
Potential Analysis
https://doi.org/10.1007/s11118-023-10113-5

Distribution-Path Dependent Nonlinear SPDEs with
Application to Stochastic Transport Type Equations

Panpan Ren1 · Hao Tang2 · Feng-Yu Wang3

Received: 25 May 2022 / Accepted: 7 October 2023
© The Author(s) 2024

Abstract
By using a regularity approximation argument, the global existence and uniqueness are
derived for a class of nonlinear SPDEs depending on both the whole history and the distri-
bution under strong enough noise. As applications, the global existence and uniqueness are
proved for distribution-path dependent stochastic transport type equations, which are arising
from stochastic fluid mechanics with forces depending on the history and the environment. In
particular, the distribution-path dependent stochastic Camassa-Holm equation with or with-
out Coriolis effect has a unique global solution when the noise is strong enough, whereas for
the deterministic model wave-breaking may occur. This indicates that the noise may prevent
blow-up almost surely.

Keywords Distribution-Path Dependent Nonlinear SPDEs · Stochastic transport type
equation · Stochastic Camassa-Holm type equation
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1 Introduction

To describe the evolutions of stochastic systems depending on the history and micro envi-
ronment, distribution-path dependent SDEs of the following type

dX(t) = b(t, Xt ,LXt )dt + σ(t, Xt ,LXt )dW (t), X(0) = X0 ∈ R
d , t ∈ [0, T ] (1.1)

B Hao Tang
haot@math.uio.no

Panpan Ren
rppzoe@gmail.com

Feng-Yu Wang
wangfy@tju.edu.cn

1 Department of Mathematics, City University University of Hong Kong, Hong Kong, China

2 Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, N-0316 Oslo, Norway

3 Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11118-023-10113-5&domain=pdf
http://orcid.org/0000-0003-3414-7345


Ren et al.

have been studied intensively investigated, see for instance [1–6] and references therein.
However, the existing study in the literature does not cover distribution-path dependent non-
linear SPDEs containing a singular term which is not well-defined on the state space. The
main purpose of this paper is to solve a class of such SPDEs including transport type fluid
models.

Nowadays there is a vast amount of literature on stochastic fluid models under random
perturbation, and we do not attempt to survey it here. Instead, we recommend readers to refer
to the lecture notes [7, 8] and the monographs [9, 10]. On one hand, in the real world, it is nat-
ural that random perturbations may rely on both the sample path due to inertia and averaged
stochastic interactions from the environment. On the other hand, almost nothing is known
if the randomness in stochastic fluid models also depends on the distribution and path of
unknown variables, i.e., distribution-path dependent stochastic fluid models. For such prob-
lems, the fundamental question of well-posedness (even merely the existence) of solutions
remains open. Although both linear and nonlinear (distribution-path independent) stochastic
transport type equations have been intensively investigated (see for example [11–18]), there
has been no study on distribution-path dependent stochastic transport type equations.

To study distribution-path dependent stochastic fluid models, we may need extend (1.1)
to infinite dimensional case, i.e., assuming that X takes value in a separable Hilbert space
H. If this is the case, a singular term, which is not well-defined on H, may occur and the
existing study in the literature does not cover this case. More precisely, we consider the case
that (1.1) contains one more singular drift term B taking value in a larger separable Hilbert
space B such that H ↪→ B, i.e.,{

dX(t) = {
B(t, X(t)) + b(t, Xt ,LXt )

}
dt + σ(t, Xt ,LXt )dW (t), t ∈ [0, T ],

X(0) = X0 ∈ H.
(1.2)

Indeed, when we consider certain stochastic fluid models in Sobolev spaces H = Hs , if
B(t, X(t)) involves∇X or some derivatives of X (see Examples 1.1 and 1.2), then B(t, X(t))
may not be expected to be in H = Hs . Particularly, when B(t, X(t)) = −(X(t) · ∇)X(t),
(1.2) reduces to the following transport type equation{

dX(t) = {−(X(t) · ∇)X(t) + b(t, Xt ,LXt )
}
dt + σ(t, Xt ,LXt )dW (t), t ∈ [0, T ],

X(0) = X0 ∈ Hs .

(1.3)
We refer to Sections 1.1 and 1.2 for the precise meaning of the notations and precise setting
of (1.2) and (1.3), respectively. Before going further, we would like to explain that working
with the abstract framework in (1.2) entails some difficulties:

(a) We assume that the coefficients B, b and σ are locally Lipschitz in X since we want
to cover some stochastic fluid models in the abstract system (1.2). As a result, we do
not a priori know that the solution exists globally in time. This brings us an essential
difficulty. Indeed, the distribution, as a global object on the path space, does not exist
for explosive stochastic processes whose paths are killed at the life time. Therefore,
to investigate distribution dependent SDEs/SPDEs, we have to either consider the non-
explosive setting or modify the “distribution” by a local notion (for example, conditional
distribution given by solution does not blow up at present time).

(b) Wewill have to localize the coefficients (by using stopping times) whenwe need to fix the
changing Lipschitz constants since they are only locally Lipschitz in X . For instance, this
happens when uniqueness is considered. Then, we will be confronted with the difficulty
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that distribution can not be controlled by any local condition, again. We need to identify
some appropriate topology under which the distribution can be measured locally.

(c) Because of the singular term B(t, X), compared to classical case, the Itô formula is no
longer available. Indeed, to estimate ‖X‖2

H
, to use the Itô formula in a Hilbert space

(cf. [19]), the H inner product 〈B(t, X), X〉H is required to be well-defined. But it is
not because we only assume that B takes value in B ←↩ H. Likewise, to apply the Itô
formula under a Gelfand triplet ([20, 21]), the dual product B〈B(t, X), X〉B∗ needs to be
well-defined, where B∗ is the dual space of B with respect to H. Because H ↪→ B, we
see that B∗ ↪→ H. However, we do not a priori know that the solution X takes value in
B

∗ because we only assume X(0) ∈ H.

The first major goal of this paper is to establish an abstract framework for (1.2). The
second goal of this work is to apply the abstract theory for (1.2) to (1.3), which gives some
new results for some ideal fluid systems.

• To achieve the first goal, we introduce the precise assumptions in Section 1.1 (see
Assumption (A)). Then, we provide our main results for (1.2) in Theorem 1.1. The key
requirements for the proof are the assumption on the existence of appropriate Lipschitz-
continuous andmonotone regularizations for the singular term B. For difficulty (a), in this
paper, we restrict our attention to the non-explosive case only. To this end, we assume
that the noise grows fast enough (cf. A3), and then we will show that the blow-up of
solutions can be prevented. For difficulty (b), we introduce a “local” Wasserstein dis-
tance (see (1.7)) and assumption (A5) to measure the difference of two measures, which
enables us to prove uniqueness. By introducing a mollifier satisfying certain estimates
(see assumption A4), we can overcome difficulty (c).

• With the general framework at hand, for nonlinear stochastic transport type equations,
we are able to construct such regular approximation schemes by using mollifying oper-
ators and establishing a commutator estimate (see Lemma 4.1). From this, we can verify
the assumptions introduced in Section 1.1 and obtain global existence and uniqueness
of solutions in Sobolev spaces. This result is stated in Theorem 1.2. Two examples of
Theorem 1.2 are given. The first one, cf. Example 1.1, is a general nonlinear stochas-
tic transport equation, and the second one is the distribution-path dependent stochastic
Camassa-Holm equation with or without Coriolis effect, cf. Example 1.2.

1.1 A General Framework

Let H,U be two separable Hilbert spaces and let {W (t)}t∈[0,T ] be a cylindrical Brownian
motion on U with respect to a complete filtration probability space (�, {Ft }t≥0,P), i.e.

W (t) =
∑
i≥1

β i (t)ei , t ∈ [0, T ]

for an orthonormal basis {ei }i≥1 ofU and a sequence of independent one-dimensional Brow-
nian motions {β i }i≥1 on (�, {Ft }t≥0,P). Let L2(U;H) be the space of Hilbert-Schmidt
operators from U toH with Hilbert-Schmidt norm ‖ · ‖L2(U;H). Throughout the paper we fix
the separable Hilbert space U and a time T > 0.

For a Banach space M, we denote by CT ,M := C([0, T ];M) the path space. We also
consider the weakly continuous path space

Cw
T ,M := {ξ : [0, T ] → M is weak continuous} .
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Both CT ,M and Cw
T ,M

are Banach spaces under the uniform norm

‖ξ‖T ,M := sup
t∈[0,T ]

‖ξ(t)‖M.

Then we letPw
T ,M

be the sets of probability measures (with weak convergence topology) on
Cw
T ,M

. Denote PT ,M = {μ ∈ Pw
T ,M

: μ(CT ,M) = 1}. For any N > 0, we let

Cw
T ,M,N = {ξ ∈ Cw

T ,M : ‖ξ‖T ,M ≤ N }, Pw
T ,M,N = {μ ∈ Pw

T ,M : μ(Cw
T ,M,N ) = 1}. (1.4)

For any map ξ : [0, T ] → M and t ∈ [0, T ], the path πt (ξ) of ξ before time t is given by

πt (ξ) := ξt : [0, T ] → M, ξt (s) := ξ(t ∧ s), s ∈ [0, T ].
Then the marginal distribution before time t of a probability measure μ ∈ Pw

T ,M
reads

μt := μ ◦ π−1
t .

Let Lξ stand for the distribution of a random variable ξ . When more than one probabil-
ity measure are considered, we denote Lξ by Lξ |P to emphasize the reference probability
measure P. Throughout the paper, I stands for the identity mapping.

Consider the following nonlinear distribution-path dependent SPDE on H:

dX(t) = {
B(t, X(t)) + b(t, Xt ,LXt )

}
dt + σ(t, Xt ,LXt )dW (t), t ∈ [0, T ],

where, for some separable Hilbert spaceBwithH ↪→↪→ B (“ ↪→↪→ " means the embedding
is compact), ⎧⎪⎨

⎪⎩
B : [0, T ] × H × � → B,

b : [0, T ] × Cw
T ,H × Pw

T ,H × � → H,

σ : [0, T ] × Cw
T ,H × Pw

T ,H × � → L2(U;H)

(1.5)

are progressively measurable maps.

Definition 1.1 The (strong) solution and weak solution to (1.2) are defined as follows:
(1) A progressively measurable process XT := {X(t)}t∈[0,T ] on H is called a solution to

(1.2), if it is continuous in B and P-a.s.

X(t) = X(0)+
∫ t

0

{
B(s, X(s)) + b(s, Xs,LXs )

}
ds+

∫ t

0
σ(s, Xs,LXs )dW (s), t ∈ [0, T ],

where
∫ t
0

{
B(s, X(s)) + b(s, X(s),LXs )

}
ds is the Bochner integral on B and the stochastic

integral
∫ t
0 σ(s, X(s),LXs )dW (s) is a continuous local martingale on H.

(2) A couple (X̃T , W̃T ) = (X̃(t), W̃ (t))t∈[0,T ] is called a weak solution to (1.2), if there
exists a complete filtration probability space (�̃, {F̃t }t≥0, P̃) such that W̃T is a cylindrical
Brownian motion on U and X̃T is a solution to (1.2) for (W̃T , P̃) replacing (WT ,P).

Since both X(t) and
∫ t
0 b(s, Xs,LXs )ds + ∫ t

0 σ(s, Xs,LXs )dW (s) are stochastic pro-
cesses on H, so is

∫ t
0 B(s, X(s))ds, although B(s, X(s)) only takes values in B.

