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Abstract
In the context of non-Gaussian analysis, Schneider [29] introduced grey noisemeasures, built
upon Mittag-Leffler functions; analogously, grey Brownian motion and its generalizations
were constructed (see, for example, [6, 7, 9, 27]). In this paper, we construct and study a new
non-Gaussianmeasure, bymeans of the incomplete-gamma function (exploiting its complete
monotonicity). We label this measure Gamma-grey noise and we prove, for it, the existence
of Appell system. The related generalized processes, in the infinite dimensional setting, are
also defined and, through the use of the Riemann-Liouville fractional operators, the (possibly
tempered) Gamma-grey Brownian motion is consequently introduced. A number of different
characterizations of these processes are also provided, together with the integro-differential
equation satisfied by their transition densities. They allow to model anomalous diffusions,
mimicking the procedures of classical stochastic calculus.

Keywords Incomplete gamma function · Completely monotone functions · Grey noise ·
Hitting times · Fractional Brownian motion · Elliptically contoured measures

Mathematics Subject Classification (2010) Primary 60G20 · Secondary 60G22 · 33B20 ·
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1 Introduction

Non-Gaussian analysis has been introduced in the Nineties (see, for example, [2, 3, 5]), in
order to extend the standard infinite-dimensional (or white noise) constructions; see also
[28]. In particular, grey noise has been defined for the first time by Schneider in [29], exploit-
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ing the complete monotonicity property of the Mittag-Leffler function. Consequently, grey
Brownian motion was also introduced in the same paper and studied in [30], allowing to
model anomalous diffusions by mimicking the classical procedures. These models represent
a family of (self-similar) stochastic processes, with stationary increments, which includes,
as special cases, both standard and fractional Brownian motion.
A further generalization (generalized grey Brownian motion, hereafter ggBm) is due to [27];
it is also proved in [26] that its marginal density function is the fundamental solution of a
stretched time-fractional master equation.
The ggBm, denoted by Bβ

α := {Bβ
α (t), t > 0}, for any α, β ∈ (0, 1], is character-

ized by the following n -times characteristic function: for ξ j ∈ R, j = 1, ..., n, and
0 ≤ t1 ≤ ... ≤ tn < ∞

Eei
∑n

j=1 ξ j B
β
α (t j ) = Eβ

⎛

⎝−1

2

n∑

j,k=1

ξ jξkγα(t j , tk)

⎞

⎠ , (1.1)

where γα(t j , tk) := tαk + tαj − |tk − t j |α and Eβ (x) is the Mittag-Leffler function Eβ (x) :=
∑∞

j=0 x
j/�(β j + 1), x ∈ R (see Appendix A, for details on the Mittag-Leffler function in

a more general definition).
The link with Ornstein-Uhlenbeck process is explored, by means of the stochastic calculus
tools, in [6]; this is made possible by the representation of ggBm as a product of a fractional
Brownian motion and an independent random variable (with distribution depending on β).

It is easy to see from (1.1) that, for β = 1, the process Bβ
α reduces to fractional Brownian

motion with Hurst parameter H = α/2; for α = β, it is called grey Brownian motion (see
[29]); on the other hand, for α = β = 1, it coincides with standard Brownian motion.
A slightly different construction of the process, by means of the so-called Mittag-Leffler
analysis, can be found in [14] and [15]. Finally, stochastic differential equations driven by
ggBm are studied in [8].

Our aim in this paper is to define, analogously to ggBm, another class of processes
that includes, as special cases both standard and fractional Brownian motion. Our start-
ing point is a result proved in [4], i.e. that the upper incomplete gamma function �(ρ, x) :=∫ +∞
x e−wwρ−1dw is completely monotone and that the inverse Laplace transform of

ϕ(η) =�(ρ, η), η ≥ 0, (1.2)

reads

fρ(y) := L−1 {ϕ(·); y} = 1y>1G
1,0
1,1

[
1

y

∣
∣
∣
∣

2
1 + ρ

]

, ρ ∈ (0, 1], (1.3)

where Gm,n
p,q [ ·| ] is the Meijer G-function (see (A.3), in Appendix A).

Moreover, (1.3) is a proper density function, up to the constant 1/�(ρ). We introduce here
a tempering factor θ , for θ ≥ 0, i.e. we will refer to �(ρ, θ + η), for η ≥ 0; the tempering
is necessary in order to ensure finite moments to the corresponding measure. The complete
monotonicity of �(ρ, θ + ·) easily follows. Once normalized by �(ρ, θ), it will be used to
define the characteristic functional of a measure, that we will call �-grey measure.

In Section 2 we define the �-grey measure both on the finite and infinite dimensional
spaces, computing its moments and discussing the existence of the Appell system [21].
These steps are necessary in order to extend the non-Gaussian analysis to the �-grey noise
space and require somewell-known preliminary results on complexification and holomorphic
property in infinite dimensional spaces, that we present in the Appendix (together with some
formulae on special functions).
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Non-Gaussian Measures... 1573

On the �-grey noise space, in Section 3, we define the tempered �-grey Brownian motion
Bθ

α,ρ := {Bθ
α,ρ(t), t > 0}, for any α, ρ ∈ (0, 1], θ ≥ 0, as generalized process, by means

of the fractional operator Mα/2
− , defined below (in terms of Riemann-Liouville derivative or

integral, depending on the values of α). The tempering parameter θ is introduced in order
to ensure finiteness of moments, while the parameter ρ (of the upper-incomplete gamma
function) represents the “distance" from the white noise setting: for ρ = 1 (for any θ), the
process Bθ

α,ρ coincides with the fractional Brownian motion with Hurst parameter H = α/2,
while, if we also put α = 1, we obtain the standard Brownian motion B. We prove that, in
the n-dimensional space, the tempered �-grey Brownian motion can be fully characterized
as a product of a fractional Brownian motion and an independent random variable, defined
on [1,+∞) and with distribution depending on ρ and θ. This factorization permits us to
interpret the distribution of the process as a Gaussian variance mixture and, moreover, it is
suitable for path-simulating purposes.

In Section 5 we discuss the time-change representation of this process (which is valid for
its one-dimensional distribution and for θ = 0), i.e. the following equality in distribution

Bα,ρ(t)
d= B(Yρ(tα)), t ≥ 0. (1.4)

Here we put, for simplicity, Bα,ρ := B0
α,ρ while Yρ := {

Yρ(t), t ≥ 0
}
is a stochastic process,

independent of the Brownian motion B, taking values in [t,+∞), for any t . Moreover, we
derive, in the same setting, the differential equations satisfied by its characteristic function
and by its transition density. Unlike what happens in the case of the ggBm, the time-stretching
parameter in (1.4) depends only on α, while does not involve ρ.

2 The Gamma-Grey Noise

We define the �-grey noise starting from the n-dimensional Euclidean space, in analogy with
the construction of the grey noise (see [29]) and the generalized grey noise (see [27]). In
particular, we will follow the slightly different approach introduced by [14]. By the complete
monotonicity of � (ρ, θ + ·), for θ ≥ 0 and applying the Bernstein’s theorem, there exists a
unique probability measure μρ,θ on [0,+∞) such that

�(ρ, θ + η)

�(ρ, θ)
=

∫ +∞

0
e−ηsdμρ,θ (s), η, θ ≥ 0. (2.1)

Moreover, the mapping

R
n � ξ → �(ρ, θ + 1

2 〈ξ, ξ 〉euc)
�(ρ, θ)

∈ R, (2.2)

(where 〈·, ·〉euc denotes the Euclidean scalar product on Rn) is a characteristic function.

