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Abstract
We provide necessary and sufficient conditions for stochastic invariance of finite dimensional
submanifolds for solutions of stochastic partial differential equations (SPDEs) in continu-
ously embedded Hilbert spaces with non-smooth coefficients. Furthermore, we establish a
link between invariance of submanifolds for such SPDEs in Hermite Sobolev spaces and
invariance of submanifolds for finite dimensional SDEs. This provides a new method for
analyzing stochastic invariance of submanifolds for finite dimensional Itô diffusions, which
we will use in order to derive new invariance results for finite dimensional SDEs.

Keywords Stochastic partial differential equation · Continuously embedded Hilbert
spaces · Invariant manifold · Finite dimensional diffusion · Multi-parameter group ·
Hermite Sobolev space · Translation invariant solution
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1 Introduction

The problem of finding invariant submanifolds of solutions of stochastic partial differen-
tial equations (SPDEs) arises, for example, in connection with stochastic models in finance
wherein the submanifolds offer the possibility of finite dimensional realizations of the solu-
tions which are otherwise infinite dimensional (see, for example [6–8, 16, 17, 38–41]).
The problem, related to the computability of “interest rate term structure models”, is also
known as the “consistency problem” for such models; see [14]. In this paper we study the
mathematical problem of finding invariant submanifolds for a general class of SPDEs that
includes apart from quasi-semilinear and semilinear SPDEs (see, for example [13, 29, 40])
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a more recent class of SPDEs studied in [32, 33]. We will refer to this latter class as Itô type
SPDEs.

In this paper, we develop a general framework, which covers the aforementioned types
of SPDEs, and we present an invariance result for finite dimensional submanifolds, which
generalizes existing results in this direction. In particular, the usual assumption that the
volatilitiesmust be smooth, is not required in our framework (see Theorem 3.4). Furthermore,
we establish a link between invariance of submanifolds for such SPDEs in Hermite Sobolev
spaces and invariance of submanifolds for finite dimensional SDEs (see Theorem 6.3). Using
this connection, we will also contribute new invariance results for finite dimensional SDEs
(see, in particular Theorems 6.5 and 6.13). As we will see, our results are stable under the
dimension of the driving noise, which may in particular be infinite dimensional.

In order to outline our findings, let (G, H) be a pair of continuously embedded separable
Hilbert spaces; this means that G ⊂ H as sets, and that the embedding operator from
(G, ‖ · ‖G) into (H , ‖ · ‖H ) is continuous. Consider an SPDE of the form{

dYt = L(Yt )dt + A(Yt )dWt

Y0 = y0
(1.1)

driven by a R∞-Wiener process W with continuous coefficients L : G → H and A : G →
�2(H); we refer to Section 2 for further details. We emphasize that SPDEs of the type (1.1)
in particular cover the following two types of SPDEs:

• Semilinear SPDEs of the type{
dYt = (BYt + α(Yt ))dt + σ(Yt )dWt

Y0 = y0,
(1.2)

where B : H ⊃ D(B) → H is a densely defined, closed operator, and α : H → H
and σ : H → �2(H) are continuous mappings. Here the Hilbert space G is given by the
domain G := D(B), equipped with the graph norm

‖y‖G =
√

‖y‖2H + ‖By‖2H , y ∈ G, (1.3)

and the coefficients in (1.1) are given by L = B + α and A = σ . This includes SPDEs
in the framework of the semigroup approach (see, for example [9, 18]), which also arise
for the modeling of interest rate curves. We refer to Section 4.2 for more details.

• The above mentioned Itô type SPDEs (see [32, 33]), where the pair (G, H) of continu-
ously embedded Hilbert spaces is given by Hermite Sobolev spaces G = Sp+1(R

d) and
H = Sp(R

d) for some p ∈ R, and the coefficients L : G → H and A : G → �2(H)

are given by second and first order differential operators of the form

L(y) := 1

2

d∑
i, j=1

(〈σ, y〉〈σ, y〉
)i j∂
2
i j y −

d∑
i=1

〈bi , y〉∂i y, (1.4)

A j (y) := −
d∑

i=1

〈σ j
i , y〉∂i y, j ∈ N. (1.5)

where bi ∈ S−(p+1)(R
d) for i = 1, . . . , d and σ

j
i ∈ S−(p+1)(R

d) for i = 1, . . . , d and
j ∈ N, and where 〈·, ·〉 denotes the dual pair onS−(p+1)(R

d) ×Sp+1(R
d). We refer to

Section 5.3 for further details. Concerning Hermite Sobolev spaces, we refer to [5, App.
B]. At this point, let us mention that the Hermite Sobolev spaces (Sp(R

d))p∈R are sepa-
rable Hilbert spaces, which are between the Schwartz spaceS (Rd) of rapidly decreasing
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functions and its dual space S ′(Rd), the so-called space of tempered distributions. In
view of the above definitions (1.4) and (1.5), let us emphasize that for all p, q ∈ R with
q ≤ p we have the pair (Sp(R

d),Sq(R
d)) consists of continuously embedded Hilbert

spaces, and that the partial derivatives ∂i on the Schwartz spaceS (Rd) can be extended
to continuous linear operators ∂i : Sp+ 1

2
(Rd) → Sp(R

d) for any p ∈ R.

Let M ⊂ H be a finite dimensional C2-submanifold of H . We are interested in local
invariance of M , which means that for each starting point y0 ∈ M there exists a local
solution Y to the SPDE (1.1) with Y0 = y0 such that Y τ ∈ M , where the positive stopping
time τ > 0 denotes the lifetime of Y . Let us first recall a known result for semilinear SPDEs
of the type (1.2). If σ j ∈ C1(H) for each j ∈ N, then the following statements are equivalent:

(i) M is locally invariant for the semilinear SPDE (1.2).
(ii) We have

M ⊂ D(B), (1.6)

σ j |M ∈ �(TM ), j ∈ N, (1.7)

B|M + α|M − 1

2

∞∑
j=1

Dσ j · σ j |M ∈ �(TM ). (1.8)

Here �(TM ) denotes the space of all vector fields on M ; that it, the space of all mappings
A : M → H such that A(y) ∈ TyM for each y ∈ M , where TyM denotes the tangent
space to M at y. Furthermore, for each j ∈ N we denote by Dσ j · σ j |M the mapping
y 
→ Dσ j (y)σ j (y), y ∈ M .

For this result we refer to [13, 29]; see also [15], where the more general situation with
jump-diffusions and submanifolds with boundary has been treated. In [13], the conditions
(1.7) and (1.8) above are called “Nagumo type consistency” conditions. However the term
1
2

∑∞
j=1 Dσ j · σ j in condition (1.8) can also be viewed as a “Stratonovich” correction term,

which requires smoothness of the volatilities σ j , j ∈ N.
When dealing with the more general SPDE (1.1), the smoothness of the coefficients A j ,

j ∈ N becomes problematic, since they are defined between two different Hilbert spaces
A j : G → H . In particular, for Itô type SPDEs with coefficients of the form (1.4) and (1.5),
the volatilities A j , j ∈ N are typically not of class C1 (see Remark 5.8). Therefore, one of
the principal challenges that we deal with in this paper is to find a suitable generalization of
condition (1.8) for these SPDEs.

This leads to a geometric framework where we consider (G, H)-submanifolds. More
precisely, a C2-submanifoldM of H is called a (G, H)-submanifold of class C2 ifM ⊂ G
and τH ∩ M = τG ∩ M , where τH and τG denote the topologies of H and G. In our main
result we will show that for such a submanifold M the following statements are equivalent:

(i) M is locally invariant for the SPDE (1.1).
(ii) We have

A j |M ∈ �(TM ), j ∈ N, (1.9)

[L|M ]�(TM ) − 1

2

∞∑
j=1

[A j |M , A j |M ]M = [0]�(TM ). (1.10)

We refer to Theorem 3.4 for the precise result and further details. The condition (1.10) is
an equation in the quotient space A(M )/�(TM ), where A(M ) denotes the space of all

123



R. Bhaskaran and S. Tappe

mappings A : M → H . Furthermore, for each j ∈ N the element [A j |M , A j |M ]M arises
from the quadratic variation term in Itô’s formula, when we realize the solutions Y of the
SPDE (1.1) on M as the image Y = φ(X) of a finite dimensional process X and a local
parametrization φ : V → U ∩M of the submanifoldM ; we refer to Definition 3.2 for more
details. The advantage in this formulation is clearly that it does not require smoothness of the
vector fields A j , j ∈ N, which is also seen in subsequent results; see, for example Theorem
3.16.

In particular, our main result applies to semilinear SPDEs of the type (1.2), where σ is
only assumed to be continuous. Recalling that G = D(B) endowed with the graph norm
(1.3), in this situation we will show that for a finite dimensional C2-submanifold M of H
the following statements are equivalent:

(i) M is locally invariant for the semilinear SPDE (1.2).
(ii) M is a (G, H)-submanifold of class C2, which is locally invariant for the semilinear

SPDE (1.2).
(iii) M is a (G, H)-submanifold of class C2, and we have

σ j |M ∈ �(TM ), j ∈ N, (1.11)

[(B + α)|M ]�(TM ) − 1

2

∞∑
j=1

[σ j |M , σ j |M ]M = [0]�(TM ). (1.12)

Furthermore, if σ j ∈ C1(H) for each j ∈ N, then condition (1.12) is equivalent to (1.8). We
refer to Theorem 4.14 and Remark 4.15 for further details. These findings are a consequence
a more general result for so-called quasi-semilinear SPDEs, which we establish in this paper;
see Theorem 4.9.

Note that in the aforementioned result for semilinear SPDEs we only assume that M is
a finite dimensional C2-submanifold of H , whereas in our main result we assume that M
is a (G, H)-submanifold of class C2. Indeed, as the previous equivalences (i)–(iii) show,
for semilinear SPDEs the submanifoldM is automatically a (G, H)-submanifold in case of
local invariance, which is due to the fact that G = D(B) endowed with the graph norm (1.3).

Our main result also applies to Itô type SPDEs (1.1), where the coefficients are of the
form (1.4) and (1.5), and where we recall that G = Sp+1(R

d) and H = Sp(R
d) for some

p ∈ R. Then, for any 	 ∈ G the submanifold

M = {τx	 : x ∈ R
d}

is locally invariant for the SPDE (1.1), where (τx )x∈Rd denotes the group of translation
operators on H . Here, for any x ∈ R

d the translation operator τx is defined by extending the
translation τx : S (Rd) → S (Rd) given by

(τxϕ)(y) := ϕ(y − x) for all y ∈ R
d

to an operator τx : S ′(Rd) → S ′(Rd) by duality as

〈τx	,ϕ〉 := 〈	, τ−xϕ〉 for all 	 ∈ S ′(Rd) and ϕ ∈ S (Rd).

The aforementioned result shows that the solutions to the Itô type SPDE (1.1) are translation
invariant; that is, we have Y = τX	 for some Rd -valued diffusion X ; see also [32].

Wewill generalize this result to SPDEs (1.1) with a general pair of continuously embedded
Hilbert spaces (G, H) as follows. Let T = (T (t))t∈Rd be a multi-parameter C0-group on
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H ; that is, T is a family of continuous linear operators T (t) ∈ L(H) such that the following
conditions are fulfilled:

(1) T (0) = Id.
(2) We have T (t + s) = T (t)T (s) for all t, s ∈ R

d .
(3) For each x ∈ H the orbit map ξx : Rd → H , ξx (t) := T (t)x is continuous.

We refer to [5, App. A] for further details about multi-parameterC0-groups.Moreover, letN
be an m-dimensional C2-submanifold of Rd for some m ≤ d , and consider the submanifold

M = {T (t)y0 : t ∈ N } (1.13)

for some y0 ∈ G. Denoting by ψ : Rd → H the orbit map ψ(t) := T (t)y0 for t ∈ R
d , we

will show that the following statements are equivalent:

(i) M is locally invariant for the SPDE (1.1).
(ii) N is locally invariant for the Rd -valued SDE{

dXt = b̄(Xt )dt + σ̄ (Xt )dWt

X0 = x0,

where σ̄ : N → �2(Rd) and b̄ : N → R
d are the unique solutions of the equations

L|M = 1

2

d∑
i, j=1

(σ̄ σ̄
)i j ◦ ψ−1|M Bi j |M +
d∑

i=1

b̄i ◦ ψ−1|M Bi |M , (1.14)

A j |M =
d∑

i=1

σ̄
j
i ◦ ψ−1|M Bi |M , j ∈ N. (1.15)

We refer to Theorem 5.2 for the precise statement. Note that the structures of the coefficients
in (1.4) and (1.5) are particular cases of (1.14) and (1.15). This result is a consequence of
a more general result for arbitrary (G, H)-submanifolds, which we establish in this paper;
see Theorem 3.12. Moreover, we will show that the structure (1.13) of the submanifold M
appears naturally with coefficients of the kind (1.14) and (1.15) in case of local invariance;
see Theorem 5.6 for the precise result.

Diffusions on manifolds in R
d is a well studied topic (see for a partial list [11, 12, 20–

22, 37]). In this paper, we will also establish new invariance results for finite dimensional
diffusions, which come as a consequence of Theorem 3.4. More precisely, consider an R

d -
valued diffusion of the type {

dXt = b(Xt )dt + σ(Xt )dWt

X0 = x0
(1.16)

with coefficients b : Rd → R
d and σ : Rd → �2(Rd), and let N be a submanifold of Rd .

Before we proceed, let us mention that for finite dimensional diffusions of the type (1.16)
there are also invariance results in the situation where N is a closed subset of Rd ; see in
particular the two works [1, 2] and the references therein, such as [3, 4], where Nagumo-type
conditions on the second order normal cone are provided, and [10], where conditions on the
first order normal cone with the Stratonovich correction term are provided. We will compare
our upcoming findings with those from the aforementioned papers later on.

Our essential assumption in the present paper is that the coefficients of the SDE (1.16)
belong to a Hermite Sobolev space with sufficient regularity. More precisely, we assume
that for some q > d

4 we have bi ∈ Sq(R
d) for i = 1, . . . , d and σ

j
i ∈ Sq(R

d) for
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i = 1, . . . , d and j ∈ N. In view of the Sobolev embedding theorem for Hermite Sobolev
spaces (see [5, Thm. B.19]) this essentially means that the components are continuous, with
some restrictions on the growth of the functions, but do not need to satisfy any smoothness
conditions. Let N be an m-dimensional C2-submanifold of Rd for some m ≤ d . We set
G := S−q(R

d), H := S−(q+1)(R
d), define the coefficients of the SPDE (1.1) as (1.4), (1.5)

with p := −(q + 1), and consider the submanifold

M := {δx : x ∈ N },
where δx denotes the Dirac distribution at point x . Then the following statements are equiv-
alent:

(i) M is locally invariant for the SPDE (1.1).
(ii) N is locally invariant for the SDE (1.16).

We refer to Theorem 6.3, which establishes the announced link between the invariance of
submanifolds for SPDEs in Hermite Sobolev spaces and the invariance of submanifolds for
finite dimensional SDEs. In particular, in some situations it turns out that locally invariance
of M for the SPDE (1.1) is easier to prove, which is the key for providing new invariance
results for finite dimensional SDEs.

One application of this connection appears in the situation, where we consider the condi-
tions

b|N ∈ �(TN ), (1.17)

σ j |N ∈ �(TN ), j ∈ N, (1.18)

and where we are interested in finding an additional condition ensuring that N is locally
invariant for the SDE (1.16). In this regard, we will show that under conditions (1.17) and
(1.18) the following conditions are equivalent:

(i) N is locally invariant for the SDE (1.16).
(ii) We have

∞∑
j=1

([A j |M , A j |M ]M − [ Ā j (A j (·), ·)|M ]�(TM )

) = [0]�(TM ),

where, in accordance with (1.5), we have set

Ā j (y, z) := −
d∑

i=1

〈σ j
i , z〉∂i y, j ∈ N.

We refer to Theorem 6.5 for further details. A consequence of this result is that the conditions

b|N ∈ �(TN ),

σ j |N ∈ �∗(TN ), j ∈ N,

where�∗(TN )denotes the spaceof all locally simultaneous vectorfields onN , are sufficient
for local invariance of N for the SDE (1.16); see Proposition 6.6. This is a generalization
of the result that an affine submanifold N is locally invariant if and only if we have (1.17)
and (1.18). We also establish such a result in the general framework for SPDEs of the type
(1.1); see Corollary 3.9.

