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Abstract
In this study, site-specific N balances were calculated for a 13.1 ha heterogeneous field. 
Yields and N uptake as input data for N balances were determined with data from a com-
bine harvester, reflectance measurements from satellites and tractor-mounted sensors. The 
correlations between the measured grain yields and yields determined by digital methods 
were moderate. The calculated values for the N surpluses had a wide range within the field. 
Nitrogen surpluses were calculated from − 76.4 to 91.3 kg ha−1, with a mean of 24.0 kg 
ha−1. The use of different data sources and data collection methods had an impact on the 
results of N balancing. The  results show the need for further optimization and improve-
ment in the accuracy of digital methods. The factors influencing N uptake and N surplus 
were determined by analysing soil properties of georeferenced soil samples. Soil proper-
ties showed considerable spatial variation within the field. Soil organic carbon correlated 
very strongly with total nitrogen content (r = 0.97),  moderately with N uptake (sensor, 
r = 0.60) and negatively with N surplus (satellite, r = − 0.46; sensor, r = − 0.56; harvester, 
r = − 0.60). Nitrate content was analysed in soil cores (0 to 9 m) taken in different yield 
zones, and compared with the calculated N surplus; there was a strong correlation between 
the measured nitrate content and calculated N surplus (r = 0.82). Site-specific N balancing 
can contribute to a more precise identification of the risk of nitrate losses and the develop-
ment of targeted nitrate reduction strategies.

Keywords  Spatial variation · Soil heterogeneity · Nitrogen surplus · Site-specific farming · 
Sensor data · N balance

Introduction

N balance and site‐specific N fertilizer application

Nitrogen (N) surplus is one of the most important agri-environmental indicators (Salo 
and Turtola 2006; Sieling and Kage 2006; Sassenrath et  al. 2013). It describes the 
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potential loss of reactive N compounds (NH3, N2O, NO3
−) at different system levels, 

e.g. field, crop rotation or farm (Hülsbergen 2003; McLellan et al. 2018). In Germany, N 
surpluses, at around 90 kg ha−1 a−1, have been much too large for years; this has led to 
N emissions that have negative environmental impacts and contribute to climate change 
(Isermann 1990; van der Ploeg et  al. 1997; Küstermann et  al. 2010; McLellan et  al. 
2018).

A promising approach for increasing N efficiency and reducing N surplus is site-spe-
cific, sensor-based N fertilizer application (Spicker 2016; Pahlmann et al. 2017); how-
ever, despite the increasing availability and performance of sensor-based N fertilizer 
application systems (Maidl et  al. 2019), uniform fertilizer application is still common 
agricultural practice (Frogbrook and Oliver 2007; Stamatiadis et al. 2018).

Variation in soil properties and their influence on N balance

Many arable fields show spatial variation in yields and N uptake of crops because of dif-
ferences in slope and topography (exposure) (Hatfield 2000; Godwin et al. 2003). Soil 
texture, available water capacity, pH, humus and nutrient contents can vary consider-
ably within a small area, even in fields that have been cultivated uniformly over many 
years (Hülsbergen 2003; López-Lozano et al. 2010; Servadio et al. 2017).

If N fertilizer is applied uniformly on heterogeneous fields this can mean that (a) the 
yield potential in the high-yield zones is not fully realised and/or N uptake of plants will 
exceed the N supply and reduce soil N stocks (Dalgaard et al. 2012), (b) large N sur-
pluses and nitrate losses occur in the low yielding zones and N may also accumulate in 
the soil (Dalgaard et al. 2012; Hülsbergen et al. 2017). It can, therefore, also be assumed 
that N surpluses and losses vary in heterogeneous fields. Under these conditions, even 
if, on average, N inputs and N outputs are balanced (N surplus = 0), some parts of the 
field could have a large N surplus and therefore potential N losses, whereas there could 
be an N deficit in other parts of the field. Site-specific N balances enable N losses that 
negatively impact the environment to be quantified more precisely. There are only a few 
scientific studies on the spatial variation of N surpluses and potential nitrate losses.