Definition 2.1 Let n ∈ N, ρ ∈ (0, 1] and θ > 0. The n-dimensional �-grey measure is the
unique probability measure νnρ,θ on (Rn,B(Rn)) that satisfies:

∫

Rn
ei〈x,ξ〉dνnρ,θ (x) = �(ρ, θ + 1

2 〈ξ, ξ 〉euc)
�(ρ, θ)

, ξ ∈ R
n . (2.3)

We define �ρ,θ (ξ) as its characteristic function and we call (Rn,B(Rn), νnρ,θ ) the n-
dimensional �-grey space.
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1574 L. Beghin te al.

Remark 2.1 For ρ = 1 and for any θ , the measure νnρ,θ reduces to the multivariate Gaussian
measure (with independent components).

We now prove that the moments of ν1ρ,θ are finite, so that we can decompose the space

L2
(
R, ν1ρ,θ

)
through the polynomials Hρ,θ

n . We obtain Hρ,θ
n applying the Gram-Schmidt

orthogonalization to the monomials xn .

Lemma 2.1 Let ρ ∈ (0, 1] and θ > 0. The moments of ν1ρ,θ are equal to zero, for k = 2n+1,
n ∈ N and

∫

R

xkdν1ρ,θ (x) = (−1)n+1(2n)!�(ρ)θρ−n

n!2n�(ρ, θ)
Eρ
1,ρ+1−n (−θ) , k = 2n, n ∈ N. (2.4)

The first polynomials Hρ,θ
n , n = 0, 1, 2, 3, orthogonal in L2

(
R, ν1ρ,θ

)
and with deg Hρ,θ

n =
n, are given by

Hρ,θ
0 (x) = 1 Hρ,θ

1 (x) = x (2.5)

Hρ,θ
2 (x) = x2 − θρ−1e−θ

�(ρ, θ)
Hρ,θ
3 (x) = x3 − 3x(1 + (1 − ρ)θ−1).

Proof We evaluate the derivatives of (2.3): for n = 1 we get

d

dξ
�ρ,θ (ξ) = d

dξ

�(ρ, 1
2 ξ

2 + θ)

�(ρ, θ)
= − ξ

�(ρ, θ)
e−(

ξ2

2 +θ)(
ξ2

2
+ θ)ρ−1,

which vanishes, for ξ = 0. For n > 1 and l = 1, 2, ... we have instead that

dl+1

dξ l+1 �ρ,θ (ξ) = − 1

�(ρ, θ)

dl

dξ l

[

ξe−(
ξ2

2 +θ)(
ξ2

2
+ θ)ρ−1

]

= 1

�(ρ, θ)

dl

dξ l

⎡

⎣ξ

∞∑

j=0

(−1) j+1 (
ξ2

2 + θ) j+ρ−1

j !

⎤

⎦

= 1

�(ρ, θ)

dl

dξ l

⎡

⎣
∞∑

j=0

(−1) j+1

j !
∞∑

k=0

1

2k

(
j + ρ − 1

k

)

ξ2k+1θ j+ρ−1−k

⎤

⎦

= 1

�(ρ, θ)

∞∑

j=0

(−1) j+1

j !
∞∑

k=
(l−1)/2�

1

2k
(2k + 1)!

(2k + 1 − l)!
(
j + ρ − 1

k

)

ξ2k+1−lθ j+ρ−1−k .

For ξ = 0 and for odd l = 2n + 1, the term k = (l − 1)/2 = n is only one different from
zero, so that we get:

dl+1

dξ l+1 �ρ,θ (ξ)

∣
∣
∣
∣
ξ=0

= − (2n + 1)!θρ−n−1

n!2n�(ρ, θ)

∞∑

j=0

(−θ) j

j !
�( j + ρ)

�( j + ρ − n)

= − (2n + 1)!θρ−n−1�(ρ)

n!2n�(ρ, θ)
Eρ
1,ρ−n(−θ).

Thus we obtain formula (2.4) and the first even moments read
∫

R

x2dν1ρ,θ (x) = θρ−1e−θ

�(ρ, θ)
(2.6)

∫

R

x4dν1ρ,θ (x), = 3e−θ

�(ρ, θ)

[
θρ−1 + (1 − ρ)θρ−2] .
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Non-Gaussian Measures... 1575

The polynomials in (2.5) follow from (2.6), by solving the following equations, for
Hρ,θ
k (x), k = 0, 1, ...,

Eν1ρ,θ

[(
a0 + a1X + ... + Xr ) Xk

]
= 0,

for r = 0, 1, ...k. �

Remark 2.2 For ρ = 1 and for any θ , formula (2.4) reduces to the k-th moment (for k = 2n)
of a Gaussian random variable with variance 1:

∫

R

x2ndν1ρ,θ (x) = (2n)!
n!2n

(−1)n+1θ1−n

e−θ
E1
1,2−n(−θ) = (2n)!

n!2n

where we use the fact that θρ−n Eρ
1,ρ+1−n (−θ) = dn−1

dθn−1

[
θρ−1Eρ

1,ρ (−θ)
]
.

Correspondingly, for ρ = 1 and for any θ , Hρ,θ
n , given in (2.5), for n = 0, 1, 2, 3, reduce to

the first four Hermite polynomials.

We can now extend the n-dimensional �-grey measure to the infinite dimensional space
S ′(R), dual of the space of Schwartz functions S(R) (respectively S ′ and S, hereinafter).

Recalling that S ⊂ L2(R, dx) ⊂ S ′ is a nuclear triple, we can define the measure νρ,θ

on (S ′, σ ∗) via the Bochner-Minlos theorem, where σ ∗ is the σ -algebra generated by the
cylinders [16].
In analogy to the above definition of νnρ,θ in R

n , we have the following:

Definition 2.2 For ρ ∈ (0, 1], θ > 0, the �-grey measure νρ,θ is the unique probability
measure fulfilling

∫

S ′
ei〈x,ξ〉dνρ,θ (x) = �(ρ, θ + 1

2 〈ξ, ξ 〉)
�(ρ, θ)

, ξ ∈ S. (2.7)

We call (S ′, σ ∗, νρ,θ ) the �-grey noise space.

Remark 2.3 For ρ = 1 it reduces to the Gaussian white noise measure ν := ν1,θ , for any θ .

The moments and the covariance of generalized stochastic processes on (S ′, σ ∗, νρ,θ ) can
be obtained by considering those of the one-dimensional measure, given in Lemma 2.1.

Corollary 2.1 Letρ ∈ (0, 1]and θ > 0. Let ξ, η ∈ S andn ∈ N, then
∫
S ′ 〈x, ξ〉2n+1 dνρ,θ (x) =

0 and
∫

S ′(R)

〈x, ξ 〉2n dνρ,θ (x) = (−1)n+1(2n)!�(ρ)θρ−n 〈ξ, ξ 〉n
n!2n�(ρ, θ)

Eρ
1,ρ+1−n (−θ) . (2.8)

Moreover,

Eνρ,θ (〈ω, ξ1〉〈ω, ξ2〉) = θρ−1e−θ

�(ρ, θ)
〈ξ1, ξ2〉, (2.9)

for ξ1, ξ2 ∈ S and ω ∈ S ′. Moreover, ‖〈·, ξ 〉‖2
L2(νρ,θ )

= θρ−1e−θ‖ξ‖2/�(ρ, θ).
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1576 L. Beghin te al.

