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Abstract
Disease detection and control is one of the main objectives of vineyard research in France. 
Manual monitoring of diseases is a time consuming operation especially when fields are 
large. Current research studies aim to develop automatic in-field systems to detect dis-
eases. This study investigated the optimal spectral bands for the design of a dedicated high-
resolution multispectral camera embedded on an unmanned aerial vehicle for identifying 
infected zones in a grapevine field. The target disease was Flavescence dorée, which is 
infectious, incurable and can result in considerable yield loss. An in-field spectrometry 
study was performed on four grapevine varieties in the Provence Alpes Côte d’Azur region 
in France. Two spectral analysis techniques were proposed for choosing the best spectral 
bands capable of discriminating healthy from diseased leaves. The first novel approach is a 
feature selection technique based on the successive projection algorithm (SPA), some spec-
tral pre-processing techniques were jointly investigated. The second approach examines a 
set of traditional vegetation indices (VI). Support vector machine (SVM) and discriminant 
analysis (DA) are the two classifiers used in this paper and the accuracy of the results is 
compared for the two methods of analysis. The best models were computed as a function 
of the grapevine variety considered. The SPA technique performed better in general with 
respect to common VIs, the overall classification accuracy was more than 96%. Results 
demonstrated that employing a feature selection technique based on the SPA algorithm can 
provide a valid tool for determining the optimal bands that are sensitive to Flavescence 
dorée grapevine disease and assist in its identification. The benefit behind the presented 
procedure relies on the possibility of generalizing it for other infections and stresses or 
even for different crops.
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Introduction

France has a reputation for producing wine of high quality. Over 800 000 ha of vineyards 
can be found in over seventy departments and thirteen regions within France. The eco-
nomic and territorial development of the country highly relies on the wine and vine sector. 
In fact, the sector provides employment to around 100 000 people directly and 500 000 
people indirectly. Furthermore, among the seven billion bottles of wine produced every 
year, more than 147 million are exported with a total value of seven billion euros (Maver-
ick 2015).

Since the main losses in this sector are due to disease, a continuous protection approach 
is required, which means that fungicides/pesticides are uniformly sprayed in vineyards at 
regular and frequent intervals. More than ten treatments are carried out per season in sev-
eral of the main wine-producing regions. It is important to detect initial symptoms of dis-
eases in order to target their treatment selectively, preventing and controlling the formation 
of infection and its epidemic spread to other patches or even to the whole vineyard.

Currently there are two widely-used techniques for in-field disease detection: naked eye 
observations and biological approaches. Visual inspection is the most used technique for 
grapevine monitoring. It is a relatively easy approach when visual symptoms characterize 
a certain disease. Nevertheless, the accuracy of the diagnosis is always subject to an indi-
vidual’s experience and can be affected by temporal variation. Moreover, an expert should 
be available for permanent monitoring which is both expensive and impractical in larger 
fields. Although symptoms provide important information on the kind of disease, one can-
not make a decision upon appearance only. Usually, other confirmatory tests are performed 
after visual inspection to ensure an accurate diagnosis (Alemu 2015).

Additional, biological tests can be applied for disease diagnosis. They have revolution-
ized the identification and quantification of pathogens and diseases. Under this category, 
are serological and molecular tests. The enzyme-linked immunosorbent assay is a sero-
logical method that relies on the proteins produced by a pathogen. The polymerase chain 
reaction (PCR) is a molecular technique that depends on the specific DNA sequences of a 
pathogen. There are many variants of PCR and the enzyme-linked immunosorbent assay 
techniques that can be used for detecting different pathogenic viruses and bacteria in plants.

The above-mentioned biological tests have their limitations. To obtain reliable and 
accurate results, a definite procedure must be used, especially during sample preparation 
(collection and extraction), which implies more labor and more time. In order to be more 
effective, the biology-based techniques must directly be used in the field, therefore, more 
advanced tests are required for real-time detection of pathogens in their natural environ-
ment without the need for culturing or amplification (Lopez et al. 2003).

However, these traditional techniques are incapable of detecting early stages of disease 
development. An ideal system should locate the initial symptoms and manage the treat-
ments to prevent the infection from developing in the vineyards. The control of grapevine 
diseases would greatly benefit from an innovative, rapid, non-invasive sensing of vegeta-
tion status. Remote sensing enables the gathering of information about an object, area or 
phenomenon at a distance. Remote sensing can be adapted for the identification of crop 
diseases based on the assumption that the stress induced by the pest modifies the physi-
ological structure of the plant and affects the absorption of light energy and reflectance 
spectrum. Many studies have confirmed that remote sensing tools can be used to quantify 
damage in crops. Dubbini et al. (2017) presented a new multispectral instrument, MAIA, 
for calculating many VI in the context of agricultural multispectral analysis. MAIA holds 
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9 different sensors allowing a high and well-distributed number of wavelength bands (1 
RGB and 8 monochromatic) covering a range of 390–950 nm. The instrument has a high 
resolution and a frame rate frequency and it is light-weight making it ideal for monitoring 
vegetation. A light-weight hyperspectral mapping system was also introduced by Suoma-
lainen et al. (2014) for a rotor-based unmanned aerial vehicle. The improvement made in 
the processing chain of the system is explained and shows the potential of the instrument 
in agricultural mapping and tracking applications. Several experimental flights related to 
habitat monitoring were undertaken. Lu et  al. (2017) tested another hyperspectral imag-
ing technique with the aim of discriminating yellow leaf curl on tomatoes. They mainly 
studied the reflectance spectra and its first derivative along with the absolute reflectance 
difference spectra in the range of 500 to1000 nm. Sensitive bands and ratios are selected, 
they were compared to 4 common VI. Texture features were also investigated. A total of 
24 features produced by a grey level co-occurrence matrix were calculated and their per-
formance was assessed. The spectral bands at 560, 575 and 720  nm were interesting to 
use to detect tomato yellow leaf curl virus infection. Vanegas et al. (2018) investigated the 
merging of different kinds of data. Their paper explored the design of a predictive model 
for pest detection in grapevine fields by processing airborne-collected Red–Green–Blue, 
multispectral and hyperspectral data at two different levels of phylloxera infection in vine-
yards. The collection, analysis and integration of different types of data is detailed in order 
to evaluate both old and new VI.