Technologies for determining georeferenced plant and soil variables

A prerequisite for site-specific N fertilizer application and balancing is the availability of 
georeferenced plant and soil variables (e.g. crop yield, biomass N content, N uptake, soil 
nitrogen content). These data, which are used as input data in the N balance, can be col-
lected using different technologies with different spatial resolutions, accuracy, costs and 
availability (Finger et  al. 2019). For example, data from tractor-mounted multispectral 
reflection sensors (Maidl et  al. 2019), satellite data (ESA 2018), drones with multispec-
tral cameras (Maes and Steppe 2019) or data from combine harvesters with integrated 
yield recording (Bachmaier 2007) can be used to measure and calculate the biomass and N 
uptake of crop stands.

Study aims

This research explores the causes of the influence of small-scale variable soil parameters 
on yield and potential nitrogen losses. The aim is to identify under which conditions high 
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N surpluses occur (which soil parameters have the greatest influence on the N surpluses?) 
and whether these N surpluses are closely related to the nitrate losses (measured values).

Site-specific N balances were calculated with input data collected using different meth-
ods to investigate the effect of different data sources and data quality on the N balance. 
Various soil properties, such as humus content, N content, electrical conductivity and avail-
able water capacity, were used to identify the causes of spatial variation of N surpluses.

Based on the current scientific knowledge, the hypotheses are that.
(1) N surpluses were highly variable within a uniformly fertilized field,
(2) even if N surplus is balanced, some parts of the field could have a large N surplus 

and therefore potential N losses,
(3) the N surpluses are related to soil parameters and yield zones,
(4) N surpluses determined with different digital methods show similar patterns of spa-

tial variability on fields.
Based on the results, the relevance, effort required and benefits of site-specific N bal-

ancing were evaluated and recommendations for improving the precision of the technolo-
gies used were made.

Materials and methods

Site and weather conditions

The study was carried out at the Roggenstein Research Station (48o10′47″ N 11o19′11″ E), 
30 km west of Munich (520 m a.s.l.). The soils examined at this experimental station are 
Cambisols (FAO 2014) of medium quality.

The 30-year mean annual precipitation was 954 mm and the mean annual temperature 
was 8.5 °C (1981 to 2010) (Table 1). The study year 2018 was characterized by a very dry 
and hot summer; 2018 was the hottest year on record at the location (DWD 2018).

The field “Bergfeld” was chosen as the study site because.

(a)	 it is of sufficient size (13.1 ha),
(b)	 soil properties and yield potential vary within the field (Spicker 2016),
(c)	 the field has been managed uniformly for many years.

Table 1   Mean temperature and precipitation, Research Station Roggenstein

Unit January to 
March

April to June July to Sep-
tember

October to 
December

Year

2018
 Temperature x̄ °C 1.8 15.3 18.1 5.5 10.1
 Precipitation ∑ mm 160 277 276 155 867

1981–2010
 Temperature x̄ °C 1.0 12.5 16.4 4.2 8.5
 Precipitation ∑ mm 175 276 302 201 954
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Wheat production and N fertilizer application

Winter wheat was analysed because wheat reacts explicitly to different soil qualities, is the 
most important crop with the largest acreage in the region and experimental data on wheat 
yield and N efficiency at the experimental station are available. The crop management is 
shown in Online Resource 1.

Methods of determining plant variables

The plant variables (Online Resource 2) required for the analyses were collected in 2018. 
In addition to digitally recorded plant variables, data from biomass samples and laboratory 
analyses are used as reference data.

On July 25, 2018, georeferenced biomass samples (50 areas, 2 m²) were cut by hand. 
Eight 2-m rows of wheat were cut using cordless clippers close to the ground. The grain 
was threshed in a laboratory thresher (Wintersteiger 2018). The grain dry matter (DM) 
content was determined after drying at 60 °C and the grain yield in tons ha−1, based on 
86% DM, was calculated. Grain N content was determined using the Dumas combustion 
method.

To analyse the spatial variation of yield and N uptake of winter wheat, yield data from 
a combine harvester (volume flow sensor) (Noack 2007) from July 30, 2018 were used, 
together with satellite data from 2018 in combination with the plant growth model PRO-
MET (Mauser and Bach 2009; ESA 2018), and data from reflectance measurements using 
a tractor-mounted multispectral sensor from June 7, 2018 (TEC5 2010; Maidl et al. 2019).