Proof Since the moments are easily obtained from Lemma 2.1, we just compute the covari-
ance as

E(〈ω, ξ1〉〈ω, ξ2〉) = i−2Da1,a2

(�(ρ, θ + 1
2‖a1ξ1 + a2ξ2‖2)
�(ρ, θ)

)
∣
∣
∣
∣
∣
a1=a2=0

for ω ∈ S ′,

where Da1,a2 is the derivative w.r.t. a1 and a2.
We can write ‖a1ξ1 + a2ξ2‖2 = 〈a1ξ1 + a2ξ2, a1ξ1 + a2ξ2〉 and thanks to the bi-linearity

we have a21‖ξ1‖2 + 2a1a2〈ξ1, ξ2〉 + a22‖ξ2‖2 =: F(a1, a2). Hence,

Da1,a2

(�(ρ, θ + 1
2 ‖a1ξ1 + a2ξ2‖2)
�(ρ, θ)

)
= 1

�(ρ, θ)
Da1,a2

(
�(ρ, θ + 1

2
F(a1, a2))

)

= − 1

�(ρ, θ)
Da1

(
(θ + 1

2
F(a1, a2))

ρ−1e−(θ+ 1
2 F(a1,a2))(a1〈ξ1, ξ2〉 + a2‖ξ2‖2)

)

= − 1

�(ρ, θ)

(
(ρ − 1)(θ + 1

2
F(a1, a2))

ρ−2e−(θ+ 1
2 F(a1,a2))(a1‖ξ1‖2 + a2〈ξ1, ξ2〉)(a1〈ξ1, ξ2〉 + a2‖ξ2‖2)

+(θ + 1

2
F(a1, a2))

ρ−1e−(θ+ 1
2 F(a1,a2))(−(a1‖ξ1‖2 + a2〈ξ1, ξ2〉))(a1〈ξ1, ξ2〉 + a2‖ξ2‖2)

+(θ + 1

2
F(a1, a2))

ρ−1e−(θ+ 1
2 F(a1,a2))〈ξ1, ξ2〉

)
,

which, taking a1 = a2 = 0 and multiplying by i−2 = −1, coincides with (2.9). �
We now want to prove that the �-grey measure νρ,θ belongs to the class of measures

for which the Appell systems exist. The latter are bi-orthogonal polynomials which replace
the Wick-ordered polynomials of Gaussian analysis and have been proved to be fundamental
tools in the non-Gaussian context. To this aim, it is sufficient to prove the following conditions
are satisfied (see [17] for details):

C1 For ρ ∈ (0, 1] and θ > 0, νρ,θ has an analytic Laplace transform in a neighborhood of
zero, i.e. the following mapping is holomorphic in a neighborhood U ⊂ SC of zero:

SC � φ �→ �ν(φ) :=
∫

S ′
exp 〈x, φ〉dνρ,θ (x) ∈ C

C2 For ρ ∈ (0, 1] and θ > 0, νρ,θ (U) > 0 for any non-empty open subset U ⊂ S ′.

As far as C1 is concerned, we recall in Appendix B some definitions and well-known
results on holomorphic property; on the basis of the latter, we show that for ρ ∈ (0, 1] and
θ > 0 the measure νρ,θ admits a Laplace transform defined only on a subset of SC but it is
holomorphic on that subset and it is positive on non-empty, open subsets.

First we show that �ν(ξ) is well-defined on a subset of S.

Lemma 2.2 Let ρ ∈ (0, 1), θ > 0 and λ ∈ R/{0}, then the exponential function S ′ � x �→
e|λ〈x,φ〉| is integrable and

∫

S ′
eλ〈x,φ〉dνρ,θ (x) = �(ρ, θ − λ2

2 〈φ, φ〉)
�(ρ, θ)

, for φ ∈ B√
2θ/λ2

(0). (2.10)
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Non-Gaussian Measures... 1577

Proof For λ ∈ R/{0} we start by proving the integrability. We can define the monotone
increasing sequence gN (·) := ∑N

n=0
1
n! |〈·, λφ〉|n . We divide the elements of gN into odd and

even terms,

gN (·) =
�N/2�∑

n=0

1

(2n)! |〈·, λφ〉|2n +

N/2�−1∑

n=0

1

(2n + 1)! |〈·, λφ〉|2n+1

and we apply the integral to each term. For the even terms we get:

1

(2n)!
∫

S ′
|〈x, λφ〉|2ndνρ,θ (x) = �(ρ)

�(ρ, θ)

(−1)n+1θρ−n Eρ
1,ρ+1−n (−θ)

n!2n 〈λφ, λφ〉n .

By considering that θρ−n Eρ
1,ρ+1−n(−θ) = dn−1

dθn−1 [θρ−1Eρ
1,ρ(−θ)] (see (1.9.6) in [20]) and

Eρ
1,ρ(−θ) = 1

�(ρ)
e−θ , we get

θρ−n Eρ
1,ρ+1−n(−θ) = 1

�(ρ)

dn−1

dθn−1 [θρ−1e−θ ] = 1

�(ρ)

∂n−1

∂θn−1

[

− ∂

∂θ
�(ρ, θ)

]

= − 1

�(ρ)

∂n

∂θn
�(ρ, θ) = − 1

�(ρ)

∂n

∂xn
�(ρ, θ + x)

∣
∣
∣
∣
x=0

Hence, we have that

(−1)n+1θρ−n Eρ
1,ρ+1−n (−θ) = (−1)n

�(ρ)

∂n

∂xn
�(ρ, θ + x)

∣
∣
∣
∣
x=0

,

so that each even term is equal to:

1

(2n)!
∫

S ′
|〈x, λφ〉|2ndνρ,θ (x) = 1

�(ρ, θ)

∂n

∂xn �(ρ, θ + x)
∣
∣
∣
x=0

n!2n (−〈λφ, λφ〉)n =: E(n).

We can estimate the odd terms using the Cauchy-Schwarz inequality on L2(S ′, σ ∗, νρ,θ ) and
the inequality st ≤ 1/2(s2 + t2), for s, t ∈ R:

1

(2n + 1)!
∫

S ′
|〈x, λφ〉|2n+1dνρ,θ (x)

= 1

(2n + 1)!
∫

S ′
|〈x, λφ〉|n+1|〈x, λφ〉|ndνρ,θ (x)

≤ 1

(2n + 1)!
( ∫

S ′
|〈x, λφ〉|2n+2dνρ,θ (x)

)1/2(
∫

S ′
|〈x, λφ〉|2ndνρ,θ (x)

)1/2

≤ 1

(2n + 1)!
(1

2

∫

S ′
|〈x, λφ〉|2n+2dνρ,θ (x) + 1

2

∫

S ′
|〈x, λφ〉|2ndνρ,θ (x)

)

≤ 1

(2n + 1)!
( (2n + 2)!

(n + 1)!2n+2�(ρ, θ)

∂n+1

∂xn+1 �(ρ, θ + x)

∣
∣
∣
∣
x=0

(−〈λφ, λφ〉)n+1
)

123



1578 L. Beghin te al.

+ 1

(2n + 1)!
( (2n)!
n!2n+1�(ρ, θ)

∂n

∂xn
�(ρ, θ + x)

∣
∣
∣
∣
x=0

(−〈λφ, λφ〉)n
)

= 1

�(ρ, θ)

1

n!2n+1

∂n+1

∂xn+1 �(ρ, θ + x)

∣
∣
∣
∣
x=0

(−〈λφ, λφ〉)n+1

+ 1

(2n + 1)

1

�(ρ, θ)

1

n!2n+1

∂n

∂xn
�(ρ, θ + x)

∣
∣
∣
∣
x=0

(−〈λφ, λφ〉)n

=: O ′(n) + O ′′(n).

Thus, by integrating gN , we get that

∫

S ′
gN (x)dνρ,θ (x) ≤

�N/2�∑

n=0

E(n) +

N/2�−1∑

n=0

O ′(n) +

N/2�−1∑

n=0

O ′′(n).

