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Abstract
Precision agriculture technologies (PATs) are promoted as part of both economically effi-
cient and environmentally sustainable agriculture practices. Available PATs are generally 
classified into two groups; namely, embodied-knowledge and information-intensive PATs. 
Adoption levels of embodied-knowledge PATs are high relative to information-intensive 
PATs. Previous studies on the adoption of PATs do not differentiate between embodied-
knowledge and information-intensive PATs. Additionally, most studies focus on the adop-
tion of one or two of the available PATs rather than on adoption intensity—defined as the 
total number of individual PATs adopted. This study fills this gap in the literature by focus-
ing on PAT adoption in general, and adoption intensity of embodied-knowledge and infor-
mation-intensive PATs in particular. The study uses data from 198 farm-operator respond-
ents in eastern South Dakota from a 2017 survey and employs descriptive statistics and 
probit and Poisson regression models for the analyses. As per the study, GPS guidance, 
yield monitor, and automatic section control systems are the most popular PATs, each with 
adoption rates of over 50%. Overall, findings from the study show that the effect of crop-
land size, producers’ perceptions of profitability, and operator off-farm income are similar 
for both adoption and adoption intensity of embodied-knowledge and information-inten-
sive PATs. However, there are differences in the effect of land productivity and familiarity 
with computer use between adoption and adoption intensity and between embodied-knowl-
edge and information-intensive PATs. The effect of producers’ perception of the environ-
mental benefits of PATs is inconclusive and needs to be investigated in future research. 
The results indicate that analyzing PATs as a group of technologies masks differences in 
determinants between embodied-knowledge and information-intensive PATs. The study 
provides insights for developing programs, policies, and outreach efforts that encourage the 
adoption and adoption intensity of both embodied-knowledge and information-intensive 
PATs. Findings from the study will also be of interest to precision agriculture researchers, 
extension personnel, agribusinesses, and policymakers who may consider PATs as tools for 
improving agricultural sustainability and food security.
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Introduction

In recent years much attention has been paid to soil health, water quality, and long-term 
sustainability of agricultural production globally. Declines in the quality and quantity of 
natural resources, a changing climate, and volatile input and commodity prices challenge 
the economic sustainability of agricultural production systems. Approaches to addressing 
the negative environmental and ecosystem impacts of agriculture while ensuring long-term 
economic sustainability and food security include the adoption of precision agriculture 
technologies (PATs).

The International Society of Precision Agriculture (ISPA 2018) defines precision agri-
culture as: “a management strategy that gathers, processes and analyses temporal, spatial 
and individual data and combines it with other information to guide site, plant or animal 
specific management decisions to improve resource efficiency, productivity, quality, profit-
ability and sustainability of agricultural production.” Many agricultural producers utilize 
this data-driven technology as they seek to optimize the amounts, precise locations, and 
timing of applying seeds, fertilizers, and herbicides to their fields, with the aims of improv-
ing input utilization, increasing crop output and optimizing profits (Tey and Brindal 2012; 
Chen et al. 2009). PAT allows producers to conserve inputs and thus improve efficiencies 
while maintaining or even improving output, and ultimately enhancing profitability (Deutz 
2018).

Profitability and economic significance of the adoption of PATs vary based on the size 
of management zones, variations within management zones, field shapes, soil fertility sta-
tus, costs and prices, and types of PATs used (Robertson et al. 2008, 2012; Shockley et al. 
2012, 2018). The adoption of PATs requires substantial investment of capital (Schimmelp-
fennig and Ebel 2011; Schimmelpfennig 2016; Tozer 2009). Profitability increases associ-
ated with the adoption of PATs assume that net savings made from any precision applica-
tion via cost-saving from reduced input usage and or revenue enhancements due to yield 
gains more than offset the costs of specialized equipment (capital) and any additional labor. 
Consequently, the available evidence on the profitability of PATs is mixed (Tey and Brin-
dal 2012).

The adoption of PATs has on-farm private consequences in terms of their potential 
to reduce costs and increase yields and profits, as well as off-farm public benefits such 
as improved soil, water, and air quality—particularly in intensive agriculture production 
areas. For example, site-specific management and application of nutrients needed for crops 
to reach their maximum potential yield could reduce nutrient contamination in groundwa-
ter and downstream water sources (Khanna and Zilberman 1997; Sylvester-Bradley et al. 
1999; Reichardt and Jürgens 2009; Tey and Brindal 2012). This aspect of PAT is very 
important since agricultural non-point source pollution is a major contributor to contami-
nation of the worlds’ waterways (Carpentier et al. 1998; Hudson et al. 2005). Unlike their 
financial returns, PATs’ environmental benefits tend to be more abstract or realized over 
the longer term.

It is clear from the brief review presented above that the evaluation of costs and ben-
efits of using PATs is complicated. Also, the availability of several types of PATs make 
producers’ decisions on adopting PATs a complex process. Based on the specialized skills 
required by the end-user to fully utilize the technology, PATs have been categorized into 
the following two groups: (i) embodied-knowledge technologies, and (ii) information-
intensive technologies (Griffin et al. 2004; Barnes et al. 2019). For embodied-knowledge 
technologies, the value of the technologies is embodied within them and the end-user does 
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not require any special skills to fully utilize them, so their adoption can directly increase 
efficiency or productivity as soon as they are used (Robertson et al. 2012). Examples of 
embodied-knowledge PATs include automatic section control and auto-guidance systems. 
Unlike embodied-knowledge technologies that are relatively simple and easy to use, infor-
mation-intensive technologies are those that generate a large amount of data and informa-
tion and the end-user needs specialized skills to interpret and fully utilize the data and 
information for farm and business management purposes. Examples of information-inten-
sive technology include yield monitors and variable-rate systems that enable the automated 
applications of fertilizer, seeds, and chemicals to a given area.

