial-scale farms (defined as farm-
ing 1000 acres or more) given their propensity to be involved in digital agriculture and 
this study’s objective to learn more about the gap between data collection and data use 
and factors influencing progress in narrowing the gap between the two. More than 80% of 

Table 1   Summary statistics 
(n = 800)

1 Highest level of educational attainment among all full-time employ-
ees, including owner/operator

Variable Percent of 
respond-
ents

Farm/farmer demographics 
Farm size
 1000–1999 acres 50%
 2000–4999 acres 36%
 ≥ 5000 acres 14%

Primary farm owner/operator age
 < 20 years < 1%
 20–35 years 2%
 36–50 years 17%
 51–65 years 46%
 > 65 years 35%

Farm educational attainment1

 High school diploma 21%
 Some college 30%
 Bachelor’s degree 40%
 Post-graduate degree 9%

Data resources/technology use 
High-speed internet access 80%
Use Excel 43%
Use farm data software 44%
Use GPS/autosteer 92%
Use variable rate fertilizer 71%
Use variable rate seeding 59%
Use drone/UAV 26%
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respondents are over the age of 50, and 35% are over the age of 65. For comparison, the 
average age of U.S. farmers is 59 (USDA NASS, 2020). Nearly half of respondents have a 
bachelor’s degree or higher.

In terms of technology use, 80% of the farms surveyed have access to high-speed inter-
net, compared to 74% of rural America as a whole (Wilmoth, 2019). Less than half of 
respondents reported using either Microsoft Excel or a farm data software product to store, 
manage, or analyze data. Finally, adoption rates of common precision agriculture technol-
ogies are relatively high among survey respondents. GPS guidance/autosteer is used on 
more than 90% of surveyed farms. 71% of farms surveyed use variable rate fertilizer and 
59% use variable rate seeding. Drones/UAVs are used by 26% of the farms surveyed. While 
these adoption rates are higher than in the general population of U.S. farms (e.g., Lowen-
berg-DeBoer & Erickson, 2019), they are close to Thompson et al. (2019), who use a simi-
lar sampling method focused on commercial sized farms.

Data collection

Data collection was common with 82% of the 800 respondents colleting yield data, 77% 
collecting grid or zone soil sample data, and 47% collecting aerial or satellite imagery data. 
When aggregating across all three data types, 93% of respondents collected at least one of 
the queried data types.

Comparing demographic variables and data resources/technology use for non-data col-
lectors and data collectors yields several interesting relationships (Table 2). For example, 
larger farm size is significantly associated with data collection for each of the queried data 
types (Fig. 2). This relationship is consistent with previous research indicating larger farms 
are more likely to adopt precision agriculture hardware (e.g., Daberkow & McBride, 2003; 
Fernandez-Cornejo et al., 2001; Roberts et al., 2004; Schimmelpfennig, 2016; Schimmelp-
fennig & Lowenberg-DeBoer, 2020). In addition, higher levels of educational attainment 
are also significantly associated with data collection (Fig.  3), consistent with previous 
hardware adoption literature (e.g., Fernandez-Cornejo et al., 2001; Roberts et al., 2004).

Data resources and technology use variables were also statistically related with data col-
lection (Table 2). Again, decisions to adopt many of these resources and/or technologies 
are likely correlated with the decision to collect data. Therefore, it is important to reiterate 
that the relationships identified in this study are not causal. Moreover, in many cases the 
direction of the causal pathway cannot be determined as these decisions are made simul-
taneously. For example, this result does not indicate that farm data software use leads to 
data collection as it is just as likely that the decision to collect data leads the farm to invest 
in a data software package. Instead, the associations identified here simply reject the null 
hypothesis that software use and data collection are independent practices.

Examining the 800 survey responses more closely, just 7% of respondents did not col-
lect yield monitor, soil sample, or satellite/drone imagery data. These non-data collectors 
identified cost and uncertainty about how to use the data as the two most common impedi-
ments to data collection (Fig. 4). Interestingly, privacy concerns (10%) were the least oft 
cited impediment to data collection among these farms despite well publicized privacy 
concerns (e.g., American Farm Bureau Federation 2015). When asked about their likeli-
hood to begin collecting data in the future, few non-data collectors indicated a strong pro-
pensity to start collecting data in the future suggesting that the move to collecting data is 
approaching maturity among commercial-scale farms (Fig. 5).
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Data use

Respondents collecting one or more of the queried data types (yield monitor, grid or 
zone soil sample, and/or aerial or satellite imagery data), indicated that data they col-
lected commonly influences their seeding rate, nutrient management, and drainage 
investment decisions (Fig.  6). Nutrient management decisions are the decisions most 
commonly influenced by farm data, with 93% of data collectors indicating that their 
data influenced their nutrient management decisions at least somewhat, and more than 
half indicating that data they collected influenced their nutrient management decisions 
a lot. Seeding rate decisions are also commonly influenced by farm data, with 81% of 
those who collected data indicating their data influenced their seeding rate decisions at 
least somewhat. Of the queried decision types, drainage investment decisions are the 

Table 2   Comparison of data collectors and non-data collectors (n = 800)

1 Fisher’s (1922) exact test tests the null hypothesis that the relative proportions of one categorical variable 
are independent of a second categorical variable
2 Highest level of educational attainment among all full-time employees, including owner/operator

Variable Non-data col-
lectors
(n = 59)

Data collectors
(n = 741)

Fisher’s exact test1

Percent of respondents p-value

Farm/farmer demographics 
Farm size 0.000
 1000–1999 acres 75% 48%
 2000–4999 acres 20% 37%
 ≥ 000 acres 5% 15%

Primary farm owner/operator age 0.741
 < 20 years 0% < 1%
 20–35 years 0% 2%
 36–50 years 14% 18%
 51–65 years 46% 46%
 > 65 years 41% 34%

Farm educational attainment2 0.020
 High school diploma 37% 29%
 Some college 29% 30%
 Bachelor’s degree 29% 41%
 Post-graduate degree 5% 9%

Data resources/technology use 
High-speed internet access 69% 81% 0.042
Use Excel 14% 45% 0.000
Use farm data software 5% 47% 0.000
Use GPS/autosteer 73% 93% 0.000
Use variable rate fertilizer 27% 74% 0.000
Use variable rate seeding 22% 62% 0.000
Use drone/UAV 7% 28% 0.000
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least likely to be influenced by farm data, although use is still common with 71% of 
those who collected data indicating it influenced their drainage investment decisions.