We have that the sum of the even terms E(n) converges to 1
�(ρ,θ)

�(ρ, θ − λ2〈φ, φ〉/2) if
〈φ, φ〉 = ‖φ‖2 < 2θ/λ2, as the Taylor expansion for �(ρ, η) holds for ρ ∈ (0, 1), if η > 0.
For the odd terms O ′(n) we have that:


N/2�−1∑

n=0

O ′(n) = 1

�(ρ, θ)


N/2�−1∑

n=0

n + 1

2n+1

∂n+1

∂xn+1 �(ρ, θ + x)
∣
∣
∣
x=0

(n + 1)! (−〈λφ, λφ〉)n+1

≤ 1

2�(ρ, θ)


N/2�∑

m=1

∂m

∂xm �(ρ, θ + x)
∣
∣
∣
x=0

m! (−〈λφ, λφ〉)m,

where the last sum converges. On the other hand the sum of the odd terms O ′′(n) converges
since


N/2�−1∑

n=0

O ′′(n) =

N/2�−1∑

n=0

1

(2n + 1)2n+1

1

�(ρ, θ)

∂n

∂xn �(ρ, θ + x)
∣
∣
∣
x=0

n! (−〈λφ, λφ〉)n

<
1

�(ρ, θ)


N/2�−1∑

n=0

∂n

∂xn �(ρ, θ + x)
∣
∣
∣
x=0

n! (−〈λφ, λφ〉)n −→
N→∞

1

�(ρ, θ)
�(ρ, θ − λ2〈φ, φ〉).

Therefore, by applying the monotone convergence theorem (as each term is positive), we
get, for φ ∈ B√

2θ/λ2
(0), that:

∫

S ′
e〈x,λφ〉dνρ,θ (x) = lim

N→∞

∫

S ′
gN (x)dνρ,θ (x)

= 1

�(ρ, θ)

∑

n≥0

∂n

∂xn �(ρ, θ + x)
∣
∣
∣
x=0

n! (−1/2)n〈λφ, λφ〉n,

which coincides with (2.10). �

Now, we prove that �ν(ξ) is holomorphic on some neighborhood of 0 in SC for ρ ∈ (0, 1)
and θ > 0. Hencewe have that �ν(ξ) is holomorphic onUθ := B√

2θ (0)⊕iS = {ξ1+iξ2|ξ1 ∈
B√

2θ (0) and ξ2 ∈ S}.
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Theorem 2.1 Let ρ ∈ (0, 1) and θ > 0, then the function

SC ⊃ Uθ � ξ �→
∫

S ′
e〈x,ξ〉dνρ,θ (x)

is holomorphic from Uθ to C.

Proof We show that it is bounded on Uθ . Let ξ ∈ Uθ , then we have that

|�ν(ξ)| ≤
∫

S ′
|e〈x,ξ〉|dνρ,θ (x)

Noting that |e〈x,ξ〉| = |e〈x,ξ1〉||e−i〈x,ξ2〉| = |e〈x,ξ1〉| = e〈x,ξ1〉, for ξ = ξ1 + iξ2, we get
∫

S ′
|e〈x,ξ〉|dνρ,θ (x) =

∫

S ′
e〈x,ξ1〉dνρ,θ (x) = �(ρ, θ − 1/2‖ξ1‖2)

�(ρ, θ)
< ∞,

by using Lemma 2.2, for the second equality.
Now we show that, for ξ = ξ1 + iξ2 ∈ Uθ , η = η1 + iη2 ∈ SC and z ∈ Br (0) where

0 < r <
√
2θ−‖ξ1‖

3(‖η1‖+‖η2‖) , the functionC ⊃ Br (0) � z �→ �ν(ξ + zη) =: f (z) ∈ C is continous.
The radius length is such that, for all λ ∈ Br (0), we have ξ + λη ∈ Uθ .
We take {zn}n∈N ⊂ Br (0) such that zn → z, for n → ∞. Denoting by (·)1 the real part of a
function in SC, we have that

| f (z) − f (zn)| ≤
∫

S ′
|e〈x,ξ+zη〉 − e〈x,ξ+znη〉|dνρ,θ (x)

≤
∫

S ′
|e〈x,ξ〉||e〈x,zη〉 − e〈x,znη〉|dνρ,θ (x)

≤
∫

S ′
e〈x,ξ1〉+〈x,(znη)1+((z−zn)η)1〉dνρ,θ (x)

We note that |e〈x,zη〉 − e〈x,znη〉| = |e〈x,znη〉||e〈x,(z−zn)η〉 − 1|. Moreover, for sufficiently large
n, we have that |e〈x,(z−zn)η〉 − 1| ≤ e〈x,((z−zn)η)1〉. Since |zn | + |z − zn | < 3r for each n, we
can ensure that ξ + 3rη ∈ Uθ , so that e〈x,(ξ+3rη)1〉 ∈ L1(S ′, σ ∗, νρ,θ ). Hence, we can apply
the dominated convergence theorem to gain the continuity of f in z ∈ Br (0), as follows

lim
n→∞ | f (z) − f (zn)| ≤ lim

n→∞

∫

S ′
|e〈x,ξ1〉||e〈x,zξ2〉 − e〈x,znξ2〉|dνρ,θ (x)

=
∫

S ′
lim
n→∞ |e〈x,ξ1〉||ez〈x,ξ2〉 − ezn〈x,ξ2〉|dνρ,θ (x) = 0.

Now we apply the Morera’s theorem to show that f (z) is holomorphic, which means that
�ν(ξ) is G-holomorphic on Uθ (see Definition B.3 in Appendix). Let γ be a closed and
bounded curve in Br (0) ⊂ C, since γ is compact and

∫
S ′ e〈x,ξ+zη〉dνρ,θ (x) < ∞, we can

use the Fubini theorem to get:
∫

γ

∫

S ′
e〈x,ξ+zη〉dνρ,θ (x)dz =

∫

S ′

∫

γ

e〈x,ξ+zη〉dzdνρ,θ (x) = 0

as the exponential function is holomorphic. By the Morera’s theorem and by Lemma B.1 in
Appendix B, we have that �ν is holomorphic on Uθ . �
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Remark 2.4 It is easy to check that Br1(0) ⊕ i Br2(0) is an open set in the topology induced
by 〈·, ·〉HC

, as follows: let us define the projections of an element of HC as

π1 : HC → H : ξ1 + iξ2 �→ ξ1

and
π2 : HC → H : ξ1 + iξ2 �→ ξ2.

Let x ∈ Br1(0)⊕ i Br2(0), then we have π1(x) ∈ Br1(0) and π2(x) ∈ Br2(0). The sets Br1(0)
and Br2(0) are open in the topology of H; then ∃ε1, ε2 > 0 such that Bε1(π1(x)) ⊂ Br1(0)
and Bε2(π2(x)) ⊂ Br2(0). Let ε = min{ε1, ε2}, thenwe have that BC

ε (x) ⊂ Br1(0)⊕i Br2(0).

In order to verify that C2 is satisfied by νρ,θ , we prove that, for ρ ∈ (0, 1) and θ > 0, they
are always strictly positive on non-empty, open subsets, by resorting to their representation
as mixture of Gaussian measures.

Theorem 2.2 For any open, non-empty set U ⊂ S ′ and for any ρ ∈ (0, 1), θ > 0, we have
that νρ,θ (U ) > 0.

Proof By applying Theorem 4.5 in [14], it is sufficient to prove that νρ,θ is an elliptically
contouredmeasure, i.e. if we denote byμs the centeredGaussianmeasure onS ′ with variance
s > 0, the following holds:

νρ,θ =
∫ ∞

0
μsdμρ,θ (s), (2.11)

where μρ,θ is the measure defined on (0,∞) by (2.1). The identity in (2.11) can be checked
by considering that

∫

S ′
ei〈x,ξ〉dμs(x) = exp

{ − s

2
〈ξ, ξ 〉}, ξ ∈ S

and thus, by (2.1),

∫ ∞

0
exp

{ − s

2
〈ξ, ξ 〉}dμρ,θ (s) = �(ρ, θ + 1

2 〈ξ, ξ 〉)
�(ρ, θ)

, (2.12)

which coincides with
∫
S ′ ei〈x,ξ〉dνρ,θ (x). �

Remark 2.5 For ρ = 1, C1 and C2 are satisfied because ν1,θ is Gaussian, for each θ ≥ 0.