The purpose of the project was to define a novel on-board multispectral sensor dedi-
cated to Flavescence dorée disease detection. Flavescence dorée is a contagious and incur-
able disease of grapevines, which is spreading throughout France and southern European. 
Flavescence dorée is declared as a reason for quarantine by the European Union. Today, 
more than half of the French vineyard area is in compulsory control zones. This has raised 
the attention of many researchers, in particular Chuche and Thiéry (2014) who reviewed 
the biology and the ecology of Flavescence dorée in their paper. Phytoplasmas colonize 
plant cells and are the micro-organisms behind Flavescence dorée. The disease is trans-
mitted from one field to another by the spread of contaminated vegetative material. How-
ever, in the same field, the contamination is transmitted from one grapevine to another by 
the vector Scaphoideus titanus, a sucking insect that spreads the disease by feeding on an 
infected plant and then feeding on another plant with infected saliva. The following symp-
toms (Fig. 1) should be present simultaneously and on the same shoot to conclude the pres-
ence of Phytoplasma: discoloration of leaves depending on the type of grapevines (yellow 
for white grapevines and red for red grapevines), lack of lignification of new shoots, mor-
tality of inflorescences and berries, non-awning of branches. The difficulty of detecting 
Flavescence dorée is that the symptoms do not appear until 1 year after contamination and 
can be limited to a single shoot. In addition, Flavescence dorée is just one form of the yel-
lowing of the grapevine; its symptoms are similar to those of another disease belonging to 
the same category: the Stolbur of vines or ‘Bois noir’. Only a polymerase chain reaction 
can distinguish between the two diseases.

The sensor is supposed to capture a stack of spectral images of a grapevine field each at 
different narrow spectral bands. Later, an adequate analysis of the images will enable the 
spatial detection of Flavescence dorée symptoms. In this work, the optimal spectral bands 
that are sensitive to the disease were assessed.

In an earlier work (AL-Saddik et  al. 2017b), special spectral indices were devel-
oped which were sensitive to the Flavescence dorée disease using a genetic algorithms. 
However, the procedure was somewhat computationally intensive. In contrast, in 
this article, the SPA algorithm acts as a faster technique that could select interesting 
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spectral bands for Flavescence dorée detection with a low computational load. Two, 
instead of one, classifier along with a new multiclass classification approach are also 
presented in the current study. A detailed comparison between healthy and diseased 
spectral data is also presented in this article.

In this work, the use of the SPA algorithm, was extended with respect to what was 
already presented in (AL-Saddik et  al. 2017a). SPA has the advantage of reducing 
data dimensionality and selecting discriminating bands for Flavescence dorée disease 
detection. The SPA approach in AL-Saddik et al. (2017a) was compared to using com-
plete hyperspectral data and gave better results. This is somewhat predictable since the 
collinearity in the full spectral data will highly degrade results. In this paper, the effi-
ciency of the SPA technique was investigated with respect to another common dimen-
sion reduction technique: VI. These are extensively used in remote sensing applied to 
agricultural fields. Besides, comparing the accuracy of SPA and VI in choosing the 
most discriminative multispectral bands, in this research a new grouping of the data 
depending on the grapevine variety was proposed along with two binary and multi-
class configurations.

The main advantage of this work is that the methodology can be used for detecting 
other types of infection on other crops. Existing studies dealing with spectral signature 
analysis for plant disease detection, give promising results in general but they must be 
improved. In fact, most of them were performed under controlled conditions; while 
the measurements in this study were acquired under natural conditions, directly in the 
field. In addition, many applications use a binary classification between infested and 
healthy plants. In this work, a multi-class approach was examined which assessed the 
impact of the disease and its severity on spectral characteristics of plants. Moreover, 
in existing scientific literature, a specific disease is only tested in a specific cultivar. 

Fig. 1  Foliar symptoms of Flavescence dorée, a red discoloration on a red grapevine variety (a) and a yel-
low discoloration on a white grapevine variety (b), a twisting of leaves can also be observed (Color figure 
online)
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However, in this study, four fields were investigated with four different grapevine vari-
eties (2 red-grape and 2 white-grape).

Materials and methods

Sample set‑up

Various fields were tested in the French Provence-Alpes Côte d’Azur region. Four varieties 
of grapevine were studied, two red: Grenache and Marselan, and two white: Vermentino 
and Chardonnay.

Two tests were performed in 2016: the first one took place at the beginning of August 
which meant that the symptoms were not yet clearly visible and the second one occurred 
in September, late in the season, with symptoms being clearly visible. The red grapevine 
variety tests were performed in the morning (10:00–12:00) and the white grapevine variety 
tests in the afternoon (14:00–16:00).

From each variety, four diseased and four healthy grapevines were selected. Sam-
ples included about two-four leaves per grapevine and two-four measurements were under-
taken per leaf. The infested leaves were chosen in order to obtain a complete and repre-
sentative range of diseases symptoms at the end of the experiment. For the healthy group, 
the selected leaves were of different ages.

All the tested leaves were inspected by a plant pathologist from the Regional Federation 
of Defense against Pests of Provence Alpes Côte d’Azur, and they were classified according 
to disease symptoms presence and intensity. The tests were completed with a polymerase 
chain reaction analysis on the healthy and diseased grapevines to verify the expert’s results. 
In total, 213 diseased and 201 healthy leaves were assessed (63 Diseased Grenache and 64 
Healthy Grenache; 63 Diseased Marselan and 64 Healthy Marselan; 47 Diseased Vermen-
tino and 40 Healthy Vermentino, 42 Diseased Chardonnay and 34 Healthy Chardonnay). In 
order to ensure a timely follow-up, the grapevines were located using a GPS and the leaves 
were also labeled.