To ensure the non-explosion such that the distribution is well defined, we will take a
Lyapunov type condition (A3) below. We write V ∈ V , if V ∈ C2([0,∞); [0,∞)) satisfies

V (0) = 0, V ′(r) > 0 and V ′′(r) ≤ 0 for r ≥ 0, V (∞) := lim
r→∞ V (r) = ∞.
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LetW2,M(·, ·) be the L2-Wasserstein distance on Pw
T ,M

, i.e.,

W2,M(μ, ν) := inf
π∈C(μ,ν)

∫
C w
T ,M

×C w
T ,M

‖ξ − η‖2T ,M π(dξ, dη), μ, ν ∈ Pw
T ,M,

where C(μ, ν) is the set of couplings of μ and ν. Let

tξn := T ∧ inf{t ≥ 0 : ‖ξ(t)‖M ≥ n}, ξ ∈ Cw
T ,M, (1.6)

Here and in the sequel, we set inf ∅ = ∞ by convention. We remark that tξn is a continuous
(hencemeasurable) function in ξ , so that tXn is a stopping time for an adapted random variable
X on Cw

T ,M
.

For μ, ν ∈ PT ,M, we introduce the “local” L2-Wasserstein distance defined by

W2,M,N (μ, ν) = inf
π∈C(μ,ν)

(∫
C T ,M×C T ,M

‖ξ
t∧tξN∧tηN − η

t∧tξN∧tηN ‖2T ,M π(dξ, dη)

) 1
2

. (1.7)

We write μ ∈ PV
T ,H

if μ ∈ PT ,H and

‖μ‖V :=
∫
C T ,H

V (‖ξ‖2T ,H)μ(dξ) < ∞.

In general, ‖ · ‖V may not be a norm, but we use this notation for simplicity. A subset
A ⊂ PV

T ,H
is called V -bounded if supμ∈A ‖μ‖V < ∞.

Assumptions (A) Assume that H ↪→↪→ B is dense, and there exists a dense subset H0 of
B

∗, the dual space of B with respect to H, such that the following conditions hold for B, b
and σ in (1.5).

(A1) ‖b(·, 0, δ0)‖H + ‖σ(·, 0, δ0)‖L2(U;H) is bounded on [0, T ] × �. For any N ≥ 1, there
exists a constant CN > 0 such that for any ξ, η ∈ CT ,H,N and μ, ν ∈ PV

T ,H
,

‖b(t, ξt , μt ) − b(t, ηt , νt )‖H + ‖σ(t, ξt , μt ) − σ(t, ηt , νt )‖L2(U;H)

≤ CN
{‖ξt − ηt‖T ,H + W2,B(μt , νt )

}
, t ∈ [0, T ].

Next, for any ψ ∈ H0 and bounded sequences {(ξn, μn)}n≥1 ⊂ CT ,H × PV
T ,H

satis-
fying ‖ξn − ξ‖T ,B → 0 and μn → μ weakly in PT ,B as n → ∞, we have P-a.s.

lim
n→∞

{∣∣∣B〈b(t, ξn, μn
t ) − b(t, ξ, μt ), ψ

〉
B∗

∣∣∣ + ‖{σ(t, ξn, μn
t ) − σ(t, ξ, μt )}∗ψ‖U

}
= 0,

and for any N ≥ 1 there exists a constant C̃N > 0 such that

sup
t∈[0,T ],η∈C T ,B,N

{‖b(t, η, μn
t )‖B + ‖σ(t, η, μn

t )‖L2(U;B)

} ≤ C̃N .

(A2) There exist constants {CN ,Cn,N > 0 : n, N ≥ 1} and a sequence of progressively
measurable maps

Bn : [0, T ] × H × � → H, n ≥ 1

such that for all n, N ≥ 1,

sup
t∈[0,T ],‖x‖H≤N

(‖B(t, x)‖B + ‖Bn(t, x)‖B
) ≤ CN ,
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sup
t∈[0,T ],‖x‖H∨‖y‖H≤N

{
‖Bn(t, x)‖H + 1{x �=y}

‖Bn(t, x) − Bn(t, y)‖H
‖x − y‖

}
≤ Cn,N .

Moreover, for any bounded sequence {ξn}n≥1 in Cw
T ,H

with ‖ξn − ξ‖T ,B → 0 as
n → ∞, we have

lim
n→∞

∫ T

0

∣∣
B

〈
Bn(t, ξ

n(t)) − B(t, ξ(t)), ψ
〉
B∗

∣∣ dt = 0, ψ ∈ H0.

(A3) There exist V ∈ V and constants K1, K2 > 0 such that for any μ ∈ PT ,H, t ∈ [0, T ],
ξ ∈ CT ,H and n ≥ 1,

V ′(‖ξ(t)‖2
H
)
{
2
〈
Bn(t, ξ(t)) + b(t, ξt , μt ), ξ(t)

〉
H

+ ‖σ(t, ξt , μt )‖2L2(U;H)

}

+ 2V ′′(‖ξ(t)‖2
H
)‖σ(t, ξt , μt )

∗ξ(t)‖2
U

≤ K1 − K2
{V ′(‖ξ(t)‖2

H
)‖σ(t, ξt , μt )

∗ξ(t)‖U}2
1 + V (‖ξ(t)‖2

H
)

.

(A4) There exists a sequence of continuous linear operators {Tn}n≥1 from B to H with

‖Tnx‖H ≤ ‖x‖H, lim
n→∞ ‖Tnx − x‖H = 0, x ∈ H, (1.8)

such that for any N ≥ 1, there exists a constant CN > 0 such that
sup

‖x‖H≤N ,n≥1
|〈Tn B(t, x), Tnx〉H| ≤ CN . (1.9)

(A5) There exist constants K , ε > 0 and an increasing map C· : N → (0,∞) such that for
any N ≥ 1, ξ, η ∈ Cw

T ,H,N and μ, ν ∈ Pw
T ,H

,

〈B(t, ξ(t)) − B(t, η(t)), ξ(t) − η(t)〉B ≤ CN‖ξ(t) − η(t)‖2
B
, t ∈ [0, T ],

and

‖b(t, ξt , μt ) − b(t, ηt , νt )‖B + ‖σ(t, ξt , μt ) − σ(t, ηt , νt )‖L2(U;B)

≤ CN

{
‖ξt − ηt‖T ,B + W2,B,N (μt , νt ) + K e−εCN

(
1 ∧ W2,B(μt , νt )

)}
, t ∈ [0, T ].

Theorem 1.1 Let X0 ∈ L2(� → H,F0,P).

(i) Assume (A1)–(A3). Then (1.2) has a weak solution (X̃T , W̃T ) such that LX̃(0)|P̃ =
LX0|P and

Ẽ

[
V (‖X̃T ‖2T ,H)

]
≤ 2K1T + 1 + 64

K2

(
K1T + Ẽ[V (‖X̃(0)‖2

H
)]
)

< ∞.

(ii) If (A4) holds, then the weak solution is continuous in H.
(iii) If (A5) holds, then (1.2) has a unique solution with initial value X0.

Now we give some remarks regarding the proof of Theorem 1.1 and Assumption (A).

Remark 1.1 Except for the difficulties (a), (b) and (c), we will be confronted with one addi-
tional technical obstacle. Indeed,we notice that the singular term B is in general notmonotone
in the sense of [22] (see also [21]). Therefore, even coming back to the distribution-path inde-
pendent case, the Galerkin approximation under a Gelfand triple developed for quasi-linear
SPDEs does not work for the present model. To overcome this obstacle, we will take a
different regularization argument. The proof of Theorem 1.1 includes two main steps:
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Step 1: Regular case.We first establish the solvability of the regular case, i.e., B = 0 (see
Proposition 2.1). In this step, we need (A1) as (A1) describes the local Lipschitz
continuity of the regular coefficients b(t, ξ, μ) and σ(t, ξ, μ) in (ξ, μ) under the
metric induced by ‖ · ‖H and W2,B. We also note that, in finite dimensional space,
all norms are equivalent and hence H reduces to B and the compact embedding
H ↪→↪→ B is no longer needed. Recalling the difficulty (a) mentioned before, we
restrict our attention to the non-explosive case. Hence we need the assumption (A3),
which is a Lyapunov type condition ensuring the global existence of the solution.
Furthermore, (A5) means that the dependence on the distribution of the coefficients
is asymptotically determined by the distribution of local paths, and it will be used to
prove the pathwise uniqueness. Actually, (A5) is proposed to overcome the difficulty
(b).

Step 2: Singular case.Wewill propose a regularization argument to establish existence and
uniqueness to (1.2). Therefore, in (A2), we assume that the singular term B ∈ B

can be approximated by a regular term Bn ∈ H with certain nice properties. The
result in Step 1 guarantees that the approximation problem (see (3.1), where B in
(1.2) is replaced by Bn) can be uniquely solved on [0, T ] for any given T > 0,
and we refer to Proposition 2.1. Then, we use the martingale approach to pass limit
to the original problem (1.2), where we need the continuity of the coefficient in
μ under the weak topology (see A1). Precisely speaking, by Prokhorov’s theorem
and Skorokhod’s theorem,we can get almost sure convergence of the approximation
solutions relative to a new probability space. Then, by the martingale representation
theorem, we can identify the limit of the stochastic integral. Finally, we establish
the uniqueness, which together with the Yamada-Watanabe type result gives the
existence and uniqueness of a pathwise solution. Asmentioned before, Itô’s formula
cannot be applied directly to ‖X(t)‖2

H
(see difficulty (c)). Hence, it is not obvious

to obtain the time continuity of the solution in H. We need to mollify the equation
first by using some mollifiers. Therefore, (A4) provides certain properties of such
mollifiers.

1.2 Distribution-Path Dependent Stochastic Transport Type Equations

Let d ≥ 1 and Td = (R/2πZ)d be the d-dimensional torus. Let � be the Laplacian operator
on Td , and let i denote the imaginary unit. Then {ei〈k,·〉}k∈Zd consists of an eigenbasis of the
Laplacian� in the complex L2-space of the normalizedvolumemeasureμ(dx) := (2π)−ddx
on T

d :
�ei〈k,·〉 = −|k|2ei〈k,·〉, k ∈ Z

d .

For a function f ∈ L2(μ), its Fourier transform is given by

f̂ (y) := F( f )(y) =
∫
Td

f ei〈y,·〉dμ, y ∈ R
d .

It is well known that
‖ f ‖2L2(μ)

=
∑
k∈Zd

| f̂ (k)|2, f ∈ L2(μ), (1.10)

and ∑
m∈Zd

ĝ(k − m) f̂ (m) = f̂ g(k), k ∈ Z
d , f , g ∈ L4(μ). (1.11)
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By the spectral representation, for any s ≥ 0, we have

Ds f :=(I − �)
s
2 f =

∑
k∈Zd

(1 + |k|2) s
2 f̂ (k)ei〈k,·〉, k ∈ Z

d ,

f ∈ D(Ds) :=
⎧⎨
⎩ f ∈ L2(μ) : ‖Ds f ‖2L2(μ)

=
∑
k∈Zd

(1 + |k|2)s | f̂ (k)|2 < ∞
⎫⎬
⎭ .

Then
Hs := { f = ( f1, · · · , fd) : fi ∈ D(Ds), 1 ≤ i ≤ d}

is a separable Hilbert space with inner product

〈 f , g〉Hs :=
d∑

i=1

〈Ds fi , D
sgi 〉L2(μ) =

∑
k∈Zd

(1 + |k|2)s〈 f̂ (k), ĝ(k)〉Rd .