The mean wheat yield at the weighbridge was determined by weighing the tractor 
trailers.

N balancing

The N surplus (kg ha−1 a−1) was determined by N balancing:

The N input is the amount of mineral N fertilizer application (193 kg ha−1) for winter 
wheat that was applied uniformly on the test field (Online Resource 1). The N output is 
the grain N uptake. The N uptake was determined by (a) N content from laboratory analy-
sis of biomass samples multiplied by grain yield from biomass samples, (b) grain yield 
(combine harvester volume flow sensor) multiplied by the mean N content (determined in 
grain samples from biomass sampling), (c) grain yield determined using the plant growth 
model PROMET (Mauser and Bach 2009) based on satellite data multiplied by the mean 
N content (determined in grain samples from biomass sampling) and (d) calculation of 
the vegetation index REIP based on reflectance measurements and an N uptake algorithm 
according to Maidl et al. (2019).

Byproducts (straw) were not harvested and therefore not considered as N output. The N 
surplus was calculated for each grid element (see Geostatistical analysis).

(1)N surplus = N - Input − N - Output .
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Methods of determining soil properties

The soil properties (Online Resource 3) required for the analyses were collected from the 
“Bergfeld” in 2019 using georeferenced sampling. These were soil properties (e.g. soil tex-
ture, soil organic carbon content, soil total nitrogen content) that remain stable for several 
years in order to analyse relationships with plant variables determined in 2018.

Soil samples were taken on April 1, 2019 (soil layer 0–30 cm) for laboratory analysis of 
soil organic carbon (SOC) content, total nitrogen (TN) content, plant-available phosphorus 
(P), plant-available potassium (K) and pH. Soil texture (soil layer 0–30  cm) was deter-
mined by particle-size analysis and the available water capacity was calculated based on 
the soil texture (German soil mapping guideline, KA 5 2005).

A total of 100 soil samples based on 35 m × 35 m grid cells were collected. The dis-
tribution of the soil samples within the field was “stratified random”—one single random 
location in each grid cell (Online Resource 4) (Thompson 2002). Eight soil samples were 
taken within a maximum radius of 50 cm around a georeferenced point, and mixed together 
to form a mixed sample.

The electrical conductivity (EM38 MK2) was measured on April 3, 2019.
To determine the amount of nitrate N below the root zone and the nitrate content in the 

leachate, soil cores were taken in three different yield zones (3 cores per zone) (Online 
Resource 4) (0 to 9 m depth) on October 14, 15 and 16 2019. The nitrate N stocks in the 
soil samples were determined in layers of 50 cm.

Descriptive statistics

The mean, median, minimum, maximum and standard deviation were calculated for each 
variable using R (R Core Team 2020).

Geostatistical analysis

The data recorded by different methods varied greatly in spatial resolution and distribution:

–	 biomass samples (2018): 50 areas (2 m² each),
–	 yield data, combine harvester volume flow sensor (2018): 6 623 points,
–	 yield data from the PROMET plant growth model, based on satellite data (2018): 1 336 

grid elements (10 m × 10 m),
–	 sensor data, TEC 5, tractor mounted (2018): 5 324 points,
–	 soil properties, soil samples (2019): 100 points,
–	 apparent electrical conductivity data, (EM38 MK2) (2019): 8 889 points.

The data were transferred to grids of the same resolution (10 m × 10 m) and with the 
same raster elements (1 163 grids); raster input data by downsampling and point input data 
by interpolation to the raster elements using block kriging (10 m × 10 m blocks) (Oliver 
and Webster 2015). A variogram (variance of the data according to distance classes) of 
the data was created, which shows the spatial relationship of the variable with increasing 
separating distance (spatial auto-correlation effect). A model was fitted to the variogram, 
which is used for weighting data in the kriging neighbourhood to predict values at unsam-
pled places (Hengl 2007; Oliver and Webster 2015). The results of variogram analysis are 
shown in Online Resources 6 and 7.
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The outer 10  m of the field were not included in data analysis (Online Resource 4) 
to avoid evaluating data from areas that do not belong to the field. A correlation analy-
sis based on the grid elements was carried out to check the relationships between the 
plant and soil variables. The R libraries “rgdal”, “rgeos”, “gstat” and “raster” were used 
for spatial analyses and for loading vector or raster files. The correlation coefficients (r) 
were classified as very strong (r > 0.9), strong (0.9 > r > 0.7), moderate (0.7 > r > 0.5), weak 
(0.5 > r > 0.3) or very weak (r < 0.3).