Studies from the United States, Canada, Australia, and the EU show that PAT adop-
tion varies by technology type and region/countries (Griffin et  al. 2004; Erickson et  al. 
2017; Miller et al. 2019; Mitchell et al. 2018; Robertson et al. 2012; Tamirat et al. 2018; 
Michels et al. 2020; Paustian and Theuvsen 2017). Some studies show that adoption rates 
of information-intensive PATs are lower than those of embodied-knowledge PATs (Miller 
et al. 2019; Erickson et al. 2017; Mitchell et al. 2018; Robertson et al. 2012; Bramley and 
Ouzman 2019; Bullock and Lowenberg-DeBoer 2007). For example, auto guidance was 
used in 59% of crop area planted to corn in the United States in 2016, and by 77% of grain 
growers in Australia in 2012, whereas variable-rate technology (VRT) fertilizer was used 
in 29% of crop area planted to corn in the United States in 2016 and among 49% of grain 
growers in Australia in 2012 (Lowenberg-DeBoer and Erickson 2019).

Although PAT adoption rates have increased since 1997, the overall U.S. adoption rate 
is less than 50% of planted crop area (Schimmelpfennig 2016). Previous studies on PAT 
adoption in the United States link variation in adoption behavior to a large number of fac-
tors such as farm and farmer characteristics (age, education, farm size, etc.), profitability 
potential, market conditions, labor scarcity, and cost of the technology (Miller et al. 2017, 
2019; Schimmelpfennig 2016; Lambert et al. 2015; Isgin et al. 2008; Pierpaoli et al. 2013). 
Other studies report evidence of the bundling of PAT adoption (Lambert et al. 2015). Using 
farm-level panel data from Kansas, Miller et al. (2019) showed that the adoption of bun-
dles of information-intensive PATs is contingent on prior adoption of embodied-knowledge 
PAT and/or information-intensive PATs, suggesting that producers tend to adopt technolo-
gies that are relatively easy and simple to use first. For example, GPS guidance systems 
with automatic control for fertilizer/chemical applications were used by 78% of crop input 
dealers in the United States, followed by automatic sprayer boom sections at 73% in 2017 
(Erickson et al. 2017). However, studies that investigate the determinants of adoption and 
adoption intensity of embodied-knowledge and information-intensive PATs and the rela-
tionship between these adoption decisions are lacking.

The objectives of this study are twofold, to examine the determinants of: (i) the adoption 
of embodied-knowledge and information-intensive PATs in the United States, and (ii) the 
adoption intensity (defined as the total number of individual PATs adopted) of embodied-
knowledge and information-intensive PATs in the United States. More specifically, this 
study examines whether the determinants of adoption and adoption intensity vary between 
embodied-knowledge and information-intensive PATs.

This study contributes to the existing literature on the adoption of PATs in the following 
ways. To the best of authors’ knowledge, this is the first survey-based study from the U.S. 
Midwest that analyzes the determinants of adoption and adoption intensity of embodied-
knowledge and information-intensive PATs, separately. By examining the characteristics 
and attitudes among producers who did and did not adopt the two different PAT types, this 
study informs future programs and policies that seek to scale up adoption and diffusion of 
PATs. An improved understanding of the determinants of adoption and adoption intensity 
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will give insights on tailoring policies, programs, and outreach efforts aimed at increasing 
not only adoption but also adoption intensity of PATs, particularly of information-intensive 
technologies.

Materials and methods

Data

This study focuses on South Dakota, a state in the U.S. Midwest, a region generally 
referred to the set of states consisting of Illinois, Indiana, Iowa, Kansas, Michigan, Minne-
sota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. The area is 
known for its fertile land and agricultural prominence, it contains about 63% of the usable 
cropland in the United States, and about 75% of the area’s cropland is planted to corn and 
soybeans. The remaining 25% is used for the production of a variety of other crops, includ-
ing alfalfa, small grains, and horticultural products (USDA 2020). The U.S. Midwest is a 
region with large farms, where PAT adoption and implementation has the potential to con-
tribute to on-farm economic and environmental benefits and off-farm benefits, such as eco-
system protection, by reducing non-point source water pollution. Understanding the deter-
minants of adoption and adoption intensity of PATs in a U.S. Midwest setting will be of 
value to agribusinesses in developing appropriate marketing strategies and outreach efforts. 
Furthermore, it will provide insights to policymakers in formulating policies and programs 
to scale up the adoption of PATs in efforts to address the potential negative environmental 
and ecosystem effects of intense agricultural production in the region without compromis-
ing agricultural productivity and economic profitability.

Among Midwestern states, agriculture’s share of the state economy is the highest 
(~ 30%) in South Dakota (Mercier 2014). The Missouri River divides the state into similar-
sized areas: the eastern part of the state has relatively productive farmland with generally 
sufficient rainfall levels to enable row crop production, whereas the western part is compar-
atively arid with soils that are largely unsuitable for row crop production. In eastern South 
Dakota, a rotation of corn and soybeans represents the predominant crop production sys-
tem. Since eastern South Dakota is the most intensely-cropped area in the state and most of 
the available PATs are targeted toward crop production, this study focuses on the adoption 
of PATs in eastern South Dakota. In particular, the data used for this study comes from a 
farm-level survey conducted in eastern South Dakota in Spring 2017.

The project team purchased a list addresses of corn, soybean, and wheat growers in east-
ern South Dakota from the marketing and publishing company Penton Agriculture, which 
maintains a comprehensive list of row crop producers in the U.S. Midwest. The research 
team employed stratified random sampling to select a representative sample of corn, soy-
bean, and wheat farm operators from the major corn, soybean, and wheat-producing coun-
ties in eastern South Dakota. The study participants were chosen from a list of the top 
10 corn, soybean, and wheat-producing counties in eastern South Dakota. For corn and 
soybeans, the top 10 counties coincided, the top ten wheat-producing counties included 
four overlapping counties with the top-ten corn and soybean-producing counties and six 
additional counties. Because very small farms are relatively unlikely to adopt PATs, a mini-
mum farm size of 32.4 hectares (80 acres) was used as a screening criterion for the study 
participants. Participants were then selected randomly from these counties. To have a bal-
anced cross-section of producers, 800 participants were designated toward the top corn and 
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soybean-producing counties and 400 participants towards the top-producing wheat coun-
ties. Using this method allowed for some overlapping responses from wheat producers in 
the top corn and soybean-producing counties, while increasing the response rate of wheat 
producers overall.