Relationships between farm demographics and technology use variables, and the 
extent to which farm data influences seeding rate, nutrient management, and drain-
age investment decisions are explored in Tables  3, 4, and 5, respectively. Notice that 
Tables  3, 4 and 5 include additional variables beyond what is found in Tables  1 and 
2. Tables 3, 4 and 5 include variables that are only relevant to the subsample of data 
collectors. For example, only farms that actually collect data would choose whether or 
not to designate an individual on their farm to be primarily responsible for collecting, 
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managing, and analyzing data. Similarly, only farms that collect data would face the 
choice to create GPS maps, layer data, or share the data they collect. Hence, while these 
variables are irrelevant to the data collection decision, they may be associated with the 
extent to which the farm uses the data it collects or the impact of farm data on farm 
outcomes.

Demographic variables are associated with the extent to which farm data influences 
seeding rate and nutrient management decisions. Most notably, larger farm sizes, higher 
educational attainment, and designation of an employee responsible for collecting, man-
aging and analyzing data are positively related to the level of influence of farm data on 
seeding rate and nutrient management decisions. However, none of the demographic 
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variables were significantly associated with the extent to which farm data influences 
drainage investment decisions. Nutrient management and seeding rate decisions are dif-
ferent from drainage investment decisions in several ways that may influence this result. 
Most notably, nutrient management and seeding rate decisions are annual crop manage-
ment decisions that must be made on all crop acres. Conversely, drainage investment 
decisions are capital intensive, long-term investment decisions that are typically only 
evaluated on a small portion of farm acres each year.

Data resources are also associated with the extent to which farm data influences seed-
ing rate, nutrient management, and drainage investment decisions. Farms using Microsoft 
Excel or farm data software have significantly higher levels of data use. Additionally, creat-
ing GPS maps, ability of farm software to layer data and generate recommendations, and 
following those recommendations all accompany higher levels of data use. This highlights 
the importance of resources for managing and analyzing farm data. While the landscape 
of farm data software products is currently vast without a clear-cut market leader, these 
results suggest that using some form of data software aids farmers in gleaning usable infor-
mation from their farm’s data.

Technology use is also associated with the extent to which data influences farm deci-
sions. VRT fertilizer applications, VRT seed applications, and drone/UAV use are all posi-
tively and significantly associated with higher levels of data use. These relationships are 
unsurprising given that technologies such as VRT require some level of data use to gener-
ate VRT prescriptions.

Finally, data sharing is also associated with the extent to which data influences farm 
decisions. On one hand this is not surprising given the additional value that can be added 
to farm data by an outside service provider with expertise in managing and analyzing farm 
data. On the other hand, potential privacy concerns are often an impediment to data shar-
ing (e.g., American Farm Bureau Federation, 2015; Sykuta, 2016; Ferrell, 2017; Miller 
et al., 2018). While this research does not address these privacy concerns directly, this rela-
tionship suggests that when consulted, third-party farm data service providers are adding 
value to the farm data lifecycle by helping farmers use their data.
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ment decisions for data collectors (n = 741)
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Table 3   Comparison of extent to which farm data influences seeding rate decisions for data collectors 
(n = 741)

Variable Extent to which farm data influ-
ences seeding rate decisions

Not at all
(n = 140)

Somewhat
(n = 378)

A lot
(n = 223)

Fisher’s exact test1

Percent of respondents p-value

Farm/farmer demographics 
Farm size 0.017
 1000–1999 acres 55% 48% 44%
 2000–4999 acres 38% 37% 36%
 ≥ 5000 acres 7% 16% 20%

Primary farm owner/operator age 0.504
 < 20 years 1% < 1% < 1%
 20–35 years 1% 2% 2%
 36–50 years 16% 16% 21%
 51–65 years 41% 48% 45%
 > 65 years 41% 33% 32%

Farm educational attainment2 0.041
 High school diploma 27% 17% 20%
 Some college 33% 32% 24%
 Bachelor’s degree 34% 41% 46%
 Post-graduate degree 6% 10% 10%

Data employee3 69% 75% 83% 0.003
Data resources/technology use 
High-speed internet access 70% 80% 88% 0.000
Use Excel 36% 39% 62% 0.000
Use farm data software 30% 47% 59% 0.000
 Farm data software layers data4 38% 52% 72% 0.000
 Farm data software generates recommendations4 50% 60% 72% 0.009
  Follow software recommendations5 0.001
   Do not follow 9% 6% 2%
   Follow somewhat closely 43% 64% 41%
   Follow very closely 48% 30% 57%

Create GPS maps 52% 73% 85% 0.000
Use GPS/autosteer 87% 93% 96% 0.008
Use variable rate fertilizer 62% 71% 87% 0.000
Use variable rate seeding 33% 59% 86% 0.000
Use drone/UAV 21% 27% 34% 0.034
Data sharing 
Share data with service provider 56% 77% 89% 0.000
 Follow service provider recommendations6 0.004
  Do not follow 4% 6% 7%
  Follow somewhat closely 67% 68% 52%
  Follow very closely 29% 26% 41%
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Data impact