3 The Tempered Gamma-Grey BrownianMotion as Generalized
Stochastic Process

We can now consider the fractional operator Mα/2
− defined, for any f ∈ S, as

Mα/2
− f :=

⎧
⎨

⎩

√
CαD(1−α)/2

_ f , α ∈ (0, 1)
f , α = 1√
Cα I (α−1)/2

_ f , α ∈ (1, 2)
,

where Cα = �(α + 1) sin(πα/2) (see [15] togheter with [25], p.9) and

Dβ
_ f (x) := − 1

�(1 − β)

d

dx

∫ ∞

x
f (t)(t − x)−βdt, x ∈ R, β ∈ (0, 1),
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is the Riemann-Liouville fractional derivative and

I β
_ f (x) := 1

�(β)

∫ ∞

x
f (t)(t − x)β−1dt, x ∈ R, β ∈ (0, 1),

is the Riemann-Liouville fractional integral.
Weextend the dual pairing 〈·, ·〉 toS ′(R)×L2 (R, dx) andby considering thatMα/2

− 1[0,t) ∈
L2 (R, dx), where 1[a,b) is the indicator function of [a, b), we introduce the tempered �-grey
Brownian motion (hereafter �-GBM) as follows:

Definition 3.1 Let α ∈ (0, 2), ρ ∈ (0, 1] and θ > 0. The tempered �-GBM is defined on the
probability space

(S ′(R), σ ∗, νρ,θ

)
as the generalized process

Bθ
α,ρ(t, ω) :=

〈
ω, Mα/2

− 1[0,t)
〉
, t ≥ 0, ω ∈ S ′(R). (3.1)

We notice that for each t , Bθ
α,ρ(t, ·) ∈ L2(νρ,θ ).

Remark 3.1 For ρ = 1, α = 1 and for each θ , we have that Bθ
1,1 is a Brownian Motion,

indeed for each t , Bt (ω) = 〈ω, 1[0,t)〉 ∈ L2(ν) where ν is Gaussian.

In order to study the continuity of this process,we recall the following relationship obtained
in [15]:

〈
Mα/2

− ξ, Mα/2
− η

〉

L2(R,dx)
= Cα

∫

R

|x |1−αξ̂ (x )̂η(x)dx, ξ, η ∈ S(R), (3.2)

where f̂ (x) := 1√
2π

∫
R
ei〈ω,x〉 f (ω)dω denotes the Fourier transform of f (·) (see also [25],

for details).
It is proved in [15] that (3.2) holds not only on S, but also for indicator functions and that

〈
Mα/2

− 1[0,t), Mα/2
− 1[0,s)

〉

L2(R,dx)
= 1

2
(sα + tα − |t − s|α).

Similarly to what was done in [15] for the ggBm, it is easy to prove the following result.

Theorem 3.1 For α ∈ (0, 2), ρ ∈ (0, 1] and θ > 0, the tempered �-GBM has a γ -Hölder
continuous version with γ < α/2.

Proof In order to apply the Kolmogorov’s continuity theorem, we only need to show that

Eνρ,θ

((
Bθ

α,ρ(t) − Bθ
α,ρ(s)

)2n) ≤ K |t − s|q+1, (3.3)

for some q > 0 and s, t ≥ 0. By definition and by recalling (2.8), we have that, for s < t,

Eνρ,θ

(∣
∣Bθ

α,ρ(t) − Bθ
α,ρ(s)

∣
∣2n

)

=
∫

S ′(R)

〈
ω, Mα/2

− 1[s,t)
〉2n

dνρ,θ (ω)

= (−1)n+1(2n)!�(ρ)θρ−n

n!2n�(ρ, θ)
Eρ
1,ρ+1−n (−θ)

〈
Mα/2

− 1[s,t), Mα/2
− 1[s,t)

〉n

.

We now prove that

Kn
θ,ρ := (−1)n+1(2n)!�(ρ)θρ−n

n!2n�(ρ, θ)
Eρ
1,ρ+1−n (−θ)
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is positive, for any n, by considering (A.6), as follows

(−1)n+1θρ−n Eρ
1,ρ+1−n (−θ) = (−1)n+1 dn−1

dθn−1

[
θρ−1Eρ

1,ρ (−θ)
]

= (−1)n+1
n−1∑

j=0

(
n − 1

j

)
d j

dθ j

[
θρ−1] dn−1− j

dθn−1− j

e−θ

�(ρ)

= 1

�(ρ)

n−1∑

j=0

(
n − 1

j

){

(−1) j
d j

dθ j

[
θρ−1]

}{

(−1)n−1− j d
n−1− j

dθn−1− j
e−θ

}

≥ 0.

In the last step we resorted to the complete monotonicity of both the Prabhakar function
(in the special case β = γ = ρ < 1) and of θρ−1, for ρ < 1.

We now apply Proposition 3.8 of [15], which shows that
〈
Mα/2

− 1[s,t), Mα/2
− 1[s,t)

〉n =
(t − s)αn , so that (3.3) holds for q = αn− 1 > 0. The case s > t can be treated analogously,
so that the sufficient condition of the Kolmogorov’s continuity theorem is satisfied and the
Hölder-continuity parameter is γ <

q+1
2n = α

2 . �
Remark 3.2 The previous result agrees with the well-known γ -Hölder continuity of the frac-
tional Brownian motion with γ < H .

4 Finite-Dimensional Characterization of the Tempered Gamma-Grey
BrownianMotion

This section is devoted to the finite dimensional characterization of the generalized process
Bθ

ρ,α . We recall that, in order to overcome the lack of moments, we introduced the tempering
factor θ ; we give the following definition of the process in the Euclidean space, in terms of
its n-times characteristic function thanks to the σ ∗ algebra.

Definition 4.1 Let α ∈ (0, 2), ρ ∈ (0, 1] and θ ≥ 0. Let, for any ξk ∈ R, k = 1, ..., n and
n ∈ N,

�θ
α,ρ(ξ1, ..., ξn; t1, ..., tn) =

�
(
ρ, θ + 1

2

∑n
j,k=1 ξ jξkγα(t j , tk)

)

�(ρ, θ)
, (4.1)

where γα(t j , tk) = tαk + tαj − |tk − t j |α and 0 ≤ t1 ≤ ... ≤ tn < ∞. Then, the process
with characteristic function (4.1), will be denoted (as its infinite-dimensional counterpart)
as Bθ

α,ρ := {
Bθ

α,ρ(t), t ≥ 0
}
.

Thanks to the next result, we can express the tempered �-GBM as a product of a random
variable and a fractional Brownian motion, under the assumption that they are mutually
independent.

Theorem 4.1 For α ∈ (0, 2), ρ ∈ (0, 1] and θ > 0, the following equality of all the finite-

dimensional distribution (denoted by
f .d.d.= ) holds

Bθ
α,ρ(t)

f .d.d.=
√
Y ρ

θ Bα/2(t), t ≥ 0, (4.2)

where Bα/2 := {Bα/2(t), t ≥ 0} is the fractional Brownian motion with Hurst-parameter
H = α/2, for α ∈ (0, 2) and Y ρ

θ is the r.v. with density

lθρ(y) = 1

�(ρ, θ)�(1 − ρ)

e−θ y

y(y − 1)ρ
1y>1, ρ ∈ (0, 1), θ ≥ 0. (4.3)
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independent from Bα/2.