Now, we recall the stochastic transport SPDE (1.3) on Hs :

dX(t) = {−(X(t) · ∇)X(t) + b(t, Xt ,LXt )
}
dt + σ(t, Xt ,LXt )dW (t), t ∈ [0, T ],

where W (t) is the cylindrical Brownian motion, and

b : [0, T ] ×Cw
T ,Hs ×Pw

T ,Hs × � → Hs, σ : [0, T ] ×Cw
T ,Hs ×Pw

T ,Hs × � → L2(U; Hs)

are measurable.
To apply Theorem 1.1, we make the following assumptions on b and σ .

Assumptions (B) Let d ≥ 1, V ∈ V , s > d
2 + 2, s′ = s − 1. We assume that the following

conditions hold for H = Hs and B = Hs′ .

(B1) Conditions in (A1) hold.
(B2) There exist constants K1, K2 > 0 such that for any μ ∈ PT ,H, t ∈ [0, T ], ξ ∈ CT ,H

and n ≥ 1,

V ′(‖ξ(t)‖2
H
)
{
2K0‖ξ(t)‖B‖ξ(t)‖2

H
+ 2

〈
b(t, ξt , μt ), ξ(t)

〉
H

+ ‖σ(t, ξt , μt )‖2L2(U;H)

}

+ 2V ′′(‖ξ(t)‖2
H
)‖σ(t, ξt , μt )

∗ξ(t)‖2
U

≤ K1 − K2
{V ′(‖ξ(t)‖2

H
)‖σ(t, ξt , μt )

∗ξ(t)‖U}2
1 + V (‖ξ(t)‖2

H
)

.

(B3) There exist constants K , ε > 0 and an increasing map C· : N → (0,∞) such that for
any N ≥ 1, ξ, η ∈ Cw

T ,H,N and μ, ν ∈ Pw
T ,H

,

‖b(t, ξt , μt ) − b(t, ηt , νt )‖B + ‖σ(t, ξt , μt ) − σ(t, ηt , νt )‖L2(U;B)

≤ CN

{
‖ξt − ηt‖T ,B + W2,B,N (μt , νt ) + K e−εCN

(
1 ∧ W2,B(μt , νt )

)}
, t ∈ [0, T ].

Then we have the following result:

Theorem 1.2 Assume s > d
2 + 2, (B1) and (B2). For any X0 ∈ L2(� → Hs,F0,P), (1.3)

has a weak solution (X̃T , W̃T ) such that LX̃(0)|P̃ = LX0|P, X̃T is continuous in Hs and

Ẽ

[
V (‖X̃T ‖2T ,Hs )

]
≤ 2K1T + 1 + 64

K2

(
K1T + Ẽ[V (‖X̃(0)‖Hs )]

)
.

If, moreover, (B3) holds, then (1.3) has a unique solution.
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Below we give some remarks concerning Theorem 1.2.

Remark 1.2 Wefirst notice that (1.3) does not contain theviscous term�X(t),whichprovides
additional regularization effect to make the problem of existence easier, see [23, Chapter 5].
Besides the existence and uniqueness, it is interesting to clarify the effect of noise on the
properties of solutions. We notice that existing results on the regularization effects by noises
for transport type equations are mainly for linear equations or for linear growing noises,
see for instance [11–13] for linear transport equations, and [24–28] for linear noise. For
nonlinear equations with nonlinear noise, there are examples with positive answers showing
that noises can be used to regularize singularities caused by nonlinearity. For example, for
the stochastic 2D Euler equations, coalescence of vortices may disappear [29]. But there are
also counterexamples such as the fact that noise does not prevent shock formation in the
Burgers’ equation, see [8, 15]. Therefore, for nonlinear SPDEs, what kind of nonlinear noise
can prevent blow-up is a question worthwhile to study. In the current work, the main idea is
to use the stochastic part of the equation to avoid any blow-up phenomena that could arise
under the presence of the singular drift. Hence we use the Lyapunov type condition (B2) to
measure how strong the noise term needs to be (see also [30, Theorem III.4.1] for the finite
dimensional case and [31] for the stochastic nonlinear beam equations). In this way, the noise
effect given by the large enough noise is macroscopic and it is different from many previous
works, where small noise can also bring regularization effect, see for example [13, 29]. Here
we remark that the noise structure in [13, 29] are transport noise in the Stratonovich sense. A
priori, it is not clear how to interpret the noise term in (1.3). In this work, our main interest
is mainly mathematical and we believe that searching for nonlinear noise such that blow-up
can be prevented is important because it helps us understand the regularizing mechanisms of
noise. This in turn brings us one further step closer to finding the correct and physical noise
which provides such regularization.

Remark 1.3 We remark here that there is a gap between the index s > d
2 + 2 in Theorem

1.2 and the critical value s > d
2 + 1 such that Hs ↪→ W 1,∞. Formally speaking, on one

hand, because the transport term (u · ∇)u loses one order of regularity, we have to consider
uniqueness in Hs′ with s′ ≤ s − 1, i.e., we ask B = Hs′ in (B3). One the other hand, since
〈(u · ∇)u, u〉Hs ≤ cs‖u‖W 1,∞‖u‖2Hs for smooth u, to verify (B2), we have to pick s′ ≤ s − 1
such that B = Hs′ ↪→ W 1,∞. Therefore we have to require s − 1 > d

2 + 1. However, if we
only consider local solutions in Hs without assuming (B2) (as is explained before, in this
case the distribution has to be modified), then s > d

2 + 1 will be enough.

To conclude this section, we present below two examples to illustrate Theorem 1.2.

Example 1.1 Let s, s′ = s − 1 be in Assumption (B), U = Hs and μ(F) = ∫
Fdμ for

F ∈ L1(μ). Let

b(t, ξ, μ) = h(t, ‖ξ‖Hs′ , μ(Fb))ξ(t),

σ (t, ξ, μ) = β(1 + ‖ξ‖T ,Hs′ )α〈ξ(t), ·〉Hs x0 + σ0(t, ‖ξ‖Hs′ , μ(Fσ )),

where α, β > 0 are constants to be determined, and

(1) x0 ∈ Hs with ‖x0‖Hs = 1 is a fixed element;
(2) Fb, Fσ : CT ,Hs′ → R

m are bounded and Lipschtiz continuous for some m ≥ 1;
(3) h(t, ·, ·) : R × R

m → R is locally Lipschtiz continuous uniformly in t ∈ [0, T ] such
that

sup
(t,z)∈[0,T ]×Rm ,|x |≤r

|h(t, x, z)| ≤ c(1 + r2α), r ≥ 0
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holds for some constant c > 0;
(4) σ0(t, ·, ·) : R × R

m → L2(Hs; Hs) is bounded and locally Lipschtiz continuous uni-
formly in t ∈ [0, T ].

If α ≥ 1
2 and β is large enough, then for any probabilitymeasureμ0 on Hs withμ0(‖·‖2Hs ) <

∞, (1.2) has a weak solution (X̃T , W̃T ) with LX̃(0)|P̃ = μ0, which is continuous in Hs and
satisfies

Ẽ

[
log(1 + ‖X̃T ‖2T ,Hs )

]
< ∞.

In particular, if m = 1 and Fb(ξ) = Fσ (ξ) = ‖ξ‖T ,Hs′ ∧ R for some constant R > 0, then

for any X(0) ∈ L2(� → Hs,F0,P), (1.2) has a unique solution, which is continuous in Hs

and satisfies
E

[
log(1 + ‖XT ‖2T ,Hs )

]
< ∞.

Proof Let α ≥ 1
2 , and take V (r) = log(1+ r) ∈ V . By Theorem 1.2, we only need to verify

conditions (A1), (B2) with H = U = Hs , B = Hs′ , H0 = Hs+1 and large enough β > 0,
and finally prove (B3) with m = 1 and Fb(ξ) = Fσ (ξ) = ‖ξ‖T ,Hs ∧ R.

To begin with, it is easy to see that the weak convergence inPT ,B is equivalent to that in
the metric

W1,B(μ, ν) := inf
π∈C(μ,ν)

∫
C T ,B×C T ,B

(1 ∧ ‖ξ − η‖T ,B)π(dξ, dη).

Then (1)-(4) andH ↪→ B imply that for any N ≥ 1 there exists a constant CN > 0 such that
for all η ∈ Hs+1,

‖b(t, ξ, μ) − b(t, η, ν)‖H + ‖σ(t, ξ, μ) − σ(t, η, ν)‖L2(U;H) ≤ CN
(‖ξ − η‖T ,H + W1,B(μ, ν)

)
.

Therefore, (A1) holds.
Next, let C = sup(t,r ,z)∈[0,T ]×[0,∞)×Rm ‖σ0(t, r , z)‖2L2(U;H)

. We have

V ′(‖ξ(t)‖2
H
)
{
2K0‖ξ(t)‖B‖ξ(t)‖2

H
+ 2

〈
b(t, ξt , μt ), ξ(t)

〉
H

+ ‖σ(t, ξt , μt )‖2L2(U;H)

}

≤ 2K0‖ξ(t)‖B‖ξ(t)‖2
H

+ 5β2

4 (1 + ‖ξt‖α
T ,B

)2‖ξ(t)‖2
H

+ 5C

1 + ‖ξ(t)‖2
H

≤ ‖ξ(t)‖2
H

1 + ‖ξ(t)‖2
H

{
C1(1 + ‖ξt‖2αT ,B) + 5β2

4
(1 + ‖ξt‖α

T ,B)2
}

for some constant C1 > 0, and on the other hand,

2V ′′(‖ξ(t)‖2
H
)‖σ(t, ξt , μt )

∗ξ(t)‖2
U

≤ − 2‖ξ(t)‖4
H

(1 + ‖ξ(t)‖2
H
)2

{
3β2

4
(1 + ‖ξt‖α

T ,B)2 − 4C

}

{V ′(‖ξ(t)‖2
H
)‖σ(t, ξt , μt )

∗ξ(t)‖U}2
1 + V (‖ξ(t)‖2

H
)

≤ ‖ξ(t)‖4
H

(1 + ‖ξ(t)‖2
H
)2

{
β2(1 + ‖ξt‖α

T ,B)2 + 2C
}
.

Therefore, when β > 2
√
C1, (B2) holds for some constants K1, K2 > 0.

Finally, let m = 1, Fb(ξ) = Fσ (ξ) = ‖ξ‖T ,B ∧ R. It suffices to verify (B3) for N ≥ R.
In this case, by the formulation of b, σ and conditions (1)-(4), for any N ≥ R, there exists a
constant CN > 0 such that

‖b(t, ξ, μ) − b(t, η, ν)‖B + ‖σ(t, ξ, μ) − σ(t, η, ν)‖L2(U;B)

≤ CN
(‖ξ − η‖T ,B + |μt (‖ · ‖T ,B ∧ R) − νt (‖ · ‖T ,B ∧ R)|) .

(1.12)
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Recall (1.6) and then denote

‖ξ − η‖tN = sup
t∈[0,T∧tξN∧tηN ]

‖ξ(t) − η(t)‖B.

When N ≥ R we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣‖ξt‖T ,B ∧ R − ‖ξt‖T ,B ∧ R
∣∣ ≤ ‖ξt − ηt‖T ,B = ‖ξ − η‖tN , if tξN ∧ t

η
N > t,∣∣‖ξt‖T ,B ∧ R − ‖ξt‖T ,B ∧ R

∣∣ = R − ‖ηt‖T ,B ∧ R ≤ ‖ξ − η‖tN , if tξN ≤ t, tηN > t∣∣‖ξt‖T ,B ∧ R − ‖ξt‖T ,B ∧ R
∣∣ = R − ‖ξt‖T ,B ∧ R ≤ ‖ξ − η‖tN , if tξN > t, tηN ≤ t∣∣‖ξt‖T ,B ∧ R − ‖ξt‖T ,B ∧ R
∣∣ = 0 ≤ ‖ξ − η‖tN , if tξN ∨ t

η
N ≤ t .