Another application of the connection between invariance of submanifolds for SDEs and
SPDEs occurs in the situation, where the submanifold N is given by the zeros of smooth
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functions. More precisely, we assume that the dimension ofN is given bym = d−n, where
n < d , and that there exist an open subset O ⊂ R

d and a mapping f : Rd → R
n such that

N = {x ∈ O : f (x) = 0}.
Concerning the components of f we assume that fk ∈ Sq+1(R

d) for all k = 1, . . . , n. As
we will show, then the following statements are equivalent:

(i) The submanifold N is locally invariant for the SDE (1.16).
(ii) For all k = 1, . . . , n and all x ∈ N we have

〈σ j (x),∇ fk(x)〉 = 0, j ∈ N, (1.19)

〈b(x),∇ fk(x)〉 + 1

2
tr
(
σ(x)σ (x)
H fk (x)

) = 0, (1.20)

where H fk (x) denotes the Hessian matrix of fk at point x .

For this result, we refer to Theorem 6.13. Note that the conditions (1.19) and (1.20) are
similar to those in [3, 4], where invariance of closed subsets for controlled diffusions with
Lipschitz coefficients has been studied.

We illustrate Theorem 6.13 with the example of the unit sphere Sd−1 (Corollary 6.15 and
Example 6.16) and recover an earlier result of Stroock. Furthermore, we provide an example
with the unit sphere S1, where our results apply, but, to the best of our knowledge, none of
the known results can be applied; see Example 6.17.

The paper is organized as follows: Section 2 introduces SPDEs in the framework of con-
tinuously embedded Hilbert spaces. In Section 3 we present our main result concerning
invariant manifolds. Afterwards, in Section 4 we present consequences for quasi-semilinear
SPDEs, which includes the particular case of semilinear SPDEs. In Section 5 we study the
invariance of manifolds which are generated by orbit maps; this includes Itô type SPDEs.
In Section 6 we provide the link between the invariance of submanifolds for finite dimen-
sional SDEs and the invariance of submanifolds for SPDEs in Hermite Sobolev spaces, and
provide new invariance results for finite dimensional SDEs. For convenience of the reader,
in the electronic appendix [5] (which is a more detailed version of this paper) we provide
the necessary background, including finite dimensional submanifolds in embedded Hilbert
spaces, multi-parameter strongly continuous groups and Hermite Sobolev spaces. The proofs
of some technical auxiliary results are also deferred to [5].

2 Stochastic Partial Differential Equations in Continuously Embedded
Hilbert Spaces

In this section we provide the required prerequisites about SPDEs in continuously embedded
Hilbert spaces.

Definition 2.1 We call W = (W j ) j∈N a standard R
∞-Wiener process if (W j ) j∈N is a

sequence of independent real-valued standard Wiener processes on some stochastic basis.

For a Hilbert space H we denote by �2(H) the Hilbert space of all H -valued sequences
y = (y j ) j∈N such that

‖y‖�2(H) :=
( ∞∑

j=1

‖y j‖2H
)1/2

< ∞.
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Proposition 2.2 Let W = (W j ) j∈N be a standard R∞-Wiener process on a stochastic basis
(�,F , (Ft )t∈R+ ,P), let H be a separable Hilbert space, and let A be a predictable �2(H)-
valued process such that we have P-almost surely∫ t

0
‖As‖2�2(H)

ds < ∞, t ∈ R+. (2.1)

Then the process (
∫ t
0 AsdWs)t∈R+ given by

∫ t

0
AsdWs :=

∞∑
j=1

∫ t

0
A j
s dW

j
s , t ∈ R+ (2.2)

is awell-defined H-valued continuous localmartingale, and the convergence is in probability,
uniformly on compact intervals.

Proof Let T > 0 be arbitrary. We denote by M2
T (H) the space of all H -valued square-

integrable martingales M = (Mt )t∈[0,T ], which, endowed with the norm

‖M‖∞ = E

[
sup

t∈[0,T ]
‖Mt‖2H

]1/2
, M ∈ M2

T (H)

is a Hilbert space. Furthermore, by Doob’s martingale inequality, an equivalent norm is given
by

‖M‖T = E
[‖MT ‖2H

]1/2
, M ∈ M2

T (H).

Concerning the predictable process A, we first suppose that

E

[ ∫ T

0
‖As‖2�2(H)

ds

]
< ∞.

Then by the Itô isometry and the monotone convergence theorem we have

∞∑
j=1

E

[∥∥∥∥
∫ T

0
A j
s dW

j
s

∥∥∥∥
2

H

]
=

∞∑
j=1

E

[ ∫ T

0
‖A j

s ‖2Hds
]

= E

[ ∫ T

0
‖As‖2�2(H)

ds

]
< ∞,

and hence the series
∑∞

j=1

∫ T
0 A j

s dW
j
s converges in M2

T (H). The situation with a general
predictable process A satisfying (2.1) follows by localization, and, by the definition of the
norm ‖ · ‖∞, the convergence is in probability, uniformly on compact intervals. ��
Definition 2.3 Let G and H be two normed spaces. Thenwe call (G, H) continuously embed-
ded normed spaces (or normed spaceswith continuous embedding) if the following conditions
are fulfilled:

(1) We have G ⊂ H as sets.
(2) The embedding operator Id : (G, ‖ · ‖G) → (H , ‖ · ‖H ) is continuous; that is, there is

a constant K > 0 such that

‖x‖H ≤ K‖x‖G for all x ∈ G.

Definition 2.4 Let H1, . . . , Hn be normed spaces. Then we call (H1, . . . , Hn) continuously
embedded normed spaces if for each k = 1, . . . , n − 1 the pair (Hk, Hk+1) is a pair of
continuously embedded normed spaces.
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Now, let (G, H) be separable Hilbert spaces with continuous embedding. Furthermore,
let L : G → H and A : G → �2(H) be continuous1 mappings. Then for each j ∈ N the
component A j : G → H is continuous.

Definition 2.5 Let y0 ∈ G be arbitrary. A triplet (B,W , Y ) is called a local martingale
solution to the SPDE (1.1) with Y0 = y0 if the following conditions are fulfilled:

(1) B = (�,F , (Ft )t∈R+ ,P) is a stochastic basis; that is, a filtered probability space
satisfying the usual conditions.

(2) W is a standard R∞-Wiener process on the stochastic basis B.
(3) Y is a G-valued adapted2 process such that for some strictly positive stopping time τ > 0

we have P-almost surely
∫ t∧τ

0

(‖L(Ys)‖H + ‖A(Ys)‖2�2(H)

)
ds < ∞, t ∈ R+ (2.3)

and P-almost surely

Yt∧τ = y0 +
∫ t∧τ

0
L(Ys)ds +

∫ t∧τ

0
A(Ys)dWs, t ∈ R+, (2.4)

where the stochastic integral is defined according to (2.2). The stopping time τ is also
called the lifetime of Y .

If we can choose τ = ∞, then (B,W , Y ) is also called a global martingale solution (or
simply a martingale solution) to the SPDE (1.1) with Y0 = y0.

Remark 2.6 As it is apparent from the integrability condition (2.3), the stochastic integrals
appearing in (2.4) are understood as stochastic integrals in the Hilbert space (H , ‖ · ‖H ).
Therefore, the right-hand side of (2.4) is generally H-valued, whereas the left-hand side is
G-valued. This indicates that the existence of martingale solutions to the SPDE (1.1) can
generally not be warranted. If there exists a martingale solution Y , then its sample paths are
continuous with respect to the norm ‖ ·‖H , but they do not need to be continuous with respect
to the norm ‖ · ‖G.
Remark 2.7 Let B be a stochastic basis. In our situation, there are two reasonable ways to
define what it means that a G-valued process Y is adapted; namely:

(1) We regard Y as a process taking its values in the subspace G of the Hilbert space
(H , ‖ · ‖H ) and call it adapted if for each t ∈ R+ the mapping Yt : � → G is Ft -
B(H)G-measurable, where B(H)G denotes the trace σ -algebra

B(H)G = {B ∩ G : B ∈ B(H)}.
(2) We regard Y as a process taking its values in the Hilbert space (G, ‖ · ‖G) and call it

adapted if for each t ∈ R+ the mapping Yt : � → G is Ft -B(G)-measurable.

However, by Kuratowski’s theorem (see, for example [30, Thm. I.3.9]) we have B(G) =
B(H)G, showing that these two concepts of adaptedness are equivalent.

1 More precisely, here and in the sequel, we call a mapping L : G → H continuous if L : (G, ‖ · ‖G ) →
(H , ‖ · ‖H ) is continuous. The continuity of A is understood analogously.
2 See Remark 2.7 for details about this notion.
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Remark 2.8 The SPDE (1.1) can also be realized as an SPDE driven by a trace class Wiener
process, as considered, for example in [9, 18]. Indeed, let U be a separable Hilbert space,
and let W̄ be an U-valued Q-Wiener process for some nuclear, self-adjoint, positive definite
linear operator Q ∈ L++

1 (U ); see, for example [9, Def. 4.2]. There exist an orthonormal
basis {e j } j∈N of U and a sequence (λ j ) j∈N ⊂ (0,∞) with

∑
j∈N λ j < ∞ such that

Qe j = λ j e j for all j ∈ N.

The space U0 := Q1/2(U ), equipped with the inner product

〈u, v〉U0 := 〈Q−1/2u, Q−1/2v〉U , u, v ∈ U0

is another separable Hilbert space. We fix the orthonormal basis {g j } j∈N of U0 given by
g j := √

λ j e j for each j ∈ N, andwedenote by L0
2(H) := L2(U0, H) the space of allHilbert-

Schmidt operators from U0 into H. Note that L0
2(H) ∼= �2(H), because T 
→ (Tg j ) j∈N is

an isometric isomorphism. By [9, Prop. 4.3] the sequence (W̄ j ) j∈N defined as

W̄ j := 1√
λ j

〈W̄ , e j 〉U , j ∈ N

is a sequence of independent real-valued standard Wiener processes. Hence W = (W̄ j ) j∈N
is a standard R

∞-Wiener process. As a consequence of the series representation of the
stochastic integral with respect to the trace class Wiener process W̄ (see, for example [25,
Prop. 2.4.5]), the SPDE (1.1) can be expressed as{

dYt = L(Yt )dt + Ā(Yt )dW̄t

Y0 = y0
(2.5)

where the continuous mapping Ā : G → L0
2(H) is given by

Ā(y) :=
∞∑
j=1

〈•, g j 〉U0 A
j (y), y ∈ G,

and, vice versa, the SPDE (2.5) can be expressed by the SPDE (1.1), where the continuous
mapping A : G → �2(H) is given by

A(y) := ( Ā(y)g j ) j∈N, y ∈ G.

Remark 2.9 In the particular case G = H = R
d the SPDE (1.1) is rather an SDE, and a

martingale solution (B,W , Y ) is a weak solution. If, in this case, the continuous mappings
L : Rd → R

d and A : Rd → �2(Rd) satisfy the linear growth condition, then for each
y0 ∈ R

d there exists a global weak solution (B,W , Y ) to the SDE (1.1) with Y0 = y0. Indeed,
taking into account Remark 2.8, this follows from [19, Thm. 2] (or [18, Thm. 3.12]), applied
with H = H−1 = R

m and J = IdRm .

Remark 2.10 The situation where the Wiener process W isRr -valued is covered by choosing
A j ≡ 0 for all j > r . If we are additionally in the situation of Remark 2.9, then the existence
of global weak solutions also follows from [21, Thms. IV.2.3 and IV.2.4].

Remark 2.11 If there is no ambiguity, we will simply call Y a local martingale solution or a
global martingale solution to the SPDE (1.1) with Y0 = y0.

Now, let M ⊂ G be a subset. In this paper, the subset M will typically be a finite
dimensional submanifold.
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Definition 2.12 The subset M is called locally invariant for the SPDE (1.1) if for each
y0 ∈ M there exists a local martingale solution Y to the SPDE (1.1) with Y0 = y0 and
lifetime τ > 0 such that Y τ ∈ M up to an evanescent set3.

Definition 2.13 The subsetM is called globally invariant (or simply invariant) for the SPDE
(1.1) if for each y0 ∈ M there exists a global martingale solution Y to the SPDE (1.1) with
Y0 = y0 such that Y ∈ M up to an evanescent set.

3 The General Invariance Result

In this section we provide the general invariance result. Let (G, H) be separable Hilbert
spaces with continuous embedding, and consider the SPDE (1.1) with continuous mappings
L : G → H and A : G → �2(H). Let M be a finite dimensional (G, H)-submanifold of
class C2. More precisely,M is a finite dimensional C2-submanifold of H such thatM ⊂ G
and τH ∩ M = τG ∩ M , where τG and τH denote the respective topologies. Then for each
y ∈ M there exists a local parametrization φ : V → U ∩ M around y, which satisfies
φ ∈ C(V ;G) ∩ C2(V ; H); see [5, Prop. 3.21]. Recall that �(TM ) denotes the subspace of
all vector fields onM ; that it, the space of all mappings A : M → H such that A(y) ∈ TyM
for each y ∈ M , where TyM denotes the tangent space to M at y.

Definition 3.1 Let φ : V → U ∩ M be a local parametrization of M .

(1) For a mapping a : V → R
m we define φ∗a : U ∩ M → H as

(φ∗a)(y) := Dφ(x)a(x), y ∈ U ∩ M ,

where x := φ−1(y) ∈ V .
(2) Similarly, for two mappings a, b : V → R

m we define φ∗∗(a, b) : U ∩ M → H as

(φ∗∗(a, b))(y) := D2φ(x)(a(x), b(x)), y ∈ U ∩ M ,

where x := φ−1(y) ∈ V .
(3) SettingMU := U ∩M , for a vector field A ∈ �(TMU ) we define φ−1∗ A : V → R

m as

(φ−1∗ A)(x) := Dφ(x)−1A(y), x ∈ V ,

where y := φ(x) ∈ U ∩ M .

We denote by A(M ) be the linear space of all mappings A : M → H . In the following
definition we consider the quotient space A(M )/�(TM ), and for each A ∈ A(M ) we
denote by [A]�(TM ) the corresponding equivalence class, for which any representative is of
the form A + B with some vector field B ∈ �(TM ).

Definition 3.2 Let A, B ∈ �(TM ) be two vector fields on M . We define the mapping

[A, B]M ∈ A(M )/�(TM )

as follows. For each local parametrization φ : V → U ∩ M a local representative of
[A, B]M on U ∩ M is given by

φ∗∗(φ−1∗ A|U∩M , φ−1∗ B|U∩M ),

where we recall the notation from Definition 3.1.

3 A random set A ⊂ � × R+ is called evanescent if the set {ω ∈ � : (ω, t) ∈ A for some t ∈ R+} is a
P-nullset, cf. [23, 1.1.10].
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Remark 3.3 Note that, according to [5, Lemma 3.19], the Definition 3.2 of [A, B]M does
not depend on the choice of the parametrization.

Now, we are ready to state our main result.

Theorem 3.4 The following statements are equivalent:

(i) The submanifold M is locally invariant for the SPDE (1.1).
(ii) We have

A j |M ∈ �(TM ), j ∈ N, (3.1)

[L|M ]�(TM ) − 1

2

∞∑
j=1

[A j |M , A j |M ]M = [0]�(TM ). (3.2)

(iii) The mappings

A|M : (M , ‖ · ‖H ) → (�2(H), ‖ · ‖�2(H)), (3.3)

L|M : (M , ‖ · ‖H ) → (H , ‖ · ‖H ) (3.4)

are continuous, and for each y0 ∈ M there exists a local martingale solution Y to the
SPDE (1.1) with Y0 = y0 and lifetime τ such that Y τ ∈ M up to an evanescent set and
the sample paths of Y τ are continuous with respect to ‖ · ‖G.

Proposition 3.5 Suppose that the submanifold M is locally invariant for the SPDE (1.1). If
the submanifoldM has one chart with a global parametrization φ : V → M , and the open
set V is globally invariant for the Rm-valued SDE{

dXt = �(Xt )dt + a(Xt )dWt

X0 = x0,

where the continuous mappings � : V → R
m and a : V → �2(Rm) are the unique solutions

of the equations

A j |M = φ∗a j , j ∈ N, (3.5)

L|M = φ∗� + 1

2

∞∑
j=1

φ∗∗(a j , a j ), (3.6)

then the submanifold M is globally invariant for the SPDE (1.1).