Respondents who indicated that farm data influenced their decisions overwhelmingly 
reported that data-informed decisions increased yield, regardless of the decision (seeding 
rate, nutrient management, or drainage investment) or the extent to which data influenced 
the decision (somewhat or a lot) (Fig.  7). It is important to reiterate that yield impacts 
ascribed to data-informed decision making reported here likely represent respondent per-
ceptions of yield impacts (as opposed to actual yield impacts) given the complexity asso-
ciated with causally identifying the impact of these data-informed decisions on farm out-
comes. Nonetheless, farmer perceptions of these yield impacts are likely to influence future 
farm decisions (Pannell et al., 2006), and therefore, are an important part of examining the 
current state of the farm data lifecycle.

It is not particularly surprising that so few respondents indicated that their data-informed 
decisions decreased yield. On one hand, there is likely survivorship bias associated with 
this response (Elton et al., 1996). That is, farms that previously perceived yield to decline 
as a result of data-informed decisions are unlikely to continue using their data to make 
decisions. There may also be social desirability bias in this distribution of yield impact 
responses (Fisher, 1993). That is, respondents have the tendency to answer questions in a 
way that they perceive will be viewed favorably, even if it is not true. Hence, it is possible 
that some respondents indicated yield increases not because it was reflective of reality, but 
because they felt that it would be viewed poorly if they indicated that their data-informed 
decisions did not increase yield. In any case, it is clear that farmers who collect and use 
farm data perceive their data strategy to be associated with more favorable yield outcomes.

Demographic variables were generally not associated with perceived yield impacts from 
data-informed seeding rate (Table 6), nutrient management (Table 7), or drainage invest-
ment (Table 8) decisions. The one exception was the designation of an employee respon-
sible for collecting, managing, and analyzing data, which was positively and significantly 
associated with the perception that yield increased as a result of data-informed nutrient 
management and drainage investment decisions.

Use of data management resources were commonly associated with the perceived 
impact of data-informed decisions on yield outcomes. Microsoft Excel and farm manage-
ment software were both associated with perceived yield increases. Similarly, creating GPS 
maps and the ability of farm software to layer data are both significantly associated with 
favorable yield impacts.

Table 3   (continued)
1 Fisher’s (1922) exact test tests the null hypothesis that the relative proportions of one categorical variable 
are independent of a second categorical variable
2 Highest level of educational attainment among all full-time employees, including owner/operator
3 Equals one if the farm indicated having an individual on their farm who is primarily responsible for col-
lecting, managing, and analyzing farm data and zero otherwise
4 Only the subsample of those who used a farm data software were asked about the ability of their software 
to layer data or generate recommendations
5 Only the subsample of those who indicated using farm software and that their farm software generated 
recommendations were asked the extent to which they followed the recommendations produced by their 
software
6 Only the subsample of those who indicated sharing data were asked the extent to which they follow recom-
mendations provided by third-party farm data service providers
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Table 4   Comparison of extent to which farm data influences nutrient management decisions for data collec-
tors (n = 741)

Variable Extent to which farm data influ-
ences nutrient management 
decisions

Not at all
(n = 53)

Somewhat
(n = 289)

A lot
(n = 399)

Fisher’s exact test1

Percent of respondents p-value

Farm/farmer demographics 
Farm size 0.072
 1000–1999 acres 64% 49% 45%
 2000–4999 acres 30% 36% 38%
 ≥ 5000 acres 6% 15% 17%

Primary farm owner/operator age 0.071
 < 20 years 0% < 1% < 1%
 20–35 years 6% 2% 1%
 36–50 years 8% 15% 21%
 51–65 years 43% 48% 45%
 > 65 years 43% 34% 33%

Farm educational attainment2 0.021
 High school diploma 28% 22% 17%
 Some college 28% 33% 28%
 Bachelor’s degree 42% 39% 43%
 Post-graduate degree 2% 7% 12%

Data employee3 57% 75% 79% 0.002
Data resources/technology use 
High-speed internet access 79% 78% 83% 0.138
Use Excel 32% 37% 53% 0.000
Use farm data software 25% 42% 54% 0.000
 Farm data software layers data4 54% 50% 63% 0.058
 Farm data software generates recommendations4 31% 58% 69% 0.006
  Follow software recommendations5 0.000
    Do not follow 25% 8% 2%
   Follow somewhat closely 50% 70% 44%
   Follow very closely 25% 22% 54%

Create GPS maps 49% 62% 83% 0.000
Use GPS/autosteer 87% 94% 93% 0.186
Use variable rate fertilizer 34% 66% 85% 0.000
Use variable rate seeding 45% 56% 69% 0.000
Use drone/UAV 25% 23% 32% 0.046
Data sharing 
Share data with service provider 51% 72% 84% 0.000
 Follow service provider recommendations6 0.001
  Do not follow 11% 7% 5%
  Follow somewhat closely 63% 72% 57%
  Follow very closely 26% 21% 38%
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Relationships between technology use and perceived impacts of data-informed deci-
sions on yield outcomes were mixed. Farms using VRT fertilizer and VRT seed applica-
tions were generally more likely to report favorable yield outcomes. However, it is interest-
ing to note that while VRT seed applications are correlated with yield increases from data 
informed seeding rate decisions, VRT fertilizer applications are not associated with yield 
increases from data informed nutrient management decisions.