Proof We have that

E exp

{

i
√
Y ρ

θ

n∑

k=1

ξk B
α/2(tk)

}

= E

[

E

(

exp

{

i
√
Y ρ

θ

n∑

k=1

ξk B
α/2(tk)

}∣
∣
∣
∣
∣
Y ρ

θ

)]

= E

⎡

⎣exp

⎧
⎨

⎩
−1

2
Y ρ

θ

n∑

j,k=1

ξ jξkγα(t j , tk)

⎫
⎬

⎭

⎤

⎦

which coincides with (4.1). This can be proved by taking into account that

l̃θρ(η) = 1

�(ρ, θ)�(1 − ρ)

∫ +∞

1
e−(θ+η)y(y − 1)−ρ y−1dy

= e−(θ+η)

�(ρ, θ)�(1 − ρ)

∫ +∞

0
e−(θ+η)ωω−ρ(1 + ω)−1dω

= [by (1.6.25) in [20]]
= e−(θ+η)

�(ρ, θ)
�(1 − ρ, 1 − ρ; θ + η),

where �(a, b; ·) is the confluent Tricomi hypergeometric function, together with the well-
known relationship �(a, a; x) = ex�(1 − a; x), for a > 0. �

For any n ∈ N, the joint probability density function of Bθ
α,ρ is therefore given by

fBθ
α,ρ

(x, �α) = (2π)−n/2

√
det�α

∫ +∞

0
τ−n/2 exp

{

−xT�−1
α x

2τ

}

lθρ(τ )dτ, (4.4)

where �α := (γα(t j , tk))nj,k=1 and x ∈ R
n .

Remark 4.1 It is easy to check that, in the special case where ρ = 1 and for any θ , formula
(4.1) reduces to the characteristic function of the fractional Brownian motion with H = α/2,
and thus, by adding the condition α = 1, we obtain the Brownian motion.

Remark 4.2 We note that the density (4.3) coincides with lθρ(y) = exp (−θ y) fρ(y), where
fρ(y) is given in (1.3), as can be easily checked by considering property P2 in Appendix A
and (2.9.6) in [19].

Theorem 4.2 Let α ∈ (0, 2), ρ ∈ (0, 1) and θ > 0. The k-th order moment of the tempered
�-Grey Brownian Motion is given by

E

[
Bθ

α,ρ(t)k
]

=
⎧
⎨

⎩

0, k = 2n + 1
(2n)!tαn

�(ρ,θ)n!2n G
2,0
1,2

[

θ

∣
∣
∣
∣
1 − n
0, ρ − n

]

, k = 2n
(4.5)

for k, n ∈ N, while its autocovariance reads

cov(Bθ
α,ρ(t), Bθ

α,ρ(s)) = e−θ θρ−1

2�(ρ, θ)

[
tα + sα − |t − s|α]

. (4.6)
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Proof We first evaluate the k-th order moment of the r.v. Y ρ
θ , for k ∈ N, as follows

E

[(
Y ρ

θ

)k
]

= 1

�(ρ, θ)�(1 − ρ)

∫ +∞

1
yk−1(y − 1)−ρe−θ ydy (4.7)

= [by (2.9.36) in [19]]
= 1

�(ρ, θ)
G2,0

1,2

[

θ

∣
∣
∣
∣
1 − k
0, ρ − k

]

.

By considering (4.2), togetherwith the expression of the k-moment of the fractional Brownian
motion, formula (4.5) easily follows from the independence between Bα/2 and Y ρ

θ . The
autocovariance can be obtained as follows

cov(Bθ
α,ρ(t), Bθ

α,ρ(s)) = E
(
Y ρ

θ

)
E

(
Bα/2(t) · Bα/2(s)

)

= 1

2�(ρ, θ)
G2,0

1,2

[

θ

∣
∣
∣
∣
0
0, ρ − 1

]
[
tα + sα − |t − s|α]

= 1

2�(ρ, θ)

1

2π i

∫

L

�(h)�(ρ − 1 + h)θ−h

�(h)
dh

[
tα + sα − |t − s|α]

= 1

2�(ρ, θ)
H1,0
0,1

[

θ

∣
∣
∣
∣

−
(ρ − 1, 1)

]
[
tα + sα − |t − s|α]

,

which coincides with (4.6), by taking into account (1.125) in [24]. �
Remark 4.3 For ρ = 1 and any θ , formula (4.6) reduces to the covariance of the fractional
Brownian motion.

Finally, from (4.1) it is clear that the process Bθ
α,ρ has stationary increments with charac-

teristic function

E exp
{
iξ [Bθ

α,ρ(t) − Bθ
α,ρ(s)]} =

�
(
ρ, θ + ξ2

2 |t − s|α
)

�(ρ, θ)
, ξ ∈ R, t, s ≥ 0. (4.8)

5 Time-Change Representation of the Gamma-Grey BrownianMotion

In this section we present a characterization of Bθ
α,ρ as a time-changed Brownian motion, that

holds in the sense of the one-dimensional distribution and in the special case where θ = 0.

5.1 The Random-Time Process

We start by introducing the following process that will represent the random-time argument.

Definition 5.1 Let Yρ(t), t ≥ 0, be the stochastic process defined by means of the following
Laplace transform of its n-times density

Ee−∑n
k=1 ηkYρ(tk ) = �

(
ρ,

∑n
k=1 ηk tk

)

� (ρ)
, η1, . . . , ηn > 0, ρ ∈ (0, 1). (5.1)

The previous definition is well-posed, since the function (5.1) can be checked to be com-
pletely monotone (w.r.t. η1, ..., ηn and for any choice of t1, ..., tn ≥ 0), by adapting the result
of Lemma 3.1 in [4] to the case α = 1. The process is, by definition, self-similar with scaling
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parameter equal to one, since, by (5.1), we get that {aY ρ(t), t ≥ 0} f .d.d.= {
Yρ(at), t ≥ 0

}
,

for any a > 0. Moreover, it has stationary increments, as can be seen by taking into account
that (5.1) is well-defined even for η j < 0, for any j (by analytic continuation), so that we
have that

Ee−η[Yρ(t2)−Yρ(t1)] = � (ρ, η(t2 − t1))

� (ρ)
, t2 > t1 ≥ 0. (5.2)

We denote by lρ(y, t) the transition density of Yρ(t), (for y, t ≥ 0, ρ ∈ (0, 1)); therefore,
as a consequence of the self-similarity, we have that lρ(y, t) = t−1lρ(yt−1) (where lρ(·) is
given in (4.3), with θ = 0) and

lρ(y, t) = 1

�(ρ)�(1 − ρ)

1y>t

y(y − 1)ρ
, ρ ∈ (0, 1). (5.3)

Its space-Laplace transform coincides with (5.1), for n = 1, i.e. l̃ρ(η, t) = �(ρ, ηt)/�(ρ).

Formula (5.2) proves also that Yρ has increasing trajectories, since, by (5.3), we have that
Yρ(t2) − Yρ(t1) ≥ t2 − t1 almost surely.

We recall that, in the ggBm case, the random-time argument is represented by the inverse
of the β-stable subordinator. Therefore, we are interested in checking if, also in the �-GBM
case, it is possible to define the random-time argument as the inverse of another stochastic
process and to characterize the latter.

By resorting to the Doob’s theorem, we can refer to the separable version of Yρ so that its
hitting time is well-defined as follows

Tρ(x) := inf{t ≥ 0 : Yρ(t) > x}, x ≥ 0. (5.4)

We now derive its transition density.

Theorem 5.1 The space-Laplace transform of the density of the process Tρ defined in (5.4)
is given by

Ee−ξTρ(x) = Eρ
1,1 (−ξ x) , ξ > 0, ρ ∈ (0, 1), x ≥ 0, (5.5)

and its transition density hρ(t, x) := P{Tρ(x) ∈ dt}/dt, t, x ≥ 0, reads

hρ(t, x) = tρ−1(x − t)−ρ1t<x

�(ρ)�(1 − ρ)
. (5.6)

Proof By considering (5.4) we can write that P{Yρ(t) > x} = P{Tρ(x) < t}, so that,
taking the Laplace transform w.r.t. x and denoting by γ (ρ, x) = ∫ x

0 e−wwρ−1dw the lower
incomplete gamma function, we have that

∫ t

0
h̃ρ(z, η)dz =

∫ +∞

0
e−ηx

∫ +∞

x
lρ(z, t)dzdx = 1

η

∫ +∞

0
(1 − e−ηz)lρ(z, t)dz

= � (ρ) − � (ρ, ηt)

η� (ρ)
= γ (ρ, ηt)

η� (ρ)

= 1

η� (ρ)

∫ ηt

0
e−wwρ−1dw.