Consequently,

|μt (‖·‖T ,B∧R)−νt (‖·‖T ,B∧R)| ≤ inf
π∈C(μt ,νt )

∫
C T ,B×C T ,B

‖ξ −η‖tN dπ ≤ W2,B,N (μt , νt ),

so that (1.12) implies (B3) for K = 0. ��
Example 1.2 Now we consider a family of stochastic models which are more physical rel-
evant. Let s, s′ be in assumption (B) with d = 1 and U = Hs . We focus on the following
PDE

∂t u + u∂xu + (I − ∂2xx )
−1∂x

(
a0u + a1u

2 + a2(∂xu)2 + a3u
3 + a4u

4) = 0, (1.13)

where ai (i = 0, 1, 2, 3, 4) are some constants. Before we consider its stochastic versions,
we briefly recall some background of (1.13). Due to the abundance of literature on (1.13),
here we only mention a few related results. If a1 = 1, a2 = 1

2 and a0 = a3 = a4 = 0, (1.13)
becomes the Camassa-Holm equation

∂t u + u∂xu + (I − ∂2xx )
−1∂x

(
u2 + 1

2
(∂xu)2

)
= 0. (1.14)

Equation (1.14) models the unidirectional propagation of shallowwater waves over a flat bot-
tom and it appeared initially in the context of hereditary symmetries studied by Fuchssteiner
andFokas [32] as a bi-Hamiltonian generalization ofKdVequation. Later, Camassa andHolm
[33] derived it by approximating directly in the Hamiltonian for Euler equations in the shal-
low water regime. It is well known that (1.14) exhibits both phenomena of (peaked) soliton
interaction and wave-breaking. When a1 = b

2 , a2 = 3−b
2 with b ∈ R and a0 = a3 = a4 = 0,

(1.13) reduces to the so-called b-family equations, cf. [34, 35],

∂t u + u∂xu + (1 − ∂2xx )
−1∂x

(
b

2
u2 + 3 − b

2
(∂xu)2

)
= 0.

When a0 ∈ R, a1 = 1 , a2 = 1
2 and a3 = a4 = 0, (1.13) is a dispersive evolution equation

derived by Dullin et al. in [36] as a model governing planar solutions to Euler’s equations
in the shallow-water regime. Finally, when ai (i = 0, 1, 2, 3, 4) are suitably chosen, (1.13)
becomes the recently derived rotation Camassa-Holm equation describing the motion of the
fluid with the Coriolis effect from the incompressible shallow water in the equatorial region,
cf. [37, equation (4.9)]. In this case, a3 �= 0 and a4 �= 0 so that the equation has a cubic and
quartic nonlinearities.

For this family of PDEs, if distribution-path dependent noise is involved, we consider

du + [u∂xu + G(u)] dt = σ(t, ut ,Lut )dW (t). (1.15)
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In (1.15),

G(u) = (I − ∂2xx )
−1∂x

(
a0u + a1u

2 + a2(∂xu)2 + a3u
3 + a4u

4) ,

σ (t, u, μ) = β(1 + ‖u‖T ,Hs′ )α〈u(t), ·〉Hs · v + σ0(t, ‖u‖Hs′ , μ(Fσ )),

where v ∈ Hs is a fixed element such that ‖v‖Hs = 1 and σ0 satisfies condition (4) with
m = 1 as in Example 1.1. It is easy to show that there is a constant C > 0 such that

‖G(u)‖Hs ≤ C
(|a0| + (|a1| + |a2|)‖u‖W 1,∞ + |a3|‖u‖2W 1,∞ + |a4|‖u‖3W 1,∞

) ‖u‖Hs ,

and

‖G(u) − G(v)‖Hs′ ≤ C
[|a0| + (|a1| + |a2|)Is(u, v) + |a3|I 2s (u, v) + |a4|I 3s (u, v)

] ‖u − v‖Hs ,

where Is(u, v) = ‖u‖Hs + ‖v‖Hs . Since Hs′ ↪→ W 1,∞, G(·) satisfies the the estimates for
drift part as in (B1) and (B3). Going along the lines as in the proof of Example 1.1 (see also
the proofs of Theorems 1.1 and 1.2) with minor modification, we can see that if β > 1 is
large enough and⎧⎪⎨

⎪⎩
α ≥ 3/2, if a4 �= 0, a0, a1, a2, a3 ∈ R (with Coriolis effect),

α ≥ 1, if a4 = 0, a3 �= 0, a0, a1, a2 ∈ R,

α ≥ 1/2, if a3 = a4 = 0, a1 �= 0, a2 �= 0, a0 ∈ R (without Coriolis effect),

then for any u(0) ∈ L2(� → Hs,F0,P), (1.15) has a unique solution with continuous path
in Hs and

E
[
log(1 + ‖uT ‖2T ,Hs )

]
< ∞.

Therefore, in contrast to the deterministic case where wave-breaking phenomenonmay occur
in finite time, see [38–40], the blow-up is prevented when the growth of the noise coefficient
in (1.15) is faster enough. For other Camassa-Holm type equations with random noise, we
refer to [17, 41–45] and the references therein.

The remainder of the paper is organized as follows. In Section 2, we consider the reg-
ular case where B = 0. Then we prove Theorems 1.1 and 1.2 in Section 3 and Section 4
respectively.

2 Regular Case: B = 0

We consider the following distribution-path dependent SPDE:

dX(t) = b(t, Xt ,LXt )dt + σ(t, Xt ,LXt )dW (t), X(0) = X0, t ∈ [0, T ]. (2.1)

Recall (1.6),

W2,M(μ, ν) := inf
π∈C(μ,ν)

(∫
C w
T ,M

×C w
T ,M

‖ξ − η‖2T ,M π(dξ, dη)

) 1
2

,

and

W2,M,N (μ, ν) = inf
π∈C(μ,ν)

(∫
C T ,M×C T ,M

‖ξ
t∧tξN∧tηN − η

t∧tξN∧tηN ‖2T ,M π(dξ, dη)

) 1
2

.

Then Assumption (A) for B = 0 implies the following assumption (C):
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Assumptions (C) With the same notation as in (1.4), we assume the following, for some
Hilbert space B with dense and compact embedding H ↪→↪→ B:

(C1) For any N ≥ 1, there exists a constant CN > 0 such that for any ξ, η ∈ CT ,H,N and
μ, ν ∈ PV

T ,H
, we have that P-a.s. for t ∈ [0, T ],

‖b(t, ξt , μt )‖H + ‖σ(t, ξt , μt )‖L2(U;H) ≤ CN ,

‖b(t, ξt , μt ) − b(t, ηt , νt )‖H+‖σ(t, ξt , μt ) − σ(t, ηt , νt )‖L2(U;H)

≤CN
{‖ξt − ηt‖T ,H + W2,B(μt , νt )

}
.

(C2) There exists a dense subset H0 ⊂ H such that for any bounded sequence
{(ξn, μn)}n≥1 ⊂ CT ,H × PV

T ,H
with ‖ξn − ξ‖T ,H → 0 and μn → μ weakly in

PT ,B as n → ∞, we have

lim
n→∞

{∣∣〈b(t, ξn, μn
t ) − b(t, ξ, μt ), ψ

〉
H

∣∣ + ‖{σ(t, ξn, μn
t ) − σ(t, ξ, μt )}∗ψ‖U

}
= 0, ψ ∈ H0.

(C3) There exist constants K1, K2 > 0 such that for any μ ∈ PT ,H, t ∈ [0, T ] and
ξ ∈ CT ,H ,

V ′(‖ξ(t)‖2
H
)
{
2〈b(t, ξt , μt ), ξ(t)〉H + ‖σ(t, ξt , μt )‖2L2(U;H)

}

+ 2V ′′(‖ξ(t)‖2
H
)‖σ(t, ξt , μt )

∗ξ(t)‖2
U

≤ K1 − K2
{V ′(‖ξ(t)‖2

H
)‖σ(t, ξt , μt )

∗ξ(t)‖U}2
1 + V (‖ξ(t)‖2

H
)

.

(C4) There exist constants K , ε > 0, an increasing map C· : N → (0,∞), such that for any
ξ, η ∈ CT ,H,N and μ, ν ∈ Pw

T ,H
,

‖b(t, ξt , μt ) − b(t, ηt , νt )‖B + ‖σ(t, ξt , μt − σ(t, ηt , νt )‖L2(U;B)

≤ CN

{
‖ξt − ηt‖B + W2,B,N (μt , νt ) + K e−εCN

(
1 ∧ W2,B(μt , νt )

)}
, t ∈ [0, T ].

The main result of this section is the following.

Proposition 2.1 Assume (C1)–(C3). If X0 ∈ L2(� → H,F0,P), then (2.1) has a solution
X ∈ CT ,H satisfying

E
[
V (‖XT ‖2T ,H)

] ≤ 2K1T + 1 + 64

K2

(
K1T + E

[
V (‖X0‖2H)

])
< ∞. (2.2)

Moreover, if (C4) holds, then the solution is unique.

To prove this result, we first consider the global monotone situation, and then extend to
the local case.

Lemma 2.2 Let b(t, ξ, μ) and σ(t, ξ, μ) be continuous in (ξ, μ) ∈ CT ,H × PT ,H. Assume
that there exists a positive random variable γ with E[γ ] < ∞ and a constant K > 0 such
that for any CT ,H-valued random variables ξ and η with ξ(0) = η(0), we have P-a.s. that
for all t ∈ [0, T ], μ, ν ∈ Pw

T ,H
,⎧⎪⎪⎨

⎪⎪⎩
2〈b(t, ξt , μt ), ξ(t)〉H + ‖σ(t, ξt , μt )‖2L2(U;H) ≤ K

{
γ + ‖ξt‖2T ,H + μt (‖ · ‖2T ,H)

}
,

2〈b(t, ξt , μt ) − b(t, ηt , νt ), ξ(t) − η(t)〉H ≤ K
{‖ξt − ηt‖2T ,H + W2,H(μt , νt )

2} ,

‖σ(t, ξt , μt ) − σ(t, ηt , νt )‖2L2(U;H) ≤ K
{‖ξt − ηt‖2T ,H + W

2
2,H(μt , νt )

2} .

(2.3)
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Then for any X0 ∈ L2(� → H,F0,P), (2.1) has a unique solution which is continuous in
H.

Proof By (2.3), the uniqueness follows from Itô’s formula and Grönwall’s inequality. Below
we only prove the existence by using the procedure as in [5].

Let X0(t) ≡ X0 and μ
(0)
t ≡ LX0

t
. We construct the following iteration scheme:

⎧⎨
⎩
dX (n)(t) = b(s, X (n)

t , μ
(n−1)
t ) dt + σ(s, X (n)

t , μ
(n−1)
t ) dW (t), t ∈ [0, T ],

X (n)(0) = X0 ∈ H, μ
(n−1)
t = L

X (n−1)
t

, n ≥ 1.
(2.4)

By (2.3) and induction, we can construct a sequence of continuous adapted processes
{X (n)

T }n≥1 on CT ,H with supn≥1 E[‖X (n)
T ‖2T ,H

] < ∞. Below we prove that {X (n)
T }n≥1 is a

Cauchy sequence in L2(� → CT ,H;P), and hence has a limit XT in this space as n → ∞,
so that due to (2.3) and the continuity of b(t, ξ, μ) and σ(t, ξ, μ) in (ξ, μ), we may let
n → ∞ in (2.4) for t ∈ [0, T ] to conclude that XT is a solution to (2.1).