Reflectance measurements

A portable Spectroradiometer (FieldSpec 3, Analytical Spectral Devices, Boulder, CO, 
USA) was used to obtain spectral reflectance measurements of the leaf surfaces. Measure-
ments were made on each leaf using a plant probe attachment, which is essentially a closed 
chamber with an internal light source specially made for vegetative surfaces. The instru-
ment uses a spectral resolution of 3 nm at 700 nm wavelengths and of 10 nm for wave-
lengths above 1400 nm; however, the software eventually interpolates the spectra to 1 nm 
intervals. Therefore, each measurement generated a spectrum ranging between 350 nm and 
2500 nm at 1 nm increments. The instrument was warmed up for at least 20 min prior to 
the tests. Absolute reflectance was obtained using a Teflon calibration disk. The number of 
samples for the spectrum was set to 30, the number of samples for dark current and white 
reference were set to 100. The measurements were completed within approximatively 4 h.
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Spectral data analysis for disease detection

The symptoms which appear on an infected plant are the result of the physiological altera-
tion made by the pathogen. The amount of water, the concentration of pigments and the 
functionality of the tissue, are all factors that may vary depending on the interaction 
between the pathogen and the host and may also modify the spectral signatures of the 
plants.

The objective of the spectral analysis in this paper was to select a subset of wavelengths 
with the most useful spectral information; wavelengths were included or excluded based 
on a good discrimination classification efficiency. Once the optimum wavelengths are 
selected, a proper model can be designed using only the optimum wavelengths instead of 
the whole spectral data.

In the present paper, some pre-processing techniques were tested and combined with 
SPA. Another technique for spectral analysis and dimension reduction was further inves-
tigated: vegetation indices, since these are extensively used in the remote sensing in the 
agricultural field. The flowchart of the approach used is detailed in Fig. 2.

Vegetation indices (VI)

Vegetation indices are, by definition, combinations of reflectance at two or many wave-
lengths, enabling the dimension reduction of the hyperspectral data. They aim was to high-
light a particular property of the vegetation. More than 150 VI have been published in the 
scientific literature. Some VI correlate with the biochemical constituent concentrations of 
vegetation (chlorophyll, carotenoids, water, cellulose, lignin, dry matter…), thus, associat-
ing the physiological status of crops to other hyperspectral data. Other VI have not been 
systematically tested or do not have a biophysical base. Vegetation Indices are essential in 
crop management since they can be applied to monitors, maps and can analyze variations 
in vegetation (spatial/temporal). Furthermore, pigment-specific VI may form an effective 

Fig. 2  Flowchart of the methodology used for band selection for Flavescence dorée disease detection
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data analysis tool for disease discrimination. In this study, 12 of the most common VI were 
tested, the list is detailed in Table 1.

Successive projection algorithm (SPA)

The feasibility of choosing some spectral bands to describe the full data while maintaining 
its efficiency will be proven by using a SPA-based spectral analysis technique.

Prior to SPA, some pre-processing procedures were tested. The most common, for near-
infra-red spectra, can be divided into 2 categories: Scatter-Correction (SC) methods and 
spectral derivatives.

The SC methods reduce the physical variability between samples due to scatter and 
adjust the baseline shifts between samples. The Multiplicative Scatter Correction (MSC) 
which is probably the most widely used, is capable of removing artifacts and imperfec-
tions. It estimates the correction coefficients (additive and multiplicative contributions). 
The Standard Normal Variate (SNV) is the second most applied method for scatter cor-
rection and it is very similar to normalization (object-wise standardization of the spectra). 
Removing the trend from the data means the fluctuations can be analysed, and therefore 
the detrending (DET) technique subtracts the mean or the best-fit line (in the least-squares 
sense) from the data.

The spectral derivatives can remove both additive and multiplicative effects in spectra. 
Savitzky-Golay (SG) is one of the methods for numerical derivation of a vector including a 
smoothing step. To find the derivative at the center point i, a polynomial is fitted in a sym-
metric window on the raw data. When the parameters for this polynomial are calculated, 
the derivative of any order of this function can easily be found analytically; this value is 
subsequently used as the derivative estimate of this center point. Two pre-processing SG 
techniques were used in this paper: SG1 and SG2 which represent the first and the second 
SG derivatives, respectively. More details about the above cited techniques can be found in 
Rinnan et al. (2009).

In the present case, as the data objects (reflectance spectra) are described by a large 
number of features, dimension reduction seems essential to improve computational effi-
ciency and precision of the analysis. This was done using the SPA algorithm (Araujo 
et al. 2001). The technique was investigated in many other studies such as by Zhang et al. 
(2013) or Yang et al. (2015). For this, three main steps are needed. Firstly, the instrumental 
response data are used to create chains of variables according to a sequence of operations 
concerning vector projection. These operations are designed to minimize multi-collinearity 
among the variables of the chain. Secondly, the algorithm creates a model for each of the 
candidate subsets of variables extracted from the generated chains. Finally, each model is 
evaluated and the optimal candidate subset is chosen according to its performance.

The number of chosen bands was limited to eight. The maximal area under the curve 
(AUC) was chosen as a criterion for assessing the performance of a defined SPA subset. 
The ideal case is to have an AUC close to one.

Classification

Choosing the most appropriate classifier for an application is a difficult task because hun-
dreds of classifiers can be found in the literature. The empirical approach is usually used, 
which means that researchers try several classifiers and then adopt the one having the 
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highest accuracy for their application. In this research, the two most widely used classi-
fiers, Discriminant Analysis (DA) and Support Vector Machine (SVM) were applied.