Finally, sharing data and following the recommendations provided by third-party data 
service providers is also significantly associated with more favorable perceptions of yield 
outcomes associated with data-informed decisions. Again, it is not surprising that outside 
service providers with expertise in managing and analyzing farm data would be able to add 
value to the farm data lifecycle, especially for annual crop management decisions. Data 
sharing is not statistically related to perceptions of yield outcomes resulting from data-
informed drainage investment decisions.

Conclusions and implications

The objective of this study is to better understand the current positioning of U.S. com-
mercial-scale corn and soybean farms within the farm data lifecycle. Respondents were 
explicitly asked about what types of data they collect (i.e., data collection), the degree to 
which the data they collect influences their farm management decisions (i.e., data use), and 
finally, how they perceive their data-informed decisions have impacted yield on their farm 
(i.e., data impact). Results indicate that the majority of commercial-scale U.S. corn and 
soybean farms collect data, indicate that the data they collect influences their decisions, 
and perceive yield increases as a result of their data-informed decisions. However, farms 
vary in intensity of their data usage. When interpreting these results, one must keep in 
mind that the sample of U.S. commercial corn and soybean farms in this study is intention-
ally not representative of all U.S. farms, although it is representative of farms producing 
the majority of these two crops. Further, responses at various levels of the farm data lifecy-
cle may be influenced by selection bias, survivorship bias, and/or social desirability bias. 
Therefore, results are not generalizable to the broad population of U.S. farms.

Previous research indicated that bundling precision agriculture hardware products pro-
vides the best opportunity to maximize the economic returns to a precision agriculture 
system (Lowenberg-DeBoer, 2003; Lambert et al., 2015; Schimmelpfennig & Ebel, 2016; 

Table 4   (continued)
1 Fisher’s (1922) exact test tests the null hypothesis that the relative proportions of one categorical variable 
are independent of a second categorical variable
2 Highest level of educational attainment among all full-time employees, including owner/operator
3 Equals one if the farm indicated having an individual on their farm who is primarily responsible for col-
lecting, managing, and analyzing farm data and zero otherwise
4 Only the subsample of those who used a farm data software were asked about the ability of their software 
to layer data or generate recommendations
5 Only the subsample of those who indicated using farm software and that their farm software generated 
recommendations were asked the extent to which they followed the recommendations produced by their 
software
6 Only the subsample of those who indicated sharing data were asked the extent to which they follow recom-
mendations provided by third-party farm data service providers
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Table 5   Comparison of extent to which farm data influences drainage investment decisions for data collec-
tors (n = 741)

Variable Extent to which farm data 
influences drainage investment 
decisions

Not at all
(n = 217)

Somewhat
(n = 300)

A lot
(n = 224)

Fisher’s exact test1

Percent of respondents p-value

Farm/farmer demographics 
Farm size 0.761
 1000–1999 acres 48% 50% 45%
 2000–4999 acres 36% 36% 39%
 ≥ 5000 acres 16% 14% 16%

Primary farm owner/operator age 0.719
 < 20 years 0% 1% 0%
 20–35 years 3% 2% 1%
 36–50 years 18% 18% 17%
 51–65 years 46% 45% 48%
 > 65 years 34% 34% 34%

Farm educational attainment2 0.174
 High school diploma 21% 21% 17%
 Some college 31% 31% 27%
 Bachelor’s degree 38% 42% 43%
 Post-graduate degree 10% 6% 13%

Data employee3 75% 76% 78% 0.790
Data resources/technology use 
High-speed internet access 79% 81% 82% 0.781
Use Excel 45% 40% 53% 0.014
Use farm data software 43% 44% 55% 0.022
 Farm data software layers data4 44% 59% 69% 0.001
 Farm data software generates recommendations4 51% 71% 65% 0.010
  Follow software recommendations5 0.415
   Do not follow 8% 4% 3%
   Follow somewhat closely 44% 56% 51%
   Follow very closely 48% 39% 46%

Create GPS maps 60% 75% 81% 0.000
Use GPS/autosteer 94% 93% 93% 0.934
Use variable rate fertilizer 65% 77% 79% 0.003
Use variable rate seeding 59% 63% 65% 0.380
Use drone/UAV 24% 25% 35% 0.020
Data sharing 
Share data with service provider 72% 81% 77% 0.066
 Follow service provider recommendations6 0.331
  Do not follow 8% 6% 6%
   Follow somewhat closely 59% 67% 59%
   Follow very closely 33% 27% 35%
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Miller et  al., 2017; Thompson et  al., 2019). Results of this analysis suggest that it may 
be important to look beyond hardware when considering the bundle of resources that will 
maximize the returns to a precision agriculture system. For example, investments in farm 
software products that can be used to manage and analyze data, including creating GPS 
maps, layering data sources, and providing recommendations, are associated with progres-
sion within the farm data lifecycle. In addition, investments in human capital, either in 
on-farm employees with designated data responsibilities or in trusted off-farm data ser-
vices providers that farms are willing to share data with, are also associated with progres-
sion within the farm data lifecycle. Therefore, farms wanting to develop and implement a 
successful farm data strategy should consider the combination of hardware, software, and 
human capital resources that best fit their farm.