Figure 1 is a flowchart that shows the consecutive work steps for determining plant, N 
balance and soil variables as well as the subsequent geostatistical and correlation analysis.

(a) Use of measured N content from biomass samples (n = 50) for calculation of N 
uptake; (b) use of mean N content from biomass samples for calculation of N uptake; (c) 
calculation of the N uptake using the REIP vegetation index and algorithms; (d) Kriging; 
(e) deep drilling.

Results

Spatial variation of wheat yield

The results in Fig. 2 and Table 2 show that different methods analysis and different spatial 
resolutions led to different results in terms of mean wheat grain yields, as well as different 
yield distribution patterns and different yield variation.

The wheat grain yield from the biomass samples varied between 6.3 and 12.9 tons ha−1. 
The wheat grain yields measured by the volume flow sensor of the combine harvester 
were also highly variable (6.2–16.0 tons ha−1), as was the grain yield measured by satellite 
(5.2–10.3 tons ha−1) and sensor (6.1–10.0 tons ha−1) (Table 2).

The mean grain yield determined from biomass samples was larger (9.9 tons ha−1) 
than the mean yield determined by the combine harvester (9.4 tons ha−1). The mean yield 

Fig. 1   Flow chart of the consecutive work steps in this study
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modelled using satellite data and the PROMET model was considerably lower at 6.7 tons 
ha−1 and the mean yield using sensor data and algorithms was 8.0 tons ha−1. The mean 
wheat yield at the weighbridge was 7.9 tons ha−1, which was 16% less than the mean yield 
determined using the combine harvester, 17% more than the mean yield determined using 
satellite data and it fitted well with the sensor data. However, the entire field was included 
in the yield at the weighbridge, while 10 m at the edge of the field were not included in the 
data analysis when all digital data were analysed (see Materials and methods section, and 
Online Resource 4).

Spatial variation of N uptake

Calculated grain N uptake was highly variable: biomass samples (142–257) kg ha−1, com-
bine harvester yield data (121–310) kg ha−1, satellite data and modelling (102–199  kg 
ha−1) and sensor measurements (102–269 kg ha−1) (Table 2; Fig. 3).

The mean N uptake determined from the biomass samples was 190  kg ha−1 larger 
than the mean yield determined using the combine harvester (182 kg ha−1), satellite data 

Fig. 2   Yield maps. Yield derived 
from the combine harvester 
(volume flow sensor), satellite 
(PROMET model) and tractor-
mounted sensor (REIP + algo-
rithms)

t ha-1

a) Harvester        b) Satellite        c) Sensor

5 6             7           8            9          10

(a)

(b) 

(c)
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(131 kg ha−1) or sensor measurements (169 kg ha−1). Mean grain N uptake based on the 
average yield (at the weighbridge) was 157 kg ha−1.

Spatial variation of N surplus

Calculated grain N surplus were also highly variable: biomass samples (− 64 to 51) kg 
ha−1, combine yield data (− 117 to 72) kg ha−1, satellite data and modelling (− 6 to 91) kg 
ha−1 and sensor measurements (− 76 to 91 kg ha−1) (Fig. 3).

The mean N surplus determined from the biomass samples at 50 measurement points 
was − 3 kg ha−1. The mean N surplus determined using the combine harvester was 10 kg 
ha−1, using satellite data 62 kg ha−1, and sensor measurements 24 kg ha−1. Mean grain N 
surplus based on the average yield (at the weighbridge) was 36 kg ha−1.

Thus, the mean N surplus calculated using sensor measurements was similar to the 
mean N surplus of the field based on weighbridge data. Satellite data resulted in larger N 
surpluses being calculated due to the relatively small yields and N uptake.