Remark 3.6 In view of Proposition 3.5 and subsequent results (such as Proposition 3.11) we
point out that the unique mappings � : V → R

m and a : V → �2(Rm) which solve the Eqs.
3.5 and 3.6 are automatically continuous. This is a consequence of [5, Lemma 4.13].

Remark 3.7 Choosing G = H = R
d , we see that Theorem 3.4 and Proposition 3.5 cover

the well-known situation of finite dimensional SDEs.

Before we provide the proofs of Theorem 3.4 and Proposition 3.5, let us state some
consequences of these results. Consider the conditions

L|M ∈ �(TM ), (3.7)

A j |M ∈ �(TM ), j ∈ N. (3.8)

We are interested in finding an additional condition which ensures such that M is locally
invariant for the SPDE (1.1).
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Proposition 3.8 Suppose that conditions (3.7) and (3.8) is fulfilled. Then the following state-
ments are equivalent:

(i) M is locally invariant for the SPDE (1.1).
(ii) We have

∞∑
j=1

[A j |M , A j |M ]M = [0]�(TM ).

Proof This is a consequence of Theorem 3.4. ��

We say that the submanifoldM is affine if for any local parametrization φ : V → U ∩M
we have D2φ = 0.

Corollary 3.9 Suppose the submanifoldM is affine. Then the following statements are equiv-
alent:

(i) M is locally invariant for the SPDE (1.1).
(ii) We have (3.7) and (3.8).

Proof This is a consequence of Theorem 3.4 and Proposition 3.8. ��

Remark 3.10 Consider the situation G = H and A j ∈ C1(H) for all j ∈ N. If∑∞
j=1 DA j (y)A j (y) converges for each y ∈ H, and the mapping

∑∞
j=1 DA j · A j is con-

tinuous, then we can rewrite the SPDE (1.1) in Stratonovich form as
{
dYt = K (Yt )dt + A(Yt ) ◦ dWt

Y0 = y0,

where K : H → H is given by

K = L − 1

2

∞∑
j=1

DA j · A j .

If we have (3.1), then by the decomposition [5, Prop. 3.25, eqn. (3.2)] we have

[K |M ]�(TM ) = [L|M ]�(TM ) − 1

2

∞∑
j=1

[A j |M , A j |M ]M ,

and hence condition (3.2) is equivalent to

K |M ∈ �(TM ).

We will present a corresponding result for continuously embedded Hilbert spaces with an
additional intermediate space later on; see Theorem 3.15 below.

We can express the statement of Theorem 3.4 in local coordinates as follows.

Proposition 3.11 The following statements are equivalent:

(i) The submanifold M is locally invariant for the SPDE (1.1).
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(ii) For each local parametrization φ : V → U ∩ M there are continuous mappings
� : V → R

m and a : V → �2(Rm) which are the unique solutions of the equations

A j |U∩M = φ∗a j , j ∈ N, (3.9)

L|U∩M = φ∗� + 1

2

∞∑
j=1

φ∗∗(a j , a j ). (3.10)

(iii) For each y ∈ M there exist a local parametrization φ : V → U ∩ M around y
and continuous mappings � : V → R

m and a : V → �2(Rm) which are the unique
solutions of the Eqs. 3.9 and 3.10.

Proof This is an immediate consequence of Theorem 3.4. ��
In the following two results we assume that the submanifoldM is induced (ψ,N ), where

N is an m-dimensional C2-submanifold of Rd , and ψ ∈ C2(Rd ; H) is a C2-immersion on
N such that ψ |N : N → ψ(N ) is a homeomorphism; see [5, Def. 3.32].

Theorem 3.12 The following statements are equivalent:

(i) The submanifold M is locally invariant for the SPDE (1.1).
(ii) The submanifold N is locally invariant for the SDE{

dXt = b(Xt )dt + σ(Xt )dWt

X0 = x0,
(3.11)

where the continuous mappings4 b : N → R
d and σ : N → �2(Rd) are the unique

solutions of the equations

A j |M = ψ∗σ j , j ∈ N, (3.12)

L|M = ψ∗b + 1

2

∞∑
j=1

ψ∗∗(σ j , σ j ). (3.13)

Proof (i)⇒ (ii): Let y ∈ M be arbitrary, and let ϕ : V → W ∩N be a local parametrization
around x := ψ−1(y) ∈ N . By [5, Lemma 3.31] there exists an open neighborhood U ⊂ H
of y such that φ := ψ ◦ ϕ : V → U ∩ M is a local parametrization around y. Furthermore,
by Proposition 3.11 there are continuous mappings � : V → R

m and a : V → �2(Rm)

which are the unique solutions of the Eqs. 3.9 and 3.10. We define the continuous mappings
b : W ∩ N → R

d and σ : W ∩ N → �2(Rd) as

σ j := ϕ∗a j , j ∈ N,

b := ϕ∗� + 1

2

∞∑
j=1

ϕ∗∗(a j , a j ).

Since y ∈ M was arbitrary, by Proposition 3.11 we deduce that the submanifoldN is locally
invariant for the SDE (3.11). Furthermore, by [5, Lemma 3.35] we obtain

A j |U∩M = φ∗a j = ψ∗ϕ∗a j = ψ∗σ j , j ∈ N

4 If the SDE (3.11) is locally invariant, then it suffices to specify the coefficients b and σ on the submanifold
N .
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as well as

L|U∩M = φ∗� + 1

2

∞∑
j=1

φ∗∗(a j , a j )

= ψ∗ϕ∗� + 1

2

∞∑
j=1

(
ψ∗∗(ϕ∗a j , ϕ∗a j ) + ψ∗ϕ∗∗(a j , a j )

)

= ψ∗b + 1

2

∞∑
j=1

ψ∗∗(σ j , σ j ).

Since the element y ∈ M was arbitrary, this procedure provides uswith continuousmappings
b : N → R

d and σ : N → �2(Rd) which are the unique solutions of the Eqs. 3.12 and
3.13.
(ii) ⇒ (i): Let y ∈ M be arbitrary, and let ϕ : V → W ∩ N be a local parametrization
around x := ψ−1(y) ∈ N . By [5, Lemma 3.31] there exists an open neighborhood U ⊂ H
of y such that φ := ψ ◦ ϕ : V → U ∩ M is a local parametrization around y. Since N
is locally invariant for the SDE (3.11), by Proposition 3.11 there are continuous mappings
� : V → R

m and a : V → �2(Rm) which are the unique solutions of the equations

σ j |W∩N = ϕ∗a j , j ∈ N,

b|W∩N = ϕ∗� + 1

2

∞∑
j=1

ϕ∗∗(a j , a j ).

By [5, Lemma 3.35] we obtain

A j |U∩M = ψ∗σ j |W∩N = ψ∗ϕ∗a j = φ∗a j , j ∈ N

as well as

L|U∩M = ψ∗b|W∩N + 1

2

∞∑
j=1

ψ∗∗(σ j |W∩N , σ j |W∩N )

= ψ∗ϕ∗� + 1

2

∞∑
j=1

(
ψ∗∗(ϕ∗a j , ϕ∗a j ) + ψ∗ϕ∗∗(a j , a j )

)

= φ∗� + 1

2

∞∑
j=1

φ∗∗(a j , a j ).

Therefore, by Proposition 3.11 the submanifoldM is locally invariant for the SPDE (1.1). ��
For the next result, recall that the submanifold M has one chart if N has one chart; see

[5, Lemma 3.33].

Proposition 3.13 If the submanifold M is locally invariant for the SPDE (1.1) and the sub-
manifold N has one chart with a global parametrization ϕ : V → N , then for continuous
mappings � : V → R

m and a : V → �2(Rm) the following statements are equivalent:

(i) � : V → R
m and a : V → �2(Rm) are the unique solutions of the Eqs. 3.5 and 3.6.

(ii) � : V → R
m and a : V → �2(Rm) are the unique solutions of the equations

σ j = ϕ∗a j , j ∈ N, (3.14)
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b = ϕ∗� + 1

2

∞∑
j=1

ϕ∗∗(a j , a j ), (3.15)

where the continuous mappings b : N → R
d and σ : N → �2(Rd) are the unique

solutions of the Eqs. 3.12 and 3.13.

If any of the previous two conditions is fulfilled and the open set V is globally invariant for
the Rm-valued SDE {

d�t = �(�t )dt + a(�t )dWt

�0 = ξ0,

then the submanifoldM is globally invariant for the SPDE (1.1), and the submanifoldN is
globally invariant for the SPDE (3.11).

Proof By [5, Lemma 3.33] the submanifold M has one chart with global parametrization
φ := ψ ◦ ϕ : V → M .
(i) ⇒ (ii): Taking into account [5, Lemma 3.35], by (3.12) and (3.5) we obtain

σ j = ψ−1∗ ψ∗σ j = ψ−1∗ A j |M = ψ−1∗ φ∗a j = ψ−1∗ ψ∗ϕ∗a j = ϕ∗a j , j ∈ N,

and by (3.13) and (3.6) we obtain

b − 1

2

∞∑
j=1

ϕ∗∗(a j , a j ) = ψ−1∗ ψ∗
(
b − 1

2

∞∑
j=1

ϕ∗∗(a j , a j )

)

= ψ−1∗
(
L|M − 1

2

∞∑
j=1

(
ψ∗∗(ϕ∗a j , ϕ∗a j ) + ψ∗ϕ∗∗(a j , a j )

))

= ψ−1∗
(
L|M − 1

2

∞∑
j=1

φ∗∗(a j , a j )

)
= ψ−1∗ φ∗� = ψ−1∗ ψ∗ϕ∗� = ϕ∗�.

(ii) ⇒ (i): Taking into account [5, Lemma 3.35], by (3.12) and (3.14) we obtain

A j |M = ψ∗σ j = ψ∗ϕ∗a j = φ∗a j , j ∈ N,

and by (3.13) and (3.15) we obtain

L|M = ψ∗b + 1

2

∞∑
j=1

ψ∗∗(σ j , σ j ) = ψ∗b + 1

2

∞∑
j=1

ψ∗∗(ϕ∗a j , ϕ∗a j )

= ψ∗b + 1

2

∞∑
j=1

(
φ∗∗(a j , a j ) − ψ∗ϕ∗∗(a j , a j )

)

= ψ∗
(
b − 1

2

∞∑
j=1

ϕ∗∗(a j , a j )

)
+ 1

2

∞∑
j=1

φ∗∗(a j , a j )

= ψ∗ϕ∗� + 1

2

∞∑
j=1

φ∗∗(a j , a j ) = φ∗� + 1

2

∞∑
j=1

φ∗∗(a j , a j ).

The additional statement is a consequence of Proposition 3.5. ��
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Now,we approach the proofs of Theorem 3.4 and Proposition 3.5. Consider theRm-valued
SDE {

dXt = �(Xt )dt + a(Xt )dWt

X0 = x0
(3.16)

with continuous mappings � : V → R
m and a : V → �2(Rm), where V ⊂ R

m is an open
subset.

Lemma 3.14 V is a C∞-submanifold of Rm, which is locally invariant for the SDE (3.16).

Proof It is obvious that V is a C∞-submanifold of Rm . Let x0 ∈ V be arbitrary. Since V is
open, there exists a compact, convex neighborhood K ⊂ V of x0. Let PK : Rm → K be the
orthogonal projection on K . We consider the SDE

{
d X̄t = �̄(X̄t )dt + ā(X̄t )dWt

X̄0 = x0,
(3.17)

where the coefficients are given by

�̄ := � ◦ PK : Rm → R
m,

ā := a ◦ PK : Rm → �2(Rm).

Note that �̄ and ā are continuous and bounded. Hence, by Remark 2.9 there exists a global
weak solution (B,W , X̄) to the SDE (3.17) with X̄0 = x0. Now, we define the positive
stopping time τ > 0 as

τ := inf{t ∈ R+ : X̄t /∈ K }.
Setting X := X̄ τ , we have X τ ∈ K ⊂ V , and, since �|K = �̄|K and a|K = ā|K , the triplet
(B,W , X) is a local weak solution to the SDE (3.16) with X0 = x0 and lifetime τ . ��

Now, we are ready to provide the proof of Theorem 3.4.

Proof of Theorem 3.4 (i) ⇒ (ii): Let y0 ∈ M be arbitrary. According to [5, Prop. 3.14] there
exist a local parametrization φ : V → U ∩ M around y0 and a bounded linear operator
ψ ∈ L(H ,Rm) such that φ−1 = ψ |U∩M and we have

Dψ(y)|TyM = Dφ(x)−1 for all y ∈ U ∩ M ,

where x := ψ(y) ∈ V . By [5, Prop. 3.21] we have φ ∈ C(V ;G) ∩ C2(V ; H). Now, let
y ∈ U∩M be arbitrary, and set x := ψ(y) ∈ V . Since the submanifoldM is locally invariant
for the SPDE (1.1), there exist a positive stopping time τ > 0 and a local martingale solution
Y to (1.1) with Y0 = y and lifetime τ such that Y τ ∈ M up to an evanescent set. Since U is
an open subset of H and the sample paths of Y are continuous with respect to ‖ · ‖H , we may
assume that Y τ ∈ U ∩M up to an evanescent set. Now, we define the continuousRm-valued
process X := ψ(Y ). Then we have X τ ∈ V , and since ψ is linear, the process X is a local
weak solution to the SDE{

dXt = (ψ∗L)(Xt )dt + (ψ∗A)(Xt )dWt

X0 = x
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with lifetime τ . The sample paths of Y τ = φ(X τ ) are continuous with respect to ‖ · ‖G ,
because φ ∈ C(V ;G). Since also φ ∈ C2(V ; H), by Itô’s formula (see [14, Thm. 2.3.1]) we
obtain that the process Y is a local martingale solution to the SPDE{

dYt = (
(φ∗ψ∗L)(Yt ) + 1

2

∑∞
j=1 φ∗∗(ψ∗A j , ψ∗A j )(Yt )

)
dt + (φ∗ψ∗A)(Yt )dWt

Y0 = y

with lifetime τ . On the other hand, the process Y is a local martingale solution to the original
SPDE (1.1) with Y0 = y and lifetime τ . We set MU := U ∩ M . By [5, Lemmas 4.13 and
4.14] the mappings

φ∗ψ∗A|MU : (MU , ‖ · ‖G) → (�2(H), ‖ · ‖�2(H)),

φ∗ψ∗L|MU + 1

2

∞∑
j=1

φ∗∗(ψ∗A j |MU , ψ∗A j |MU ) : (MU , ‖ · ‖G) → (H , ‖ · ‖H )

are continuous. Therefore, and since the sample paths of Y τ are continuous with respect to
‖ · ‖G , we may apply [5, Lemma 4.18], which gives us

A j |MU = φ∗ψ∗A j |MU , j ∈ N,

L|MU = φ∗ψ∗L|MU + 1

2

∞∑
j=1

φ∗∗(ψ∗A j |MU , ψ∗A j |MU ).

Therefore, by [5, Prop. 4.15] we deduce that

A j |MU ∈ �(TMU ), j ∈ N.

Furthermore, using [5, Prop. 4.16] we obtain

L|MU − 1

2

∞∑
j=1

φ∗∗(ψ∗A j |MU , ψ∗A j |MU )

= φ∗ψ∗
(
L|MU − 1

2

∞∑
j=1

φ∗∗(ψ∗A j |MU , ψ∗A j |MU )

)
.

Therefore, by [5, Prop. 4.15] we deduce that

L|MU − 1

2

∞∑
j=1

φ∗∗(φ−1∗ A j |MU , φ−1∗ A j |MU ) ∈ �(TMU ).