In January 2017, a total of 1200 surveys were mailed to the randomly selected produc-
ers described above. The project team contacted the study participants in three rounds: (1) 
an invitation letter describing the survey, a hard copy of the survey, and return envelopes 
were mailed to all study participants; (2) a reminder postcard was mailed to all survey 
participants after 2 weeks of the initial mailing; and (3) a hard copy of the survey with 
return envelopes were mailed to the remaining non-respondents three weeks after mail-
ing reminder postcards. Of the 1200 surveys mailed out, 37 were returned to the sender, 
59 were returned with insufficient data, and 198 were returned with usable data for most 
of the questions, resulting in an overall response rate of 18%. For context, response rates 
of the U.S. Department of Agriculture’s (USDA) National Agricultural Statistic Service 
(NASS) surveys are on the decline, particularly in Midwestern states (Johansson et  al. 
2017). Declining response rates are attributed to factors such as increased usage of survey 
methods by academics and marketers, and the growing number of survey requests that pro-
ducers receive (Johansson et al. 2017; Rogelberg and Stanton 2007).

The survey collected data on farm and farmer characteristics, producers’ perceptions on 
costs and benefits of PATs, details on production practices, and adoption levels of PATs. 
The survey also collected adoption data on three embodied-knowledge PATs (autosteer, 
GPS guidance, and automatic section control (shut-offs)) and six information-intensive 
PATs (yield monitor, variable-rate systems, grid soil sampling, prescription field maps, 
aerial/satellite imagery, and crop tissue sampling). A brief description of each of the 
PATs included in the study is provided in the Appendix. Key characteristics of the survey 
respondents are presented in Table 1. The values in Table 1 show that the average age of 
the survey respondents at the time of the survey (2017) was 59.5 years, while the average 
age of primary operators in the state was 56.2 years as per the 2017 Census (USDA 2019). 
As per the 2017 USDA Census, the average farm size in South Dakota was 584 hectares, 
much smaller than the study sample’s average of 771 hectares. 

Table 1  The key characteristics of survey respondents

Source Authors’ survey in 2017. Note: Count refers to the number of observations used to calculate the 
mean values. Those who attended some college (including community college) are also included in the col-
lege education category

Characteristic Count Mean

Age (years) 195 59.5
College education (%) 197 45.6
Cropland (hectares) 198 771.1
Proportion raising cattle (%) 198 51.5
Proportion with off-farm employment (%) 187 22.5
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Empirical model

Adoption of PATs

The expected random utility framework was used to model a producer’s adoption decision. 
Suppose there are N producers in a region and consider that producer i will adopt a PAT 
if the expected utility of adoption (which includes stochastic monetary profit) exceeds the 
utility of non-adoption. Further, let  Yi = 1 denote the decision of producer i to adopt a PAT 
and  Yi = 0 denote the decision to not adopt the PAT. Let the perceived profit associated 
with the adoption decision be denoted by πi

Yi. Adoption occurs when

where X represents the matrix of explanatory variables that includes farm and farmer 
characteristics.

The producer’s utility function U  (Yi, πi
Yi; X) is unknown to us, and the deterministic 

part of the utility function is V  (Yi, πi
Yi; X), so the inequality in (1) can be written as

where Ʋ1 and Ʋ0 are independently and identically distributed random disturbances with 
zero means and unit variances.

The conceptual model described above can be represented as the following latent 
equation;

where Y∗

i
 is the latent variable, and Xi is the set of observable farm and farmer 

characteristics.
Only the binary outcome Yi (whether producer i has adopted the PAT or not) is observed, 

so Eq. (3) can be empirically estimated as Eq. (4) using a univariate probit model that uses 
maximum likelihood estimation (Tey and Brindal 2012):

where � are parameters to be estimated.
To see whether the determinants of adoption vary between embodied-knowledge and 

information-intensive PATs, the study employed probit models separately for embodied-
knowledge and information-intensive PATs, and also by combining them.

Adoption intensity of PATs

This study uses count models to investigate the determinants of adoption intensity of PATs 
(Greene 2003). The use of count models that focus on the number of technologies adopted 
is advantageous when there is a large number of component technologies and their use 
intensities are the focus of research (Isgin et al. 2008; Boyer et al. 2018). Since this study 
focuses on PATs with several component technologies and the potential for bundling tech-
nologies together, the number of technologies adopted was used as a measure of adoption 
intensity. Due to the indivisible nature of many component technologies, understanding the 
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determinants of intensity in terms of the number of technologies used by producers will be 
of interest to manufacturers, agribusinesses, and policymakers.

The adoption intensity variable takes on a discrete count of PATs adopted by a producer. 
For the embodied-knowledge PATs (Count_Embodied), the count value will range from 
zero to three, and for information-intensive PATs (Count_InformationIntensive) the count 
value will range from zero to six. When embodied-knowledge and information-intensive 
PATs are combined (Count_PATs), the count value will range from zero to nine. This study 
differs from Isgin et al. (2008) who used zero-inflated negative binomial regression to iden-
tify the determinants of adoption intensity of PATs in Ohio in the United States, in that 
the count model analyses were done separately for embodied-knowledge and information-
intensive PATs, as well as together as a pooled model.

The dependent variable in the count model analysis takes on a non-negative integer 
value whose average is small and is assumed to follow a Poisson distribution with equal 
mean and variance (Greene 2003). In the data, the conditional variance is larger than the 
conditional mean for the two count variables; Count_InformationIntensive and Count_
PATs. This suggests the presence of over-dispersion (Greene 2003) in the count data (for 
Count_InformationIntensive and Count_PATs). The use of a negative binomial model is 
recommended to address the over-dispersion in data (STATA 2015). Negative binomial 
regression models the log of the expected count as a function of the independent variables. 
The likelihood ratio test of the over-dispersion parameter alpha (α) in the negative bino-
mial regression (which checks for whether α is significantly different from zero or not) 
will suggest whether the use of the negative binomial regression approach is appropriate or 
not. When α is zero (not statistically different from zero), the negative binomial distribu-
tion is equivalent to a Poisson distribution. A goodness-of-fit analysis after Poisson regres-
sion will indicate whether Poisson regression is a good choice or not. The study employed 
both negative binomial and Poisson regressions, with details provided in the results section 
below. The following empirical model was used to estimate adoption intensity;

where � are parameters to be estimated.
Equation (5) was estimated separately for embodied-knowledge and information-inten-

sive PATs and by combining all nine PATs included in the study. STATA was used to esti-
mate count models for adoption intensity.