100          150         200          250
N uptake [kg ha-1]

(a) 

(b) 

(c) 

a) Based on combine harvester (volume flow sensor)
b) Based on tractor mounted sensor (reflectance measurement)
c) Based on satellite (reflectance measurement)

-60           -10           40           90
N surplus [kg ha-1]

Fig. 3   N uptake (grain) and N surplus (kriged maps) calculated by different methods
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Spatial variation of soil properties

The soil properties all varied greatly within the field (Table 3; Fig. 4). Some of the soil 
properties showed similar patterns of distribution, e.g. the SOC content, the TN content 
and the available water capacity (Fig. 4). Mean values were: sand 65.5%, silt 22.7%, clay 
11.8%, available water capacity 23.6 vol.%, electrical conductivity 11.64  mS m−1, SOC 
content 1.09%, TN content 0.11%, P content 6.5 mg (100 g)−1, K content 20.1 mg (100 g)−1 
and pH 6.5 (the additional soil properties are shown in Online Resource 5).

The soil cores (deep drilling, soil layer 0 to 9 m) showed that nitrate N stocks differed 
between the yield zones (Online Resource 4). Nitrate N amounts of 277 to 424 kg ha−1 

0.8          1.0           1.2          1.4 

SOC [%]

0.08        0.10        0.12        0.14 

TN [%]

ECa [ms m-1]

6             10            14           18

Sand [%]

21           23            25           27 

AWC [Vol.-%]

10           11            12           13

Clay [%]

50      60     70        80

Fig. 4   Spatial distribution (kriged maps) for six soil properties in the study area. SOC soil organic carbon 
content, TN soil total nitrogen content, Clay, AWC​ available water capacity, ECa apparent electrical conduc-
tivity, Sand



1427Precision Agriculture (2021) 22:1416–1436	

1 3

were found in the low-yield zone, 215 to 337 kg ha−1 in the medium-yield zone and in the 
high-yield zone they were 179 to 202 kg ha−1 (average of three cores). The mean nitrate N 
amounts in the low-yield zone were higher (342 kg ha−1) than in the medium-yield zone 
(278 kg ha−1) and the high-yield zone (192 kg ha−1) (average of three cores).

Correlation between variables

Grain yield, N uptake, and N surplus

The correlations between the yield determined from biomass samples and from the digi-
tal methods were moderate: combine harvester (r = 0.66), satellite (r = 0.56) and sen-
sor (r = 0.63). The correlations (grain yield) between combine harvester and sensor and 
between sensor and satellite were strong (r = 0.77 and 0.71, respectively) and moderate 
between combine harvester and satellite (r = 0.57) (Table 4).

The yield and N uptake (combine harvester) were weakly to moderately correlated with 
the following soil properties: available water capacity (r = 0.63), TN content (r = 0.61), 
SOC content (r = 0.60), electrical conductivity (r = 0.48), clay content (r = 0.42), and sand 
content (r = − 0.37).

The N uptake (sensor data) was similarly correlated with the soil properties (moder-
ate to very weak): TN content (r = 0.58), SOC content (r = 0.56), electrical conductivity 
(r = 0.56), available water capacity (r = 0.54), clay content (r = 0.37), sand content (r = 
− 0.29).

The N uptake based on satellite data showed similar (but weaker) relationships to the 
soil properties. Soil phosphorus and potassium contents had a weak influence only (weak 
to very weak) on the yield, N uptake and N balance.

Therefore, high wheat N uptake occurred when TN and SOC content were also large, as 
well as when available water capacity was high.

The calculated N balances were derived directly from the yield data or N uptake. They 
therefore correlated negatively with the properties TN, SOC and available water capacity. 
The correlations of surplus N to all other properties (except sand) were all negative (with 
respect to the N uptake). Nitrogen surplus was higher when TN, SOC and available water 
capacity were lower.

There was a strong correlation of r = 0.82 between the georeferenced N surplus (deter-
mined using the sensor) and the nitrate N stocks (0 to 9 m).