By (2.3) and Itô’s formula, for Z (n)(t) := X (n)(t) − X (n−1)(t),

‖Z (n)(t)‖2
H

≤ K
∫ t

0

{
‖Z (n)

s ‖2T ,H + E‖Z (n−1)
s ‖2T ,H

}
ds + M(t)

where

M(t) := 2
∫ t

0

〈
Z (n)(s), {σ(s, X (n)

s , μ(n−1)
s ) − σ(s, X (n−1)

s , μ(n−2)
s )}dW (s)

〉
H

.

Then for λ > 0,

e−λt
E‖Z (n)

t ‖2T ,H

≤ K e−λt
∫ t

0

{
E‖Z (n)

s ‖2T ,H + E‖Z (n−1)
s ‖2T ,H

}
ds + e−λt

E

(
sup

0≤s≤t
M(s)

)

=: I (1)(t) + I (2)(t), t ∈ [0, T ]. (2.5)

We observe that

I (1)(t) = K
∫ t

0
e−λ(t−s)

{
e−λs

E‖Z (n)
s ‖2T ,H + e−λs

E‖Z (n−1)
s ‖2T ,H

}
ds

≤ K

λ
sup

0≤s≤t

(
e−λs

E‖Z (n)
s ‖2T ,H

)
+ K

λ
sup

0≤s≤t

(
e−λs

E‖Z (n−1)
s ‖2T ,H

)
. (2.6)

By BDG’s inequality, for some constants c1, c2 > 0, we have

I (2)(t)

≤ c1e
−λt

E

(∫ t

0
‖Z (n)(s)‖2

H

{
‖Z (n)

s ‖2T ,H + E‖Z (n−1)
s ‖2T ,H

}
ds

) 1
2

≤ c1e
−λt

(
E‖Z (n)

t ‖2T ,H

∫ t

0

{
E‖Z (n)

s ‖2T ,H + E‖Z (n−1)
s ‖2T ,H

}
ds

) 1
2
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≤ 1

2
e−λt

E‖Z (n)
t ‖2T ,H + c2

∫ t

0
e−λ(t−s)

{
e−λs

E‖Z (n)
s ‖2T ,H + e−λs

E‖Z (n−1)
s ‖2T ,H

}
ds

≤ 1

2
e−λt

E‖Z (n)
t ‖2T ,H + c2

λ
sup

0≤s≤t

(
e−λs

E‖Z (n)
s ‖2T ,H

)

+ c2
λ

sup
0≤s≤t

(
e−λs

E‖Z (n−1)
s ‖2T ,H

)
. (2.7)

Substituting (2.6) and (2.7) into (2.5) yields that for t ∈ [0, T ],
e−λt

E‖Z (n)
t ‖2T ,H

≤ 2(K + c2)

λ
sup

0≤s≤t

(
e−λs

E‖Z (n)
s ‖2T ,H

)
+ 2(K + c2)

λ
sup

0≤s≤t

(
e−λs

E‖Z (n−1)
s ‖2T ,H

)
,

which implies

sup
0≤s≤T

(
e−λs

E‖Z (n)
s ‖2T ,H

)

≤ 2(K + c2)

λ

(
sup

0≤s≤T

(
e−λs

E‖Z (n)
s ‖2T ,H

)
+ sup

0≤s≤T

(
e−λs

E‖Z (n−1)
s ‖2T ,H

))
.

Taking λ = 6(K + c2), we arrive at

sup
0≤s≤T

(
e−λs

E‖Z (n)
s ‖2T ,H

)
≤ 2(K + c2)

λ − 2(K + c2)
sup

0≤s≤T

(
e−λs

E‖Z (n−1)
s ‖2T ,H

)

= 1

2
sup

0≤s≤T

(
e−λs

E‖Z (n−1)
s ‖2T ,H

)
.

Hence, for any n ≥ 2 we have

sup
0≤s≤T

(
e−λs

E‖Z (n)
s ‖2T ,H

)
≤ 1

2n−1 sup
0≤s≤T

(
e−λs

E‖Z (1)
s ‖2T ,H

)
.

Therefore, {X (n)
T }n≥1 is a Cauchy sequence as desired. ��

Lemma 2.3 Assume (C1)–(C3). For any T > 0, X(0) ∈ L2(� → H,F0,P), and any
μ ∈ PV

T ,H
, the SPDE

dXμ(t) = b(t, Xμ
t , μt )dt + σ(t, Xμ

t , μt )dW (t), Xμ(0) = X0

has a unique solution Xμ
T satisfying

E
[
V (‖Xμ

T ‖2T ,H)
] ≤ 2K1T + 1 + 64

K2

(
K1T + E[V (‖X0‖2H)]) . (2.8)

Proof By (C1), we see that this equation has a unique solution up to the life time τ. Now
we prove that τ > T (i.e. the solution is non-explosive) and (2.8). To this end, with the
convention inf ∅ = ∞ we set

τn = inf{t ≥ 0 : ‖Xμ(t)‖2
H

≥ n}, n ≥ 1,

H(t) := {V ′(‖Xμ(t)‖2
H
)‖σ(t, Xμ

t , μt )
∗X(t)‖U}2

1 + V (‖Xμ(t)‖2
H
)

, t ∈ [0, T ].
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By (C3) and Itô’s formula, we obtain

dV (‖Xμ(t)‖2
H
) ≤ {K1 −K2H(t)}+2V ′(‖Xμ(t)‖2

H
)〈Xμ(t), σ (t, Xμ

t , μt )dW (t)〉H. (2.9)

This gives rise to

E[V (‖Xμ(T ∧ τn)‖2H)] + K2E

∫ T∧τn

0
H(t)dt ≤ K1T + E[V (‖X0‖2H)] =: C, n ≥ 1.

(2.10)
Then

V (n)P(τn ≤ T ) ≤ E[V (‖Xμ(T ∧ τn)‖2H)] ≤ C, n ≥ 1,

so that by τ ≥ τn we obtain P(τ ≤ T ) ≤ C
V (n)

→ 0 as n → ∞. Thus, P(τ > T ) = 1.
Moreover, by (2.9) and BDG inequality, we obtain that for all n ≥ 1,

E

[
V (‖Xμ

T∧τn
‖2T ,H)

]
≤ K1T + 8E

(∫ T∧τn

0
{V ′(‖Xμ(t)‖2

H
)}2‖σ ∗(t, Xμ

t , μt )X
μ(t)‖2

U
dt

) 1
2

= K1T + 8E

((
1 + V (‖Xμ

T∧τn
‖2T ,H)

) ∫ T∧τn

0
H(t)dt

) 1
2

≤ K1T + 1

2
E

[(
1 + V (‖Xμ

T∧τn
‖2T ,H)

)]
+ 32E

∫ T

0
H(t)dt .

Combining this with (2.10), we arrive at

E

[
V (‖Xμ

T∧τn
‖2T ,H)

]
≤ 2K1T + 1 + 64

C

K2
=: δ, n ≥ 1. (2.11)

As C does not depend on n, letting n → ∞ and noting (2.10) give rise to (2.8). ��
Now we are in the position o prove Proposition 2.1.

Proof of Proposition 2.1 The estimate (2.2) is implied by Lemma 2.3 with μt = LXt once
existence has been established. So, it remains to prove the existence and uniqueness. The
key point is to apply Lemma 2.2 with a localization argument. For the case that the target
problem is finite-dimensional and path independent, we refer to [46, Theorem 1.1].

(a) Existence. To construct a solution using Lemma 2.2, we make a localized approxima-
tion of b and σ as follows. Let tξn be defined in (1.6) forM = H, and let

φn(ξ)(t) := ξ(t ∧ tξn), ξ ∈ CT ,H, n ≥ 1, t ∈ [0, T ],
so that φn(ξ) is continuous (hence measurable) in ξ ∈ CT ,H. For all t ∈ [0, T ], ξ ∈
CT ,H, μ ∈ PT ,H and n ≥ 1, define

bn(t, ξ, μ) = b(t, φn(ξ), μ ◦ φ−1
n ), σ n(t, ξ, μ) = σ(t, φn(ξ), μ ◦ φ−1

n ).

By (C1), we see that for each n ≥ 1, bn and σ n satisfy (2.3) for γ = 1 and some constant K
depending on n. Therefore, by Lemma 2.2, the equation

Xn(t) = X(0) +
∫ t

0
bn(s, Xn

s ,LXn
s
)ds +

∫ t

0
σ n(s, Xn

s ,LXn
s
)dW (s) (2.12)

has a unique solution on [0, T ]. By the definition of φn , we have

φn(X
n
s ) = Xn

s∧τ n with τ n := inf{t ≥ 0 : ‖Xn(t)‖H ≥ n}, s ∈ [0, T ], n ≥ 1.

123



Distribution-Path Dependent Nonlinear SPDEs

Moreover, for any measurable set A ⊂ CT ,H, we have{
(LXn

s
) ◦ φ−1

n

}
(A) = P

(
Xn
s ∈ φ−1

n (A)
) = P

(
φn(X

n
s ) ∈ A

) = Lφn(Xn
s )(A) = LXn

s∧τn
(A),

so that (2.12) reduces to

Xn(t) = X(0) +
∫ t

0
b(s, Xn

s∧τ n ,LXn
s∧τn

)ds +
∫ t

0
σ(s, Xn

s∧τ n ,LXn
s∧τn

)dW (s). (2.13)

So, by (C3) and applying Itô’s formula to V (‖Xn(t)‖2
H
) up to time T ∧ τ n , as in (2.11), we

derive
E

[
V (‖Xn

T∧τn
‖2T ,H)

] ≤ δ, n ≥ 1. (2.14)

Consequently, the stopping times

τ nN := inf{t ≥ 0 : ‖Xn
t ‖T ,H ≥ N }, n ≥ N ≥ 1

satisfy

P(τ nN < T ) ≤ δ

V (N 2)
, n ≥ N ≥ 1. (2.15)

Next, by (C1) and (2.12), we find a constant CN > 0 such that for any n ≥ N ,

E

[
sup

s,t∈[0,T ],|t−s|≤ε

‖Xn(t ∧ τ nN ) − Xn(s ∧ τ nN )‖H
]

≤ CN ε
1
3 , s ≤ t, ε ∈ (0, T ). (2.16)

Indeed, for any l ≥ 1, by (C1), (2.12) and BDG inequality, there exists a constant CN ,l > 0
such that

E

[
sup

t∈[s,(s+ε)∧T ]
‖Xn(t ∧ τ nN ) − Xn(s ∧ τ nN )‖2l

H

]
≤ CN ,lε

l , n ≥ N , s ∈ [0, T − ε].

Let k ∈ N such that kε ∈ [T , T +ε). We find some constant c(l) > 0 such that for all n ≥ N ,

E

[
sup

s,t∈[0,T ],|t−s|≤ε

‖Xn(t ∧ τ nN ) − Xn(s ∧ τ nN )‖2l
H

]

≤c(l)
k∑

i=1

E

[
sup

t∈[(i−1)ε, (iε)∧T ]
‖Xn(t ∧ τ nN )−Xn({(i − 1)ε} ∧ τ nN )‖2l

H

]
≤CN ,l(T + ε)εl−1.

Therefore, by Jensen’s inequality, we obtain

E

[
sup

s,t∈[0,T ],|t−s|≤ε

‖Xn(t ∧ τ nN ) − Xn(s ∧ τ nN )‖H
]

≤ {
CN ,l(T + ε)

} 1
2l ε

1
2− 1

2l , n ≥ N .