By taking also the Laplace transform w.r.t. t , we get

˜̃hρ(ξ, η) = ηρ−1

(ξ + η)ρ
, (5.7)
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whose inverse transform (w.r.t. η) coincides with (5.5). It is easy to check that the the inverse
Laplace transform (w.r.t. ξ) of the latter reads

hρ(t, x) = 1t<x

t�(ρ)
G1,0

1,1

[
t

x

∣
∣
∣
∣
1
ρ

]

.

Indeed, by taking into account (A.3) together with formula (2.19) in [24] (since ρ > 0) we
get

∫ +∞

0
e−ξ t hρ(t, x)dt = 1

�(ρ)

∫ +∞

0

e−ξ t

t
H1,0
1,1

[
t

x

∣
∣
∣
∣

(1, 1)
(ρ, 1)

]

dt

= 1

�(ρ)
H1,1
2,1

[
1

xξ

∣
∣
∣
∣
(1, 1)(1, 1)

(ρ, 1)

]

= [by property P1 in Appendix A]
= 1

�(ρ)
H1,1
1,2

[

xξ

∣
∣
∣
∣

(1 − ρ, 1)
(0, 1)(0, 1)

]

,

which coincides with (5.5) by (1.137) in [24]. Moreover, by resorting to formulae (8)-(9) in
[23] and by property P2 in Appendix A, we can simplify the previous expression into (5.6).�

It is immediate to see from (5.5), that, as happens for Yρ, also Tρ is self-similar, with

scaling parameter equal to one, since
{
aTρ(t), t ≥ 0

} f .d.d.= {
Tρ(at), t ≥ 0

}
, for any a > 0.

Moreover, the following relationship holds between the densities hρ(t, x) and lρ(x, t), of Tρ

and Yρ , respectively:

hρ(t, x) = x

t
lρ(x, t), x, t ≥ 0. (5.8)

It is easy to derive the partial differential equations (p.d.e.’s) satisfied by the densities of
Tρ, given in (5.6), and of its inverse Yρ, given in (5.3); for this reason, we omit the proof of
the following result.

Corollary 5.1 The density of the process Tρ satisfies the following p.d.e.

∂

∂t
hρ(t, y) = − ∂

∂ y
hρ(t, y) + ρ − 1

t
hρ(t, y), t, y ≥ 0, (5.9)

with initial condition hρ(t, 0) = δ(t), while the density of Yρ satisfies the following p.d.e.

∂

∂t
lρ(y, t) = − ∂

∂ y
lρ(y, t) +

[
ρ

t
− 1

y

]

lρ(y, t), t, y ≥ 0, (5.10)

with initial condition lρ(y, 0) = 0.

Remark 5.1 For ρ = 1, Eq. (5.9) reduces to the partial differential equation satisfied by the
density of the elementary subordinator T1(y) = y, which is equal to h1(t, y) = δ(t − y),
as can be easily checked by taking the Laplace transform w.r.t. y. Analogously, we have that
l1(y, t) = tδ(t − y)/y, which satisfies Eq. (5.10), with ρ = 1. Another interesting special
case is for ρ = 1/2. In this case the densities of the processes T1/2 and Y1/2 are respectively
equal to

h1/2(t, y) = 1

π
√
t(y − t)

1t<y, (5.11)

which coincides with the arcsine law, and

l1/2(y, t) =
√
t

π y
√
y − t

1y>t . (5.12)
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Remark 5.2 We report in the following table, for the reader’s convenience, the Laplace pairs
(w.r.t. time and space) of the densities hρ(t, y) and lρ(y, t).

Process Tρ with density hρ(t, y) h̃ρ(ξ, y) = Eρ
1,1(−ξ y) h̃ρ(t, η) = 1

�(ρ)
(ηt)ρ−1e−ηt

Process Yρ with density lρ(y, t) l̃ρ(η, t) = �(ρ,ηt)
�(ρ)

l̃ρ(y, ξ) = ρE1+ρ
1,2 (−yξ)

The time-Laplace transform of lρ(y, t) can be obtained taking into account (1.6.15) and
(1.9.3) in [20]. It is evident from the previous corollary that, despite the expression of the
Laplace transform of hρ(t, y) and lρ(y, t) (w.r.t. space and time, respectively) is given in
terms of Mittag-Leffler functions, the p.d.e. governing the densities of both Yρ and Tρ do not
involve fractional operators.

5.2 Time-Changed Representation and Governing Equation

We start by considering the time-change of a standard Brownian motion B := {B(t), t > 0}
by the time-stretched process Yρ(tα), under the assumption that the latter is independent of
B, i.e.

Bα,ρ(t) := B(Yρ(tα)), (5.13)

for ρ ∈ (0, 1] and α ∈ (0, 1].
As a consequence of (5.1), we can write its (one-dimensional) characteristic function as

�α,ρ(ξ, t) := Eeiξ Bα,ρ (t) = �
(
ρ, ξ2tα/2

)

�(ρ)
, (5.14)

from which it is immediate to check that the following equality of the one-dimensional

distribution (hereafter denoted by
d=) holds

Bα,ρ(t)
d= √

YρB
α/2(t), t ≥ 0, (5.15)

where Bα/2 := {Bα/2(t), t ≥ 0} is a fractional Brownian motion and Yρ is a r.v., independent
of Bα/2, with density lρ(y) given in (4.3), with θ = 0. We note that the moments of any order
of Bα,ρ are infinite, as can be easily checked by considering (4.7).

Remark 5.3 It is well-known that, in the case of the ggBm Bβ,α := {Bβ,α(t), t ≥ 0},
the following equality of the one-dimensional distribution holds Bβ,α(t)

d= B(Xβ(tα/β)),

t ≥ 0, where the random time argument Xβ := {
Xβ(t), t ≥ 0

}
, is the inverse of a stable

subordinator of index β ∈ (0, 1) (see [9] and [27]). As remarked in [9] for the ggBm, also in
this case the representation (5.15) holds only for the one-dimensional distribution. Indeed,
for example, the two-times characteristic function of B(Yρ(tα)) reads:

Eeiξ1B(Yρ(tα1 ))+iξ2B(Yρ(tα2 )) = �
(
ρ, (ξ21 + ξ1ξ2)tα1 + (ξ22 + ξ1ξ2)tα2

)

� (ρ)
,

and therefore it does not depend on |t1 − t2|α , on the contrary of what happens for
Eeiξ1Bα,ρ (t1)+iξ2Bα,ρ (t2) (as can be easily seen from formula (4.1), for n = 2 and θ = 0).
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Note that, in our case, the stretching effect of time is obtained by the power of α, and does
not depend on ρ. This affects also the following governing equation. We prove now that the
characteristic function of Bα,ρ satisfies a time-stretched integral equation, in analogy with
the ggBm.

Theorem 5.2 Let ρ ∈ (0, 1] and α ∈ (0, 1]. Let ezρ := zρ−1Eρ,ρ(zρ) be the so-called ρ-
exponential function (see [20], p.50), then the characteristic function (5.14) satisfies the
following integral equation

�α,ρ(ξ, t) = 1 − αξ2

2

∫ t

0
e− ξ2

2 (tα−sα)e
ξ2

2 (tα−sα)
ρ sα−1�α,ρ(ξ, s)ds, t ≥ 0, ξ ∈ R.

(5.16)

Proof Let, for simplicity, A := ξ2/2, then we rewrite the integral in the r.h.s. of (5.16) as

1

�(ρ)

∫ t

0
e−A(tα−sα)

(
A(tα − sα)

)ρ−1
Eρ,ρ(Aρ(tα − sα)ρ)sα−1�

(
ρ, Asα

)
ds

= [s = tw1/α]
= Aρ−1tαρ

α�(ρ)

∫ 1

0
e−Atα(1−w)(1 − w)ρ−1Eρ,ρ(Aρ tαρ(1 − w)ρ)�

(
ρ, Atαw

)
dw.