Soil properties

The SOC content and TN content correlated very strongly (r = 0.97) (Table  4). The 
available water capacity correlated moderately with the SOC (r = 0.69) and TN content 
(r = 0.69), and with the electrical conductivity (r = 0.52). The electrical conductivity had a 
weak relationship to TN content (r = 0.48) and SOC content (r = 0.40).
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Discussion

Discussion of methods

In this study, georeferenced plant, N balance and soil variables were determined on a 13-ha 
heterogeneous field using different data sources and methods, and relationships between 
these variables were analysed.

Site selection

The results were influenced by the properties (size, heterogeneity) of the field. A rela-
tively large (13 ha) arable field was selected for the study. Even though the whole field has 
been cultivated uniformly for decades, there is spatial variation in soil properties and yield 
potential (Spicker 2016).

The small-scale variation in soil and yield in this field is characteristic of the site con-
ditions in the study region (Auerswald et al. 1997; Heil and Schmidhalter 2017) whereas 
in other agricultural regions (e.g. on homogeneous loess Chernozem soils) there may be 
considerably less variation (Roßkopf et  al. 2015). Site-specific management, taking spa-
tially variable soil properties and yield potentials into account, is sensible and necessary on 
heterogeneous fields only (Whelan 2018).

Origin of data and technologies used

Plant and soil variables were measured using various digital methods. The different num-
bers of measurement points must also be taken into account. For applications in precision 
farming, very different data from different sources and analytical methods are generally 
available, some of which can be used free of charge (satellite data), some of which require 
more complex (e.g. combine harvester volume flow sensor) and/or more expensive analy-
ses (e.g. tractor-mounted sensor systems) (Finger et al. 2019). In this study, “ground truth” 
data were also obtained (e.g. yield determination using biomass sampling, SOC and TN 
content measurements and soil cores (down to 9 m) to determine soil nitrate content below 
the root zone) so that modelled data could be compared to measured data. It was therefore 
possible to evaluate the different digital methods.

N balancing

In this study, site-specific N balances were calculated based on measured data and mod-
elled data (yield, grain N uptake); mineral N fertilizer application was carried out uni-
formly across the field. The difference between grain N uptake (N output) and N fertilizer 
applied (N input) is the simplest method of calculating the N surplus. Other influencing 
factors, such as N mineralization and N immobilization (Hülsbergen 2003), as well as N 
deposition, are not taken into account using this method. In principle, however, it will be 
possible to record these processes in a spatially differentiated manner in the future, e.g. 
through the use of soil process models and satellite data (Mauser and Bach 2009). Soil N 
dynamics, in particular N mineralization from the soil N pool, can vary greatly depending 
on soil conditions and have a considerable effect on biomass production, N uptake and 
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ultimately also the N surpluses and N use efficiency (Prücklmaier 2020). Nitrogen miner-
alization was not measured in this study, but the total nitrogen content (TN) was measured.

Geostatistics

The distribution of the soil samples according to the “stratified random” (one single loca-
tion in each grid cell) method meant the distance between the sampling points and the 
distribution of the area under investigation were taken into account more effectively than 
if a strict grid had been used (Thompson 2002). 100 Soil sampling points and 50 biomass 
sampling areas (2 m²) for a 13-ha arable field were sufficient for the geostatistical evalua-
tion. A major advantage of kriging is that the prediction variance can also be calculated 
from the location of the sampling points. As a result, the prediction error is influenced by 
the number and location of the measurement points; it is independent of the value of the 
measurements (Delhomme 1978; Oliver and Webster 2015).

Through the interpolation and formation of a 10 m × 10 m grid, single extreme values ​​
were smoothed by the values ​​of the neighbouring grid cells. As a result, the values in the 
calculated grids had a smaller range (min–max) ​​than the original data.