A tenfold cross-validation technique was used where the original sample is randomly parti-
tioned into 10 equal sized subsamples. Of the 10 subsamples, a single subsample is retained as 
the validation data for testing the model, and the remaining 9 subsamples are used as training 
data. The model accuracy defines the percentage of correctly classified test set samples; the 
false negative rate is the percentage of negative results that are, in fact, positive; and the, false 
positive rate is the percentage of positive results that are, in fact, negative. Note that, in this 
case the positive class is considered as the diseased class and the negative class as the healthy 
one.

Discriminant analysis (DA)

The original discriminant analysis was first developed by R. Fisher, however, Welling (2014) 
detailed the theory of linear discriminant analysis that is a generalization of Fisher’s linear 
discriminant.

Discriminant analysis derives from discriminant functions which are linear combinations 
of the independent variables providing the best discrimination between the groups of the 
dependent variables. Each function is tested with a discriminant score to evaluate its capacity 
of predicting groups.

Support vector machine (SVM)

Support vector machines (SVM) find the best separating hyperplane between classes accord-
ing to the hyperplane with the maximal margin. A cost parameter defines the penalty for mis-
classifying objects. This can be used to introduce a soft margin allowing objects to lie between 
the margins or on the wrong side of the plane. This is mainly suitable when classes are not 
fully separable.

When non-linear decision boundaries are needed in the feature space, kernels might be 
applied in SVM modeling. There are different kernels in the literature. Due to its flexibility, 
the radial basis function kernel is the most used, therefore it was also applied in the current 
study. For more details about SVM, refer to Ben-Hur and Weston (2010) who discussed the 
concept and the application of SVM in detail.

Data configuration

Two dimensions were used in the analysis. The first dimension is the severity of infestation 
which implies the number of classes used. The latter can be 2 for binary (shown in Fig. 3) or 3 
for multi-class (shown in Fig. 4); in fact, it is possible to either study the healthy group versus 
the diseased group as a whole (slightly infested measurements from the August acquisition 
campaign + highly infested measurements from the September acquisition campaign); or to 
study the healthy group versus the slightly infested group versus the highly infested group as 
different classes. 

The second dimension is the type of measurements. In the testing campaigns, four varie-
ties were taken into consideration: Marselan, Grenache, Vermentino and Chardonnay. They 
each could have been studied separately or combined which means that the analysis could 
be conducted based on the grapevine color; so, 2 groups were considered: Red (measure-
ments from Marselan + measurements from Grenache) vs White (measurements from 
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Vermentino + measurements from Chardonnay). In the last case, all the grapevine meas-
urements were combined together (measurements from Marselan + measurements from 
Grenache + measurements from Vermentino + measurements from Chardonnay).

Results

The ultimate aim of band selection is to determine the design of the multispectral sensor. 
The spectra were assessed starting from 400 nm to 2300 nm due to a high signal to noise 
ratio near the ends of the spectra.

Binary 
classification 

Marselan Grenache Vermentino Chardonnay 

Severity of 
infestation 0 
(Healthy) 

Severity of 
infestation 1 
(Slightly 
infested) 
Severity of 
infestation 2 
(Highly  
infested) 

Chardonnay  Grenache  Vermentino  Marselan  

All  White  Red  

Fig. 3  Configuration relative to a binary classification

Multi-class 
classification 

Marselan Grenache Vermentino Chardonnay 

Severity of 
infestation 0 
(Healthy) 

Severity of 
infestation 1 
(Slightly 
infested) 
Severity of 
infestation 2 
(Highly  
infested) 

Chardonnay  Grenache  Vermentino  Marselan  

All  White  Red  

Fig. 4  Configuration relative to a Multi-class classification
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Reflectance spectra of diseased grapevine leaves

In the normal case, the spectra have a strong absorption in the visible region due to photo-
chemical pigments (chlorophylls and carotenoids). However, in the near infra-red region, 
the reflectance is high, this is the result of multiple internal light scattering that is a func-
tion of the complexity of the leaf’s structure.

When compared to healthy spectral signatures, it can be clearly seen from Fig. 5 that the 
reflectance for both diseased red and white berried leaves were somewhat different. Thus, 
this clearly shows that the spectral response was affected by the infestation.

For the Marselan variety (red-grape), the peak in the green range appearing in the vis-
ible part of the infected spectra moved towards longer wavelengths. Moreover, the healthy 
spectra were higher than the infested one in the visible region (mainly between 500 and 
700 nm), but the opposite occurred in the near infra-red region (800–1300 nm) and in the 
infra-red region (> 1300 nm). It would seem that when the infestation level increases, the 
spectral signature decreases in the visible region and increases in the near infra-red region. 
The same trend was also observed for Grenache white grape leaves (spectra not shown).

On the other hand, for the Chardonnay variety (white-grape), the peak in the green line 
in the visible part of the infected leaf remained in position for infected leaves. Furthermore, 
the healthy spectra were lower than the infested one in the visible region (mainly between 
500 and 700 nm), but the opposite occurred in the near infra-red region (800–1300 nm) 
and in the infra-red region (> 1300 nm). It would therefore seem that when the infestation 
level increases, the spectral signature increases in the visible region and decreases in the 
near infra-red region. The same trend was also being observed for Vermentino red grape 
leaves (spectra not shown).

Above 1400 nm, the difference between the healthy and diseased spectra was the same 
in the red and white varieties

These changes suggest that the spectral signature depends on the pathogen-host interac-
tion. In other words, grape cultivars do not show the same patterns of spectral response 
when the same infestation occurs.

Fig. 5  Mean reflectance of highly infected leaves (severity level = 2; Red), healthy (severity level = 0; green) 
for Marselan grapevine leaves (a) and Chardonnay grapevine leaves (b) (Color figure online)
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Binary approach

In this part of the study, each group contained measurements from both the August and 
September acquisitions. This means that there was no distinction between the infestation 
level and that only healthy and infested groups exist.