Since the point y0 ∈ M chosen at the beginning of this proof was arbitrary, we deduce (3.1)
and (3.2).
(ii) ⇒ (iii): Let y0 ∈ M be arbitrary, and let φ : V → U ∩ M be an arbitrary local
parametrization around y0. By [5, Prop. 3.21] we have φ ∈ C(V ;G) ∩ C2(V ; H). We set
x0 := φ−1(y0) ∈ V . By [5, Lemma 4.13] the mappings

a := φ−1∗ A|MU : V → �2(Rm)

� := φ−1∗
(
L|MU − 1

2

∞∑
j=1

φ∗∗(a j , a j )

)
: V → R

m

are continuous. Therefore, by Lemma 3.14 the open set V is locally invariant for the SDE
(3.16). Hence, there exist a stopping time τ > 0 and a local weak solution X to (3.16) with
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X0 = x0 and lifetime τ such that X τ ∈ V up to an evanescent set. We define the M -valued
process Y := φ(X). Then we have Y τ ∈ U ∩ M . Furthermore, since φ ∈ C(V ;G), the
sample paths of Y τ are continuous with respect to ‖ · ‖G . Taking into account [5, Lemma
4.13], the mapping

A|MU = φ∗φ−1∗ A|MU = φ∗a : (MU , ‖ · ‖H ) → (�2(H), ‖ · ‖�2(H)) (3.18)

is continuous. Furthermore, taking into account [5, Lemma 4.13] we have

L|MU − 1

2

∞∑
j=1

φ∗∗(a j , a j ) = φ∗φ−1∗
(
L|MU − 1

2

∞∑
j=1

φ∗∗(a j , a j )

)
= φ∗�,

and hence, by [5, Lemma 4.13] the mapping

L|MU = φ∗� + 1

2

∞∑
j=1

φ∗∗(a j , a j ) : (MU , ‖ · ‖H ) → (H , ‖ · ‖H ) (3.19)

is continuous. Moreover, by Itô’s formula (see [14, Thm. 2.3.1]) and relations (3.18), (3.19)
we obtain that Y τ is a local martingale solution to the SPDE

dYt =
(

(φ∗�)(Yt ) + 1

2

∞∑
j=1

φ∗∗(a j , a j )(Yt )

)
dt + (φ∗a)(Yt )dWt

= L(Yt )dt + A(Yt )dWt ,

which is just the original SPDE (1.1), with Y0 = y0 and lifetime τ . This proves that M is
locally invariant for the SPDE (1.1).
(iii) ⇒ (i): This implication is obvious. ��
Proof of Proposition 3.5 This follows from inspecting the proof of the implication (ii) ⇒
(iii) from Theorem 3.4. ��

Now, let H0 be another separable Hilbert space such that (G, H0, H) are continuously
embedded, and suppose that M is a (G, H0, H)-submanifold of class C2.

Theorem 3.15 Suppose that for each j ∈ N we have A j ∈ C(G; H0) with an extension
A j ∈ C1(H0; H), and that for each y ∈ M the series

∑∞
j=1 DA j (y)A j (y) converges in H.

Then the following statements are equivalent:

(i) The submanifold M is locally invariant for the SPDE (1.1).
(ii) We have

A j |M ∈ �(TM ), j ∈ N, (3.20)

L|M − 1

2

∞∑
j=1

DA j · A j |M ∈ �(TM ). (3.21)

(iii) The mappings (3.3) and (3.4) are continuous, and for each y0 ∈ M there exists a local
martingale solution Y to the SPDE (1.1) with Y0 = y0 and lifetime τ such that Y τ ∈ M
up to an evanescent set and the sample paths of Y τ are continuous with respect to ‖·‖G.

Proof By the decomposition [5, Prop. 3.25, eqn. (3.2)] we have

[A j |M , A j |M ]M = [DA j · A j ]�(TM ), j ∈ N.

Hence, the result is a consequence of Theorem 3.4. ��
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In the next result we present sufficient conditions for local invariance under the assumption
that the volatilities A j , j ∈ N have a quasi-linear structure. Recall that for any z ∈ M the
space �z(TM ) denotes the space of all local vector fields onM around z; see [5, Def. 3.10].

Theorem 3.16 We suppose that for each j ∈ N there exists a continuous mapping Ā j :
G × G → H0 such that

A j (y) = Ā j (y, y), y ∈ G

having a continuous extension Ā j : H0 × G → H such that Ā j
z := Ā j (·, z) belongs

to L(H0, H) for each z ∈ G. Furthermore, we assume that for each y ∈ M the series∑∞
j=1 Ā

j (A j (y), y) converges in H, and that

Ā j
z |M ∈ �z(TM ), z ∈ M , j ∈ N, (3.22)

L|M − 1

2

∞∑
j=1

Ā j (A j (·), ·)|M ∈ �(TM ). (3.23)

Then mappings (3.3) and (3.4) are continuous, and for each y0 ∈ M there exists a local
martingale solution Y to the SPDE (1.1) with Y0 = y0 and lifetime τ such that Y τ ∈ M up
to an evanescent set and the sample paths of Y τ are continuous with respect to ‖ · ‖G. In
particular, the submanifold M is locally invariant for the SPDE (1.1).

Proof Note that condition (3.22) implies (3.1). Furthermore, using the decomposition [5,
Prop. 3.25, eqn. (3.4)] we obtain

[A j |M , A j |M ]M = [ Ā j (A j (·), ·)]�(TM ), j ∈ N,

and hence, condition (3.23) is equivalent to (3.2). Consequently, applying Theorem 3.4 com-
pletes the proof. ��
Remark 3.17 Suppose that conditions (3.22) and (3.23) from Theorem 3.16 are fulfilled such
that Ā j even has an extension Ā j ∈ C1(H0 × H0; H) for each j ∈ N. Then the submanifold
M is locally invariant for the SPDE (1.1), and the mapping A j ∈ C(G; H0) has an extension
A j ∈ C1(H0; H) for each j ∈ N. If for each y ∈ M the series

∑∞
j=1 DA j (y)A j (y)

converges in H, then by Theorem 3.15 the invariance condition (3.21) is satisfied as well.
The vector fields in (3.21) and (3.23) do not, in general, coincide. Using [5, Prop. 3.25], we
can determine their difference by using local coordinates. Namely, if φ : V → U ∩ M is a
local parametrization, then by the decomposition [5, Prop. 3.25, eqn. (3.6)] we have
(
L − 1

2

∞∑
j=1

Ā j (A j (·), ·)
)∣∣∣∣

MU

−
(
L − 1

2

∞∑
j=1

DA j · A j
)∣∣∣∣

MU

= 1

2

∞∑
j=1

φ∗(D2ā
j · a j ),

where the notation is analogous to that in [5, Prop. 3.25].

We conclude this section by indicating a result analogous to Theorem 3.4 for deterministic
PDEs of the kind {

dYt = K (Yt )dt
Y0 = y0

(3.24)

with a continuous mapping K : G → H . Here G and H may be Banach spaces, and M
only needs to be a (G, H)-submanifold of class C1. The proof of following result is similar
to that of Theorem 3.4; indeed the arguments are even simpler.
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Theorem 3.18 The following statements are equivalent:

(i) The submanifold M is locally invariant for the PDE (3.24).
(ii) We have K |M ∈ �(TM ).
(iii) The mapping K |M : (M , ‖ · ‖H ) → (H , ‖ · ‖H ) is continuous, and for each y0 ∈ M

there exists a local solution Y : [0, T ] → G to the PDE (3.24) with Y0 = y0 for some
deterministic time T > 0 such that Y ∈ M and Y is continuous with respect to ‖ · ‖G.

4 Quasi-Semilinear Stochastic Partial Differential Equations

In this section we investigate invariance of submanifolds for quasi-semilinear SPDEs. It is
organized as follows: In Section 4.1 we treat the general situation, and in Section 4.2 we
draw consequences for semilinear SPDEs.

4.1 The General Situation

Let (G, H) be separable Hilbert spaces with continuous embedding, and let L : G → H
and A : G → �2(H) be continuous mappings. Throughout this section, we assume that the
following assumption is satisfied.

Assumption 4.1 (Quasi-semilinearity)We suppose that the following conditions are fulfilled:

(1) G is a dense subspace of H.
(2) There exist a continuous mapping L̄ : G×H → H and a continuous mapping α : H →

H such that

L(y) = L̄(y, y) + α(y), y ∈ G,

and for each z ∈ H the mapping

L̄z := L̄(·, z) : G → H

extends to a closed operator L̄z : H ⊃ D(L̄ z) → H.
(3) There exist a continuous mapping Ā : G × H → �2(H) and a continuous mapping

σ : H → �2(H) such that

A(y) = Ā(y, y) + σ(y), y ∈ G,

and for each z ∈ H and each j ∈ N the mapping

Ā j
z := Ā j (·, z) : G → H

extends to a closed operator Ā j
z : H ⊃ D( Ā j

z ) → H.
(4) For each z ∈ H we have

G = D(L̄ z) ∩
( ∞⋂

j=1

D( Ā j
z )

)
. (4.1)

(5) There is a dense subspace H0 ⊂ H such that for each z ∈ H we have

H0 ⊂ D(L̄∗
z ) ∩

( ∞⋂
j=1

D( Ā j,∗
z )

)
,
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and for each ζ ∈ H0 we have Ā∗
z ζ := ( Ā j,∗

z ζ ) j∈N ∈ �2(H), and the mappings

H → H , z 
→ L̄∗
z ζ, (4.2)

H → �2(H), z 
→ Ā∗
z ζ (4.3)

are continuous.

In view of condition (5), recall that for a densely defined operator A : H ⊃ D(A) → H
the adjoint operator A∗ : H ⊃ D(A∗) → H is defined on the subspace

D(A∗) := {z ∈ H : ξ 
→ 〈Aξ, z〉H is continuous on D(A)}, (4.4)

and that it is characterized by the property

〈Ay, z〉H = 〈y, A∗z〉H for all y ∈ D(A) and z ∈ D(A∗). (4.5)

Proposition 4.2 [36, Thm. 13.12] Let A : H ⊃ D(A) → H be densely defined and closed.
Then A∗ is densely defined and we have A = A∗∗.

If Assumption 4.1 is fulfilled, then we also call the SPDE (1.1) a quasi-semilinear SPDE.

Definition 4.3 Let y0 ∈ H be arbitrary. A triplet (B,W , Y ) is called a local analytically
weak martingale solution to the SPDE (1.1) with Y0 = y0 if the following conditions are
fulfilled:

(1) B = (�,F , (Ft )t∈R+ ,P) is a stochastic basis; that is, a filtered probability space
satisfying the usual conditions.

(2) W is a standard R∞-Wiener process on the stochastic basis B.
(3) Y is an H-valued adapted, continuous process such that, for some strictly positive stop-

ping time τ > 0, for each ζ ∈ H0 we have P-almost surely∫ t∧τ

0

(∣∣〈L̄∗
Ys ζ, Ys〉H + 〈ζ, α(Ys)〉H

∣∣

+ ∥∥〈 Ā∗
Ys ζ, Ys〉H + 〈ζ, σ (Ys)〉H

∥∥2
�2(H)

)
ds < ∞, t ∈ R+

(4.6)

and P-almost surely

〈ζ, Yt∧τ 〉H = 〈ζ, y0〉H +
∫ t∧τ

0

(〈L̄∗
Ys ζ, Ys〉H + 〈ζ, α(Ys)〉H

)
ds

+
∫ t∧τ

0

(〈 Ā∗
Ys ζ, Ys〉H + 〈ζ, σ (Ys)〉H

)
dWs, t ∈ R+,

(4.7)

where for each y ∈ H we agree on the notation

〈 Ā∗
yζ, y〉H := (〈 Ā j,∗

y ζ, y〉H
)
j∈N ∈ �2(H),

〈ζ, σ (y)〉H := (〈ζ, σ j (y)〉H
)
j∈N ∈ �2(H).

The stopping time τ is also called the lifetime of Y .

If we can choose τ = ∞, then (B,W , Y ) is also called a global analytically weak martingale
solution (or simply an analytically weakmartingale solution) to the SPDE (1.1) with Y0 = y0.

Remark 4.4 Note that the integrands in (4.6) and (4.7) are continuous and adapted by virtue
of the continuity of the mappings (4.2) and (4.3).
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Remark 4.5 If there is no ambiguity, we will simply call Y a local analytically weak mar-
tingale solution or a global analytically weak martingale solution to the SPDE (1.1) with
Y0 = y0.

Let M be a finite dimensional C2-submanifold of H .

Definition 4.6 The submanifold M is called weakly locally invariant for the SPDE (1.1) if
for each y0 ∈ M there exists a local analytically weak martingale solution Y to the SPDE
(1.1) with Y0 = y0 and lifetime τ > 0 such that Y τ ∈ M up to an evanescent set.

Definition 4.7 The submanifold M is called weakly globally invariant (or simply weakly
invariant) for the SPDE (1.1) if for each y0 ∈ M there exists a global analytically weak
martingale solution Y to the SPDE (1.1) with Y0 = y0 such that Y ∈ M up to an evanescent
set.

Remark 4.8 If M is locally invariant (or globally invariant) for the SPDE (1.1), then M is
also weakly locally invariant (or weakly globally invariant) for the SPDE (1.1).

Theorem 4.9 Suppose that Assumption 4.1 is fulfilled. Then the following statements are
equivalent:

(i) The submanifold M is weakly locally invariant for the SPDE (1.1).
(ii) We have M ⊂ G, the submanifold M is locally invariant for the SPDE (1.1), and the

mappings

L|M : (M , ‖ · ‖H ) → (H , ‖ · ‖H ), (4.8)

A|M : (M , ‖ · ‖H ) → (�2(H), ‖ · ‖�2(H)) (4.9)

are continuous.

Proof (ii) ⇒ (i): See Remark 4.8.
(i)⇒ (ii): Let y0 ∈ M be arbitrary. Since H0 is dense in H , by [5, Prop. 3.14] there exist a local
parametrization φ : V → U ∩ M around y0 and a bounded linear operator ψ ∈ L(H ,Rm)

of the form ψ = 〈ζ, ·〉H with ζ1, . . . , ζm ∈ H0 such that we have φ−1 = ψ |U∩M . Now, let
y ∈ U ∩M be arbitrary, and set x := ψ(y) ∈ V . Since the submanifoldM is weakly locally
invariant for the SPDE (1.1), there exist a positive stopping time τ > 0 and a local analytically
weak martingale solution Y to (1.1) with Y0 = y and lifetime τ such that Y τ ∈ M up to an
evanescent set. Since U is an open subset of H and the sample paths of Y are continuous,
we may assume that Y τ ∈ U ∩ M up to an evanescent set. Now, we define the continuous
R
m-valued process X := ψ(Y ). Then we have X τ ∈ V , and since ζ1, . . . , ζm ∈ H0, the

process X is a local strong solution to the SDE{
dXt = Lζ (Xt )dt + Aζ (Xt )dWt

X0 = x

with lifetime τ , where Lζ : V → R
m and Aζ : V → �2(Rm) are given by

Lζ (z) := 〈L̄∗
φ(z)ζ, φ(z)〉H + 〈ζ, α(φ(z))〉H , (4.10)

A j
ζ (z) := 〈 Ā j,∗

φ(z)ζ, φ(z)〉H + 〈ζ, σ j (φ(z))〉H , j ∈ N. (4.11)

Note that the mappings Lζ and Aζ are continuous by virtue of the continuity of the mappings
(4.2) and (4.3). Since φ ∈ C2(V ; H), by Itô’s formula (see [14, Thm. 2.3.1]) we obtain that
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the process Y is a local solution to the SPDE{
dYt = (

(φ∗Lζ )(Yt ) + 1
2

∑∞
j=1 φ∗∗(A j

ζ , A
j
ζ )(Yt )

)
dt + (φ∗Aζ )(Yt )dWt

Y0 = y
(4.12)

with lifetime τ , where we recall the notation from [5, Def. 3.12]. Let ξ ∈ H0 be arbitrary.
Then we have

〈ξ, Yt∧τ 〉H = 〈ξ, y〉H +
∫ t∧τ

0

〈
ξ, (φ∗Lζ )(Ys) + 1

2

∞∑
j=1

φ∗∗(A j
ζ , A

j
ζ )(Ys)

)〉
H
ds

+
∫ t∧τ

0
〈ξ, (φ∗Aζ )(Ys)〉HdWs, t ∈ R+

On the other hand, the process Y is a local analytically weak martingale solution to the
original SPDE (1.1) with Y0 = y and lifetime τ . Therefore, we have

〈ξ, Yt∧τ 〉H = 〈ξ, y〉H +
∫ t∧τ

0

(〈L̄∗
Ys ξ, Ys〉H + 〈ξ, α(Ys)〉H

)
ds

+
∫ t∧τ

0

(〈 Ā∗
Ys ξ, Ys〉H + 〈ξ, σ (Ys)〉H

)
dWs, t ∈ R+.