The data revolution in agriculture is fully in motion among U.S. commercial corn and 
soybean farms as the majority of these farms collect and use data on their farms. Farms 
that have not yet invested in data management and data analysis resources may be miss-
ing out on potential benefits associated with using their farm’s data to improve on-farm 

Table 5   (continued)
1 Fisher’s (1922) exact test tests the null hypothesis that the relative proportions of one categorical variable 
are independent of a second categorical variable
2 Highest level of educational attainment among all full-time employees, including owner/operator
3 Equals one if the farm indicated having an individual on their farm who is primarily responsible for col-
lecting, managing, and analyzing farm data and zero otherwise
4 Only the subsample of those who used a farm data software were asked about the ability of their software 
to layer data or generate recommendations
5 Only the subsample of those who indicated using farm software and that their farm software generated 
recommendations were asked the extent to which they followed the recommendations produced by their 
software
6 Only the subsample of those who indicated sharing data were asked the extent to which they follow recom-
mendations provided by third-party farm data service providers
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Table 6   Comparison of data-informed seeding rate decisions on perceived yield outcomes for those whose 
data influenced their seeding rate decisions (n = 601)

Variable Perceived impact of data-informed seeding 
decisions on yield outcomes

Decreased yield
(n = 5)

No 
impact on 
yield
(n = 161)

Increased yield
(n = 435)

Fisher’s exact test1

Percent of respondents p-value

Farm/farmer demographics 
Farm size 0.794
 1000–1999 acres 60% 49% 45%
 2000–4999 acres 20% 36% 37%
 ≥ 5000 acres 20% 15% 18%

Primary farm owner/operator age 0.680
 < 20 years 0% 0% < 1%
 20–35 years 0% 3% 2%
 36–50 years 0% 16% 19%
 51–65 years 60% 50% 46%
 > 65 years 40% 31% 33%

Farm educational attainment2 0.380
 High school diploma 0% 20% 18%
 Some college 60% 24% 30%
 Bachelor’s degree 40% 47% 41%
 Post-graduate degree 0% 8% 11%

Data employee3 80% 76% 79% 0.798
Data resources/technology use 
High-speed internet access 60% 83% 84% 0.274
Use Excel 40% 39% 51% 0.024
Use farm data software 40% 45% 54% 0.163
 Farm data software layers data4 50% 49% 65% 0.031
 Farm data software generates 

recommendations4
50% 53% 69% 0.023

 Follow software recommendations5 0.381
  Do not follow 0% 8% 3%
  Follow somewhat closely 0% 51% 53%
  Follow very closely 100% 41% 44%

Create GPS maps 60% 72% 80% 0.068
Use GPS/autosteer 80% 93% 95% 0.177
Use variable rate fertilizer 60% 68% 80% 0.002
Use variable rate seeding 80% 60% 72% 0.014
Use drone/UAV 40% 31% 29% 0.627
Data sharing 
Share data with service provider 60% 72% 86% 0.000
 Follow service provider 

recommendations6
0.023

  Do not follow 0% 13% 5%
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decision making. It is important to point out that the benefits are only observable for 
those that actively manage their data and cannot be assumed as the counterfactual for 
those that have not invested in data management. Nonetheless, the potential benefits are 
real. Previous research has shown varying levels of economic benefits associated with 
precision agriculture use, with small positive economic benefits being the most common 
conclusion (Griffin et  al., 2004; Schimmelpfennig, 2016, 2018; Schimmelpfennig & 
Ebel, 2016; McFadden, 2017; DeLay et al., 2020; Dhoubhadel, 2021). Even small ben-
efits associated with collection and use of farm data can have big implications for farm 
structure, as many of the resources discussed here (hardware, software, and human capi-
tal) embody fixed costs. Therefore, they are more likely to be adopted on larger farms, 
where fixed costs can be spread out over more acres. As a result, precision agriculture is 
hypothesized to have spurred further increases in farm size in recent years (MacDonald 
et al., 2018). As farms continue to develop and hone their data strategies and product/
service providers continue to improve their offerings, digital agriculture could play an 
important role in continued consolidation within the U.S. farm sector.

1 Fisher’s (1922) exact test tests the null hypothesis that the relative proportions of one categorical variable 
are independent of a second categorical variable
2 Highest level of educational attainment among all full-time employees, including owner/operator
3 Equals one if the farm indicated having an individual on their farm who is primarily responsible for col-
lecting, managing, and analyzing farm data and zero otherwise
4 Only the subsample of those who used a farm data software were asked about the ability of their software 
to layer data or generate recommendations
5 Only the subsample of those who indicated using farm software and that their farm software generated 
recommendations were asked the extent to which they followed the recommendations produced by their 
software
6 Only the subsample of those who indicated sharing data were asked the extent to which they follow recom-
mendations provided by third-party farm data service providers

Table 6   (continued)

Variable Perceived impact of data-informed seeding 
decisions on yield outcomes

Decreased yield
(n = 5)

No 
impact on 
yield
(n = 161)

Increased yield
(n = 435)

Fisher’s exact test1

Percent of respondents p-value

  Follow somewhat closely 33% 59% 62%
  Follow very closely 69% 28% 33%
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Table 8   Comparison of data-informed drainage investment decisions on perceived yield outcomes for those 
whose data influenced their drainage investment decisions (n = 524)

Variable Perceived impact of data-informed drainage 
investment decisions on yield outcomes

Decreased yield
(n = 3)

No 
impact on 
yield
(n = 78)

Increased yield
(n = 443)

Fisher’s exact test1

Percent of respondents p-value

Farm/farmer demographics 
Farm size 0.869
 1000–1999 acres 67% 51% 47%
 2000–4999 acres 33% 37% 37%
 ≥ 5000 acres 0% 12% 16%

Primary farm owner/operator age 0.243
 < 20 years 0% 3% < 1%
 20–35 years 0% 0% 2%
 36–50 years 33% 21% 17%
 51–65 years 33% 46% 46%
 > 65 years 33% 31% 35%

Farm educational attainment2 0.228
 High school diploma 0% 24% 19%
 Some college 33% 33% 28%
 Bachelor’s degree 33% 38% 43%
 Post-graduate degree 33% 4% 9%