Taking l ≥ 1 such that 1
2 − 1

2l ≥ 1
3 , we obtain (2.16). Particularly, (2.16) holds true for

n = N . In this case, τ nN = τ nn = τ n . Due to this and (2.14), and noting that embedding
H ↪→ B is compact, we deduce from the Arzelá-Ascoli type theorem for measures that
{μn := LXn

T∧τn
}n≥1 is tight in PT ,B. By the Prokhorov theorem, for some subsequence

{nk}k≥1 we haveμnk → μweakly inPT ,B as k → ∞.Notice that φn(ξ) = ξ for ξ ∈ CT ,H,n

and define
τ
k, j
N := τ

nk
N ∧ τ

n j
N .

Then we find
φni (X

n j

t∧τ
k,l
N

) = X
n j

t∧τ
k,l
N

, i, j ∈ {k, l},

123



Ren et al.

and
lim
k→∞ lim

l→∞ μnk ◦ φ−1
nl = μ weakly in PT ,B.

Indeed, by limn→∞ φn = I and LX
nk
T∧τnk

= μnk → μ weakly in PT ,B, we have that for all

F ∈ Cb(CT ,B),

lim
k→∞ lim

l→∞

∫
C T ,B

F(ξ)
{
μnk ◦ φ−1

nl

}
(dξ) = lim

k→∞ lim
l→∞

∫
C T ,B

F(φnl (ξ))μnk (dξ)

= lim
k→∞

∫
C T ,B

F(ξ)μnk (dξ) =
∫
C T ,B

F(ξ)μ(dξ).

From these properties, (2.14) and (C1), we find a family of constants {εk,l : k, l ≥ 1} with
εk,l → 0 as k, l → ∞ such that∥∥∥∥b

(
t, Xnk

t∧τ
k,l
N

, μ
nk
t

)
− b

(
t, Xnl

t∧τ
k,l
N

, μ
nl
t

)∥∥∥∥
H

=
∥∥∥∥b

(
t, Xnk

t∧τ
k,l
N

, μ
nk
t ◦ φ−1

nl

)
− b

(
t, Xnl

t∧τ
k,l
N

, μ
nk
t ◦ φ−1

nl

)∥∥∥∥
H

+
∥∥∥∥b

(
t, Xnl

t∧τ
k,l
N

, μ
nk
t ◦ φ−1

nl

)
− b

(
t, Xnl

t∧τ
k,l
N

, μ
nl
t ◦ φ−1

nl

)∥∥∥∥
H

≤CN
∥∥Xnk

s∧τ
k,l
N

− Xnl
s∧τ

k,l
N

∥∥
T ,H

+ CN εk,l , l ≥ k ≥ N P-a.s. (2.17)

Similarly, we also have∥∥σ(t, Xnk
t∧τ

k,l
N

, μ
nk
t ) − σ(t, Xnk

t∧τ
k,l
N

, μ
nl
t )

∥∥L2(U;H)

≤CN
∥∥Xnk

s∧τ
k,l
N

− Xnl
s∧τ

k,l
N

∥∥
T ,H

+ CN εk,l , l ≥ k ≥ N P-a.s. (2.18)

By (2.17), (2.18), (C1), and applying BDG inequality, we find a constant CN > 0 such that
for t ∈ [0, T ] and l ≥ k ≥ N ,

E

[∥∥Xnk
t∧τ

k,l
N

− Xnl
t∧τ

k,l
N

∥∥2
T ,H

]
≤ C2

N

∫ T

0
E

[∥∥Xnk
s∧τ

k,l
N

− Xnl
s∧τ

k,l
N

∥∥2
T ,H

]
ds + C2

N ε2k,l T .

Applying Grönwall’s inequality with noting that εk,l → 0 as k, l → ∞, we derive

lim
k→∞ sup

l≥k
E

[∥∥Xnk
T∧τ

k,l
N

− Xnl
T∧τ

k,l
N

∥∥2
T ,H

]
≤ C2

N lim
k→∞ sup

l≥k
ε2k,l T e

C2
N T = 0. (2.19)

Then we infer from (2.15) that for any ε > 0,

P
(‖Xnk

T − Xnl
T ‖T ,H > ε

)
≤P(τ

nk
N ≤ T ) + P(τ

nl
N ≤ T ) + P

(
‖Xnk

T∧τ
k,l
N

− Xnl
T∧τ

k,l
N

‖T ,H > ε

)

≤ 2δ

V (N 2)
+ P

(
‖Xnk

T∧τ
k,l
N

− Xnl
T∧τ

k,l
N

‖T ,H > ε

)
, l ≥ k ≥ N .

Combining this with (2.19), we obtain

lim
k→∞ sup

l≥k
P
(‖Xnk

T − Xnl
T ‖T ,H > ε

) ≤ 2δ

V (N 2)
, N ≥ 1, ε > 0.
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Letting N → ∞, we conclude that Xnk
T converges in probability to someCT ,H-valued random

variable XT . Since for each n ≥ 1, Xn
T is adapted, so is XT . Therefore, up to a subsequence

{ñk}k≥1, we have P-a.s.

lim
n→∞ ‖Xñk

T − XT ‖T ,H = 0.

In particular, L
X
ñk
T

→ LXT weakly in PT ,H, and

τ ′
N := inf

{
sup
k≥1

‖Xñk (t)‖H ≥ N
}

↑ ∞ as N ↑ ∞. (2.20)

Indeed, let τ ′∞ := limN→∞ τ ′
N . Since Xnk

T converges in probability to XT , we may take a
subsequence such that

P

(
‖Xnk

T − XT ‖T ,H > 1
)

≤ 2−k, k ≥ 1.

Since ‖XT ‖T ,H < ∞ P-a.s., we find

{τ ′∞ < ∞} ⊂
⋃
l≥k

{‖Xnk
T − XT ‖T ,H > 1}

and hence

P
(
τ ′∞ < ∞) ≤

∑
l≥k

P

(
‖Xnk

T − XT ‖T ,H > 1
)

≤
∑
l≥k

2−l = 2−(k−1).

Letting k → ∞, we have P
(
τ ′∞ < ∞) = 0.

Since μñk → μ weakly in PT ,B ⊃ PT ,H, as is proved above, we have LXT = μ.
Combining this with (C1), (C2) and (2.14), we may let k → ∞ in (2.12) (equivalently,
(2.13)) for n = ñk to conclude that XT satisfies

〈X(t ∧ τ ′
N ), ψ〉H − 〈X(0), ψ〉H

=
∫ t∧τ ′

N

0
〈b(s, Xs , μs), ψ〉Hds +

∫ t∧τ ′
N

0
〈σ(s, Xs , μs)dW (s), ψ〉H, t ∈ [0, T ], N ≥ 1, ψ ∈ H0.

Since H0 is dense in H and τ ′
N ↑ ∞ as N ↑ ∞, this implies that XT solves (2.1).

(b) Uniqueness. If CN is bounded, by letting N → ∞ in (C4) we find a global Lipschitz
condition on the coefficients which, as is well known, implies the pathwise uniqueness. So,
below we assume CN → ∞ as N → ∞.

(b1) We first prove the pathwise uniqueness up to a time t0 ∈ (0, T ]. Let XT and YT be
two solutions with X(0) = Y (0). As explained after (1.6), tXn and tYn are stopping times. Let

τn = tXn ∧ tYn = T ∧ inf{t ≥ 0 : ‖X(t)‖H ∨ ‖Y (t)‖H ≥ n}, n ≥ 1. (2.21)

Then ZT = XT − YT satisfies

Z(t ∧ τn) =
∫ t∧τn

0

(
b(t, Xt ,LXt ) − b(t, Yt ,LYt )

)
dt

+
∫ t∧τn

0

(
σ(t, Xt ,LXt ) − σ(t, Yt ,LYt )

)
dW (t)
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By Itô’s formula and BDG’s inequality, there exist constants c1, c2 > 0 such that

E‖Zτn∧s‖2T ,B

≤ c1E
∫ τn∧s

0
‖b(t, Xt ,LXt ) − b(t, Yt ,LYt )‖B‖Z(t)‖Bdt

+ c1E

(∫ τn∧s

0
‖σ(t, Xt ,LXt ) − σ(t, Yt ,LYt )‖2L2(U;B)‖Z(t)‖2

B
dt

) 1
2

+ c1E
∫ τn∧s

0

∥∥(σ(t, Xt ,LXt ) − σ(t, Yt ,LYt )
)∥∥2L2(U;B)

dt

≤ 1

2
E‖Zτn∧s‖2T ,B + c2E

∫ τn∧s

0
‖b(t, Xt ,LXt ) − b(t, Yt ,LYt )‖2Bdt

+ c2E
∫ τn∧s

0

∥∥(σ(t, Xt ,LXt ) − σ(t, Yt ,LYt )
)∥∥2L2(U;B)

dt, s ∈ [0, T ]. (2.22)

Since πt := L(Xt ,Yt ) ∈ C(LXt ,LYt ) is a probability measure on CT ,B × CT ,B, for the
function

F(ξ, η) := ‖ξ
t∧tξn∧tηn − η

t∧tξn∧tηn‖
2
T ,B = sup

s∈[0,t∧tξn∧tηn ]
‖ξ(s) − η(s)‖2

B
, ξ, η ∈ CT ,B,

we have

E‖Xτn∧t − Yτn∧t‖2T ,B = EF(Xt , Yt ) =
∫
C T ,B×C T ,B

F(ξ, η)πt (dξ, dη).

Combining this with the definition ofW2,B,n (see (1.7)), we obtain

W2,B,n(LXt ,LYt )
2 ≤

∫
C T ,B×C T ,B

F(ξ, η) πt (dξ, dη) = E‖Xτn∧t − Yτn∧t‖2T ,B.

So, by (C4), we have

E

∫ τn∧s

0

{‖b(t, Xt ,LXt )−b(t, Yt ,LYt )‖2B+∥∥(σ(t, Xt ,LXt )−σ(t, Yt ,LYt )
)∥∥2L2(U;B)

}
dt

≤ CnE

∫ τn∧s

0

[
‖Xt − Yt‖2T ,B + W2,B,n(LXt ,LYt )

2 + C0e
−Cnε

]
dt

≤ Cn

∫ s

0

[
E‖Zτn∧s‖2T ,B + W2,B,n(LXt ,LYt )

2 + C0e
−Cnε

]
dt

≤ 2Cn

∫ s

0
E‖Zτn∧s‖2T ,Bdt + CnC0e

−Cnε,

which together with (2.22) yields

E
[‖Zτn∧s‖2T ,B

] ≤ CCn

∫ s

0

{
E‖Zτn∧t‖2B + C0e

−εCn
}
dt, n ≥ 1 (2.23)

for some constant C > 0. Applying Fatou’s lemma and Grönwall’s inequality, we derive

E‖Zs‖2T ,B≤ lim inf
n→∞ E

[‖Zτn∧s‖2T ,B

] ≤ sCC0 lim inf
n→∞ Cne

−Cn(ε−Cs) =0, T ≥s∈(0, ε/C).

This implies the pathwise uniqueness up to time t0 := {ε/C} ∧ T .
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(b2) If t0 = T , then the proof is finished. Otherwise, since Zt0 = 0, (2.23) implies

E
[‖Zτn∧s‖2T ,B

] ≤ CCn

∫ s

t0
E‖Zτn∧t‖2Bdt + sC0e

−εCn , n ≥ 1, s ∈ [t0, T ].