Thus, taking into account [5, Lemma 4.13] and the continuity of the mappings (4.2) and
(4.3), we have

〈L̄∗
yξ, y〉H =

〈
ξ, (φ∗Lζ )(y) + 1

2

∞∑
j=1

φ∗∗(A j
ζ , A

j
ζ )(y) − α(y)

〉
H

, (4.13)

〈( Ā j
y)

∗ξ, y〉H = 〈ξ, (φ∗A j
ζ )(y) − σ j (y)〉H , j ∈ N. (4.14)

Taking into account Proposition 4.2 and (4.4), we have

D(L̄ y) = D(L̄∗∗
y ) = {z ∈ H : ξ 
→ 〈L̄∗

yξ, z〉H is continuous on D(L̄∗
y)}

as well as

D( Ā j
y) = D(( Ā j

y)
∗∗) = {z ∈ H : ξ 
→ 〈( Ā j

y)
∗ξ, z〉H is continuous on D(( Ā j

y)
∗)}

for all j ∈ N. This proves y ∈ D(L̄ y) and y ∈ D( Ā j
y) for all j ∈ N. Taking into account

(4.1), we deduce that y ∈ G. Consequently, we haveM ⊂ G. By (4.10) and (4.11) we obtain

Lζ (x) = 〈ζ, L̄φ(x)φ(x)〉H + 〈ζ, α(φ(x))〉H = 〈ζ, L(φ(x))〉H ,

A j
ζ (x) = 〈ζ, Ā j

φ(x)φ(x)〉H + 〈ζ, σ j (φ(x))〉H = 〈ζ, A j (φ(x))〉H , j ∈ N

for each x ∈ V . Furthermore, from (4.13) and (4.14) we obtain

〈ξ, L̄ y y〉H =
〈
ξ, (φ∗Lζ )(y) + 1

2

∞∑
j=1

φ∗∗(A j
ζ , A

j
ζ )(y) − α(y)

〉
H

,

〈ξ, Ā j
y y〉H = 〈ξ, (φ∗A j

ζ )(y) − σ j (y)〉H , j ∈ N

for all ξ ∈ H0 and all y ∈ U ∩ M . Since H0 is dense in H , we obtain

L(y) = L̄(y, y) + α(y) = (φ∗Lζ )(y) + 1

2

∞∑
j=1

φ∗∗(A j
ζ , A

j
ζ )(y),
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A j (y) = Ā j (y, y) + σ j (y) = (φ∗A j
ζ )(y), j ∈ N

for all y ∈ U ∩ M . Since y0 ∈ M at the beginning of the proof was chosen arbitrary, by
[5, Lemma 4.13] we deduce that the mappings (4.8) and (4.9) are continuous. Furthermore,
by taking into account (4.12), we see that Y is local strong solution to the SPDE (1.1) with
Y0 = y0, proving that M is locally invariant for the SPDE (1.1). ��

4.2 Semilinear Stochastic Partial Differential Equations

In this section we present consequences of our previous findings for semilinear SPDEs of
the form {

dYt = (BYt + α(Yt ))dt + σ(Yt )dWt

Y0 = y0.
(4.15)

Such equations have been studied, for example, in [9, 18, 25, 31]. Here the state space
H is a separable Hilbert space, and B : H ⊃ D(B) → H is a densely defined, closed
operator. Moreover α : H → H and σ : H → �2(H) are continuous mappings. We endow
G := D(B) with the graph norm

‖y‖G :=
√

‖y‖2H + ‖By‖2H , y ∈ G. (4.16)

By [5, Prop A.7], the pair (G, H) consists of separable Hilbert spaces with continuous
embedding.

Remark 4.10 Note that the semilinear SPDE (4.15) is of the type (1.1) with L = B + α and
A = σ . Furthermore, note that Assumption 4.1 is fulfilled with

L̄(y, z) = B(y) for all y ∈ G and z ∈ H,

Ā = 0,

and H0 = D(B∗). The concept of a local martingale solution (or a global martingale
solution) from Definition 2.5 is just the concept of a local strong solution (or a global strong
solution) for the semilinear SPDE (4.15) in the sense of martingale solutions. Accordingly,
the concept of a local analytically weak martingale solution (or a global analytically weak
martingale solution) from Definition 4.3 is just the concept of a local weak solution (or a
global weak solution) for the semilinear SPDE (4.15) in the sense of martingale solutions.

Remark 4.11 If B generates a C0-semigroup on H, then we can also consider mild solutions.
However, this is not required for our upcoming results.

LetM be afinite dimensionalC2-submanifold of H . Invariantmanifolds ofweak solutions
to semilinear SPDEs have been studied, for example, in [13, 29]; see also [15] for the case
of jump-diffusions and submanifolds with boundary.

Lemma 4.12 The following statements are equivalent:

(i) M is a finite dimensional (G, H)-submanifold of class C2

(ii) M ⊂ G and the restriction B|M : (M , ‖ · ‖H ) → (H , ‖ · ‖H ) is continuous.

Proof This is an immediate consequence of [5, Prop. 3.37]. ��
Proposition 4.13 For a finite dimensional C2-submanifoldM of H the following statements
are equivalent:
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(i) The submanifold M is weakly locally invariant for the semilinear SPDE (4.15).
(ii) M is a (G, H)-submanifold of class C2, which is locally invariant for the semilinear

SPDE (4.15).

Proof (i) ⇒ (ii): By Theorem 4.9 we have M ⊂ G, the submanifold M is locally invariant
for the semilinear SPDE (4.15), and the restriction B|M : (M , ‖ · ‖H ) → (H , ‖ · ‖H ) is
continuous. Moreover, by Lemma 4.12 the submanifoldM is a (G, H)-submanifold of class
C2.
(ii) ⇒ (i): This implication is obvious. ��

Theorem 4.14 Let M be a finite dimensional C2-submanifold of H. Then the following
statements are equivalent:

(i) The submanifold M is weakly locally invariant for the semilinear SPDE (4.15).
(ii) M is a (G, H)-submanifold of class C2, and we have

σ j |M ∈ �(TM ), j ∈ N, (4.17)

[(B + α)|M ]�(TM ) − 1

2

∞∑
j=1

[σ j |M , σ j |M ]M = [0]�(TM ). (4.18)

(iii) M is a (G, H)-submanifold of classC2, themapping B|M : (M , ‖·‖H ) → (H , ‖·‖H )

is continuous, and for each y0 ∈ M there exists a local martingale solution Y to the
SPDE (1.1) with Y0 = y0 and lifetime τ such that Y τ ∈ M up to an evanescent set and
the sample paths of Y τ are continuous with respect to the graph norm ‖ · ‖G.

Proof This is a consequence of Proposition 4.13 and Theorem 3.4. ��

Remark 4.15 If we even have σ j ∈ C1(H) for all j ∈ N, and for each y ∈ M the series∑∞
j=1 Dσ j (y)σ j (y) converges in H, then conditions (i)–(iii) are equivalent to the following:

(iv) M is a (G, H)-submanifold of class C2, and we have (4.17) as well as

B|M + α|M − 1

2

∞∑
j=1

Dσ j · σ j |M ∈ �(TM ).

This is a consequence of the decomposition [5, Prop. 3.25, eqn. (3.2)].

Remark 4.16 Let k ∈ N and l ∈ N0 be arbitrary, letM be aCk-submanifold of H and assume
that σ j ∈ Cl(H) for all j ∈ N. Then k is the degree of smoothness of the submanifold, and l
is the degree of smoothness of the volatilities. In the literature, the following situations have
been considered:

(1) In [13] it is assumed that k = 2 and l = 1.
(2) In [29] (which uses the support theorem from [28]) it is assumed that k = 1 and l = 1.
(3) Here, in Theorem 4.14 we assume that k = 2 and l = 0.

Summing up these degrees of smoothness, we see that in our result we have also achieved
k + l = 2.
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5 Invariant Manifolds Generated by Orbit Maps

In this section we investigate invariance of submanifolds generated by orbit maps. It is
organized as follows: In Section 5.1 we investigate the structure of the coefficients of the
SPDE in case of invariance of such a submanifold, and in Section 5.2 we treat the structure
of invariant submanifolds for SPDEs with such coefficients. In Section 5.3 we apply our
findings to SPDEs in Hermite Sobolev spaces.

5.1 Coefficients given by Generators of Group Actions

Let (G, H0, H) be separable Hilbert spaces with continuous embeddings. We consider the
SPDE (1.1) with continuous mappings L : G → H and A : G → �2(H). Let d ∈ N be
a positive integer, and let T = (T (t))t∈Rd be a multi-parameter C0-group on H such that
T |G is a multi-parameter C0-group on G, and T |H0 is a multi-parameter C0-group on H0.
We denote by B = (B1, . . . , Bd) the generator of T ; see [5, App. A] for further details. We
assume that H0 ⊂ D(B) and G ⊂ D(B2). Furthermore, we assume that Bi |H0 ∈ L(H0, H)

and Bi |G ∈ L(G, H0) for each i = 1, . . . , d . Let y0 ∈ G be arbitrary, and denote by
ψ ∈ C2(Rd ; H) the orbit map given by ψ(t) := T (t)y0 for each t ∈ R

d . Let N be an
m-dimensional C2-submanifold of Rd for some m ≤ d , and let M be an m-dimensional
(G, H0, H)-submanifold of classC2, which is induced by (ψ,N ); see [5, Def. 3.32]. Recall
that this requires that ψ |N : N → ψ(N ) is a homeomorphism, and that ψ is a C2-
immersion on N .

Remark 5.1 For a multi-dimensional sequence σ = (σ1, . . . , σd) ∈ �2(Rd) ∼= �2(R)×d

we denote by σσ
 ∈ R
d×d the matrix with elements (σσ
)ik := 〈σi , σk〉�2(R) for all

i, k = 1, . . . , d. If there is an index r ∈ N such that σ j = 0 for all j > r , then we may
regard the sequence σ as a matrix σ ∈ R

d×r , and σσ
 is just the usual matrix multiplication
with the transpose matrix.

Theorem 5.2 The following statements are equivalent:

(i) The submanifold M is locally invariant for the SPDE (1.1).
(ii) The submanifold N is locally invariant for the Rd -valued SDE{

dXt = b̄(Xt )dt + σ̄ (Xt )dWt

X0 = x0,
(5.1)

where the continuous mappings σ̄ : N → �2(Rd) and b̄ : N → R
d are the unique

solutions of the equations

L|M = 1

2

d∑
i, j=1

(σ̄ σ̄
)i j ◦ ψ−1|M Bi j |M +
d∑

i=1

b̄i ◦ ψ−1|M Bi |M , (5.2)

A j |M =
d∑

i=1

σ̄
j
i ◦ ψ−1|M Bi |M , j ∈ N. (5.3)

Proof Let y ∈ M be arbitrary, and set x := ψ−1(y) ∈ N . By [5, Prop. A.11] for j ∈ N we
have

(ψ∗σ̄ j )(y) = Dψ(x)σ̄ j (x) =
d∑

i=1

Biψ(x)σ̄ j
i (x) =

d∑
i=1

σ̄
j
i (ψ−1(y))Bi y
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as well as

(ψ∗b̄)(y) + 1

2

∞∑
j=1

ψ∗∗(σ̄ j , σ̄ j )(y) = Dψ(x)b̄(x) + 1

2

∞∑
j=1

D2ψ(x)(σ̄ j (x), σ̄ j (x))

=
d∑

i=1

Biψ(x)b̄i (x) + 1

2

∞∑
j=1

d∑
i,k=1

Bikψ(x)σ̄ j
i (x)σ̄ j

k (x)

=
d∑

i=1

b̄i (ψ
−1(y))Bi y + 1

2

d∑
i,k=1

σ̄ (ψ−1(y))σ̄ (ψ−1(y))
Bik y.

Therefore, applying Theorem 3.12 concludes the proof. ��
Proposition 5.3 Suppose that the following conditions are fulfilled:

(1) The submanifold M is locally invariant for the SPDE (1.1).
(2) The submanifold N has one chart with a global parametrization ϕ : V → N .
(3) The open set V is globally invariant for the Rm-valued SDE{

d�t = �(�t )dt + a(�t )dWt

�0 = ξ0,
(5.4)

whose coefficients a : V → �2(Rm) and � : V → R
m are the unique solutions of the

equations

σ̄ j = ϕ∗a j , j ∈ N, (5.5)

b̄ = ϕ∗� + 1

2

∞∑
j=1

ϕ∗∗(a j , a j ), (5.6)

where the continuous mappings σ̄ : N → �2(Rd) and b̄ : N → R
d are the unique

solutions of the Eqs. 5.2 and 5.3

Then the submanifold M is globally invariant for the SPDE (1.1), and the submanifold N
is globally invariant for the SDE (5.1).

Proof This is a consequence of Proposition 3.13. ��
Remark 5.4 Examples of submanifolds M as in Theorem 5.2 are obtained from [5, Ex.
3.38] with k = 2 and choosing G = D(B2) as well as H0 = D(B). Moreover, regarding
Proposition 5.3, recall that the submanifold M has one chart if N has one chart; see [5,
Lemma 3.33].

5.2 The Structure of Invariant Submanifolds

In the previous we have considered invariant submanifolds which are induced by (ψ,N ),
and shown that the coefficients of the SPDE (1.1) must be of the form (5.2) and (5.3). In
this section, we will show that for such coefficients an invariant submanifold must, subject
to appropriate regularity conditions, necessarily be an induced submanifold.

Let T = (T (t))t∈Rd be a multi-parameter C0-group on H as in Section 5.1. Furthermore,
let M be an m-dimensional (G, H0, H)-submanifold of class C2 for some m ≤ d , which
is locally invariant for the SPDE (1.1). Suppose that for each j = 1, . . . ,m we have A j ∈
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C(G; H0) with an extension A j ∈ C1(H0; H). Let y0 ∈ M be arbitrary. By [5, Prop. 3.24]
there exists a local parametrization φ : V → U ∩ M around y0 such that

φ ∈ C(V ;G) ∩ C1(V ; H0) ∩ C2(V ; H).

We assume there exists a mapping � : V → R
m×d of class C1 such that

A(y) = �(x)B(y), y ∈ U ∩ M , (5.7)

where x := φ−1(y) ∈ V , and where we use the notations A = (A1, . . . , Am) and B =
(B1, . . . , Bd). Then the volatilities A1, . . . , Am are locally of the form (5.3). We assume that

dim lin{A1y, . . . , Am y} = m for each y ∈ U ∩ M .

By Theorem 3.4 we have A1, . . . , Am ∈ �(TM ), and hence

TyM = lin{A1y, . . . , Am y} for each y ∈ U ∩ M . (5.8)

Lemma 5.5 There exists a mapping � : V → R
m×m of class C1 such that

∇φ(x) = �(x)Aφ(x), x ∈ V . (5.9)

Proof Let x ∈ V be arbitrary, and set y := φ(x) ∈ U ∩ M . Noting (5.8), the two sets

{∂1φ(x), . . . , ∂mφ(x)} and {A1φ(x), . . . , Amφ(x)}
are bases of TyM . Hence, there is a unique matrix �(x) ∈ R

m×m such that ∇φ(x) =
�(x)Aφ(x). This gives us a mapping � : V → R

m×m satisfying (5.9). The mapping ∇φ :
V → H is of class C1 because φ ∈ C2(V ; H). Furthermore, the mapping Aφ is of class C1

because φ ∈ C1(V ; H0) and A j ∈ C1(H0; H) for each j = 1, . . . ,m. Consequently, the
mapping � is of class C1, which concludes the proof. ��

Now, we consider the product 	 := � · � : V → R
m×d , which is again of class C1.

Furthermore, we set x0 := φ−1(y0) ∈ V . Recall that ψ ∈ C2(Rd ; H) denotes the orbit map
given by ψ(t) := T (t)y0 for each t ∈ R

d .

Theorem 5.6 Suppose that 	 has a primitive and satisfies rk	(x0) = m. Then there exist
an m-dimensional C2-submanifoldN of Rd and an open neighborhood U0 ⊂ U of y0 such
that the submanifold U0 ∩ M is induced by (ψ,N ).