Data employee3 100% 67% 78% 0.067
Data resources/technology use 
High-speed internet access 100% 79% 82% 0.804
Use Excel 67% 33% 48% 0.026
Use farm data software 33% 31% 52% 0.001
 Farm data software layers data4 100% 42% 66% 0.032
 Farm data software generates 

recommendations4
100% 67% 68% 1.000

 Follow software recommendations5 0.175
  Do not follow 0% 13% 3%
  Follow somewhat closely 100% 56% 54%
  Follow very closely 0% 31% 44%

Create GPS maps 100% 69% 79% 0.093
Use GPS/autosteer 100% 90% 93% 0.475
Use variable rate fertilizer 100% 67% 79% 0.035
Use variable rate seeding 33% 59% 65% 0.291
Use drone/UAV 67% 26% 30% 0.226
Data sharing 
Share data with service provider 100% 73% 80% 0.291
 Follow service provider 

recommendations6
0.046

  Do not follow 33% 12% 5%
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1 Fisher’s (1922) exact test tests the null hypothesis that the relative proportions of one categorical variable 
are independent of a second categorical variable
2 Highest level of educational attainment among all full-time employees, including owner/operator
3 Equals one if the farm indicated having an individual on their farm who is primarily responsible for col-
lecting, managing, and analyzing farm data and zero otherwise
4 Only the subsample of those who used a farm data software were asked about the ability of their software 
to layer data or generate recommendations
5 Only the subsample of those who indicated using farm software and that their farm software generated 
recommendations were asked the extent to which they followed the recommendations produced by their 
software
6 Only the subsample of those who indicated sharing data were asked the extent to which they follow recom-
mendations provided by third-party farm data service providers

Table 8   (continued)

Variable Perceived impact of data-informed drainage 
investment decisions on yield outcomes

Decreased yield
(n = 3)

No 
impact on 
yield
(n = 78)

Increased yield
(n = 443)

Fisher’s exact test1

Percent of respondents p-value

  Follow somewhat closely 67% 58% 64%
  Follow very closely 0% 30% 31%
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1709Precision Agriculture (2021) 22:1685–1710	

1 3

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

American Farm Bureau Federation. (2015). Privacy and Security Principals for Farm Data. Retrieved 26 
March 2020, from https://​list.​etsi.​org/​scrip​ts/​wa.​exe?​A3=​ind16​03&L=​AIOTI​WG3&E=​base6​4&P=​
46619​071&​B=--_​004_​7401E​DE0FF​A3AE4​F9F3F​39401​66B1C​B5014​9B193​EMANM​B10jd​netde_​
&T=​appli​cation%​2Fpdf;%​20nam​e=%​22Pri​vacyA​ndSec​urity​Princ​iples​ForFa​rmData%​20(2).​pdf%​
22&N=​Priva​cyAnd​Secur​ityPr​incip​lesFo​rFarm​Data%​20(2).​pdf&​attac​hment=​q&​XSS=3

Coble, K. H., Mishra, A. K., Ferrell, S., & Griffin, T. (2018). Big data in agriculture: A challenge for the 
future. Applied Economic Perspectives and Policy, 40, 79–96.

Daberkow, S. G., & McBride, W. D. (2003). Farm and operator characteristics affecting the awareness and 
adoption of precision agriculture technologies in the US. Precision Agriculture, 4, 163–177. https://​
doi.​org/​10.​1023/A:​10245​57205​871

DeLay, N. D., Thompson, N. M., & Mintert, J. R. (2020). Precision Agriculture technology adoption and 
technical efficiency. Selected paper presented at the 2020 Agricultural and Applied Economics Asso-
ciation Annual Meeting, Kansas City, MO. July 26–28.

Demestichas, K., & Daskalakis, E. (2020). Data lifecycle management in precision agriculture supported by 
information and communication technology. Agronomy, 10, 1648. https://​doi.​org/​10.​3390/​agron​omy10​
111648

Dhoubhadel, S. P. (2021). Precision agriculture technologies and farm profitability. Journal of Agricultural 
and Resource Economics. https://​doi.​org/​10.​22004/​ag.​econ.​303598

Elton, E. J., Gruber, M. J., & Blake, C. R. (1996). Survivor bias and mutual fund performance. The Review 
of Financial Studies, 9, 1097–1120.

Ferrell, S. L. (2017). Technology in farming: Data driven agriculture. Written testimony before United 
States Senate Committee on Commerce, Science, and Transportation Subcommittee on Consumer Pro-
tection, Product Safety, Insurance, and Data Security. Retrieved from https://​www.​comme​rce.​senate.​
gov/​servi​ces/​files/​D85C0​F87-​2358-​4452-​9216-​882B6​1DE38​56

Fernandez-Cornejo, J., Daberkow, S. G., & McBride, W. D. (2001). Decomposing the size effect on the 
adoption of innovations: Agrobiotechnology and precision agriculture. AgBio Forum, 4, 124–136.

Fisher, R. A. (1922). On the interpretation of χ2 form contingency tables, and the calculation of P. Journal 
of the Royal Statistical Society, 85, 87–94.

Fisher, R. J. (1993). Social desirability bias and the validity of indirect questioning. Journal of Consumer 
Research, 20, 303–315.