Variable selection

The review of the literature on the adoption of PATs in the United States, Canada, Aus-
tralia, and Europe informed the selection of explanatory variables for the analysis. Most 
of the available studies focus on the adoption of any one or two of the following informa-
tion-intensive technologies; yield monitoring, variable-rate technology, and remote sens-
ing systems, or PATs overall. Previous research identified socio-demographic factors (e.g. 
age, education, computer confidence), financial resources/economic factors (e.g. income, 
land size), agroecological factors (e.g. geography, soil quality), institutional factors (e.g. 
markets, policies), and producer perceptions (e.g. perceptions about profitability, envi-
ronmental benefits) as the major determinants of PAT adoption in general (Pierpaoli et al. 
2013; Tey and Brindal 2012; Mitchell et al. 2018; Paustian and Theuvsen 2017; Reichardt 
and Jürgens 2009; Robertson et al. 2012; Tamirat et al. 2018; Isgin et al. 2008; Lambert 
et al. 2015; Roberts et al. 2004). However, studies on the adoption determinants of popular 

(5)Adoption intensityi = � �Xi + �i,
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embodied-knowledge PATs such as GPS guidance systems are relatively limited (Tey and 
Brindal 2012).

The following are the variables included in this analysis and the hypothesis associated 
with each. While the variables included in the model are expected to influence adoption 
decisions, it is unclear whether the hypothesized relationship holds for both embodied-
knowledge and information-intensive PATs—this is an aspect explored in this study.

Age: Available evidence on the effect of age on adoption is mixed. While some studies have 
shown a negative effect of age on PAT adoption due to the short planning horizon available 
for older farmers (Roberts et al. 2004; Larson et al. 2008; Walton et al. 2008; D’Antoni et al. 
2012), other studies have shown either positive effects (Isgin et al. 2008; Torbett et al. 2007) 
or no effect (Robertson et al. 2012). Given that the evidence on the effect of age is mixed, the 
hypothesis is tested that age has either a negative or no effect on PAT adoption and adoption 
intensity. Operator age is recorded as a continuous variable (number of years) in this study.

Education: Education is expected to improve a producer’s innovative capabilities through 
the acquisition of technological and entrepreneurial skills. Some studies show a positive 
relationship between education attainment and adoption of PATs (Walton et al. 2008; Lar-
son et al. 2008; Tey and Brindal 2012; Pierpaoli et al. 2013). Other studies show education 
as not significant in PAT adoption decisions (Sevier and Lee 2004; Banerjee et al. 2008). 
Given the mixed evidence, the hypothesis is tested that education has either a positive or 
no effect on the adoption and adoption intensity of PATs. Education is included as a binary 
variable that takes the value of one if the operator has some college education or more and 
zero, otherwise.

Cropland: Economies of scale may play an important role in the ability of farmers to 
acquire capital-intensive technologies such as PATs. Some studies show a positive rela-
tionship between farm size and PAT adoption (Robertson et al. 2012; Walton et al. 2008; 
Pierpaoli et al. 2013). The hypothesis is tested that there is a positive relationship between 
cropland area and adoption and adoption intensity of PATs.

Operator off‑farm income: Off-farm income acts as a source of external capital/finan-
cial resources, which are critical in the adoption of capital-intensive PATs (Tey and Brin-
dal 2012). Alternatively, producers with off-farm income sources may choose to invest in 
acquiring land—a long-term investment option—or other assets, instead of investing in 
capital-intensive PATs. Furthermore, time constraints created by off-farm employment can 
have a positive or negative effect on the adoption of PATs. Therefore, the effect of operators’ 
off-farm income on adoption and adoption intensity of PATs is uncertain. To test the effect 
of operator off-farm income on adoption and adoption intensity, operator off-farm income 
was included as a binary variable that takes the value of one if the operator has off-farm 
income, and zero otherwise.

Land productivity: Soil quality, as a natural endowment, is important in agricultural tech-
nology adoption decisions (Tey and Brindal 2012; Pierpaoli et  al. 2013). South Dakota 
topography and soil quality vary throughout the state. To capture the difference in cropland 
quality, a land productivity variable was created. To create this variable, data were collected 
from NASS on non-irrigated cropland cash rent (paid per acre) on South Dakota Farms in 
2016 (NASS 2017). A threshold of $420/hectare ($170 per acre) county average was set, 
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with any county at or above this point being considered as having “highly productive land”. 
Land productivity is included as a binary variable that takes the value of one if cash rent 
per hectare is $420 or more in the county where the farm is located and zero otherwise. The 
effect of land productivity on adoption and adoption intensity could be positive or negative. 
For example, a farm with highly productive land may need less hectares to be a viable farm, 
therefore having less hectares to spread the capital investment cost across, and thus resulting 
in a negative effect on adoption and adoption intensity. Conversely, a farm with low produc-
tivity may farm more hectares, therefore have more of a reason to adopt PATs because the 
cost is relatively less per acre. Because the effect of land productivity on the adoption and 
adoption intensity of PATs is uncertain, this study is used to test the effect.

Use of computer technology for farm accounting: Given that computer technology is an 
integral part of PATs, use of a computer/farmer’s confidence with the computer has been 
found to have a positive effect on the adoption of PATs (Isgin et al. 2008; Tey and Brindal 
2012; Pierpaoli et al. 2013). The use of technology for farm accounting was included as a 
binary variable that takes the value of one if the operator uses a computer for accounting 
purposes, and zero otherwise. The hypothesis is tested that there is a positive relationship 
between computer use for farm accounting purposes and PAT adoption and adoption inten-
sity.

Producer’s perception on profitability: Producers’ perception of profitability is attributed 
as one of the motivating factors in the adoption of PATs (Adrian et al. 2005; Tey and Brin-
dal 2012; Pierpaoli et  al. 2013). Profitability from the adoption of PATs can come from 
various paths including increases in input usage efficiency and productivity. In this study, 
information was gathered on producers’ perceptions of profitability/economic benefits from 
the adoption of PATs on a four-point Likert scale. A profitability index variable was created 
by taking the sum of the respondents’ scores associated with profitability aspects divided by 
the maximum potential score possible. Thus, the profitability index variable’s values range 
from zero to one. The hypothesis is tested that the profitability index has a positive effect on 
the adoption and adoption intensity of PATs.