Proof We may assume that the open set V is a connected neighborhood of x0. By (5.7) and
(5.9) the mapping φ ∈ C2(V ; H) is a D(B)-valued solution to the PDE{∇φ(x) = 	(x)Bφ(x), x ∈ V ,

φ(x0) = y0.

By assumption the mapping 	 has a primitive ϕ : V → R
d . We may assume that ϕ(x0) =

0. Thus, by [5, Prop. A.12] we obtain φ = ψ ◦ ϕ. Since ∇ϕ = 	 and rk	(x0) = m,
the mapping ϕ is a C2-immersion at x0. Hence, by [5, Lemma 3.30] there exists an open
neighborhood V0 ⊂ V of zero such that ϕ|V0 : V0 → ϕ(V0) is a homeomorphism and ϕ|V0
is a C2-immersion. Moreover, by [5, Lemma 3.31] the setN := ϕ(V0) is an m-dimensional
C2-submanifold of Rd . Since φ : V → U ∩ M is a homeomorphism, there exists an open
neighborhood U0 ⊂ U of y0 such that φ(V0) = U0 ∩ M , and hence U0 ∩ M = ψ(N ).
Note that ψ |N : N → ψ(N ) is a homeomorphism, because φ|V0 : V0 → ψ(N ) and
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ϕ|V0 : V0 → N are homeomorphisms. Furthermore, by the chain rule, for each x ∈ N we
have

Dψ(x)|TxN = Dφ(ξ)Dϕ(ξ)−1 ∈ L(TxN , H),

where ξ := ϕ−1(x) ∈ V0, showing that ψ is a C2-immersion on N . ��
Remark 5.7 We may assume that the open set V is a simply connected neighborhood of x0.
Then 	 has a primitive if and only if

∂	ik

∂x j
= ∂	 jk

∂xi
for all i, j = 1, . . . ,m and k = 1, . . . , d.

5.3 Invariant Submanifolds in Hermite Sobolev Spaces

In this section we will apply our findings from Section 5.1 in order to construct examples of
invariant submanifolds in Hermite Sobolev spaces; see [5, App. B] for further details about
Hermite Sobolev spaces. Let p ∈ R be arbitrary and set G := Sp+1(R

d), H0 := Sp+ 1
2
(Rd)

and H := Sp(R
d). Furthermore, let τ = (τx )x∈Rd be the translation group. We recall from

[34] that for every q ∈ R the space Sq(R
d) is invariant under the translation group. Let

b ∈ S−(p+1)(R
d ;Rd) and σ ∈ �2(S−(p+1)(R

d ;Rd)) be given, where for any q ∈ R we
agree on the notation

Sq(R
d ;Rd) := Sq(R

d)×d ,

which, endowed with the norm

‖ f ‖q,d :=
( d∑

i=1

‖ fi‖2q
)1/2

, f ∈ Sq(R
d ;Rd),

is also a separable Hilbert space. Furthermore, the norm on �2(Sq(R
d ;Rd)) will be denoted

by ‖ · ‖q,�2 . We define the coefficients L : G → H and A j : G → H0 for j ∈ N of the
SPDE (1.1) as

L(y) := 1

2

d∑
i, j=1

(〈σ, y〉〈σ, y〉
)i j∂
2
i j y −

d∑
i=1

〈bi , y〉∂i y, (5.10)

A j (y) := −
d∑

i=1

〈σ j
i , y〉∂i y, j ∈ N, (5.11)

where 〈·, ·〉 denotes the dual pair on S−(p+1)(R
d) × Sp+1(R

d); see [5, Lemma B.3] and
also [5, Rem. 3.4]. Furthermore 〈σ, y〉 ∈ �2(Rd) is given by 〈σ, y〉 := (〈σ j , y〉) j∈N, where
for c ∈ S−(p+1)(R

d ;Rd) we define 〈c, y〉 ∈ R
d as 〈c, y〉 := (〈ci , y〉)i=1,...,d . Recalling the

notation introduced in Remark 5.1, it is obvious that L : G → H is continuous. Furthermore,
according to [5, Lemma 6.8] the sequence A := (A j ) j∈N provides a continuous mapping
A : G → �2(H0).

Remark 5.8 Note that the mapping A : G → �2(H0) generally does not satisfy the smooth-
ness assumption imposed in Theorem 3.15, where it is required that for every j ∈ N the
mapping A j ∈ C(G; H0) admits an extension A j ∈ C1(H0; H). Indeed, for this we would
need that for all i = 1, . . . , d and all j ∈ N the continuous linear functional 〈σ j

i , ·〉 : G → R
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admits a continuous extension 〈σ j
i , ·〉 : H0 → R, and this is only true if we make the stronger

assumption σ ∈ �2(S−(p+ 1
2 )(R

d ;Rd)).

Let	 ∈ G be arbitrary, anddenote byψ ∈ C2(Rd ; H) the orbitmapgivenbyψ(x) = τx	

for each x ∈ R
d . Due to the results from [5, Sec. 3.2] we are in the mathematical setting of

Section 5.1. In particular, by [5, Prop. 3.42] we have H0 ⊂ D(−∂) and G ⊂ D((−∂)2). Let
N be anm-dimensionalC2-submanifold ofRd , and letM be anm-dimensional (G, H0, H)-
submanifold of class C2, which is induced by (ψ,N ). Recall that this requires that ψ |N :
N → ψ(N ) is a homeomorphism, and that ψ is a C2-immersion on N .

Theorem 5.9 The following statements are equivalent:

(i) The submanifold M is locally invariant for the SPDE (1.1).
(ii) The submanifold N is locally invariant for the Rd -valued SDE{

dXt = b̄(Xt )dt + σ̄ (Xt )dWt

X0 = x0,
(5.12)

where the continuous mappings σ̄ : Rd → �2(Rd) and b̄ : Rd → R
d are defined as

σ̄ j := 〈σ j , ψ(·)〉, j ∈ N, (5.13)

b̄ := 〈b, ψ(·)〉. (5.14)

Proof Noting the definitions (5.11) and (5.10), this is a consequence of Theorem 5.2. ��
Proposition 5.10 Suppose that the following conditions are fulfilled:

(1) The submanifold M is locally invariant for the SPDE (1.1).
(2) The submanifold N has one chart with a global parametrization ϕ : V → N .
(3) The open set V is globally invariant for the R

m-valued SDE (5.4), whose coefficients
a : V → �2(Rm) and � : V → R

m are the unique solutions of the equations

σ̄ j |N = ϕ∗a j , j ∈ N,

b̄|N = ϕ∗� + 1

2

∞∑
j=1

ϕ∗∗(a j , a j ),

where the continuous mappings σ̄ : Rd → �2(Rd) and b̄ : Rd → R
d are given by (5.13)

and (5.14)

Then the submanifold M is globally invariant for the SPDE (1.1), and the submanifold N
is globally invariant for the SDE (5.12).

Proof This is a consequence of Proposition 5.3. ��
Now,wewill construct some examples of induced submanifoldswhich are invariant for the

SPDE (1.1) with coefficients given by (5.10) and (5.11). Recall that b ∈ S−(p+1)(R
d ;Rd)

and σ ∈ �2(S−(p+1)(R
d ;Rd)), and that 〈·, ·〉 denotes the dual pair on S−(p+1)(R

d) ×
Sp+1(R

d). In each of the upcoming examples, we will impose conditions on the choice
of p. Also recall that Rm × {0} ⊂ R

d denotes the subspace R
m × {0} = lin{e1, . . . , em},

where e1, . . . , em ∈ R
d are the first m unit vectors. The following examples of invariant

submanifolds are consequences of Theorem 5.9, Proposition 5.10 and [5, Ex. 3.48] with
k = 2. For the first example, recall that every finite signed measure μ on (Rd ,B(Rd)) may
be regarded as a distribution μ ∈ Sp(R

d) for each p < − d
4 ; see [5, Lemma B.13].
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Example 5.11 (Distributions given by measures) The collection of Dirac measures

M = {δx : x ∈ R
d}

is the prime example of an invariant submanifold. It is known that δx ∈ Sp(R
d) if and only if

p < − d
4 ; see [35]. We generalize the preceding result as follows. We choose p ∈ R such that

p + 1 < − d
4 , and let 	 = μ ∈ G be a finite signed measure on (Rd ,B(Rd)) with compact

support such that μ(Rd) �= 0. Furthermore, setting N := R
m × {0} we assume that for all

x ∈ N we have

〈b, τxμ〉 ∈ N , (5.15)

〈σ j , τxμ〉 ∈ N , j ∈ N. (5.16)

Then the set

M := ψ(N ) = {τxμ : x ∈ N }
is an m-dimensional (G, H0, H)-submanifold of class C2 with one chart, which is globally
invariant for the SPDE (1.1). The global invariance follows from Remark 2.9, because the
coefficients a : Rm → �2(Rm) and � : Rm → R

m are bounded by virtue of [5, Lemma
B.13].

For the next example, recall that every polynomial f : Rd → R in several variables with
deg( f ) = n for some n ∈ N0 may be regarded as a distribution f ∈ Sp(R

d) for each
p < − d

4 − n
2 ; see [5, Lemma B.14].

Example 5.12 (Distributions given by polynomials) We choose p ∈ R such that p + 1 <

− d
4 − n

2 for some n ∈ N such that m ≤ n ≤ d, and let 	 = f ∈ G be the polynomial
f : Rd → R given by f (x) = x1 · . . . · xn. Furthermore, settingN := R

m × {0} we assume
that for all x ∈ N we have

〈b, τx f 〉 ∈ N , (5.17)

〈σ j , τx f 〉 ∈ N , j ∈ N. (5.18)

Then the set

M := ψ(N ) = {τx f : x ∈ N }
is an m-dimensional (G, H0, H)-submanifold of class C2 with one chart, which is locally
invariant for the SPDE (1.1). If m = n = 1, which means thatN = R×{0} and f (x) = x1,
then M is even globally invariant for the SPDE (1.1). Taking into account Remark 2.9, this
follows from [5, Lemma B.15], which ensures that the coefficients a : Rm → �2(Rm) and
� : Rm → R

m satisfy the linear growth condition.

For the next result, recall that Sp(R
d) ⊂ C1

0(R
d) for each p > d

4 + 1
2 . This is a conse-

quence of the Sobolev embedding theorem for Hermite Sobolev spaces; see [5, Thm. B.19].

Example 5.13 (Distributions given by C1-functions) We choose p ∈ R such that p + 1 >
d
4 + 1

2 , and let 	 = ϕ ∈ G be arbitrary. Setting N := R
m × {0}, we assume there are

z1, . . . , zm ∈ R
d such that the matrix (∂iϕ(z j ))i, j=1,...,m ∈ R

m×m is invertible, and we
assume that for all x ∈ N we have

〈b, τxϕ〉 ∈ N , (5.19)

〈σ j , τxϕ〉 ∈ N , j ∈ N. (5.20)
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Then the set

M := ψ(N ) = {τxϕ : x ∈ N }
is an m-dimensional (G, H0, H)-submanifold of class C2 with one chart, which is locally
invariant for the SPDE (1.1). Note that the invertibility of the matrix (∂iϕ(z j ))i, j=1,...,m is
required in order to ensure thatψ is an immersion onN ; see [5, Prop. 3.47]. If bi ∈ L2(Rd)

for i = 1, . . . , d and σ
j
i ∈ L2(Rd) for i = 1, . . . , d and j ∈ N, then M is even globally

invariant for the SPDE (1.1). This follows fromRemark 2.9, because, recalling that L2(Rd) =
S0(R

d), by [5, Lemma B.16] the coefficients a : Rm → �2(Rm) and � : Rm → R
m are

bounded.

Remark 5.14 Note that in each of the previous examples we have considered the submanifold
N := R

m×{0}, which ensures that in any case the assumptions from [5, Ex. 3.48] concerning
N are fulfilled. Since the submanifold N is a linear space, in any case the respective
conditions (5.15)–(5.16), (5.17)–(5.18) or (5.19)–(5.20) ensures that N is locally invariant
for the SDE (5.12); see Corollary 3.9. Of course, we can also consider other choices of
the submanifold N such that the assumptions from [5, Ex. 3.48] are fulfilled. In particular,
noting Theorem 3.4, in the situation of Example 5.11 we can choose any m-dimensional
C2-submanifold N of Rd such that

σ̄ j |N ∈ �(TN ), j ∈ N,

[b̄|N ]�(TN ) − 1

2

∞∑
j=1

[σ̄ j |N , σ̄ j |N ]N = [0]�(TN ),

where the continuous mappings σ̄ : Rd → �2(Rd) and b̄ : Rd → R
d are defined as

σ̄ j (x) := 〈σ j , τxμ〉, j ∈ N,

b̄(x) := 〈b, τxμ〉
for each x ∈ R

d .

Remark 5.15 Consider the particular situation m = d, N = R
d and 	 = δ0, which is

covered by Example 5.11. Then, by [5, Lemma B.12] the invariant submanifold is given by

M = {δx : x ∈ R
d},

and the coefficients of the SDE (5.12) are simply given by b̄ = b and σ̄ = σ .

Remark 5.16 Note that the findings of this section are in accordance with [32, Lemma 3.6],
where it was shown that solutions to the SPDE (1.1) with coefficients (5.10) and (5.11) can
be realized locally as Yt = τXt 	 with an R

d -valued Itô process X.

6 Interplay between SPDEs and Finite Dimensional SDEs

In this section we illustrate how our findings from the previous Section 5.3 can be used in
order to study stochastic invariance for finite dimensional diffusions. Consider theRd -valued
SDE {

dXt = b(Xt )dt + σ(Xt )dWt

X0 = x0
(6.1)
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with measurable mappings b : Rd → R
d and σ : Rd → �2(Rd). We assume that for some

q > d
4 we have b ∈ Sq(R

d ;Rd) and σ ∈ �2(Sq(R
d ;Rd)).

Remark 6.1 Note that sufficient conditions for the assumption that the components of b and
σ belong to Sq(R

d) are provided by [5, Prop. B.21 and Cor. B.22].

Lemma 6.2 Themappings b : Rd → R
d andσ : Rd → �2(Rd)are continuous andbounded.

Proof By the Sobolev embedding theorem for Hermite Sobolev spaces ([5, Thm. B.19])
the mapping b : Rd → R

d is continuous and bounded, and for each j ∈ N the mapping
σ j : Rd → R

d is continuous and bounded. Let x ∈ R
d and j ∈ N be arbitrary. By [5, Thm.

B.19] we have

‖σ j (x)‖ ≤ C‖σ j‖q,d

with a universal constant C > 0. Therefore, by Lebesgue’s dominated convergence theorem
the claim follows. ��

Consequently, by Remark 2.9 for each x0 ∈ R
d there exists a global weak solution X to

the SDE (6.1) with X0 = x0. Let N be an m-dimensional C2-submanifold of Rd for some
m ≤ d . Taking into account Remark 5.15, our idea is to link invariance of the submanifold
N for the SDE (6.1) with invariance of the submanifold M for the SPDE (1.1) in Hermite
Sobolev spaces, whereM is defined in (6.2) below. For this purpose, we set p := −(q + 1).
Then we have q = −(p + 1) as well as p + 1 < − d

4 , and hence, we can consider the SPDE
(1.1) with coefficients (5.10) and (5.11) in the framework of the previous Section 5.3 with
G = S−q(R

d), H0 = S−(q+ 1
2 )(R

d), H = S−(q+1)(R
d) and 	 = δ0. As pointed out in

Remark 5.15, then the coefficients of the SDE (5.12) are simply given by b̄ = b and σ̄ = σ ,
and hence, the SDE (6.1) from this section coincides with the SDE (5.12). By [5, Lemma
B.12], the orbit map ψ ∈ C2(Rd ; H) is given by ψ(x) = δx for each x ∈ R

d . Therefore, by
[5, Ex. 3.48] with k = 2 the set

M := ψ(N ) = {δx : x ∈ N } (6.2)

is a d-dimensional (G, H0, H)-submanifold of class C2, which is induced by (ψ,N ). The
following result shows how local invariance of the submanifold N for the SDE (6.1) is
connected with local invariance of the submanifold M for the SPDE (1.1).