Griffin, T. W., Lowenberg-DeBoer, J., Lambert, D. M., Peone, J., Payne, T., & Daberkow, S. G. (2004). 
Adoption, profitability, and making better use of precision farming data. Staff Paper #04–06, Depart-
ment of Agricultural Economics, Purdue University. https://​doi.​org/​10.​22004/​ag.​econ.​28615

Griffin, T. W. N. J., Miller, J., Bergtold, A., Shanoyan, A., Sharda, & Ciampitti, I. A. (2017). Farm’s 
sequence of adoption of information-intensive precision agriculture technology. Applied Engineering 
in Agriculture, 33, 521–527. https://​doi.​org/​10.​13031/​aea.​12228

Khanna, M., Epouhe, O. F., & Hornbaker, R. (1999). Site-specific crop management: Adoption patterns and 
incentives. Review of Agricultural Economics, 21, 455–472. https://​doi.​org/​10.​2307/​13498​91

Lambert, D. M., Paudel, K. P., & Larson, J. A. (2015). Bundled Adoption of precision agriculture technolo-
gies by cotton producers. Journal of Agricultural and Resource Economics, 40, 325–345.

Lowenberg-DeBoer, J. (2003). Precision farming or convenience agriculture. Paper presented at the 11th 
Australian agronomy conference, Geelong, Victoria, Australia, February 2–6.

Lowenberg-DeBoer, J., & Erickson, B. (2019). Setting the record straight on precision agriculture adoption. 
Agronomy Journal, 111, 15152–11569. https://​doi.​org/​10.​2134/​agron​j2018.​12.​0779

MacDonald, J. M., Hoppe, R. A., & Newton, D. (2018). Three decades of consolidation in U.S. agriculture. 
Economic Bulletin Number 189, Economic Research Service. Retrieved from https://​www.​ers.​usda.​
gov/​webdo​cs/​publi​catio​ns/​88057/​eib-​189.​pdf

McFadden, J. R. (2017). Yield maps, soil maps, and technical efficiency: Evidence from U.S. corn fields. 
Paper presented at the agricultural and applied economics association annual meeting, Chicago, IL. 
July 30-Austust 1.

Miller, N. J., Griffin, T. W., Bergtold, J., Ciampitti, I. A., & Sharda, A. (2017). Farmers’ adoption path of 
precision agriculture technology. Advances in Animal Bioscience, 8, 708–712. https://​doi.​org/​10.​1017/​
S2040​47001​70005​28

http://creativecommons.org/licenses/by/4.0/
https://list.etsi.org/scripts/wa.exe?A3=ind1603&L=AIOTIWG3&E=base64&P=46619071&B=--_004_7401EDE0FFA3AE4F9F3F3940166B1CB50149B193EMANMB10jdnetde_&T=application%2Fpdf;%20name=%22PrivacyAndSecurityPrinciplesForFarmData%20(2).pdf%22&N=PrivacyAndSecurityPrinciplesForFarmData%20(2).pdf&attachment=q&XSS=3
https://list.etsi.org/scripts/wa.exe?A3=ind1603&L=AIOTIWG3&E=base64&P=46619071&B=--_004_7401EDE0FFA3AE4F9F3F3940166B1CB50149B193EMANMB10jdnetde_&T=application%2Fpdf;%20name=%22PrivacyAndSecurityPrinciplesForFarmData%20(2).pdf%22&N=PrivacyAndSecurityPrinciplesForFarmData%20(2).pdf&attachment=q&XSS=3
https://list.etsi.org/scripts/wa.exe?A3=ind1603&L=AIOTIWG3&E=base64&P=46619071&B=--_004_7401EDE0FFA3AE4F9F3F3940166B1CB50149B193EMANMB10jdnetde_&T=application%2Fpdf;%20name=%22PrivacyAndSecurityPrinciplesForFarmData%20(2).pdf%22&N=PrivacyAndSecurityPrinciplesForFarmData%20(2).pdf&attachment=q&XSS=3
https://list.etsi.org/scripts/wa.exe?A3=ind1603&L=AIOTIWG3&E=base64&P=46619071&B=--_004_7401EDE0FFA3AE4F9F3F3940166B1CB50149B193EMANMB10jdnetde_&T=application%2Fpdf;%20name=%22PrivacyAndSecurityPrinciplesForFarmData%20(2).pdf%22&N=PrivacyAndSecurityPrinciplesForFarmData%20(2).pdf&attachment=q&XSS=3
https://doi.org/10.1023/A:1024557205871
https://doi.org/10.1023/A:1024557205871
https://doi.org/10.3390/agronomy10111648
https://doi.org/10.3390/agronomy10111648
https://doi.org/10.22004/ag.econ.303598
https://www.commerce.senate.gov/services/files/D85C0F87-2358-4452-9216-882B61DE3856
https://www.commerce.senate.gov/services/files/D85C0F87-2358-4452-9216-882B61DE3856
https://doi.org/10.22004/ag.econ.28615
https://doi.org/10.13031/aea.12228
https://doi.org/10.2307/1349891
https://doi.org/10.2134/agronj2018.12.0779
https://www.ers.usda.gov/webdocs/publications/88057/eib-189.pdf
https://www.ers.usda.gov/webdocs/publications/88057/eib-189.pdf
https://doi.org/10.1017/S2040470017000528
https://doi.org/10.1017/S2040470017000528


1710	 Precision Agriculture (2021) 22:1685–1710

1 3

Miller, N. J., Griffin, T. W., Ciampitti, I. A., & Sharda, A. (2019). Farm adoption of embodied knowledge 
and information intensive precision agriculture technology bundles. Precision Agriculture, 20, 348–
361. https://​doi.​org/​10.​1007/​s11119-​018-​9611-4

Miller, N. J., Griffin, T. W., Goeringer, P., Ellixson, A., & Shanoyan, A. (2018). Estimating value, damages, 
and remedies when farm data are misappropriated. Choices, 33, 1–8.

