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Abstract  Four time-lapse cameras, Bushnell Nature View HD Camera (Bushnell, Over-
land Park, KS, USA) were installed in a soybean field to track the response of soybean 
plants to changing weather conditions. The purpose was to confirm if visible spectroscopy 
can provide useful data for tracking the condition of crops and, if so, whether game and 
trail time-lapse cameras can serve as reliable crop sensing and monitoring devices. Using 
the installed cameras, images were taken at 30-min intervals between July 22 and August 
1, 2015. Using the RGBExcel software application developed in-house, image data from 
the R (red), G (green), and B (blue) bands were exported to Microsoft Excel for further 
processing and analysis. Daytime adjusted green red index data for the plant, based on 
the R and G data, were plotted against time of image acquisition and also regressed with 
selected weather parameters. The former showed a rise-and-fall trend with daily peaks 
around 13:00, while the latter showed a decreasing order of correlation with weather vari-
ables as follows: log of solar radiation > log of soil surface temperature > log of air tem-
perature > log of soil temperature at 50-mm depth > log of relative humidity. Despite some 
low correlations, the potential for using game and trail cameras with time-lapse capability 
to track changes in crop vegetation response under varying conditions is established. The 
resulting data can be used to develop models that can aid precision agriculture applica-
tions. This can be further explored in future studies.
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Introduction

Precision agriculture for crop management requires adequate information from the crop 
both over time and across the field in order to provide timely, precise, and variable treat-
ment. This is particularly true where variable crop response or performance exist due to 
variability in soil texture and nutrient availability across a field, and precision (variable 
rate) irrigation management is required. The goal of irrigation is to supplement plant 
water needs which are only partially and unevenly met by precipitation during the crop 
growing season. The target soil moisture condition is known as the field capacity. Irriga-
tion scheduling is used to replenish depleted soil water in a timely manner preventing 
the soil condition from reaching the crop stress point. Consumptive soil water depletion 
is mainly due to evapotranspiration (ET), the combined process of evaporation from the 
soil and transpiration from the crop. ET rate increases as air temperature increases and 
relative humidity decreases. The cumulative daily ET amount is tracked from a previous 
irrigation event to determine the next time to irrigate.

Because the growing crop responds to the soil and meteorological conditions to 
which it is subjected (Hollinger and Angel 2009), crop health data can be collected 
alongside soil and meteorological data to establish mathematical relationships (Murthy 
2004) that can be utilized to determine a crop’s status at a given point in time. Analy-
sis of meteorological data can provide near real-time information about the status of a 
crop in terms of quality and/or quantity (Doraiswamy et  al. 2003). For example, crop 
imagery data from the visible (RGB) and/or near-infrared (NIR) bands can be correlated 
to meteorological data to establish crop response to changing weather conditions for 
irrigation scheduling purposes. Such information can serve as an early-warning indi-
cator or decision-support resource for proper planning and timely intervention to effi-
ciently manage the crop (Akeh et al. 2000). In fact, crop stress factors such as pest and 
disease infestations, water and nutrient deficiencies must be detected early enough to 
allow for early mitigation to prevent massive loss in yield (Nutter et al. 2002).

Satellite and aerial remote sensing (SARS), methods used in precision agriculture, 
are used to capture crop spectral response data from which vegetation indices relevant 
for determining crop status can be derived (Boschetti et  al. 2007). SARS deals with 
imagery of crops covering large areas such as a whole farm or much larger areas (Holecz 
et al. 2013). While SARS can cover large areas, ground based proximal remote sensing 
(PRS) employing similar image processing and analysis techniques as SARS can also 
be implemented to cover much smaller areas such as a field or plot. Deery et al. (2014) 
evaluated the potential for using PRS for field-based phenotyping. They concluded 
that while commercial-scale pre-breeding and breeding situations require mature data 
acquisition and automated data processing to keep pace with the high demand, reduced 
amount of automation and higher human involvement in data processing and analysis 
is acceptable for low-throughput applications. Small area implementations can provide 
representative data for an entire field or can be used to monitor specific locations or 
networks of locations of interest (Cheng et al. 2016). For crop monitoring for precision 
management, particularly precision irrigation, images must be provided on a frequent 
basis to allow the farmer to respond quickly (Seelan et al. 2003; Toureiro et al. 2017). 
Frequent acquisition of images allows for the generation of time series data which can 
be used to build models describing crop phenology throughout the growth cycle. Crop 
phenological information from time series data has been employed in multi-sensor map-
ping of crops by Siachalou et al. (2015).
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Two of the limitations to the adoption of crop sensing/monitoring by imagery and image 
processing for precision farm management are the cost of the instrumentation and image 
processing software and the high expertise required (Seelan et  al. 2003). For these rea-
sons and a host of others, a high number of successful advances either still remain at the 
research level or have had very low adoption rates by farmers. Some ways to encourage 
adoption include reducing the cost of the technologies, making the technologies easily 
accessible and easy to learn and use. These steps can allow crop consultants, extension 
agents, and farmers to try small plot applications as proof of concept and to encourage the 
adoption of relevant practices.