Producer’s perception of  environmental benefits: As noted earlier, PAT adoption has 
on-farm and off-farm environmental benefits. However, studies examining the relationship 
between producers’ perceptions of these environmental benefits and adoption decisions are 
limited. This study considers the effect of producers’ perceptions about the environmental 
benefits of PATs in their adoption and adoption intensity by including an environmental 
index variable. The hypothesis is tested that the environmental index has a positive effect on 
the adoption and adoption intensity of PATs.

A correlation matrix was used to check for the presence of multicollinearity among the 
explanatory variables. The correlation between the profitability index variable and environ-
mental benefit index variable was 0.85. To test for the robustness of the results, regression 
models were estimated with only one of these variables at a time, as well as with both 
variables simultaneously. Akaike’s information criterion (AIC) and Bayesian information 
criterion (BIC) were used for each of the estimation models for comparison purposes.
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Results and discussion

Adoption of precision agriculture practices in South Dakota

It is clear from Table 2 that GPS guidance, autosteer, yield monitor, and automatic section 
control systems are the most popular PATs, each with adoption rates of over 50% among 
the survey respondents. As reported by Miller et  al. (2019), embodied-knowledge PATs 
such as GPS guidance, autosteer, and automatic section control are more popular than 
information-intensive PATs in South Dakota. Among the information-intensive PATs only 
yield monitor, which is considered as a benchmark information-intensive PAT (Miller et al. 
2019), had an adoption rate exceeding 50%. Among the nine PATs the study covered, the 
following information-intense technologies are least popular: aerial satellite imagery, crop 
tissue sampling, and grid soil sampling. Table 2 further shows that overall PAT adoption 
rates among the South Dakota respondents exceeded 50%, driven mostly by large-scale 
adoption of embodied-knowledge PATs. It is evident from Table 2 that adoption rates var-
ied greatly between PATs and adoption rates of embodied-knowledge PATs—which are 
easy to use and mostly available as part of machine upgrade purchases—are higher (72%) 
than those of information intense technologies (66%), which need additional skills and or 
resources for the efficient use of data generated for farm management purposes.

Table  3 shows the intensity of PAT adoption (number of PATs adopted) by survey 
respondents. Given that adoption rates of embodied-knowledge PATs are higher than infor-
mation-intensive PATs in Table 2, and cumulative adoption rates of four or more PATs are 
high, the results in Tables 2 and 3 support previous findings that PATs are adopted in bun-
dles of various combinations by producers (Schimmelpfennig 2016; Schimmelpfennig and 
Ebel 2016; Lambert et al. 2015; Miller et al. 2019).

Summary statistics of variables included in the regression models are presented in 
Table 4. Because of the higher adoption levels of embodied-knowledge PATs, the %age of 
adopters of any one of the PATs is high, at 86.6%. Table 4 indicates that among the survey 
respondents, relative to non-adopters, PAT adopters have larger amounts of cropland hec-
tares, perceive the profitability and environmental benefits from PAT adoption to be higher, 
and are users of computer technology in farm accounting.

Table 2  PAT adoption rates among South Dakota respondents, 2017

Types of PATs Adoption rate (%)

Embodied-knowledge
 Autosteer 73.7
 GPS guidance system 75.8
 Automatic section control/shut-offs 55.1

Information-intensive
 Yield monitor 68.7
 Variable-rate system 50.0
 Prescription field maps 50.5
 Grid soil sampling 44.2
 Crop tissue sampling 37.6
 Aerial/satellite imagery 30.8
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Determinants of PAT adoption

The results of the probit model on embodied-knowledge PATs and information-intensive 
PATs are presented in Tables 5 and 6, and the results from the pooled model are presented 
in Table 9 in the Appendix. Three separate models are estimated to address the multicol-
linearity between the profitability index variable and environmental benefit index variable. 
Model 1 includes the profitability index, but not the environmental benefit index. Model 2 
includes the environmental benefit index, but not the profitability index. Model 3 includes 
both profitability and environmental benefit indices. The models’ statistically significant 
goodness-of-fit measures are indicated by the Wald Chi-square values reported in the 
Tables.

The positive and statistically significant coefficient of cropland area in all three models 
in Tables 5, 6, and 9 support the hypothesis that farm size has a positive effect on the adop-
tion of both embodied-knowledge and information-intensive PATs (Roberts et  al. 2004; 
Lambert et al. 2015; Paustian and Theuvsen 2017; Tamirat et al. 2018). Also, the positive 

Table 3  Adoption intensity of PATs in South Dakota, 2017

Source Authors’ survey

Number of PATs Frequency Percentage

Zero 27 13.6
One 10 5.1
Two 17 8.6
Three 10 5.1
Four 22 11.1
Five 18 9.1
Six 18 9.1
Seven 26 13.1
Eight 30 15.2
Nine 20 10.1
N 198 100

Table 4  Summary statistics of variables included in the regression models

a If a survey respondent adopted any one of the nine PATs included in the study, he/she is considered an 
adopter. Figures in parentheses are standard deviations
***, **, and * indicate as per t-test results mean values of variables are statistically different between adop-
ters and non-adopters at 1%, 5%, and 10% significance levels, respectively

Variable Non-adopters Adoptersa Whole sample

Age 60.0 (8.6) 58.5 (12.1) 58.7 (11.9)
Education level (some college education or not) 0.6 (0.5) 0.4 (0.5) 0.4 (0.5)
Cropland (‘000 hectares) 0.2 (0.1) 0.9*** (1.0) 0.8 (1.0)
Land productivity (0/1) 0.4 (0.5) 0.3 (0.5) 0.3 (0.5)
Operator off-farm income (0/1) 0.4 (0.5) 0.2* (0.4) 0.2 (0.4)
Profit index (0–1) 0.0 (0.2) 0.8*** (0.3) 0.7 (0.4)
Environmental benefit index (0–1) 0.0 (0.2) 0.7*** (0.3) 0.6 (0.4)
Use of technology for farm accounting (0/1) 0.4 (0.5) 0.7*** (0.5) 0.7 (0.5)
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Table 5  Results from the probit model on the adoption of embodied-knowledge PATs

Models vary based on the inclusion/exclusion status of the profitability index and the environmental index 
variables
***, **, and * indicate coefficients are significant at 1%, 5%, and 10% significance levels, respectively. Fig-
ures in parentheses are robust standard errors