Discussion of results

Spatial variation in wheat yields in relation to soil properties

The spatial variation in wheat yields was considerable (grain yield: 6 to 13 tons ha−1). 
Although there were many factors influencing yield, the available water capacity (r = 0.63), 
TN content (r = 0.61) and SOC content (r = 0.60) had the largest influence (harvester). 
These soil properties are relatively stable (changeable only in the long term) (Körschens 
2010; Wiesmeier et  al. 2019), it can be expected that the yield and N uptake patterns 
dependent on them are also relatively stable. The SOC content can be used as a proxy for 
the humus content of the soil; humus has a positive influence on numerous soil processes, 
soil properties (e.g. soil structure, soil biology, nutrient content) and crop yield, as has 
been found in numerous studies (Tiessen et al. 1994; FAO 2001; Pan et al. 2009; Leithold 
et al. 2015). The SOC content correlated very strongly with the TN content (r = 0.97) and 
moderately with the available water capacity (r = 0.69). Soil water storage has a significant 
effect on yield formation particularly in dry years such as 2018. The available water often 
limits the yield (Godwin and Miller 2003).

The results showed that the volume flow sensor on the combine harvester overestimated 
the yield (9.4 tons ha−1) compared to the average yield of the field (7.9 tons ha− 1) meas-
ured using the weighbridge. This could be due to (a) inaccuracies in the volume flow meas-
urements of the sensor (Bachmaier 2007) and (b) the removal of data at the edge of the 
field (10 m) (see section geostatistical analysis). Yields at the field edge were recorded at 
the weighbridge, but were excluded from the combine harvester, satellite and tractor sen-
sor data analysis. The method based on satellite data combined with the PROMET model, 
however, underestimated the yield (6.7 tons ha−1).

The analysis of the correlations between the yield and N balance variables using differ-
ent methods showed that there was a strong relationship between combine harvester and 
tractor mounted sensor (r = 0.77) and between sensor and satellite (r = 0.71) measurements. 
The correlation between satellite data and combine harvester data was weaker (r = 0.57).
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Combine harvester and sensor data correlated more strongly with the soil properties 
than the satellite data. Kaivosoja et al. (2019) compared tractor-mounted sensor data, com-
bine yield data and Sentinel 2 satellite data. They found stronger, but similar results (e.g. 
combine harvester and tractor mounted sensor, r = 0.82; satellite and tractor mounted sen-
sor, r = 0.80; combine harvester and satellite, r = 0.75). Křížová and Kumhálová (2017) 
compared selected remote sensing sensors to estimate the variation in crop yield at two 
different locations; they found weaker correlations (e.g. GreenSeeker crop sensor data and 
Landsat satellite data, r = 0.35, 0.67 respectively).

It should be noted, therefore, that the spatial distribution of yield, N uptake and N sur-
plus is still subject to considerable error when determined by methods used in this study, so 
that the yield zones (e.g. high and low yield zones or the zones with different N surpluses 
and nitrate loss potentials) cannot yet be determined precisely.

To improve precision of the analysis further, the digital technologies must be further 
improved or their application optimized, e.g. by:

•	 higher spatial resolution of the satellite data (Mulla 2013; Segarra et al. 2020),
•	 data fusion (Castrignanò et al. 2018; Shaddad 2019),
•	 further development of the algorithms (sensor) and the models (satellite).

The accuracy and informative value of the measured values ​​(biomass samples, soil sam-
ples) could also be increased by increasing the number of samples, although this can only 
be implemented in scientific studies, but not in practice.

Spatial variation of the N surpluses

The analyses showed that the N surpluses were highly variable within a uniformly fer-
tilized field. The largest mean grain N uptake and smallest N surpluses were calculated 
using the combine harvester yield data, the lowest grain N uptake and highest N surpluses 
were calculated using satellite data and the PROMET model.

The N surplus indicates the total potential N loss (Klein et  al. 2017). However, the 
absolute amount of different nitrogen losses (nitrate, ammonia or nitrous oxide) remains 
unknown. Investigations by Hülsbergen et  al. (2017) showed significant relationships 
between N surpluses and measured nitrate losses in 23 fields (measured using soil cores 
to a depth of 9 m and nitrate analyses). The N surpluses were calculated as means of the 
fields, while the soil cores were taken in high and low yield zones. In the present study, 
however, both the N surpluses were calculated and the soil cores were taken site-specifi-
cally and georeferenced and there was a strong relationship (r = 0.82) between the N sur-
plus and nitrate N stocks. Further studies (in a large number of arable fields at different 
locations and with differing management) are needed to clarify whether site-specific N bal-
ancing generally leads to a better estimate of nitrate losses.