Using Fatou’s lemma and Grönwall’s inequality as before, we arrive at

E‖Zs‖2T ,B ≤ lim inf
n→∞ E

[‖Zτn∧s‖2T ,B

]
≤ sCC0 lim inf

n→∞ Cne
−Cn(ε−C(s−t0)) = 0, T ≥ s ∈ (t0, t0 + ε/C).

Thus, the uniqueness holds up to time (2t0) ∧ T . Repeating the procedure for finite many
times, we prove the uniqueness up to time T . The proof of Proposition 2.1 is completed.

3 Proof of Theorem 1.1

Proof of (i) in Theorem 1.1. For each n ≥ 1, let

bn(t, ξ, μ) := Bn(t, ξ(t)) + b(t, ξt , μt ), (t, ξ, μ) ∈ [0, T ] × CT ,H × PT ,H.

Obviously, (A1)–(A3) imply (C1)–(C3) for (bn, σ ) replacing (b, σ ). Thus, by Proposition
2.1, there exists a continuous adapted process Xn(t) on H such that

Xn(t) = X(0) +
∫ t

0

{
Bn(s, X

n(s)) + b(s, Xn
s ,LXn

s
)
}
ds

+
∫ t

0
σ(s, Xn

s ,LXn
s
)dW (s), t ∈ [0, T ],

(3.1)

and

E
[
V (‖Xn

T ‖2T ,H)
] ≤ δ = 2K1T + 1 + 64

K2

(
K1T + E[V (‖X0‖2H)]) , n ≥ 1. (3.2)

As a result, by convenient abuse of notation, the stopping times

τ nN := inf{t ≥ 0 : ‖Xn
t ‖T ,H ≥ N }, n, N ≥ 1

satisfy

P(τ nN < T ) ≤ δ

V (N 2)
, n, N ≥ 1. (3.3)

Next, similarly to (2.16), by (A1), the first inequality in (A2), (3.1) and noting that ‖ · ‖B ≤
c‖ · ‖H for some constant c > 0, we find a constant CN > 0 such that

E

[
sup

s,t∈[0,T ],|t−s|≤ε

‖Xn(t ∧ τ nN ) − Xn(s ∧ τ nN )‖B
]

≤ CN ε
1
3 , s ≤ t, ε ∈ (0, T ). (3.4)

Now, combining (3.4) with (3.3), we arrive at

E

[
sup

s,t≤T ,|s−t |≤ε

(1 ∧ ‖Xn(s) − Xn(t)‖B)

]

≤ P(τ nN ≤ T ) + E

[
sup

s,t≤T∧τ nN ,|s−t |≤ε

(1 ∧ ‖Xn(s) − Xn(t)‖B)

]

≤ δ

V (N 2)
+ CN ε

1
3 , n, N ≥ 1, ε > 0.
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Since V (N ) ↑ ∞ as N ↑ ∞, we obtain

E

[
sup

s,t≤T ,|s−t |≤ε

(
1 ∧ ‖Xn(s) − Xn(t)‖B

)] ≤ inf
N>0

{
δ

V (N 2)
+ CN ε

1
3

}
↓ 0 as ε ↓ 0.

Due to this and (3.2), one can use the Arzelá-Ascoli theorem for measures to find that
{μn := LXn

T
}n≥1 is tight inPT ,B, so is {�n := L(Xn

T ,Yn
T ,WT )}n≥1, whereWT is a continuous

process on a separable Hilbert space Ũ such that the embedding U ⊂ Ũ is Hilbert-Schmidt,
and

Yn(t) :=
∫ t

0
σ(s, Xn

s , μ
n
s )dW (s), t ∈ [0, T ]

is a continuous process on B. By the Prokhorov theorem, there exists a subsequence {nk}k≥1

such that μ(nk ) → μ weakly in PT ,B, and �nk → � weakly in the probability space
on P(C 2

T ,B
× Ũ). Then the Skorokhod theorem guarantees that there exists a complete

filtration probability space (�̃, {F̃t }t≥0, P̃) and a sequence (X̃nk
T , Ỹ nk

T , W̃ nk
T ) such that�nk =

L
(X̃

nk
T ,Ỹ

nk
T ,W̃

nk
T )|P̃ and

lim
k→∞

(
‖X̃nk

T − X̃T ‖T ,B + ‖Ỹ nk
T − ỸT ‖T ,B

)
= 0 (3.5)

holds for some continuous adapted process (X̃T , ỸT ) on B. Since the embedding H ↪→ B is
continuous, there exist continuous maps πm : B → H, m ≥ 1 such that

‖πmx‖H ≤ ‖x‖H, lim
m→∞ ‖πmx‖H = ‖x‖H, x ∈ B,

where ‖x‖H := ∞ if x /∈ H. Recalling LX̃
nk
T |P̃ = LX

nk
T |P, X̃

nk
T → X̃T in CT ,B as k → ∞,

(3.2) and Fatou’s lemma, one has

Ẽ

[
V (‖X̃T ‖2T ,H)

]
≤ Ẽ

[
lim

m→∞ V (‖πm X̃T ‖2T ,H)
]

≤ lim inf
m→∞ Ẽ

[
V (‖πm X̃T ‖2T ,H)

]
= lim inf

m→∞ lim inf
k→∞ Ẽ

[
V (‖πm X̃nk

T ‖2T ,H)
]

≤ δ < ∞. (3.6)

Similar to (2.20), we can infer from LX̃
nk
T |P̃ = LX

nk
T |P, (3.2) and (3.6) that P̃-a.s.,

τ̃N := inf

{
t ≥ 0 : sup

k≥1
‖X̃nk (t)‖H ≥ N

}
↑ ∞ as N ↑ ∞. (3.7)

Since Ỹ nk
T is a continuous local martingale on B with quadratic variational process

〈Ỹ nk 〉(t) =
∫ t

0
(σ ∗σ)

(
s, X̃nk

s , μnk
s

)
ds, t ∈ [0, T ],

we deduce from (3.2), (3.5), (3.7) and (A1) that ỸT is a continuous local martingale on B

with quadratic variational process

〈Ỹ 〉(t) =
∫ t

0
(σ ∗σ)

(
s, X̃s,LX̃s |P̃

)
ds, t ∈ [0, T ].

By the martingale representation theorem, there exists a cylindrical Brownian motion W̃ (t)
on U under P̃ such that

Ỹ (t) =
∫ t

0
σ

(
s, X̃s,LX̃s |P̃

)
dW̃ (s), t ∈ [0, T ]. (3.8)
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Moreover, it follows from (3.1) and L
(X̃

nk
T ,W̃

nk
T )|P̃ = L

(X
nk
T ,WT )|P that P̃-a.s.,

X̃nk (t) − X̃nk (0)

=
∫ t

0

{
Bnk

(
s, X̃nk (s)

)
+ b

(
s, X̃nk

s , μnk
s

)}
ds + Ỹ nk (t), t ∈ [0, T ], k ≥ 1.

So, for any N , k ≥ 1 and t ∈ [0, T ],

X̃nk (t ∧ τ̃N ) = X̃nk (0) +
∫ t∧τ̃N

0

{
Bnk

(
s, X̃nk (s)

)
+ b

(
s, X̃nk

s , μnk
s

)}
ds + Ỹ nk (t ∧ τ̃N ).

Summarizing this, (A1), (A2), (3.2), (3.5) and (3.8), and then letting k → ∞, we derive

B

〈
X̃(t ∧ τ̃N ), ψ

〉
B∗ =B

〈
X̃(0), ψ

〉
B∗ +

∫ t∧τ̃N

0

{
B

〈
B(s, X̃) + b

(
s, X̃s,LX̃s |P̃

)
, ψ

〉
B∗

}
ds

+ B

〈∫ t∧τ̃N

0
σ

(
s, X̃s,LX̃s |P̃

)
dW̃ (s), ψ

〉
B∗ , ψ ∈ H0.

It is easy to see that (A1), (A2) and (3.6) imply that for some constant C̃N > 0,

sup
s∈[0,T∧τ̃N ]

‖σ(s, X̃s,LX̃s |P̃)‖L2(U;H) ≤ C̃N ,

which means
∫ t∧τ̃N
0 σ(s, X̃s,LX̃s |P̃)dW̃ (s) is an adapted continuous process on H ⊂ B.

Similarly, by (A1), (A2) and (3.6),

∫ t∧τ̃N

0
{B(s, X̃) + b(s, X̃s,LX̃s |P̃)}ds

is a continuous process onB as well. On account of (3.6) and (3.7), we identify that (X̃T , W̃T )

is a weak solution to (1.2).
Proof of (ii) in Theorem 1.1. Now, assume (A4). We aim to prove the continuity of X̃(t)

in H. Since X(t) is an adapted continuous process on B, and hence weak continuous in H,
it suffices to prove the continuity of [0, T ] � t �→ ‖X̃(t)‖H. By (3.7), we only need to
prove the continuity up to time τ̃N for each N ≥ 1, where τN is given in (3.7). If X̃ ∈ H,
then B(t, X̃) ∈ B and 〈B(t, X̃), X̃〉H does not make sense, therefore we can not use the Itô
formula to ‖X̃‖2

H
directly. To overcome this difficulty, we consider ‖Tm X̃‖2

H
firstly, where

Tm is the operator as in (A4). Applying Tm to (1.2) with noting (A4), we see that

Tm X̃(t ∧ τ̃N ) = Tm(X̃(0)) +
∫ t∧τ̃N

0
Tm

{
B(r , X̃(r)) + b(r , X̃r ,LX̃r |P̃)

}
dr

+
∫ t∧τ̃N

0
Tmσ(r , X̃r ,LX̃r |P̃)dW (r), t ∈ [0, T ]

is an L p-semimartingale on H for any p ∈ [1,∞).
Combining this with (A1), (A4) and the Itô’s formula, we find a constant CN > 0 such

that for m ≥ 1,

Ẽ

[(
‖Tm X̃(t ∧ τ̃N )‖2

H
− ‖Tm X̃(s ∧ τ̃N )‖2

H

)4] ≤ CN (t − s)2, [s, t] ⊂ [0, T ], t − s < 1.
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Since ‖Tmx − x‖H → 0 as m → ∞ holds for x ∈ H and X̃(t) takes values in H, Fatou’s
lemma implies

Ẽ

[(
‖X̃(t ∧ τ̃N )‖2

H
− ‖X̃(s ∧ τ̃N )‖2

H

)4] ≤ CN (t − s)2, [s, t] ⊂ [0, T ], t − s < 1.

Therefore, Kolmogorov’s continuity theorem ensures the continuity of t �→ ‖X̃(t ∧ τ̃N )‖H
as desired.

Proof of (iii) in Theorem 1.1.By (i) in Theorem 1.1, (1.2) has a weak solution. Moreover,
for any fixed μ ∈ Pw

T ,H
, it is easy to deduce from (A1), (A2), (A3) and (A5) that the

distribution independent SPDE

dXμ(t) = {
B(t, Xμ(t)) + b(t, Xμ

t , μt )
}
dt + σ(t, Xμ

t , μt )dWt , Xμ(0) = X0

has a unique solution. So, by aYamada-Watanabe type principle (see for instance [47, Lemma
3.4] and [48]), it remains to prove the pathwise uniqueness.

As is explained in step (b2) in the proof of Proposition 2.1, we assume that CN → ∞ as
N → ∞ and it suffices to prove the pathwise uniqueness up to a time t0 > 0 independent
of the initial value X(0). Let τn be defined by (2.21). As is shown in (b1) in the proof of
Proposition 2.1, it follows from (A5), Itô’s formula andBDG inequality that there is a constant
K0 > 1 such that

E
[‖Zτn∧s‖2T ,B

] ≤ K0Cn

∫ s

0

(
E

[‖Zτn∧r‖2T ,B

] + e−εCn
)
dr , s ∈ [0, T ], n ≥ 1.