Theorem 6.3 The following statements are equivalent:

(i) The submanifold M is locally invariant for the SPDE (1.1).
(ii) The submanifold N is locally invariant for the SDE (6.1).

Proof Taking into account Remark 5.15, this is a consequence of Theorem 5.9. ��
Proposition 6.4 Suppose that the submanifoldN is locally invariant for the SDE (6.1). Then
the following statements are true:

(1) If the submanifold N has one chart with a global parametrization ϕ : V → N , and
the open set V is globally invariant for the R

m-valued SDE (5.4), whose coefficients
a : V → �2(Rm) and � : V → R

m are the unique solutions of the equations

σ j |N = ϕ∗a j , j ∈ N,

b|N = ϕ∗� + 1

2

∞∑
j=1

ϕ∗∗(a j , a j ),
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then the submanifold M is globally invariant for the SPDE (1.1), and the submanifold
N is globally invariant for the SDE (6.1).

(2) If the submanifold N is closed as a subset of Rd , then it is globally invariant for the
SDE (6.1).

Proof The first statement is a consequence of Proposition 5.10. In the situation of the second
statement, let x0 ∈ N be arbitrary, and let X be a global weak solution to the SDE (6.1) with
X0 = x0. We define the stopping time

τ := inf{t ∈ R+ : Xt /∈ N },
and, since N is closed as a subset of Rd , arguing by contradiction we can show that P(τ =
∞) = 1; see, for example, the proof of [15, Thm. 2.8]. ��

Consequently, when we are interested in proving local invariance of the submanifold N
for the SDE (6.1), we can alternatively show local invariance of the submanifold M for the
SPDE (1.1), which turns out to be simpler in certain situations. We illustrate this procedure
in the upcoming two subsections, which are organized as follows: In Section 6.1 we treat
the invariance of submanifolds for coefficients given by vector fields, and in Section 6.2 we
investigate the invariance of submanifolds given by the zeros of smooth functions.

6.1 Coefficients given byVector Fields

For the following results, consider the conditions

b|N ∈ �(TN ), (6.3)

σ j |N ∈ �(TN ), j ∈ N. (6.4)

We are interested in finding an additional condition ensuring that N is locally invariant
for the SDE (6.1). In the general framework of Section 3, such a condition is provided by
Proposition 3.8. In the present situation, we will establish another equivalent condition by
using the connection to the SPDE (1.1). For each j ∈ N we define Ā j : H0 × G → H as

Ā j (y, z) := −
d∑

i=1

〈σ j
i , z〉∂i y, (y, z) ∈ H0 × G.

Then we have

A j (y) = Ā j (y, y) for all y ∈ G and j ∈ N.

Concerning the notation used in Eqs. 6.5 and 6.6 below, we refer to Definition 3.2. By virtue
of [5, Lemma 6.8] the series

∑∞
j=1 Ā

j (A j (y), y), which appears in (6.6), is well-defined for
each y ∈ G.

Theorem 6.5 Suppose that conditions (6.3) and (6.4) are fulfilled. Then the following state-
ments are equivalent:

(i) N is locally invariant for the SDE (6.1).
(ii) We have

∞∑
j=1

[σ j |N , σ j |N ]N = [0]�(TN ). (6.5)
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(iii) We have

∞∑
j=1

([A j |M , A j |M ]M − [ Ā j (A j (·), ·)|M ]�(TM )

) = [0]�(TM ). (6.6)

Proof (i) ⇔ (ii): This equivalence is a consequence of Proposition 3.8.
(i) ⇔ (iii): By [5, Lemmas 7.5 and 3.36] we have

A j |M ∈ �(TM ), j ∈ N,

L|M − 1

2

∞∑
j=1

Ā j (A j (·), ·)|M ∈ �(TM ).

The latter relation shows that

[L|M ]�(TM ) − 1

2

∞∑
j=1

[A j |M , A j |M ]M

= 1

2

∞∑
j=1

([A j |M , A j |M ]M − [ Ā j (A j (·), ·)|M ]�(TM )

)
,

and thus, the stated equivalence is a consequence of Theorem 6.3 and Theorem 3.4. ��
If the submanifoldN is affine, then it is locally invariant for the SDE (6.1) if and only if

we have (6.3) and (6.4). This is a consequence of Corollary 3.9. More generally, we have the
following result. Recall that �∗(TN ) denotes the space of all locally simultaneous vector
fields on N ; see [5, Def. 3.11].

Proposition 6.6 Suppose that

b|N ∈ �(TN ), (6.7)

σ j |N ∈ �∗(TN ), j ∈ N. (6.8)

Then the submanifold N is locally invariant for the SDE (6.1).

Proof By [5, Lemmas 7.5 and 3.36] we have

Ā j
z |M ∈ �z(TM ), z ∈ M , j ∈ N, (6.9)

L|M − 1

2

∞∑
j=1

Ā j (A j (·), ·)|M ∈ �(TM ), (6.10)

where �z(TM ) denotes the space of all local vector fields onM around z; see [5, Def. 3.10].
Using the decomposition [5, Prop. 3.25, eqn. (3.4)], we obtain

[A j |M , A j |M ]M = [ Ā j (A j (·), ·)]�(TM ), j ∈ N.

Therefore, condition (6.6) is fulfilled, and hence, by Theorem 6.5 the submanifold N is
locally invariant for the SDE (6.1). ��
Remark 6.7 Oncewehave established (6.9) and (6.10), alternativelywe canalso useTheorem
3.16 and Theorem 6.3 in order to conclude the proof of Proposition 6.6.
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Remark 6.8 Consider the Rd -valued Stratonovich SDE{
dXt = c(Xt )dt + σ(Xt ) ◦ dWt

X0 = x0
(6.11)

with a continuous mapping c : Rd → R
d . It is well-known that the submanifoldN is locally

invariant for the Stratonovich SDE (6.11) if and only if

c|N ∈ �(TN ),

σ j |N ∈ �(TN ), j ∈ N,

see, for example [27, Cor. 1.ii]. In Proposition 6.6 we present similar conditions, namely
(6.7) and (6.8), which are sufficient for local invariance of the submanifold N for the Itô
SDE (6.1).

For the following results we will assume that even σ ∈ �2(Sq+ 1
2
(Rd ;Rd)). Note that

p + 1
2 = −(q + 1

2 ) and q + 1
2 = −(p + 1

2 ), which shows that

H0 = Sp+ 1
2
(Rd) = S−(q+ 1

2 )(R
d).

According to [5, Lemmas 7.10 and 7.11], for each j ∈ N the mappings A j : H0 → H and
σ j : Rd → R

d are of class C1, and the series
∑∞

j=1 DA j · A j and
∑∞

j=1 Dσ j · σ j are
convergent.

Remark 6.9 If σ ∈ �2(Sq+ 1
2
(Rd ;Rd)), then the Itô SDE (6.1) can equivalently be expressed

by the Stratonovich SDE (6.11), where the continuous mapping c : Rd → R
d is given by

c = b − 1

2

∞∑
j=1

Dσ j · σ j . (6.12)

Proposition 6.10 Suppose that σ ∈ �2(Sq+ 1
2
(Rd ;Rd)). Then we have the decomposition

∞∑
j=1

DA j · A j |M =
∞∑
j=1

Ā j (A j (·), ·)|M + ψ∗
( ∞∑

j=1

Dσ j · σ j |N
)

. (6.13)

Proof Let j ∈ N be arbitrary. By the Leibniz rule we have

DA j (y)z = Ā j (y, z) + Ā j (z, y), y, z ∈ G,

and hence

DA j (y)A j (y) = Ā j (y, A j (y)) + Ā j (A j (y), y), y ∈ G.

Now, let y ∈ M be arbitrary. Then we have y = δx , where x := ψ−1(y) ∈ N . Therefore,
by duality we obtain

Ā j (y, A j (y)) = −
d∑

i=1

〈σ j
i , A j (y)〉∂i y =

d∑
i=1

d∑
k=1

〈σ j
i , 〈σ j

k , y〉∂k y〉∂i y

= −
d∑

i=1

d∑
k=1

〈∂kσ j
i , y〉〈σ j

k , y〉∂i y = −
d∑

i=1

d∑
k=1

∂kσ
j
i (x)σ j

k (x)∂i y

= −
d∑

i=1

〈ei , Dσ j (x)σ j (x)〉∂i y.
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Therefore, for all y ∈ M we obtain

∞∑
j=1

DA j (y)A j (y) =
∞∑
j=1

Ā j (A j (y), y) −
d∑

i=1

〈
ei ,

∞∑
j=1

Dσ j (x)σ j (x)

〉
∂i y.

Consequently, using [5, Prop. 3.43] completes the proof. ��
Proposition 6.11 Suppose that σ ∈ �2(Sq+ 1

2
(Rd ;Rd)). If conditions (6.3) and (6.4) are

fulfilled, then the following statements are equivalent:

(i) The submanifold N is locally invariant for the SDE (6.1).
(ii) We have

∑∞
j=1 Dσ j · σ j |N ∈ �(TN ).

(iii) We have c|N ∈ �(TN ), where the continuous mapping c : Rd → R
d is given by

(6.12).

If any of the previous conditions is fulfilled, then we have

L|M − 1

2

∞∑
j=1

Ā j (A j (·), ·)|M = ψ∗b|N ∈ �(TM ),

L|M − 1

2

∞∑
j=1

DA j · A j |M = ψ∗c|N ∈ �(TM ),

and the difference is given by
(
L|M − 1

2

∞∑
j=1

Ā j (A j (·), ·)|M
)

−
(
L|M − 1

2

∞∑
j=1

DA j · A j |M
)

= 1

2
ψ∗

( ∞∑
j=1

Dσ j · σ j |N
)

∈ �(TM ).

Proof Noting [5, Lemma 7.10], the equivalences (i) ⇔ (ii) ⇔ (iii) are a consequence of
Theorem 3.15. The additional statements follow from [5, Lemma 7.5] and the decomposition
(6.13) from Proposition 6.10. ��

Consequently, we see the following connection between the coefficients of the SDE (6.1)
and the associated SPDE (1.1). The vector field in (3.23) corresponds to the drift b, and the
vector field in (3.21) corresponds to the Stratonovich corrected drift c. Furthermore, we have
computed the difference between these two vector fields, which in the general situation has
been determined in Remark 3.17.

6.2 Submanifolds given by Zeros of Smooth Functions

Now, let N be a (d − n)-dimensional C2-submanifold of Rd for some n ∈ N such that
n < d . We assume there exist an open subset O ⊂ R

d and a mapping f : Rd → R
n such

that

N = {x ∈ O : f (x) = 0}. (6.14)

Concerning the components of f we assume that fk ∈ Sq+1(R
d) for all k = 1, . . . , n.

Recalling that q > d
4 , by the Sobolev embedding theorem for Hermite Sobolev spaces (see
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[5, Thm. B.19]) we have f ∈ C2(Rd ;Rn). We also assume that Df (x)Rd = R
n for all

x ∈ N .

Remark 6.12 Note that the structure (6.14) of the submanifold does not mean a severe restric-
tion. Indeed, it is well-known that for every x0 ∈ M there are an open neighborhood O ⊂ R

d

of x0 and a mapping f ∈ C2(O;Rn) such that D f (x)Rd = R
n for all x ∈ O and

O ∩ N = {x ∈ O : f (x) = 0}.

For what follows, for a function g ∈ C1(Rd ;R) we denote by ∇g(x) the gradient at some
point x ∈ R

d , and for a function g ∈ C2(Rd ;R) we denote by Hg(x) the Hessian matrix at
some point x ∈ R

d .

Theorem 6.13 The following statements are equivalent:

(i) The submanifold N is locally invariant for the SDE (6.1).
(ii) For all k = 1, . . . , n and all x ∈ N we have

〈σ j (x),∇ fk(x)〉 = 0, j ∈ N, (6.15)

〈b(x),∇ fk(x)〉 + 1

2
tr
(
σ(x)σ (x)
H fk (x)

) = 0. (6.16)

Before we provide the proof of Theorem 6.13, let us state some consequences.

Proposition 6.14 Conditions (6.3) and (6.4) are satisfied if and only if for all k = 1, . . . , n
and all x ∈ N we have

〈σ j (x),∇ fk(x)〉 = 0, j ∈ N,

〈b(x),∇ fk(x)〉 = 0,

and in this case, the following statements are equivalent:

(i) N is locally invariant for the SDE (6.1).
(ii) For all k = 1, . . . , n and all x ∈ N we have

tr
(
σ(x)σ (x)
H fk (x)

) = 0.

Proof The first equivalence follows from [5, Lemma 3.17], and in this case, the equivalence
(i) ⇔ (ii) is a consequence of Theorem 6.13. ��
Corollary 6.15 (Unit sphere) Let d ≥ 2 be arbitrary, and consider the unit sphere Sd−1 =
{x ∈ R

d : ‖x‖ = 1}. Then the following statements are equivalent:

(i) S
d−1 is globally invariant for the SDE (6.1).

(ii) S
d−1 is locally invariant for the SDE (6.1).

(iii) For each x ∈ S
d−1 we have

〈σ j (x), x〉 = 0, j ∈ N, (6.17)

〈b(x), x〉 + 1

2
tr
(
σ(x)σ (x)


) = 0. (6.18)

Proof (i) ⇔ (ii): Since Sd−1 is a closed subset of Rd , this equivalence follows from Propo-
sition 6.4.
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(ii) ⇔ (iii): By [5, Lemma B.1] there exists a function f ∈ Sq(R
d) such that

f (x) = ‖x‖2 − 1, x ∈ O,

where O ⊂ R
d denotes the open set O = {x ∈ R

d : ‖x‖ < 2}. Furthermore, the unit sphere
S
d−1 is a (d − 1)-dimensional submanifold having the representation

S
d−1 = {x ∈ O : f (x) = 0}.

For each x ∈ O we obtain

∇ f (x) = 2x and H f (x) = 2 Id,

which in particular shows that Df (x)Rd = R for all x ∈ S
d−1. Therefore, applying Theorem

6.13 completes the proof. ��
Example 6.16 (Stroock’s representation of spherical Brownian motion) Let Sd−1 be the unit
sphere in R

d , and consider the Rd -valued Stratonovich SDE{
dXt = (Id − Xt X


t ) ◦ dWt

X0 = x0
(6.19)

with anRd -valuedWiener process W; see [20, Example 3.3.2]. With our notation, the volatil-
ities σ 1, . . . , σ d : Rd → R

d are given by

σ j (x) = (δi j − xi x j )i=1,...,d = e j − x j x, j = 1, . . . , d.

Let us compute the corresponding Itô dynamics. For this purpose, let x ∈ R
d be arbitrary.

Then we have

∂iσ
j (x) = −δi j x − x j ei , i, j = 1, . . . , d,

and hence, for each j = 1, . . . , d we obtain

Dσ j (x)σ j (x) =
d∑

i=1

σi j (x)∂iσ
j (x) = −

d∑
i=1

(δi j − xi x j )(δi j x + x j ei )

= −
d∑

i=1

(δi j x + δi j x j ei − xi x jδi j x − xi x
2
j ei )

= −x − x j e j + x2j x + x2j

d∑
i=1

xi ei = −x − x j e j + 2x2j x .

Therefore, we have

d∑
j=1

Dσ j (x)σ j (x) = −dx − x + 2‖x‖2x = −(d + 1 − 2‖x‖2)x .

In particular, for x ∈ S
d−1 we obtain

1

2

d∑
j=1

Dσ j (x)σ j (x) = −d − 1

2
x .
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Therefore, we may alternatively consider the Rd -valued Itô SDE{
dXt = − d−1

2 Xtdt + (Id − Xt X

t )dWt

X0 = x0,
(6.20)

cf., for example, equation (2.1) in [26]. Using Corollary 6.15, we will show that the unit
sphere Sd−1 is globally invariant for the SDE (6.20). First, note that the SDE (6.20) is of the
form (6.1). Let O ⊂ R

d be the open set O = {x ∈ R
d : ‖x‖ < 2}. By virtue of [5, Lemma

B.1] there exist bi ∈ Sq(R
d), i = 1, . . . , d such that

b(x) = −d − 1

2
x, x ∈ O,

where b = (bi )i=1,...,d , and there exist σi j ∈ Sq(R
d), i, j = 1, . . . , d such that

σ(x) = Id − xx
, x ∈ O,

where σ = (σi j )i, j=1,...,d . Hence, we may assume that the coefficients b : Rd → R
d and

σ : R
d → R

d×d of the SDE (6.1) are given by these mappings with components from
Sq(R

d). Now, let x ∈ S
d−1 be arbitrary. Since the matrix σ(x) is symmetric, taking into

account the identification Rd ∼= R
d×1 we have

σ(x)
x = σ(x)x = (Id − xx
)x = x − xx
x = x(1 − x
x) = x(1 − ‖x‖2) = 0.