Recent efforts to develop low cost image processing and analysis techniques have been 
pursued in the Precision Application Technology Lab in the College of Agriculture, Engi-
neering, and Technology, Arkansas State University. These efforts were strengthened 
by the creation of a software application, RGBExcel (Larbi 2016a) and the later version 
RGB2X (Larbi 2016b). This application extracts and exports image data of digital images 
(regardless of the camera used for the acquisition and the file format) to Microsoft Excel 
for further processing and analysis. Studies utilizing this software package include a foun-
dational paper highlighting the implementation of standard image processing techniques 
using Microsoft Excel (Larbi 2016c, 2018) and another study which compared processed 
image data from five different cameras representing a range of available commercial color 
camera options on the market (Vong and Larbi 2016). Since Excel has over 750 million 
users worldwide, this innovation will become highly accessible globally as the RGB2X 
software is made available. Other software applications are available that convert image to 
RGB and alpha data such as Get RGB (Johnson n.d.), however, the advantage of RGB2X is 
the ability to convert multiple files at a time allowing for convenience and speed.

In the present study, the potential utility of a low-cost game and trail time-lapse cam-
era for monitoring crop status is explored. Since the camera can be configured to capture 
images at a user-defined time interval, very minimal expertise is required for setting it up. 
The purpose was to emphasize the utility of visible spectroscopy in providing useful data 
for tracking the condition of crops and determining whether game and trail time-lapse cam-
eras could serve as reliable crop sensing and monitoring devices. The specific objectives 
were:

1.	 To test the potential utility of game and trail time lapse cameras for automatic monitor-
ing of soybean plant response to changing environmental conditions;

2.	 To demonstrate the utility of Microsoft Excel for image processing and analysis; and
3.	 To establish relationships between the processed image data and corresponding weather 

parameters.

Achieving the above objectives will provide simple tools that can be adopted by crop 
consultants, extension agents, and farmers as initial steps towards wide scale adoption of 
precision agriculture practices.

Materials and methods

In this preliminary observational study, four game and trail time-lapse cameras (Fig. 1), 
Bushnell Nature View HD Camera (Bushnell, Overland Park, KS, USA) were installed 
in an experimental soybean field to capture day and night images of the crop over time. 
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Each camera took images with 8 MP high-quality full color resolution and 1–3 images 
per trigger, as well as 1280  ×  720 pixel high definition video with audio record pro-
grammable length from 1 to 60 s. A field scan time-lapse mode took images at pre-set 
intervals of 1 to 60 min. Each camera had an imbedded temperature sensor with − 20 
to 60 °C range. Images captured were stamped with the camera name, air temperature 
(both °F and °C), date and time of capture.

The experimental field (latitude 35.83868, longitude − 90.66634) was located at the 
Arkansas State University Farm Complex (ASU Farm) in Jonesboro, AR, USA. A soy-
bean plot which was under no particular experiment at the time of the study was used, 
thus placement of the cameras was not meant to compare between crop responses to any 
particular treatments. The cameras (referred to as Cam 1, Cam 2, Cam 3, and Cam 4) 
were installed on a mount as shown in Fig. 2 at four corners of a rectangular area in the 
plot (Fig. 3). A nearby weather station, ASU WS, which was used as a reference was 
located about 210 m from the farthest camera (Cam 1). Cam 1 and Cam 2 were intended 
to monitor plants located near the Northside boundary of the plot while Cam 3 and Cam 

Fig. 1   The four game and trail cameras used in the study

Fig. 2   One of the game and trail time-lapse cameras installed in the soybean field
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4 monitored plants near the middle of the plot. The locations of the cameras are sum-
marized in Fig. 3.