Pannell, D. J., Marshall, G. R., Barr, N., Curtis, A., Vanclay, F., & Wilkinson, R. (2006). Understanding and 
promoting adoption of conservation practices by rural landholders. Australian Journal of Experimental 
Agriculture, 46, 1407–1424. https://​doi.​org/​10.​1071/​EA050​37

Plume, K. (2014). High-tech, U.S. farm machines harvest big data, reap privacy worries. Reuters. Retrieved 
from https://​www.​reute​rs.​com/​artic​le/​usa-​farmi​ng-​data-​idUSL​2N0N1​1U720​140409

Pope, M., & Sonka, S. (2020). Quantifying the economic benefits of on-farm digital technologies. farmdoc 
daily 10:40. Retrieved from https://​farmd​ocdai​ly.​illin​ois.​edu/​2020/​03/​quant​ifying-​the-​econo​mic-​benef​
its-​of-​on-​farm-​digit​al-​techn​ologi​es.​html

Roberts, R. K., English, B. C., Larson, J. A., Cochran, R. L., Goodman, W. R., Larkin, S. L., Marra, M. 
C., Martin, S. W., Shurley, W. D., & Reeves, J. M. (2004). Adoption of site-specific information and 
variable-rate technologies in cotton precision farming. Journal of Agricultural and Applied Economics, 
36, 143–158. https://​doi.​org/​10.​22004/​ag.​econ.​42943

Schimmelpfennig, D. (2016). Farm profits and adoption of precision agriculture. U.S. Department of Agri-
culture, Economic Research Service, Report Number 217. Retrieved from https://​www.​ers.​usda.​gov/​
webdo​cs/​publi​catio​ns/​80326/​err-​217.​pdf?v=0

Schimmelpfennig, D. (2018). Crop production costs, profits, and ecosystem stewardship with precision agri-
culture. Journal of Agricultural and Applied Economics, 50, 81–103. https://​doi.​org/​10.​1017/​aae.​2017.​
23

Schimmelpfennig, D., & Lowenberg-DeBoer, J. (2020). Farm types and precision agriculture adoption: 
crops, regions, soil variability, and farm size. Global Institute for Agri-Tech Economics Working Paper 
01–20.

Schimmelpfennig, D., & Ebel, R. (2016). Sequential adoption and cost savings from precision agriculture. 
Journal of Agricultural and Resource Economics, 41, 97–115.

Skyuta, M. E. (2016). Big data in agriculture: Property rights, privacy and competition in Ag data services. 
International Food and Agribusiness Management Review, 19, 57–74.

Thompson, N. M., Bir, C., Widmar, D. A., & Mintert, J. R. (2019). Farmer perceptions of precision agricul-
ture technology benefits. Journal of Agricultural and Applied Economics, 51, 1–22.

USDA Economic Research Service. (2020). USDA agricultural resource management survey farm financial 
and crop production practices tailored reports. https://​data.​ers.​usda.​gov/​repor​ts.​aspx?​ID=​17883.

USDA National Agricultural Statistic Service. (2020). “Quick Stats.” https://​quick​stats.​nass.​usda.​gov/
Weersink, A., Fraser, E., Pannell, D., Duncan, E., & Rotz, S. (2018). Opportunities and challenges for big 

data in agricultural and environmental analysis. Annual Review of Resource Economics, 10, 19–37. 
https://​doi.​org/​10.​1146/​annur​ev-​resou​rce-​100516-​053654

Wilmoth, D. (2019). Accessing the internet in rural America. Issue Brief Number 15, U.S. Small Business 
Administration, Office of Advocacy. Retrieved from https://​cdn.​advoc​acy.​sba.​gov/​wp-​conte​nt/​uploa​ds/​
2019/​11/​07105​617/​Rural-​Inter​net-​Acces​ss.​pdf

Woodard, J. D., Sherrick, B. J., Atwood, D. M., Blair, R., Fogel, G., Goeser, N., et al. (2018). The power of 
agricultural data. Science, 362, 410–411. https://​doi.​org/​10.​1126/​scien​ce.​aav50​02

Zhou, X. V., English, B. C., Larson, J. A., Lambert, D. M., Roberts, R. K., Boyer, C. N., et al. (2017). Preci-
sion farming adoption trends in the southern U.S. Journal of Cotton Science, 21, 143–155.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1007/s11119-018-9611-4
https://doi.org/10.1071/EA05037
https://www.reuters.com/article/usa-farming-data-idUSL2N0N11U720140409
https://farmdocdaily.illinois.edu/2020/03/quantifying-the-economic-benefits-of-on-farm-digital-technologies.html
https://farmdocdaily.illinois.edu/2020/03/quantifying-the-economic-benefits-of-on-farm-digital-technologies.html
https://doi.org/10.22004/ag.econ.42943
https://www.ers.usda.gov/webdocs/publications/80326/err-217.pdf?v=0
https://www.ers.usda.gov/webdocs/publications/80326/err-217.pdf?v=0
https://doi.org/10.1017/aae.2017.23
https://doi.org/10.1017/aae.2017.23
https://data.ers.usda.gov/reports.aspx?ID=17883
https://quickstats.nass.usda.gov/
https://doi.org/10.1146/annurev-resource-100516-053654
https://cdn.advocacy.sba.gov/wp-content/uploads/2019/11/07105617/Rural-Internet-Accesss.pdf
https://cdn.advocacy.sba.gov/wp-content/uploads/2019/11/07105617/Rural-Internet-Accesss.pdf
https://doi.org/10.1126/science.aav5002

	Understanding the farm data lifecycle: collection, use, and impact of farm data on U.S. commercial corn and soybean farms
	Abstract
	Introduction
	Materials and methods
	Results and discussion
	Data collection
	Data use
	Data impact

	Conclusions and implications
	References