By Fatou’s lemma and Grönwall’s inequality, this implies

E
[‖Zs‖2T ,B

] ≤ lim inf
n→∞ E

[‖Zτn∧s‖2T ,B

] ≤ lim inf
n→∞ sK0e

K0Cns−εCn = 0

provided s < t0 := ε/K0. Therefore pathwise uniqueness holds up to time t0, and hence the
proof is finished. ��

4 Proof of Theorem 1.2

It suffices to verify conditions in Theorem 1.1 for suitable choices of H,B, Bn , Jn and Tn .
Let j(x) be a Schwartz function such that 0 ≤ ĵ(ξ) ≤ 1 for all the ξ ∈ R

d and ĵ(ξ) = 1 for
any |ξ | ≤ 1. For any n ≥ 1 and f ∈ H0 := L2(Td → R

d ;μ), we define

Jn f := jn ∗ f , jn(x) = 1

2π

∑
k∈Zd

ĵ (k/n) ei〈k,·〉, (4.1)

and

Tn f := (I − n−2�)−1 f =
∑
k∈Zd

(
1 + n−2|k|2)−1

f̂ (k) ei〈k,·〉. (4.2)

It can be shown that for any s ≥ 0, f , g ∈ Hs and n ≥ 1, cf. [26, 27],

Ds Jn = JnD
s, DsTn = TnD

s, (4.3)

〈Jn f , g〉Hs = 〈 f , Jng〉Hs , 〈Tn f , g〉Hs = 〈 f , Tng〉Hs , , (4.4)

‖Jn f ‖Hs ∨ ‖Tn f ‖Hs ≤ ‖ f ‖Hs , ‖∇ Jn f ‖Hs ∨ ‖∇Tn f ‖Hs � n‖ f ‖Hs , (4.5)
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where for two sequences of positive numbers {an, bn}n≥1, an � bn means that an ≤ cbn holds
for some constant c > 0 and all n ≥ 1.Moreover,wewrite an = o(bn) if limn→∞ b−1

n an = 0.
Then

‖X − Jn X‖Hr = o(nr−s), 0 ≤ r ≤ s, X ∈ Hs . (4.6)

To verify conditions in Theorem 1.1, we need more properties of Jn , Tn and Ds . In general,
the commutator for two operators P, Q is given by

[P, Q] := PQ − QP.

Lemma 4.1 There exists a constant C > 0 such that for all f ∈ L2(Td → R
d ;μ) and

g ∈ W 1,∞(Td → R
d ;μ),

‖[Tn, (g · ∇)] f ‖L2(μ) ≤ C‖∇g‖L∞‖ f ‖L2(μ), n ≥ 1.

Proof It is worth noticing that in one-dimensional case, the above commutator estimate has
been established for a different mollifier on the whole space, see [49]. In current setting,
periodicity is required and the mollifier is different, so we present also the proof here.

Let ∂l denote the l-th partial derivative inRd . Since [Tn, ∂l ] = 0 for l ∈ {1, 2, · · · , d}, we
have

‖[Tn, (g · ∇)] f ‖2L2(μ)
=

d∑
j=1

∥∥∥ d∑
l=1

Tn
(
gl∂l f j

) −
d∑

l=1

gl∂l
(
Tn f j

) ∥∥∥2
L2(μ)

≤d
d∑

j,l=1

∥∥Tn (
gl∂l f j

) − glTn
(
∂l f j

) ∥∥2
L2(μ)

= d
d∑

j,l=1

∥∥∥[Tn, gl ]∂l f j
∥∥∥2
L2(μ)

.

Hence, it suffices to find a constant c > 0 such that

‖[Tn, g]∂l f ‖2L2(μ)
≤ c‖∇g‖2L∞‖ f ‖2L2(μ)

, f , g ∈ C1(Td), 1 ≤ l ≤ d, n ≥ 1. (4.7)

Noting that

1

1 + 1
n2

|k|2 − 1

1 + 1
n2

|m|2 = 〈m − k,m + k〉
n2(1 + 1

n2
|k|2)(1 + 1

n2
|m|2) =

d∑
j=1

(m j − k j )(m j + k j )

n2(1 + 1
n2

|k|2)(1 + 1
n2

|m|2) ,

by Tn = (I − 1
n2

�)−1, (1.10), and (1.11), we find a constant c > 0 such that

‖[Tn, g]∂l f ‖2L2(μ)
=

∑
k∈Zd

∣∣(1 + n−2|k|2)−1F(g∂l f )(k) − F(gTn∂l f )(k)
∣∣2

=
∑
k∈Zd

∣∣∣∣∣∣
(

ml

1 + 1
n2

|k|2 − ml

1 + 1
n2

|m|2
) ∑

m∈Zd

ĝ(k − m) f̂ (m)

∣∣∣∣∣∣
2

=
∑
k∈Zd

∣∣∣∣
d∑
j=1

∑
m∈Zd

∂̂ j g(k − m)

{
F(Tn∂l∂ j f )(m)

n2(1 + 1
n2

|k|2) + ik jF(Tn∂l f )(m)

n2(1 + 1
n2

|k|2)

} ∣∣∣∣
2

=
∑
k∈Zd

∣∣∣∣∣∣
d∑
j=1

{
F (

(∂ j g)Tn∂l∂ j f
)
(k)

n2(1 + 1
n2

|k|2) + ik jF
(
(∂ j g)Tn∂l f

)
(k)

n2(1 + 1
n2

|k|2)

}∣∣∣∣∣∣
2

≤ 2d
d∑
j=1

{
1

n4
∥∥(∂ j g)Tn∂l∂ j f

∥∥2
L2(μ)

+ 1

n2
∥∥(∂ j g)Tn∂l f

∥∥2
L2(μ)

}
≤ c‖∇g‖2L∞‖ f ‖2L2(μ)

,
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where the last step is due to the fact that

1

n4
∥∥Tn∂l∂ j f

∥∥2
L2(μ)

+ 1

n2
∥∥Tn∂l f ∥∥2L2(μ)

≤ C‖ f ‖2L2(μ)
, n ≥ 1

holds for some constant C > 0. Then we obtain (4.7) and hence finish the proof. ��

We also need the following lemma on the commutator estimates for Ds .

Lemma 4.2 ([50]). Let p, p2, p3 ∈ (1,∞) and p1, p4 ∈ (1,∞] such that

1

p
= 1

p1
+ 1

p2
= 1

p3
+ 1

p4
.

Then for any s > 0, there exists a constant C > 0 such that

‖ [
Ds, f

]
g‖L p(μ) ≤ C(‖∇ f ‖L p1 (μ)‖Ds−1g‖L p2 (μ) + ‖Ds f ‖L p3 (μ)‖g‖L p4 (μ))

holds for all f , g ∈ Hs ∩ W 1,∞(Td → R
d ;μ).

We are now ready to prove Theorem 1.2. Let s, s′ be given in Assumption (B). Take
H = Hs , B = Hs′ , H0 = C∞(Td ;Rd), and let Jn and Tn be given in (4.1) and (4.2),
respectively. Take

B(t, X) = B(X) = −(X · ∇)X , Bn(t, X) = Bn(X) = Jn B(Jn X), t ≥ 0, X ∈ Hs .

Obviously, (A1) follows from (B1). So, it remains to verify (A2), (A3), (A4) and (A5).
Verifying (A2). By (4.5), we have

‖Bn(t, X)‖Hs ≤ ‖(Jn X · ∇)Jn X‖Hs ≤ ‖Jn X‖Hs‖∇ Jn X‖Hs ≤ n ‖X‖2Hs ,

and

‖Bn(t, X) − Bn(t, Y )‖Hs ≤‖(Jn X · ∇)Jn X − (JnY · ∇)JnY‖Hs

≤‖X‖Hs‖∇(Jn X − JnY )‖Hs + ‖X − Y‖Hs‖∇ JnY‖Hs

�n (‖X‖Hs + ‖Y‖Hs )‖X − Y‖Hs .

Finally, by identifying Hs′ and (Hs′)∗ via the Riesz isomorphism, then (A2) follows from
the above estimates and (4.6).

Verifying (A3). It follows from Lemma 4.2, integration by parts, Hs′ ↪→ W 1,∞, (4.3)
and (4.5) that for some C = Cs > 0,

|〈Bn(X), X〉Hs |
≤

∣∣∣〈[Ds, (Jn X · ∇)Jn X
]
, Ds Jn X

〉
L2(μ)

∣∣∣ +
∣∣∣〈(Jn X · ∇)Ds Jn X , Ds Jn X

〉
L2(μ)

∣∣∣
≤Cs‖Jn X‖Hs‖∇ Jn X‖L∞‖Jn X‖Hs + ‖∇ Jn X‖L∞‖Jn X‖2Hs

≤ (Cs + 1)‖X‖Hs′ ‖X‖2Hs , X ∈ Hs .

Then above estimate and (B2) yields (A3).
Verifying (A4). Let Tn be defined in (4.2). It is easy to see that (1.8) is satisfied. So, to

verify (A4) it remains to check (1.9). By (4.3), (4.4), (4.5), Lemma 4.2, integration by parts,
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Lemma 4.1, and Hs ↪→ W 1,∞, we find constants c1, c2, c3 > 0 such that∣∣〈Tn{(X · ∇)X}, Tn X〉Hs

∣∣
=

∣∣∣〈[Ds, (X · ∇)X
]
, DsT 2

n X
〉
L2(μ)

+ 〈
Tn{(X · ∇)Ds X}, DsTn X

〉
L2(μ)

∣∣∣
≤

∣∣∣〈[Ds, (X · ∇)X
]
, DsT 2

n X
〉
L2(μ)

∣∣∣ +
∣∣∣〈[Tn, (X · ∇)]Ds X , DsTn X

〉
L2(μ)

∣∣∣
+

∣∣∣〈(X · ∇)DsTn X , DsTn X
〉
L2(μ)

∣∣∣
≤ c1‖X‖Hs‖∇X‖L∞‖T 2

n X‖Hs + c2‖∇X‖L∞‖X‖Hs‖Tn X‖Hs

≤ c3‖X‖3Hs , X ∈ Hs .

Therefore, (1.9) holds.
Verifying (A5). By (B3), for any N ≥ 1 it suffices to find a constant CN > 0 such that

〈B(t, X) − B(t, Y ), X − Y 〉Hs′ ≤ CN‖X − Y‖2
Hs′ , X , Y ∈ CT ,Hs ,N .

Let Z = X − Y . By Hs ↪→ Hs′ ↪→ W 1,∞ and Lemma 4.2, we find constants c1, c2 > 0
such that

〈B(t, X) − B(t, Y ), X − Y 〉Hs′

= − 〈(Z · ∇)X , Z〉Hs′ − 〈(Y · ∇)Z , Z〉Hs′

≤c1‖X‖Hs‖Z‖2
Hs′ +

∣∣∣∣〈Ds′ ((Y · ∇)Z) , Ds′ Z
〉
L2(μ)

∣∣∣∣
≤c1‖X‖Hs‖Z‖2

Hs′ + c2‖Ds′Y‖L2(μ)‖∇Z‖L∞(μ)‖Z‖Hs′ + c2‖∇Y‖L∞‖Z‖2
Hs′

≤c1‖X‖Hs‖Z‖2
Hs′ + c2‖Y‖Hs‖Z‖2

Hs′ ,

which is the desired estimate.
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