With the cameras overlooking the plants at a height of about 2.4 m, each camera cap-
tured vertical aerial images covering a ground area of dimension 1.88 m × 1.32 m. The 
height of the camera was selected in order to capture reasonable sections of at least two 
rows of the soybean plants. Additionally, the cameras needed to be easily accessible for 
retrieving images as well as replacing batteries using a 910-mm 2-tier heavy-duty step lad-
der. Since natural illumination was used for imaging, the height was not expected to influ-
ence the intensity of reflected light detected from the target plants.

Using the installed cameras, images were taken between July 22 and August 1, 2015. 
Daytime images were color images while nighttime images were monochrome infrared 
(IR) images. Figure  4 shows daytime images obtained from Cam 1 on July 22 @16:00 
(left), July 27 @16:00 (middle), and July 31 @12:00 (right), 2015. Due to occasional 

Location Item
GPS Coordinates Elevation 

(m)Latitude Longitude
A Cam 1 35.83886 -90.66634 81.5
B Cam 2 35.83886 -90.66594 81.8

C Cam 3 35.83868 -90.66594 81.6
D Cam 4 35.83868 -90.66634 81.4
E ASU WS 35.83753 -90.66475 81.4

Approximate 
boundary of 
soybean plot 
during study

Fig. 3   GPS co-ordinates and elevation of camera and weather station (ASU WS) locations

Fig. 4   Daytime images of soybean plant canopy captured by Cam 1 on July 22, 27, and 31, 2015, respec-
tively
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strong winds, the actual field of view of the cameras at the time of capture shifted slightly 
within the general area being monitored, but this shift was not considered to affect the 
results significantly. Some of the images obtained had the shadow of the instrumentation 
but illumination compensation was accomplished in the image processing to eliminate this 
illumination defect. Figure 5 shows a nighttime image obtained from Cam 1 on July 22 
@22:00. Because the nighttime images were single band monochrome images (unsuitable 
for the multispectral image processing performed) with the appearance of overexposure to 
the IR light, they were not considered useful in this study. However, the average pixel value 
was explored to identify potential use in the future.

The air temperature stamped on the images at 30-min intervals was plotted over time to 
track the changing environmental conditions. Image data from the R (red), G (green), and 
B (blue) bands of the images were extracted and exported to Microsoft Excel for process-
ing and analysis, using the RGBExcel software application (Larbi 2016a). Average pixel 
value of the nighttime images was obtained and plotted against time from dusk to dawn. 
For each daytime image, an adjusted green red index (AGRI) image dataset was generated 
based on the equation

where IG and IR are the signal intensities (or pixel values) respectively in G and R bands. 
Next, the background (mainly soil) was removed by using a thresholding technique where 
values outside the range of 0.4 ≤ AGRI < 0.48 (i.e. AGRI pixel range for plants) were 
assigned zeros and those within the specified range were retained. The average value of the 
AGRI was obtained for the remaining pixels and plotted against the date and time of image 
collection.

As this study was only observational and no treatments were applied to the soybean 
plants at the different locations, only the plants’ response to weather conditions were 
tracked based on the AGRI data. The AGRI data was regressed with logs of solar radiation, 
air temperature, relative humidity, soil surface temperature, and soil temperature at 50-mm 
depth. The weather data which were obtained from the ASU Farm weather station were 
retrieved from the weather library at http://weath​erdat​a.astat​e.edu/Main.asp. Investigation 
of the skewness of the weather data suggested that they exhibited logarithmic behavior. 
Therefore they were transformed to logs for further analysis so that the distribution was 
closer to normal.

(1)AGRI = 0.5
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Fig. 5   Nighttime image of 
soybean plant canopy captured 
by Cam 1 on July 22, 2015

http://weatherdata.astate.edu/Main.asp
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Results and discussion

The changing environmental conditions over the period of observation, as portrayed by the 
changing temperature value stamped on the images, are shown in Fig. 6. Throughout this 
period, temperature at the locations of Cams 2, 3, and 4 appeared to be similar, while that 
for Cam 1 was higher. This behavior could be due to either true local temperature varia-
tions or differences between the embedded temperature sensors. The diurnal temperature 
variation (Lillesand et al. 2015) for all four camera locations was similar to the temperature 
data obtained from the ASU weather station. Overall, temperature values at all four camera 
locations were higher than that at the ASU weather station during the day and lower during 
the night. The temperature difference between Cam 1 and the ASU weather station (tem-
perature error) is shown in Fig. 7 to better portray this difference. 