Variables Model 1 Model 2 Model 3

Age 0.02 (0.01) 0.02 (0.01) 0.01 (0.01)
Education level (college vs. not) 0.10 (0.36) 0.01 (0.33)  − 0.04 (0.40)
Cropland (‘000 hectares) 2.88 (0.6)*** 2.92 (0.63)*** 3.45 (0.84)***
Land productivity (0/1) 0.60 (0.33)* 0.56 (0.33)* 0.69 (0.39)*
Operator off-farm income (0/1)  − 0.04 (0.35)  − 0.11 (0.33)  − 0.08 (0.38)
Profit index (0–1) 1.60 (0.40)*** NA 6.92 (1.62)***
Environmental benefit index (0–1) NA 0.99 (0.39)**  − 5.42 (1.45)***
Farm accounting tech use (0/1) 0.36 (0.34) 0.46 (0.32) 0.34 (0.36)
Constant  − 2.68 (0.99)***  − 2.23 (0.94)**  − 2.29 (0.94)**
Pseudo  R2 0.42 0.35 0.49
Wald  chi2 44.19 40.36 38.33
Correctly classified (%) 91.6 88.6 92.2
AIC 93.43 103.23 86.61
BIC 118.32 128.13 114.62
N 166 166 166

Table 6  Results from the probit model on the adoption of information-intensive PATs

Models vary based on the inclusion status of the profitability index and the environmental index variables
***, **, and * indicate coefficients are significant at 1%, 5%, and 10% significance levels, respectively. Fig-
ures in parentheses are robust standard errors

Variables Model 1 Model 2 Model 3

Age 0.01 (0.02) 0.01 (0.02) 0.01 (0.02)
Education level (college vs. not)  − 0.17 (0.33)  − 0.16 (0.31)  − 0.15 (0.31)
Cropland (‘000 hectares) 1.28 (0.53)** 1.40 (0.55)** 1.27 (0.51)**
Land productivity (0/1) 0.79 (0.38)** 0.77 (0.37)** 0.80 (0.39)**
Operator off-farm income (0/1)  − 0.94 (0.43)**  − 1.01 (0.42)**  − 0.96 (0.44)**
Profit index (0–1) 2.49 (0.55)*** NA 2.19 (0.98)**
Environmental benefit index (0–1) NA 2.27 (0.61)*** 0.34 (1.06)
Farm accounting tech use (0/1) 1.12 (0.39)*** 1.19 (0.37)*** 1.12 (0.39)***
Constant  − 2.35 (1.27)*  − 1.90 (1.41)  − 2.34 (1.28)*
Pseudo  R2 0.57 0.53 0.57
Wald  chi2 27.87 22.22 32.13
Correctly classified (%) 93.3 94.6 93.9
AIC 75.99 82.39 77.88
BIC 100.84 107.23 105.83
N 165 165 165
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and statistically significant coefficient of the profitability index variable in Tables 5, 6 and 
9 support the hypothesis that producers who perceive profitability to increase when using 
PATs are relatively more likely to adopt them (Barnes et al. 2019) and the effect is simi-
lar for embodied-knowledge and information-intensive PATs and when these two types of 
technologies are combined. A positive and statistically significant coefficient on the use 
of computer technology for farm accounting in Table 6 supports the hypothesis that pro-
ducers with familiarity or confidence in using computers are more likely to adopt infor-
mation-intensive PATs than those who do not use computers (Isgin et al. 2008; Pierpaoli 
et al. 2013). However, the statistical non-significance of the use of computer technology for 
farm accounting for embodied-knowledge PATs in Table 5 suggests that familiarity with 
computers is not a determinant in the adoption of embodied-knowledge PATs. The dif-
ference in the statistical significance of the coefficient on familiarity with computer use 
between Tables 5 and 6 also suggests the importance of examining the adoption of embod-
ied-knowledge and information-intensive PATs separately. While the environmental benefit 
index variable is positive and statistically significant in Model 2 for Tables 5, 6 and 9, it 
is negative and statistically significant in Model 3 in Tables 5 and 9, and not statistically 
significant in Model 3 in Table 6. The difference in the statistical significance of the coef-
ficient of the environmental benefit index variable between Models 2 and 3 may be because 
Model 2 captures the effect of a missing variable—the profitability index—and in Model 3, 
which includes the profitability index, the effect becomes negative due to the collinearity 
issues discussed earlier. However, the difference in the statistical significance of the envi-
ronmental benefit index between embodied-knowledge PATs and information-intensive 
PATs is an aspect that needs investigation in future research. The positive and statistically 
significant coefficient on land productivity in embodied-knowledge and information-inten-
sive PATs support the hypothesis that producers with high-quality land are more likely to 
adopt capital-intensive technologies such as PATs than those with low-quality land. Note 
that the statistical significance of the effect is higher (5%) for the adoption of information-
intensive PATs relative to embodied-knowledge PATs (10%). As per the results in Table 5, 
the coefficient of the binary off-farm income variable is not statistically significant, which 
suggests that it is not an important determinant in the adoption of embodied-knowledge 
PATs. However, its negative and statically significant coefficient in Table 6 suggests that 
producers with off-farm income are less likely to adopt information-intensive PATs than 
those without.

Similar to Robertson et al. (2012), the results suggest that age is not significant in the 
producers’ adoption decisions of embodied-knowledge and information-intensive technolo-
gies. Similar to Banerjee et al. (2008), Sevier and Lee (2004), and Tamirat et al. (2018), 
having a college education is not found to be an important determinant in PAT adoption. 
This may be because the availability of professional certification courses and/or availability 
of professional consultants outweigh the effect of college education on adoption decisions. 
However, lack of available data made it impossible to test this.