SPA‑based technique

For the SPA-based technique, all the pre-processing techniques were assessed but only the 
best one was kept and compared to the case where no pre-processing was applied.

From Table  2, when no pre-processing is applied, the accuracy of SVM was slightly 
better than DA in all cases. Consider as an illustration, the case where no pre-processing 
is applied and all data are gathered, the DA classifier scored 92.0% while the SVM scored 
95.4%. The results were generally close when each type of grapevine data is studied sepa-
rately and when grouped data are used. For example, when no pre-processing is applied 
and the Vermentino data are considered, the SVM classifier scored 96.5%, similar to the 
white grape data which scored 96.3% with the SVM classifier.

When pre-processing was used, DA and SVM performed similarly when each grape-
vine type was studied alone. Indeed, when pre-processing is applied and when Vermen-
tino data are considered, both the DA and SVM classifiers scored 98.8%. However, when 
the data were grouped, SVM was more robust than DA. Notably, where pre-processing is 

Table 2  Classification results from the SPA-based technique with the binary approach applied and with no 
pre-processing and with pre-processing

The values in bold represent the highest precision
NB. Only the best pre-processing technique is displayed
DA discriminant analysis, SVM support vector machines, MSC multiplicative scatter correction, SG1 
Savitzy-Golay first derivative, SG2 Savitzy-Golay second derivative

Technique Data Accuracy (%) False Nega-
tive Rate (%)

False Posi-
tive Rate 
(%)

DA SVM DA SVM DA SVM

No Pre-Processing Marselan 96.06 97.63 4.76 1.63 3.12 3.03
Grenache 93.54 95.96 7.57 3.17 5.17 4.91
Vermentino 95.40 96.55 6.97 4.76 2.27 2.22
Chardonnay 93.42 93.42 5.88 5.88 7.14 7.14
Red 94.42 95.61 5.46 5.34 5.69 3.33
White 95.09 96.31 6.49 4.00 3.48 3.40
All 92.02 95.41 10.69 8.21 5.02 0.51

Best Pre-Processing MSC/MSC Marselan 99.21 99.21 0.00 0.00 1.58 1.58
SG2/SG2 or MSC or SG1 Grenache 98.38 99.19 0.00 0.00 0.98 1.63
MSC/MSC Vermentino 98.85 98.85 0.00 0.00 2.12 2.12
MSC/MSC Chardonnay 98.68 98.68 0.00 0.00 2.38 2.38
DET/SG2 Red 98.00 99.60 1.57 0.00 2.41 0.80
SG2/SG1 or SNV White 95.70 97.54 6.41 2.66 2.35 2.27
SG2/SG2 All 94.20 97.82 7.61 3.82 3.92 0.48
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applied and all data are considered, the DA classifier scored 94.2% while the SVM classi-
fier resulted in a higher accuracy of 97.8%.

The results show that using pre-processing with SPA was more efficient in terms of 
accuracy no matter what classifier is used. For instance, when no pre-processing is applied 
and the Grenache data are considered, the SVM classifier scored a high result (95.9%). 
This was also the case when pre-processing was used with the Grenache data, the SVM 
classifier resulted in a good accuracy of 99.1%.

The best pre-processing technique was MSC when each grapevine type was studied sep-
arately and SG2 when grapevine data were grouped.

VI based technique

For the VI-based technique, firstly, the efficiency of each index alone was tested and only 
the best one was displayed. Secondly, all VIs were combined to form a feature vector for 
each spectral signature and the results were compared.

From Table 3, when only one VI was studied, SVM and DA gave comparable results 
except for Chardonnay, where SVM proved to be better. In fact, when the best VI is consid-
ered, the SVM resulted in a higher accuracy: 97.3% than DA: 93.4%. Furthermore, for all 
grouped data, the accuracy was worse than ungrouped data but for the grouped data, it was 
better for SVM (88.1%) than DA (85.5%).

Table 3  Classification results from VI-based technique: each VI was tested alone and the best VI displayed, 
then VI were combined (Binary approach applied)

The values in bold represent the highest precision
DA discriminant analysis, SVM support vector machines, mCAI modified chlorophyll absorption integral, 
ARI anthocyanin reflectance index, GM1 Gitelson and Merzylak 1, NDVI normalized difference vegetation 
index, PRI photochemical reflectance index, PSSRb pigment specific simple ratio carotenoids, GM2 Gitel-
son and Merzylak 2, ZTM Zarco Tejada Miller

Technique Data Accuracy (%) False Nega-
tive Rate (%)

False Positive 
Rate (%)

DA SVM DA SVM DA SVM

Best VI mCAI/ARI Marselan 92.12 93.70 10.14 8.69 5.17 3.44
ARI/ARI Grenache 91.93 91.12 13.69 13.69 1.96 1.96
GM1/GM1 Vermentino 95.40 95.40 9.52 9.52 6.66 6.66
NDVI-PRI-mCAI-

PSSRb-GM1-GM2-
ZTM/ZTM

Chardonnay 93.42 97.36 10.52 20.00 2.63 8.33

ARI/ARI Red 93.62 93.22 11.26 11.18 1.83 0.92
GM1/ARI White 95.09 95.09 28.00 8.64 23.86 1.21
mCAI/mCAI All 85.50 88.16 21.37 16.14 4.21 7.85

VI combination Marselan 92.91 92.12 10.14 7.81 5.17 9.52
Grenache 95.96 97.58 4.55 3.08 1.72 1.69
Vermentino 94.25 94.25 9.09 6.98 2.33 2.27
Chardonnay 94.73 97.36 10.53 2.86 2.63 2.44
Red 95.21 95.61 4.58 5.30 2.50 2.52
White 94.47 96.31 8.64 6.33 1.22 1.19
All 91.54 94.44 12.83 8.76 2.66 2.03
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ARI was the best VI for Marselan, Grenache and for both red and white grapes, GM1 
was best for Vermentino, ZTM was the most suitable VI for Chardonnay grapes and mCAI 
was the most robust when all white and red-berried data were grouped together.