The average pixel value of the nighttime images plotted against time of night and date 
generally showed increasing trends in both cases (Fig. 8). The average values for Cams 1 
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and 2 (which were located near the boundary of the soybean plot) were similar. Likewise, 
the average values for Cam 3 and Cam 4 (which were located near the middle of the plot) 
were also similar. These similarities likely indicate similar performance of plants in those 
locations in response to the prevailing conditions. However, individual comparisons of the 
average pixel values with corresponding temperature readings at the same location did not 
show much consistency for all the camera locations. Hence, the nighttime data was not 
further analyzed.

The raw R and G daytime image data were processed to obtain the AGRI image data. 
Figure 9a shows an example of the AGRI images obtained from one of the images from 
Cam 1. The plant pixel values were observed to range from about 0.40 to 0.48, while val-
ues outside this range represented the background. Figure  9b shows a further enhanced 
image with the background (mainly soil) removed by the thresholding method described 
above. Some plant pixels were falsely cutoff due to high light reflection caused by the ori-
entation of the affected leaves, but the proportion of pixels affected was considered to be 
insignificant.

The daytime average value of the AGRI image data with the background removed were 
tracked for the period of the study. Figure 10 shows the AGRI time-series data for Cam 1 
superimposed with the corresponding air temperature data. The rise-and-fall trends in the 
AGRI plotted data are quite similar to the air temperature variation although there are some 
departures. It appears that the trend was not solely influenced by the air temperature. The 

225

230

235

240

245

250

255

A
ve

ra
ge

 P
ix

el
 V

al
ue

 

Time of Night, hh:mm 

Cam 1
Cam 2
Cam 3
Cam 4

(a)

225

230

235

240

245

250

255

21-Jul 23-Jul 25-Jul 27-Jul 29-Jul 31-Jul

A
ve

ra
ge

 P
ix

el
 V

al
ue

 

Date 

Cam 1
Cam 2
Cam 3
Cam 4

(b)

Fig. 8   Average pixel value of nighttime IR images: a from dusk to dawn, and b over nine nights
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Fig. 9   Example of AGRI image from Cam 1: a with background (mainly soil) and b without background 
(Color figure online)
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daily peak AGRI value was observed to be at about 13:00 each day, which somewhat coin-
cides with the air temperature peak time.

The 10-day summary AGRI data for Cam 1 is shown in Fig. 11a, while the overall daily 
average values for all the four cameras are shown in Fig. 11b. The AGRI values from Cam 
1 were the highest while those from Cam 2 were the lowest; both locations were near the 
boundary of the plot. High AGRI values are indicative of low crop performance (i.e. low 
leaf greenness) due to some stress factor. Since the air temperature at Cam 1 was the high-
est throughout, it is likely that the plants in this location were the most stressed. Vice versa, 
plants in Cam 2 location were the least stressed. Visually, the plants in Cam 2 location 
appeared slightly greener than the plants at other locations. There was not much difference 
between the data from Cam 3 and Cam 4, which were located in the interior sections of the 
soybean field.