Furthermore, since x
x = ‖x‖2 = 1, we obtain

σ(x)σ (x)
 = σ(x)2 = (Id − xx
)2 = Id − 2xx
 + xx
xx


= Id − xx
 = σ(x).

Therefore, we have

tr
(
σ(x)σ (x)


) = tr
(
Id − xx
) = d − ‖x‖2 = d − 1,

and hence

〈b(x), x〉 + 1

2
tr
(
σ(x)σ (x)


) = −d − 1

2
+ d − 1

2
= 0.

Consequently, by Corollary 6.15 the unit sphere Sd−1 is globally invariant for the SDE (6.20).

Example 6.17 Let S1 be the unit sphere in R2, and consider the R2-valued SDE (6.1) driven
by a one-dimensional Wiener process W, where the coefficients b, σ : R2 → R

2 are given
by

b(x) := −1

2
λ(x)2x, (6.21)

σ(x) := λ(x)(−x2, x1)

 (6.22)

with an arbitrary continuous function λ : R2 → R. Then for each x ∈ R
2 we have

σ(x)σ (x)
 = λ(x)2
(

x22 −x1x2
−x1x2 x21

)
,

and hence

tr
(
σ(x)σ (x)


) = λ(x)2‖x‖2. (6.23)
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Therefore, the conditions (6.17) and (6.18) fromCorollary 6.15 are fulfilled. As in the previous
example, let O ⊂ R

2 be the open set O = {x ∈ R
2 : ‖x‖ < 2}. If there are functions

b̃i , σ̃i ∈ Sq(R
d), i = 1, 2 such that bi |O = b̃i |O and σi |O = σ̃i |O for each i = 1, 2, then

we can apply Corollary 6.15 and obtain that the unit sphere S1 is invariant for the SDE (6.1).
Otherwise, we can use Theorem 3.4 as follows. Setting N := S

1, for each x0 ∈ N a local
parametrization of N around x0 is given by

φ : V → U ∩ N , φ(t) = (cos(t), sin(t))
,

where V ⊂ R is a bounded, open interval. Note that

φ′(t) = (− sin(t), cos(t))
, t ∈ V ,

φ′′(t) = −(cos(t), sin(t))
 = −φ(t), t ∈ V .

Therefore, we have

TxN = lin{(−x2, x1)

}, x ∈ N ,

and hence σ |N ∈ �(TN ). Now, let x ∈ U ∩ N be arbitrary and set t := φ−1(x) ∈ V .
Then we have

Dφ(t)−1σ(x) = λ(x),

which implies

1

2
D2φ(t)(Dφ(t)−1σ(x), Dφ(t)−1σ(x)) = −1

2
λ(x)2x = b(x).

Therefore, we obtain

[b|N ]�(TN ) − 1

2
[σ |N , σ |N ]N = [0]�(TN ).

Consequently, by Theorem 3.4 with H = G = R
2 as well as L = b and A = σ the unit

sphere S1 is invariant for the SDE (6.1).
Now, we construct a function λ such that none of the known results from the literature can

be applied. Namely, we define

λ : R2 → R, λ(x) := | arg(x)| 14 ,
where arg : R

2 → (−π, π] denotes the argument function. Then λ is continuous, which
implies the continuity of b and σ . Moreover, the following statements are true:

(1) Neither b|S1 nor σ |S1 are locally Lipschitz. This already excludes an application of most
of the known results.

(2) The function σ |S1 : S1 → R
2 cannot be extended to a C1-function on a neighborhood

of S1. As a consequence, results with the Stratonovich correction term 1
2Dσ ·σ (as, e.g.,

in [10]) cannot be applied.
(3) The function σσ
|S1 : S1 → R

2×2 cannot be extended to a C1-function on a neighbor-
hood of S1. As a consequence, the results from [1, 2] cannot be applied.

In order to prove these statements, let us define

ϕ : (−π/2, π/2) → S
1, ϕ(t) := (cos t, sin t). (6.24)
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Due to the identity

arg(x) = arctan(x2/x1) for each x ∈ R
2 with x1 > 0 (6.25)

we obtain

λ(ϕ(t)) = | arg(ϕ(t))| 14 = |t | 14 for all t ∈ (−π/2, π/2).

Taking into account the definitions (6.21) and (6.22), we obtain

‖b(ϕ(t))‖ = 1

2
|t | 12 for all t ∈ (−π/2, π/2),

‖σ(ϕ(t))‖ = |t | 14 for all t ∈ (−π/2, π/2),

showing that neither b|S1 nor σ |S1 can be locally Lipschitz. For the proof of the second
statement, suppose, on the contrary, there are an open neighborhood O ⊂ R

2 with S
1 ⊂ O

and an extension of σ |S1 which is of class C1(O). For convenience of notation, let us denote
this extension by σ : O → R

2. Then the norm

ρ : O → R, ρ(x) := ‖σ(x)‖2 (6.26)

is also of class C1. Therefore, the function ρ ◦ ϕ : (−π/2, π/2) → R is of class C1 as well,
where ϕ was defined in (6.24). However, by (6.25) we obtain

ρ(ϕ(t)) = λ(ϕ(t))2 = | arg(ϕ(t))| 12 = |t | 12 for all t ∈ (−π/2, π/2), (6.27)

which is a contradiction. For the proof of the third statement, suppose, on the contrary, there
are an open neighborhood O ⊂ R

2 with S
1 ⊂ O and an extension of σσ
|S1 which is of

class C1(O). For convenience of notation, let us denote this extension by σσ
 : O → R
2×2.

Then the trace

� : O → R, �(x) := tr
(
σ(x)σ (x)


)
is also of class C1. Noting that � = ρ, where ρ as defined in (6.26), the identity (6.27)
provides the desired contradiction.

Remark 6.18 Suppose that the submanifold N is globally invariant for the SDE (6.1), and
that its complementRd \N consists of two connected componentsN1 andN2. Then the two
setsN1∪N andN2 ∪N are also globally invariant for the SDE (6.1), and the submanifold
N is an absorbing set in the sense that for each y0 ∈ R

d we have Y ∈ N up to an evanescent
set on [[τ,∞[[, where Y denotes any weak solution to the SDE (6.1) with Y0 = y0, and τ

denotes the stopping time τ := inf{t ∈ R+ : Yt ∈ N }. Some examples for the submanifold
N are as follows:

• Let N be a (d − 1)-dimensional affine hyperplane. Then there are η ∈ R
d and b ∈ R

such that

N = {x ∈ R
d : 〈x, η〉 = b}.

By Corollary 3.9 and Proposition 6.4 the affine hyperplane N is globally invariant for
the SDE (6.1) if and only if conditions (6.3) and (6.4) are fulfilled. Its complementRd \N
consists of the two connected components

N1 = {x ∈ R
d : 〈x, η〉 < b} and N2 = {x ∈ R

d : 〈x, η〉 > b}.
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• LetN = S
d−1 be the unit sphere inRd . By Corollary 6.15 the unit sphereN is globally

invariant for the SDE (6.1) if and and only if conditions (6.18) and (6.17) are fulfilled
for each x ∈ N . Its complement Rd \ N consists of the two connected components

N1 = {x ∈ R
d : ‖x‖ < 1} and N2 = {x ∈ R

d : ‖x‖ > 1}.
• More generally, letN be a (d−1)-dimensional submanifold ofRd which is compact and

connected. By the Jordan-Brouwer separation theorem its complement Rd \N consists
of two connected components N1 and N2.

Now, we approach the proof of Theorem 6.13. Recall that ψ ∈ C2(Rd ; H) denotes the
orbit map ψ = ξ	 with 	 = δ0. Thus, we have ψ(x) = δx for all x ∈ R

d , and by [5, Prop.
3.44] the mapping ψ is a C2-immersion, and ψ : Rd → ψ(Rd) is a homeomorphism. By
[5, Ex. 3.48] the set

K := ψ(O) = {δx : x ∈ O} (6.28)

is a d-dimensional (G, H0, H)-submanifold of class C2 with one chart. Furthermore, by [5,
Ex. 3.48] the set

M := ψ(N ) = {δx : x ∈ N } (6.29)

is a (d −n)-dimensional (G, H0, H)-submanifold of class C2, which is induced by (ψ,N ),
and obviously we have M ⊂ K .

Lemma 6.19 The submanifold K is locally invariant for the SPDE (1.1).

Proof Since the open subset O is locally invariant for the SDE (6.1), this is an immediate
consequence of Theorem 6.3. ��

Now, we are ready to provide the proof of Theorem 6.13. We define the operator L :
C2(Rd) → C(Rd) as

(L g)(x) := 〈b(x),∇g(x)〉 + 1

2
tr
(
σ(x)σ (x)
Hg(x)

)
, x ∈ R

d ,

and for each j ∈ N we define the operator A j : C1(Rd) → C(Rd) as

(A j g)(x) := 〈σ j (x),∇g(x)〉, x ∈ R
d .

Proof of Theorem 6.13 (i) ⇒ (ii): Let x ∈ N be arbitrary. There exist a global weak solution
X to the SDE (3.16) with X0 = x and a positive stopping time τ > 0 such that X τ ∈ N up
to an evanescent set. Let k = 1, . . . , n be arbitrary. By Itô’s formula (see [14, Thm. 2.3.1])
we have P-almost surely

fk(Xt∧τ ) = fk(x) +
∫ t∧τ

0
(L fk)(Xs)ds +

∫ t∧τ

0
(A fk)(Xs)dWs, t ∈ R+.

where the continuous mappingA fk : Rd → �2(Rd) is given byA fk = (A j fk) j∈N. Noting
that fk(X τ ) = 0, we deduce (6.15) and (6.16).
(ii)⇒ (i): Our strategy is to prove that the submanifoldM defined in (6.29) is locally invariant
for the SPDE (1.1) with coefficients (5.10) and (5.11), and then to apply Theorem 6.3 in order
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to deduce that the submanifold N is locally invariant for the SDE (6.1). First, note that for
all y ∈ M and all k = 1, . . . , n we have

〈 fk, A j (y)〉 = 0, j ∈ N, (6.30)

〈 fk, L(y)〉 = 0. (6.31)

Indeed, let y ∈ M be arbitrary. Setting x := ψ−1(y) ∈ N , we have y = δx . Thus, taking into
account the definitions (5.10) and (5.11) of the coefficients, by duality for all k = 1, . . . , n
we obtain

〈 fk, A j (y)〉 = −
d∑

i=1

〈σi j , y〉〈 fk, ∂i y〉 =
d∑

i=1

〈σi j , y〉〈∂i fk, y〉

=
d∑

i=1

σi j (x)∂i fk(x) = A j fk(x) = 0, j ∈ N

as well as

〈 fk, L(y)〉 = 1

2

d∑
i, j=1

(〈σ, y〉〈σ, y〉
)i j 〈 fk, ∂2i j y〉 −
d∑

i=1

〈bi , y〉〈 fk, ∂i y〉

= 1

2

d∑
i, j=1

(σ (x)σ (x)
)i j∂
2
i j fk(x) +

d∑
i=1

bi (x)∂i fk(x) = L fk(x) = 0.

Now, let y ∈ M be arbitrary. Setting x := ψ−1(y) ∈ N , we have y = δx . Let ϕ : V →
W ∩ N be a local parametrization around x := ψ−1(y) ∈ N with W ⊂ O . By [5, Lemma
3.31] there exists an open neighborhood U ⊂ H of y such that φ := ψ ◦ ϕ : V → U ∩ M
is a local parametrization around y. Hence, the mapping ψ |W∩N : W ∩ N → U ∩ M is
a homeomorphism, and noting (6.28) the mapping ψ |O : O → K is a homeomorphism.
Since W ⊂ O , it follows that the mapping ψ |W : W → U ∩ K is a local parametrization
of K around y. By Lemma 6.19 the submanifold K is locally invariant for the SPDE
(1.1). Therefore, by Proposition 3.11 there are continuous mappings b̄ : W → R

d and
σ̄ : W → �2(Rd) which are the unique solutions of the equations

A j |U∩K = ψ∗σ̄ j , j ∈ N,

L|U∩K = ψ∗b̄ + 1

2

∞∑
j=1

ψ∗∗(σ̄ j , σ̄ j ).

In particular, we have

A j |M ∈ �(TKU ), j ∈ N, (6.32)

where KU := U ∩ K . From these equations, it follows that

A j |U∩M = ψ∗σ̄ j |W∩N , j ∈ N, (6.33)

L|U∩M = ψ∗b̄|W∩N + 1

2

∞∑
j=1

ψ∗∗(σ̄ j |W∩N , σ̄ j |W∩N ). (6.34)

Let j ∈ N be arbitrary. Noting (6.30) and (6.32), by [5, Lemma 7.21] we obtain

A j |M ∈ �(TMU ),
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whereMU := U ∩M . Therefore, taking into account (6.33), by [5, Lemma 3.34] we deduce
that

σ̄ j |W∩N ∈ �(TNW ),

where NW := W ∩ N . Hence there is a continuous mappings a : V → �2(Rm) whose
components are the unique solutions to the equations

σ̄ j |W∩N = ϕ∗a j , j ∈ N. (6.35)

Taking into account [5, Lemma 3.35], by (6.33) and (6.35) we obtain

A j |U∩M = ψ∗σ̄ j |W∩N = ψ∗ϕ∗a j = φ∗a j , j ∈ N.

Furthermore, taking into account [5, Lemma 3.35], by (6.34) and (6.35) we have

L|U∩M = ψ∗b̄|W∩N + 1

2

∞∑
j=1

ψ∗∗(ϕ∗a j , ϕ∗a j )

= ψ∗b̄|W∩N + 1

2

∞∑
j=1

(
φ∗∗(a j , a j ) − ψ∗ϕ∗∗(a j , a j )

)

= ψ∗
(
b̄|W∩N − 1

2

∞∑
j=1

ϕ∗∗(a j , a j )

)
+ 1

2

∞∑
j=1

φ∗∗(a j , a j ).

(6.36)

Taking into account [5, Lemma 7.21], we have φ(V ) ⊂ ⋂n
k=1 ker(〈 fk, ·〉), and hence

(φ∗∗(a j , a j ))(U ∩ M ) ⊂
n⋂

k=1

ker(〈 fk, ·〉) for all j ∈ N.

Thus, noting (6.31), by [5, Lemma 7.21] we obtain

L|U∩M − 1

2

∞∑
j=1

φ∗∗(a j , a j ) ∈ �(TMU ).

Therefore, by [5, Lemma 3.34] we deduce that

b̄|W∩N − 1

2

∞∑
j=1

ϕ∗∗(a j , a j ) ∈ �(TNW ).

Hence, there is a continuous mapping � : V → R
m which is the unique solution to the

equation

b̄|W∩N − 1

2

∞∑
j=1

ϕ∗∗(a j , a j ) = ϕ∗�. (6.37)

Therefore, using [5, Lemma 3.35], by (6.36) and (6.37) we obtain

L|U∩M − 1

2

∞∑
j=1

φ∗∗(a j , a j ) = ψ∗
(
b̄|W∩N − 1

2

∞∑
j=1

ϕ∗∗(a j , a j )

)
= ψ∗ϕ∗� = φ∗�.

Now, by Proposition 3.11 we deduce that the submanifold M is locally invariant for the
SPDE (1.1). Consequently, by Theorem 6.3 it follows that the submanifold N is locally
invariant for the SDE (6.1). ��
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Remark 6.20 As the proof of Theorem 6.13 reveals, the conditions b ∈ Sq(R
d ;Rd) and σ ∈

�2(Sq(R
d ;Rd)) are only required for the implication (ii) ⇒ (i), whereas for the implication

(i) ⇒ (ii) we merely need that b : Rd → R
d and σ : Rd → �2(Rd) are continuous.
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