When VIs were combined, the accuracy increased overall for both classifiers with 
respect to using only one VI, especially for the case of grouped data. Take for example, 
the case where the best VI is considered and all data are grouped, the DA classifier gave a 
lower accuracy: 85.5% than the case where all VIs are combined: 91.5%. In addition, the 
SVM classifier gave better classification accuracy than DA. This was illustrated by the case 
where all VIs are combined for the Chardonnay data, the SVM classifier achieved higher 
accuracy (97.3%) than DA (94.7%).

Multi‑class approach

In this part of the research, a distinction is made in the measurements from August and 
September between infestation levels and hence healthy, slightly infested and highly 
infested groups exist.

SPA based technique

Referring to Table 4, when no pre-processing was undertaken, the accuracy of SVM was 
slightly better than DA except for white grape data. As proof, when all data are grouped 
together and no pre-processing is used, the DA gave an accuracy of 87.9% slightly less than 
SVM: 89.9%.

Table 4  Classification results from the SPA-based technique with no pre-processing and with pre-process-
ing

The values in bold represent the highest precision
NB only the best pre-processing technique is displayed (Multi-class approach applied)

Technique Data Accuracy (%) False Negative 
Rate (%)

False Positive 
Rate (%)

DA SVM DA SVM DA SVM

No pre-processing Marselan 93.30 94.86 9.09 6.92 0.00 0.00
Grenache 96.60 98.21 4.76 2.38 0.00 0.00
Vermentino 91.25 94.70 7.26 6.92 12.50 0.00
Chardonnay 88.41 88.41 10.98 10.98 12.50 12.50
Red 88.98 95.63 6.47 5.76 19.76 0.00
White 89.99 87.95 8.82 9.00 12.54 17.89
All 87.91 92.05 10.13 9.14 16.23 3.66

Best pre-processing SG1/SG1 Marselan 98.43 96.65 2.38 4.76 0.00 0.00
SG1/SG2 Grenache 100.00 98.21 0.00 2.38 0.00 0.00
SG2/SG2 Vermentino 98.21 98.27 2.38 2.38 0.00 0.00
SG1/SG1 or MSC Chardonnay 97.61 97.72 3.57 3.57 0.00 0.00
SG2/SG1 Red 94.94 98.41 4.87 2.38 5.60 0.00
SG1/SG2 White 92.93 96.03 4.41 5.63 11.66 0.00
SG1/SG1 All 93.92 96.37 5.75 3.98 6.22 2.92
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When pre-processing was applied, the accuracy for both classifiers was enhanced with 
respect to the case where no pre-processing was used. For Marselan and Grenache, DA 
performed better than SVM. For example, when pre-processing is applied for Grenache 
data, the DA classifier gave a 100% accuracy which was better than SVM (98.2%). How-
ever, for other grapevine types and when the grouping of data occurred, SVM was more 
robust than DA. Actually, when pre-processing is used for all gathered data, the SVM clas-
sifier scored a 96.3% accuracy which was better than DA (93.9%). It can be seen that when 
data is taken individually the accuracy was a bit better than the case where grapevine varie-
ties are combined for the DA classifier. Consider for instance each type of grapevine varie-
ties individually, when pre-processing is used together with the DA classifier, the accuracy 
was higher than 97%. This accuracy was also higher than the case where data are grouped 
and pre-processing is also used with the DA classifier (93.9%), but the results were compa-
rable for SVM.

The results show that applying pre-processing with SPA was more efficient in terms of 
accuracy no matter what classifier was used. As a matter of fact, for the Chardonnay data 
and when no preprocessing was used, the accuracy for the DA classifier was 88.4%, how-
ever, when pre-processing was applied, DA achieved a higher result of 97.6%.

The best pre-processing techniques were SG1 and SG2 when each grapevine type was 
studied separately and when spectral grapevine data were grouped.

VI based technique

Referring to Table 5, when the best VI is considered, the DA classifier was slightly more 
accurate than SVM especially for the red-grape varieties. In fact, when the best VI was 
used for the red variety data, the DA classifier resulted in an accuracy of 98.7% which is 
higher than that given by the SVM classifier (92.4%). Furthermore, for all grouped data, 
the accuracy was worse. For example, the best VI with the DA classifier gave an accuracy 
of 88.3%.

ARI was the best for Grenache and Red-berried data. GM1 was chosen for Vermentino, 
Chardonnay and for white-berried data, the same goes for ZTM. NDVI performed well for 
Vermentino, Chardonnay, white varieties and for all combined data. mCAI was the most 
robust when all white and red-berried data were grouped together and for Marselan data.

In the case of the multi-class approach, unlike the binary one, when VIs were combined, 
the overall accuracy decreased slightly for both classifiers. Like when the best VI is applied 
for Vermentino data along with the DA classifier, the accuracy was 94.5%. However, when 
the VIs were combined also for the Vermentino data, a lower accuracy (91.8%) was found. 
When all data are grouped, the trend was the opposite. In fact, when the best VI was used 
with the DA classifier, the accuracy was 88.3% while when VIs were combined, the same 
classifier scored 91.0%. Similar to using only one VI, the DA classifier also gave better 
classification accuracy than SVM. This can be seen in the case where VIs are combined, 
the Marselan with the DA classifier resulted in 90.0% accuracy which is better than the 
case where SVM was used: 87.5%.
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Discussion

The spectral reflectance characteristics change when the cellular leaf structure is altered 
due to the presence of a pathogen (Jacquemoud and Ustin 2001) which is in accordance 
with the results. In fact, some differences in leaf reflectance between Flavescence dorée-
infected and healthy grapevines were distinguished. This was also compatible with the 
results found by Naidu et al. (2009), where grapevine leaf-roll infection caused metabolic 
and pigment changes and the leaf spectral properties were not the same in healthy and 
infected leaves.