The regression of AGRI values with the logs of selected weather parameters provide 
some insightful relationships. The values of the weather parameters recorded represent typ-
ical values during the growing season. Figures 12, 13, 14, 15, and 16 show the relationships 
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of average AGRI with solar radiation, air temperature, relative humidity, soil surface tem-
perature, and soil temperature at 50-mm depth, respectively, at Cam 1 location (left) and 
at all four locations (right). Similar trends were observed among all four camera locations, 
with some variation, indicating consistency among the cameras in capturing crop response 
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Fig. 12   Relationship between AGRI and air temperature: a Cam 1 location and b all four camera locations
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Fig. 13   Relationship between AGRI and relative humidity: a Cam 1 location and b all four camera loca-
tions
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Fig. 14   Relationship between AGRI and solar radiation: a Cam 1 location and b all four camera locations
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trends. Generally, AGRI values increased with: air temperature from 20 °C to about 40 °C; 
soil surface temperature between about 20  °C to around 40 °C; soil 50-mm temperature 
from around 22 °C to roughly 38 °C; and solar radiation from zero to about 1000 W/m2. 
Increasing values of all these parameters generally represent a higher atmospheric water 
demand on plants, i.e. higher ET rates, leading to higher stress on the crop. On the other 
hand, AGRI values decreased with relative humidity from mid-30% to lower 90%. Higher 
relative humidity values represent a wetter atmosphere, which also decreases ET rates and 
crop stress. The decreasing order of correlation between AGRI and the weather parame-
ters is as follows: log of solar radiation (0.36 < R2 < 0.65) > log of soil surface tempera-
ture (0.23 < R2 < 0.38) > log of air temperature (0.09 < R2 < 0.30) > log of soil temperature 
at 50-mm depth (0.09 < R2 < 0.20) > log of relative humidity (0.00 < R2 < 0.18). With the 
exception of solar radiation, there appears to be some interactions between camera location 
and the other weather parameters. This implies that the variation in the AGRI data was due 
to the combined effect of multiple parameters. Nevertheless, solar radiation played the big-
gest role.

An assessment of the correlations suggests that higher AGRI values could be indicative 
of higher crop stress or lower crop health. This is because higher temperatures combined 
with lower relative humidity values tend to increase the rate of ET which is a determining 
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factor for irrigation scheduling. However, air temperature, soil 50-mm temperature, and 
relative humidity can be neglected due to low correlations, thus leaving only solar radia-
tion and soil surface temperature. While solar radiation is totally out of the farmer’s con-
trol, soil surface temperature can be partly controlled with irrigation. There are indications 
that other variables, most likely soil and crop variables, also account for the crop AGRI 
response in addition to these weather parameters. However, since the soil and crop vari-
ables were not measured, it is uncertain which particular variables contribute to explain-
ing the variability in the data from the different locations and to what extents. This can be 
explored further in an experimental study. Some other experimental studies involving game 
and trail time lapse cameras have been completed including Larbi et al. (2017a, b).

Although the current study was only observational and the weather variables studied 
cannot be adjusted by the farmer, it shows the potential for the time series data created to 
be employed in building models that can describe crop phenology throughout the growth 
cycle. This kind of information can be used for identifying different levels of susceptibil-
ity to various conditions among different varieties of the crop and can enhance irrigation 
scheduling. If relevant soil and crop variables are additionally integrated into the models, 
the information derived from the crop can assist in timely intervention where the plants 
show indication of high stress or other problems. Finally, the use of the time-lapse cameras 
can be combined with other leaf sensors to provide additional visual records of crop condi-
tion for the areas being monitored.

Conclusion

This observational study has demonstrated the potential of using game and trail time-lapse 
cameras to provide useful data for monitoring crops or studying time-series response to 
changing environmental conditions. The temperature measured by the internal temperature 
sensor of each camera showed similar trends among the four cameras used and these were 
similar to the temperature from a nearby weather station. By using the RGBExcel soft-
ware application to extract RGB image data into Microsoft Excel, images of soybean plants 
captured by the cameras were successfully processed and analyzed in Excel. The average 
Adjusted Green Red Index (AGRI), which was used to analyze daytime crop response to 
weather conditions, was regressed with weather data yielding varying correlation coeffi-
cients. Although the study was only observational and the parameters studied cannot be 
adjusted by the farmer, the time series data created can be employed in building models 
that can describe crop phenology throughout the growth cycle and could lead to better crop 
management. Despite some low correlations, the potential for using game and trail cameras 
with time-lapse capability to track changes in crop vegetation is established and the effects 
of varied treatments should be explored in future studies. Such studies should include simi-
lar experimental studies involving plants under different treatments to strengthen the evi-
dence of the potential to use game and trail cameras for crop monitoring. Future studies 
should also look into placing cameras in different management zones established based on 
aerial photos or soil series maps to reflect differences in the crop or soil. Other crops such 
as a variety of cover crops grown in Arkansas will be investigated. Additional sensors and 
experimental treatments will be applied to better understand the applicability and adopt-
ability of this practice by farmers.
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