The information criteria and classification rate presented in Tables  5, 6 and 9 allows 
for a comparison between models. The overall results in Tables  5, 6 and 9 suggest that 
although more or less similar, there are some differences in the determinants of adoption of 
embodied-knowledge and information-intensive PATs, which highlight the importance of 
examining these adoption decisions as two separate decisions.
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Determinants of adoption intensity of PATs

As mentioned previously, due to the presence of overdispersion in the data, a negative 
binomial regression was initially selected to identify the determinants of adoption inten-
sity (Isgin et al. 2008; STATA 2015). However, the likelihood ratio test of over-dispersion 
parameter α from the negative binomial regression could not reject the hypothesis that α is 
equal to zero. Hence, instead of negative binomial regression, Poisson regression was used 
and goodness of fit analysis was conducted to verify the appropriateness of the Poisson 
regression model. Similar to the probit models discussed above, all three models (Models 
1, 2, and 3) were used for the Poisson regressions. Results from the Poisson regression 
model are presented in Tables 7, 8, and 10

Similar to the adoption models, the cropland size variable has a positive and statisti-
cally significant effect on the adoption intensity of embodied-knowledge and information-
intensive PATs (Tables  7, 8, 10). The coefficient value of cropland size in the model in 
Table 7 suggests that a one-unit increase in cropland hectares is associated with an increase 
of 0.11 in the difference in the logs of expected counts in Model 1, while holding the other 
variables in the model constant. Unlike in the models of PAT adoption, familiarity with 
computers has a positive and statistically significant effect on the adoption intensity of 
embodied-knowledge and information-intensive PATs. While the land productivity vari-
able has no statistically significant effect on the adoption intensity of embodied-knowledge 
PATs (Table 7), the effect is positive and statistically significant for information-intensive 
PATs in Models 1 and 3 in Table 8. The positive and statistically significant effect of land 
productivity on the adoption intensity of information-intensive PATs suggests that adop-
tion intensity is higher among producers with high-quality land than among those with 
low-quality land. Similar to the adoption models, the profitability index has a positive and 
statistically significant effect on adoption intensity of embodied-knowledge as well as and 

Table 7  Results from the Poisson regression model on the adoption intensity of embodied-knowledge PATs

Models vary based on the inclusion status of the profitability index and environmental index variables
***, **, and * indicate coefficients are significant at 1%, 5%, and 10% significance levels, respectively. Fig-
ures in parentheses are robust standard errors

Variables Model 1 Model 2 Model 3

Age 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Education level (college vs. not)  − 0.02 (0.07)  − 0.03 (0.07)  − 0.02 (0.07)
Cropland (‘000 hectares) 0.11 (0.03)*** 0.14 (0.02)*** 0.12 (0.03)***
Land productivity (0/1) 0.03 (0.07) 0.00 (0.08) 0.03 (0.08)
Operator off-farm income (0/1)  − 0.13 (0.09)  − 0.13 (0.10)  − 0.13 (0.09)
Profit index (0–1) 1.01 (1.17)*** NA 0.90 (0.20)***
Environmental benefit index (0–1) NA 0.70 (0.12)*** 0.13 (0.13)
Farm accounting tech use (0/1) 0.16 (0.09)* 0.20 (0.09)** 0.16 (0.09)*
Constant  − 0.37 (0.25)  − 0.04 (0.24)  − 0.37 (0.25)
Pseudo  R2 0.08 0.07 0.08
Wald  chi2 71.20 70.85 72.95
AIC 507.65 516.32 509.37
BIC 532.55 541.22 537.38
N 166 166 166
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information-intensive PATs. However, there is a difference in the direction and statistical 
significance of the coefficient on the environmental benefit index variable between the 
adoption models in Tables 5 and 6 and adoption intensity models in Tables 7 and 8. As per 
the results in Table 8, producers with higher positive perceptions have a positive and statis-
tically significant effect on the adoption intensity of information-intensive PATs than their 
counterparts, while the effect is inconclusive for the embodied-knowledge PATs. Similar to 
the adoption decision results, operator off-farm income has no statistically significant effect 
on adoption intensity of embodied-knowledge PATs and has a negative and statistically sig-
nificant (albeit at 10%) effect on adoption intensity of information-intensive PATs. Similar 
to the adoption models, the study finds no evidence of a statistically significant effect for 
age and education in the adoption intensity of PATs. 

Overall, findings from the study show that the effect of cropland size, producers’ percep-
tions of profitability, and operator off-farm income are similar for both adoption and adop-
tion intensity of embodied-knowledge and information-intensive PATs. However, there are 
differences in statistical significance of the effect of land productivity and familiarity with 
computer use between adoption and adoption intensity and between embodied-knowledge 
and information-intensive PATs. The effect of producers’ perception of the environmental 
benefits of PATs is inconclusive and needs to be investigated in future research.

Conclusion and implications

This study analyzes the determinants of adoption and adoption intensity of embodied-
knowledge and information-intensive PATs, separately and by pooling them together. The 
study uses survey data of agricultural producers in eastern South Dakota. A probit model 

Table 8  Results from the Poisson regression model on the adoption intensity of information-intensive PATs

Models vary based on the inclusion status of the profitability index variable and environmental index vari-
able
***, **, and * indicate coefficients are significant at 1%, 5%, and 10% significance levels, respectively. Fig-
ures in parentheses are robust standard errors

Variables Model 1 Model 2 Model 3

Age  − 0.00 (0.00)  − 0.00 (0.00)  − 0.00 (0.00)
Education level (college vs. not) 0.01 (0.09)  − 0.00 (0.09) 0.01 (0.09)
Cropland (‘000 hectares) 0.09 (0.03)*** 0.16 (0.04)*** 0.11 (0.03)***
Land productivity (0/1) 0.19 (0.08)** 0.13 (0.09) 0.17 (0.08)**
Operator off-farm income (0/1)  − 0.22 (0.12)*  − 0.21 (0.13)  − 0.21 (0.11)*
Profit index (0–1) 1.82 (0.21)*** NA 1.37 (0.29)***
Environmental benefit index (0–1) NA 1.34 (0.17)*** 0.52 (0.22)**
Farm accounting tech use (0/1) 0.24 (0.13)* 0.28 (0.13)** 0.23 (0.13)**
Constant  − 0.64 (0.32)**  − 0.09 (0.31)  − 0.64 (0.32)**
Pseudo  R2 0.21 0.18 0.21
Wald  chi2 121.67 108.88 125.91
AIC 624.78 641.51 620.73
BIC 650.10 666.83 649.21
N 175 175 175
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was used for examining the determinants of adoption of PATs and Poisson regression was 
used to analyze adoption intensity.