Both red and white grape varieties have green leaves when healthy and discoloured 
leaves when infected. However, when a disease occurs, the leaf discoloration is different. 
For a red grapevine variety, infected leaves become reddish and for white grapevine varie-
ties, infected leaves become yellowish. This is indeed evidence that the concentration of 
biochemical pigmentation after infection varies differently for the two types of variety. This 
is also highlighted by the alteration of the diseased signatures compared to the healthy ones 
in the visible part of the spectrum (Fig. 5).

The Chlorophyll a + b absorption bands at 430 and 450 nm and then at 670 and 630 nm 
(Blackburn 1998; Richardson et al. 2004; Sims and Gamon 2002; Apan et al. 2003; Koo-
istra et al. 2003) decreased in both varieties for Flavescence dorée infested leaves (Fig. 3a, 
b). This shows that chlorophyll pigments were significantly reduced in both varieties after 
infection. Carotenoid absorption bands at 450 and 480  nm (Blackburn 1998; Kooistra 
et al. 2003) similarly decreased for Flavescence dorée infested leaves from both varieties 
(Fig. 3a, b). This indicates that Carotenoids were also significantly reduced in both varie-
ties after infection. The result is supported by Bertamini et al. (2003) who investigated a 
field of grown apple (Malus pumila Mill) leaves infected by apple Phytoplasma prolifera-
tion and found that the contents of Chlorophyll a + b and carotenoids distinctly decreased 
in infected leaves. In general, the reduction in the concentration of photosynthetic pigments 
(mainly chlorophylls), leads to a reduction of the photosynthetic rate (Richardson et  al. 
2004; Riedell and Blackmer 1999; Penuelas and Filella 1998).

The anthocyanin absorption band at 550  nm (Gitelson et  al. 2001) increased in red-
grapevine varieties and decreased in white grapevine varieties (Fig. 5a, b). This means that 
the anthocyanin concentration in red grapevine varieties is raised when Flavescence dorée 
occurs while it is reduced in white grapevine varieties. This is in accordance with the find-
ings of Himeno et al. (2014). They demonstrated that anthocyanin accumulation is directly 
responsible for the purple discoloration symptoms. The Phytoplasma infection caused a 
significant activation of the anthocyanin biosynthetic pathway and a dramatic accumula-
tion of sucrose.

Tan et al. (2015) stated that Phytoplasmas reduce stomatal conductance making it hard 
for water vapor to exit through the stomata of a leaf. Their finding was validated in this 
study. In fact, the lines for absorption bands at 1400 and 1900 nm (Fig. 5a, b) decreased 
after infection in both varieties.

Between 800 and 1400  nm, the reflectance changed depending on the structure of 
the leaf. For red varieties, the absorbance increased, but for white varieties, the opposite 
occurred. This is basically due to modified leaf tissue and the stunting of plants due to 
the Flavescence dorée infection. The results obtained for the Chardonnay white-berried 
case, were also found for Russian wheat aphid damage in winter wheat (Mirik et al., 2007). 
For the Marselan red-berried case, damaged leaves reflected more energy than the control 
leaves in the near infra-red wavelengths. This was also found in Russian aphid-damaged 
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leaves compared to healthy ones by Riedell and Blackmer (1999). As mentioned in (Vitali 
et  al., 2013), the contents of soluble proteins were decreased in phytoplasma-infected 
leaves of field-grown grapevines, but the contents of soluble sugars and total saccharides 
significantly increased. Leaves were unable to produce sufficient carbohydrates for their 
own needs. The starch content of leaves was further significantly increased. Nevertheless, 
in the scientific literature, the real difference of the effects of Flavescence dorée on the 2 
grapevine varieties wasn’t clear.

It is not possible to tell if the spectral difference function of varieties is constant and 
repeatable or also if it differs between regions. In fact, the grapevine varieties responded 
to the same virus in different manners. This is most likely due to other specific nuances in 
addition to the variety itself. MacDonald et al. (2016) noted that factors such as leaf incli-
nation, illumination and surface texture (Gitelson et al. 2002) that differ among vineyard 
sites due to plant height and health, vegetative growth stages, trellis system, soil properties 
(type, moisture and available nutrients) may result in spectral variations that affect sensor 
data and detection sensitivity. Moreover, the development of symptoms may be affected by 
scion-rootstock combinations and environmental factors and can therefore vary between 
vineyards and growing seasons (Naidu et al. 2014). All these factors were uncontrollable 
and they may very well have influenced the results. Hence, more tests in other regions must 
be undertaken with other varieties of grapevines to validate all the results obtained during 
the research.

Mirik et  al. (2007), confirmed that NDVI was correlated to the presence of Russian 
wheat aphid in four out of six tested fields. In addition to that, in their study, Yuan et al. 
(2014) identified the NDVI as the most discriminating feature since it was capable of 
discriminating between 3 kinds of wheat stressors (yellow rust, powdery mildew, wheat 
aphid). In this study, the popular NDVI performed well in only a few cases: in the multi-
class approach and only for the Vermentino, Chardonnay, white varieties and all data com-
bined. This observation was also reported by Devadas et al. (2009), where NDVI was not 
capable of discriminating rust infection in wheat leaves.

ARI tracks changes in photosynthetic efficiency. It was chosen in the binary and multi-
class approaches for red-grape data and the index was also shown to be significant in the 
study of Devadas et al. (2009). ARI was identified and considered by Zhang et al. (2012) 
as an ideal candidate to diagnose yellow rust disease in winter wheat owing to its sustained 
sensitivity to the disease presence. The index was also found to be efficient in further stud-
ies such as that of Huang et al. (2007).