Conclusions and outlook

Site-specific management can reduce the ecological footprint of agriculture (Walter et al. 
2017). There are different methods of site-specific cultivation of farmland, site-specific 
N fertilizer application is a promising approach. The study of the spatial variation of N 
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surpluses on a uniformly fertilized field underline the necessity of site-specific N fertilizer 
application.

Based on the results, the combine harvester yield data are suitable for estimating the 
spatial variation in yields, N uptake and N balances. The main advantage of this method 
is that data collection is simple and inexpensive using modern combine harvesters. The 
accuracy of the determination of the N uptake could possibly be improved if, in the future, 
the protein and N content are also determined by NIRS sensors directly on the combine 
harvester (Dinamica generale 2020).

In these analyses, the satellite data showed the weakest correlations and the greatest 
deviation from the measured values ​​(although the differences to the other methods were 
not particularly great). One problem is the relatively high resolution (10 m x 10 m) of the 
satellite data. On the other hand, a higher spatial resolution would not have any advantage 
for farmers because, for example, the fertilizer spreaders used today (with partial working 
widths of 12 m) do not work on a smaller scale.

The tractor-mounted sensors gave the best results in this investigation (strongest cor-
relations, best agreement with the ground truth values). They still have development poten-
tial, for example through better algorithms (Ali and Deo 2020). In addition, their use is 
currently still associated with excessive costs, which can, however, be minimized through 
inter-farm cooperation.

The examination of the hypotheses results in the following evaluation:

Hypothesis 1  N surpluses were highly variable within a uniformly fertilized field. All digi-
tal methods used showed a high variation of the N surpluses; sub areas with negative N 
surpluses and sub areas with high N surpluses were identified (Table 2). Nitrogen surpluses 
(sensor data) of the raster elements (n = 1163) were calculated from − 76.4 to 91.3 kg ha−1, 
with a mean of 24.0 kg ha−1.

Hypothesis 2  even if N surplus is balanced, some parts of the field could have a large 
N surplus and therefore potential N losses. Although the N surplus was almost balanced 
in the mean of the whole field, N surpluses up to 90 kg ha−1 a−1 were determined on sub 
areas. There was a strong correlation between the measured nitrate content and calculated 
N surplus (r = 0.82).

Hypothesis 3  The N surpluses are related to soil parameters and yield zones. The correla-
tion analyses (Table 4) show that the variability of the N surpluses is related to soil and 
plant parameters. Soil organic carbon correlated very strongly with total nitrogen content 
(r = 0.97), moderately with N uptake (sensor, r = 0.60) and negatively with N surplus (satel-
lite, r = -0.46; sensor, r = -0.56; harvester, r = -0.60).

Hypothesis 4  N surpluses determined with different digital methods show similar patterns 
of spatial variation on fields. The correlations between the digital methods were r = 0.57 
to 0.77, but the N surpluses determined from satellite data deviated significantly from the 
values ​​of the other digital methods and the measurement data (Table 2; Fig. 3).

Thus, Hypotheses 1 to 3 are confirmed, Hypothesis 4 is rejected.
There are only a few scientific studies about site-specific N balances using different data 

sources. The method enables the potential N loss within fields to be determined with a high 
spatial resolution. In particular in regions with a large risk of nitrate leaching and in areas 
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protected for drinking water that have large and/or increasing nitrate content in groundwa-
ter, site-specific N balancing can contribute to a reduction of nitrogen losses.

Further research

Further research is needed,

(a)	 whether N surpluses within fields are also highly variable in other crops, and for other 
soil and climatic conditions,

(b)	 whether there is less variation in N surpluses (and overall smaller N losses) in the case 
of sensor-based site-specific N fertilizer application compared to uniform N applica-
tion,

(c)	 how the precision and accuracy of the digital technologies for the site-specific deter-
mination of plant, soil and N balance variables can be improved further,

(d)	 whether the determination of soil properties can also be carried out using digital meth-
ods, e.g. drones or proximal laser sensor systems.
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