The study shows that adoption rates of embodied-knowledge PATs are higher than those 
of information-intensive PATs. Cropland size, producer perceptions of PAT profitability, 
and land productivity each has a positive effect on the likelihood of adoption of embodied-
knowledge PATs. In addition to these factors, prior use of computers has a positive effect, 
and operators with off-farm income have a negative effect on the likelihood of adoption of 
information-intensive PATs. The effects of perceived environmental benefits of PATs on 
the likelihood of adoption of embodied-knowledge PATs and information-intensive PATs 
remain inconclusive. Cropland size, prior use of computers in farm accounting, and pro-
ducers’ perception of profitability have positive effects on the adoption intensity of both 
embodied-knowledge and information-intensive PATs. Also, land productivity and having 
a perception of environmental benefits have positive effects, and operators with off-farm 
income has a negative effect on the adoption intensity of information-intensive PATs.

The results from the study suggest that there are some differences in determinants 
between adoption and adoption intensity of embodied-knowledge PATs and informa-
tion-intensive PATs, and the analysis that pools technologies together masks differences 
between the determinants of embodied-knowledge and those of information-intensive 
PATs. Given that the adoption and adoption intensity of information-intensive PATs are 
lower than the embodied-knowledge PATs, the improved understanding of the determi-
nants of adoption and adoption intensity of information intensive PATs put forth by this 
study may serve to help guide policies and programs. Findings from the study imply that 
improved communication emphasizing the environmental benefits would be beneficial—
not only from a public policy point of view, but could be part of marketing programs and 
outreach efforts in efforts to scale up the PAT adoption. Findings from the study suggest 
that extension and outreach efforts on PATs should target farmers with large farm sizes 
and those having access to high-quality land. Additionally, extension efforts focusing on 
familiarizing farmers with using computers and applications for farm management have the 
potential to increase the likelihood of adoption of information-intensive PATs. Overall, this 
study provides insights on developing programs, policies, and outreach efforts that encour-
age the adoption and adoption intensity of both embodied-knowledge and information-
intensive PATs.
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Appendix

Description of PATs used in the study

Autosteer

Autosteer has been in use since the mid-1990s to drive tractors to improve performance 
and operation precision. The use of autosteer allows producers to reduce compaction on 
their fields, reduce fuel usage and fuel cost, and save operating time (McBratney et  al. 
2005; D’Antoni et al. 2012).

GPS‑guidance systems

GPS-guidance systems are similar to autosteer, except more advanced than autosteer from 
earlier days. GPS-guidance system is also aimed at improving performance and operation 
precision. This study includes autosteer and GPS guidance systems, as two separate tech-
nologies to avoid any confusion among producers regarding the use of terms based on their 
familiarity and PAT usage. There might be some producers who have some machines with 
auto-steer and some with GPS-guidance systems.

Automatic section controls/shut‑offs

These are PATs that enable the applicator to track data from an area covered by a planter/
fertilizer and shut off those individual units to avoid over-application of inputs. Automatic 
section controls/shut-offs enable producers to improve input-use efficiency.

Yield monitor

Early versions of yield monitors were used mainly for tracking yields and exploratory data 
analysis on yields for marketing purposes. Technology advancements enable it to leverage 
the spatial variability for input management (e.g. fertilizer and seeding rates) by integrating 
field-level yield data with data from other component technologies such as field maps, grid 
soil sample data, etc. (Stafford et al. 1996; Lowenberg-DeBoer and Erickson 2019).

Variable‑rate systems

Variable-rate systems encompass variable rate technologies used for fertilizer application, 
seeding, etc. VRTs leverage spatial variability for efficient input management and thus 
have the potential to increase profitability and reduce the negative environmental effects 
of intensive agricultural production practices (Roberts et al. 2004; Robertson et al. 2012; 
Lawes and Robertson 2011).
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Prescription field maps

Site-specific precision field map tell the controller how much input (fertilizer, seed, etc.) to 
apply based on the location of the equipment in the field. Prescription field maps connect 
geographic information to soil test results and support producer decision making.

Grid soil sampling

Grid soil sampling reveals how nutrients are distributed across a field and thus help in 
the efficient management of fertilizer types, quantity, and fertilizer costs. It prevents over-
application of fertilizer in areas where nutrient levels are high and allows for soil enrich-
ment in areas where nutrient levels are low.

Crop tissue sampling

Crop tissue testing is useful in diagnosing nutrient deficiencies in field crops. The use of 
crop tissue testing as a reliable diagnostic tool requires correlating nutrient concentrations 
with crop yield response.

Table 9  Results from the probit model on the adoption of PATs (pooled model)

Models vary based on the inclusion status of the profitability index variable and the environmental index 
variable
***, **, and * indicate coefficients are significant at 1%, 5%, and 10% significance levels, respectively. Fig-
ures in parentheses are robust standard errors

Variables Model 1 Model 2 Model 3

Age 0.02 (0.02) 0.03 (0.02) 0.02 (.02)
Education level (college vs. not)  − 0.31 (0.57)  − 0.27 (0.50)  − 0.37 (0.57)
Cropland (‘000 hectares) 3.01 (1.26)** 2.66 (0.89)*** 3.05 (1.29)**
Land productivity (0/1) 1.04 (0.55)** 1.00 (0.50)** 1.02 (0.56)*
Operator off-farm income (0/1)  − 0.54 (0.59)  − 0.75 (0.57)  − 0.53 (0.60)
Profit index (0–1) 3.10 (0.67)*** NA 6.72 (2.07)***
Environmental benefit index (0–1) NA 3.24 (0.88)***  − 3.73 (1.73)**
Farm accounting tech use (0/1) 1.05 (0.54)** 1.20 (0.52)** 0.98 (0.52)*
Constant  − 2.70 (1.48)*  − 2.59 (1.57)*  − 2.45 (1.47)*
Pseudo  R2 0.65 0.59 0.65
Wald  chi2 28.17 29.66 29.12
Correctly classified (%) 94.5 94.6 95.8
AIC 48.38 53.04 49.77739
BIC 73.28 77.93 77.78528
N 166 166 166
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Aerial/satellite imagery

Aerial/satellite imagery is used to create zone maps using sensors in the sky. Until recently, 
usefulness of satellite remote sensing to producers was limited by long re-visit times, cloud 
cover, cost, poor spatial resolution, and the lack of techniques to process imagery for agri-
cultural applications. However, with the growing number of satellites and the increase 
in imagery resolution, the use of satellite imagery for variable rate input application is 
increasingly feasible.

See Tables 9 and 10.
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