The PRI was used to assess the infestation of the grapevine leaf roll-associated virus 
(Naidu et al. 2009), and pest damage (Luedeling et al. 2009). PRI was also proven to be 
sensitive to different infestation scales of rice leaves damaged by the rice leaf holder pest 
(Huang et al. 2012) but, in the present study, it was only an indicator of Flavescence dorée 
for the Chardonnay grapevine variety.

Vegetation stress can be assessed by measuring the chlorophyll because it is directly 
related to the photosynthesis process of light harvesting, initiation of electron transport 
and it is responsive to a range of stresses (Zarco-Tejada et al. 2000). This was confirmed 
in this study as the ZTM was chosen as the best VI for white-grape data. A reduction in 
chlorophyll levels as a reaction to an infestation induced by sap feeding insects like aphids 
(Khawas and Khawas 2008; Lisa et  al. 2007; John et  al. 2007), phylloxera (Blanchfield 
et  al. 2006) and leafhoppers (Murugesan and Kavitha 2010) have been reported. GM1 
was selected also for white-grape data in this study. In fact, differences in reflectance 
between healthy and stressed vegetation due to changes in Chlorophyll a + b levels have 
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been detected previously in the green peak and along the red-edge spectral region of 
690–750 nm (Gitelson and Merzlyak 1996b).

Other VIs such as GM2, WI and PSSR were not relevant for Flavescence dorée detec-
tion in this study.

In the binary approach, the VI combination increased the accuracy with respect to using 
only one VI. The analysis, conducted by Mahlein et  al. (2010) to discriminate between 
three fungal leaf diseases of sugar beet, confirmed that combinations of VIs are efficient for 
discriminating between healthy and diseased vegetation and even between the 3 diseases in 
early stages of development. In addition, the classification accuracies of grapevine leaf roll 
disease infection improved when using multiple variables (indices and individual reflec-
tance bands) with respect to using only a single VI (Naidu et al. 2009). Rumph et al. (2010) 
mentioned that the accuracies of automatic classification of diseases can be enhanced when 
applying a combination of spectral VIs that use different wavelengths and, hence, describe 
different physiological parameters. In general, it can be concluded that there is a noticeable 
potential for VI combinations in disease detection and identification. This was, however, 
not the case for the multi-class approach in this study, where the accuracies of using one 
VI and a combination of VIs were comparable and slightly lower for the VI combination.

The SVM classifier was better than DA in almost all cases. This is in accordance 
with the findings of Rumph et  al. (2010), who found that by comparing different clas-
sifiers, SVMs use the inherent information of the vegetation indices in an optimal way. 
With SVMs, the identification of diseased leaves (binary approach) and the differentiation 
between distinct disease levels (multi-class approach) can both be achieved.

The optimal performing models with the best accuracies are shown in Table 6. In con-
clusion, the wavelengths selected are related to characteristic points (peaks, valleys, shoul-
ders, inflections) in the spectra.

The results suggest that changes in spectral reflectance differ by cultivar and therefore 
the technique can be optimized for each variety in order to obtain good results. Since more 
than one variety can be grown in the same vineyard area, different measurements were 
combined to simulate the case where grapevine varieties of the same group were grown 
together and the approach was tested (Marselan and Grenache measurements were com-
bined in the “Red” group/Vermentino and Chardonnay measurements were combined in 
the “White” group). In the case where different grapevine varieties were grown together 
(Marselan, Grenache, Vermentino and Chardonnay were combined in the “All” group), all 
the measurements are combined. More than 96% accuracy was still achieved using pre-
processing and SPA, which means that the sets of spectral bands obtained in a binary or a 
multi-class context can be considered as generalized for designing the multispectral sensor.

Conclusions

Highly accurate, reliable and non-contact based systems are required to automatically 
examine plant diseases. Remote sensing devices can identify infected zones in a field by 
defining the spatial locations of the infection spots in an early manner. Thus, remote sens-
ing may provide a proper tool to analyze large fields quickly and eradicate primary infec-
tions early, thus avoiding secondary spread.

In general, imaging technology has emerged as a powerful tool in agriculture but it is 
not exploited much in vineyards. For the moment, the effort to make the early detection of 
grapevine diseases automatic is minimal with respect to the major impact of those diseases 
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on grapes yield and wine quality. In this study, Flavescence dorée vine disease was studied 
under real production conditions and in many cultivars including those with white and red-
grapes at different stages of severity.

This study showed that spectral reflectance can be a promising technique for in-field 
diagnosis of Flavescence dorée. The results from this article further suggest that changes in 
spectral reflectance are function of the cultivar type and therefore to get the best results, the 
technique should be refined for each variety. However, in the same field, many grapevine 
varieties could be grown together, so measurements were combined in a binary and multi-
class classification context to replicate that case.

On the basis of the above analysis, it can be concluded that dimension reduction meth-
ods including the use of traditional VI and SPA employed here gave promising results. The 
advantages include the fact that they save time and are less complex. The technique based 
on pre-processing then SPA was however better and SG1, SG2 and MSC were the best pre-
processing techniques. In this study, an accuracy higher than 96% was eventually demon-
strated for Flavescence dorée detection.

Here, only one infection was investigated, other studies targeted the detection of pow-
dery and downy mildew and grapevine leaf-roll in grapes and so it seems essential to 
explore other diseases and stresses. Moreover, damage need to be detected not only in 
symptomatic hosts in their natural production environment but also in asymptomatic hosts 
when the symptoms are not so evident.

The objective of the overall project was to develop a specific solution for the automatic 
foliar detection of Flavescence dorée disease using low altitude-micro-UAV imagery. In 
the near future, a high-resolution multispectral camera will be developed based on this 
analysis to identify the occurrence of infected leaves and additional work will address the 
processing of the associated multispectral images.
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