Thus the r.h.s. of (5.16) reads

1 − Aρ tαρ

�(ρ)

∫ 1

0
e−Atα(1−w)(1 − w)ρ−1Eρ,ρ(Aρ tαρ(1 − w)ρ)�

(
ρ, Atαw

)
dw

= [by (A.4)]

= 1 − Aρ tαρ

∫ 1

0
e−Atα y yρ−1

∞∑

j=0

(Aρ tαρ yρ) j

�(ρ j + ρ)
dy +

+Aρ tαρ

∫ 1

0
e−Atα(1−w)(1 − w)ρ−1Aρ tαρwρe−Atαw

∞∑

j=0

(Aρ tαρ(1 − w)ρ) j

�(ρ j + ρ)

∞∑

l=0

(Atαw)l

�(ρ + l + 1)
dy

= 1 − Aρ tαρ
∞∑

j=0

(Aρ tαρ) j

�(ρ j + ρ)

∞∑

l=0

(−1)l (Atα)l

l!
∫ 1

0
yl+ρ j+ρ−1dy +

+A2ρ t2αρe−Atα
∞∑

j=0

(Aρ tαρ) j

�(ρ j + ρ)

∞∑

l=0

(Atα)l

�(ρ + l + 1)

�(ρ + l + 1)�(ρ j + ρ)

�(ρ j + 2ρ + l + 1)

= 1 −
∞∑

j=0

1

�(ρ j + ρ)

∞∑

l=0

(−1)l (Atα)l+ρ j+ρ

l!(l + ρ j + ρ)
+

∞∑

j=0

e−Atα
∞∑

l=0

(Atα)ρ j+2ρ+l

�(ρ j + 2ρ + l + 1)

= 1 −
∞∑

j=0

�(ρ j + ρ) − �(ρ j + ρ, Atα)

�(ρ j + ρ)
+

∞∑

j=0

�(ρ j + 2ρ) − �(ρ j + 2ρ, Atα)

�(ρ j + 2ρ)

where in the last step, we have applied (A.5) for the second term and (A.4) for the last one.
After a change of index in the second sum, we easily obtain (5.14). �

Equation (5.16) reduces, for ρ = 1, to the equation satisfied by the characteristic function
of the fractional Brownian motion, i.e.

∂

∂t
u(ξ, t) = −α

2
tα−1ξ2u(ξ, t). (5.17)
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On the other hand, for ρ < 1, it can be compared with that satisfied by the characteristic
function of the ggBm (see Proposition 4.1 in [26]); in this case the presence of the variable
ξ also in the integral’s kernel does not allow to obtain, by the Fourier inversion, a master
equation for the density of the process, as happens for the ggBm.

We then provide an alternative result, which leads to the governing equation of themarginal
density of Bα,ρ . In this case, we will resort to the equality in distribution (5.15).

Theorem 5.3 Let ρ ∈ (0, 1] and α ∈ (0, 1]. The density

fBα,ρ (x, t) = 1√
4π tα

∫ +∞

0
τ−1/2 exp

{

− x2

4τ tα

}

lρ(τ )dτ, x ∈ R, t ≥ 0, (5.18)

where lρ(·) is given in (4.3), satisfies the following integro-differential equation

∂

∂t
f (x, t) = αρ

t
[ f (x, t) − f (x, 0)] + α

2t

∂2

∂x2

∫ t

0
zα

∂

∂z
f (x, z)dz, (5.19)

with initial conditions f (x, 0) = δ(x) and f (0, t) = 0.

Proof Let f̂ (ξ) := ∫ +∞
−∞ eiξ x f (x)dx denote the Fourier transform, then by transforming

(5.19), w.r.t. x, and considering (5.14), we can check that �α,ρ(ξ, t) satisfies the following
equation

∂

∂t
f̂ (ξ, t) = αρ

t

[
f̂ (ξ, t) − 1

] − α

2
tα−1ξ2 f̂ (ξ, t) + α2ξ2

2t

∫ t

0
zα−1 f̂ (ξ, z)dz, (5.20)

where we have taken into account the initial condition, f̂ (ξ, 0) = 1. We then rewrite the
r.h.s. of (5.20) as follows:

αρ

t

[
�

(
ρ, ξ2tα/2

)

�(ρ)
− 1

]

− 1

2
αtα−1ξ2

�
(
ρ, ξ2tα/2

)

�(ρ)
+ α2ξ2

2t

∫ t

0
zα−1 �

(
ρ, ξ2zα/2

)

�(ρ)
dz (5.21)

= − αρ

t�(ρ)
γ

(
ρ, ξ2tα/2

)
− 1

2
αtα−1ξ2

�
(
ρ, ξ2tα/2

)

�(ρ)
+ αξ2

2t�(ρ)

∫ tα

0

∫ +∞

ξ2w/2
e−y yρ−1dydw

= − αρ

t�(ρ)
γ

(
ρ, ξ2tα/2

)
− 1

2
αtα−1ξ2

�
(
ρ, ξ2tα/2

)

�(ρ)
+ α

t�(ρ)

∫ ξ2 tα/2

0
e−y yρdy +

+αξ2tα−1

2�(ρ)

∫ +∞

ξ2 tα/2
e−y yρ−1dy

= − α

t�(ρ)

[
γ

(
ρ + 1, ξ2tα/2

)]
− α

t�(ρ)

(
ξ2tα

2

)ρ

e−ξ2 tα/2 + α

t�(ρ)
γ

(
ρ + 1, ξ2tα/2

)
,

where we have applied the following well-known relationship between upper incomplete and
lower incomplete gamma functions � (ρ) = � (ρ, x) + γ (ρ, x) and the recurrence formula

γ (ρ + 1, x) = ργ (ρ, x) − xρe−x

(see [13], p.951). It is now easy to check that (5.21) coincides with the first derivative of
�α,ρ(ξ, t) (w.r.t. t) and then equation (5.20) holds. �

The knowledge of the p.d.e. governing the density (5.18) can be then used in order to sim-
ulate the trajectories of the tempered �-GBM. Note that, for ρ = 1, equation (5.20) reduces
to (5.17), since, in this case f̂ (ξ, t) = e−ξ2tα/2 and thus

∫ t
0 z

α−1 f̂ (ξ, z)dz = tα f̂ (ξ, t)/α.
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Appendix A. Special Functions

We present here some definitions and results concerning special functions that are needed in
our analysis.

Let us recall the definition of the H-function (see, for example, [24], p.21):

Hm,n
p,q

[

z

∣
∣
∣
∣
(ap, Ap)

(bq , Bq)

]

:= 1

2π i

∫

L

m∏

j=1
�(b j + Bj s)

n∏

j=1
�(1 − a j − A j s)

q∏

j=m+1
�(1 − b j − Bj s)

p∏

j=n+1
�(a j + A j s)

z−sds,

(A.1)
with z �= 0, m, n, p, q ∈ N0, for 0 ≤ m ≤ q , 0 ≤ n ≤ p, a j , b j ∈ R, for i = 1, ..., p,
j = 1, ..., q and L is a contour such that the following condition is satisfied

(b j + α) �= (al − k − 1), j = 1, ...,m, l = 1, ..., n, α, k = 0, 1, ... (A.2)

We need the following well-known properties of the H-function.

P1 For any z �= 0, we have that

Hm,n
p,q

[

z

∣
∣
∣
∣
(ap, Ap)

(bq , Bq)

]

= Hn,m
q,p

[
1

z

∣
∣
∣
∣
(1 − bq , Bq)

(1 − ap, Aq)

]

(see equation (1.58) in [24]).
P2 For any σ ∈ C, we have that

zσ Hm,n
p,q

[

z

∣
∣
∣
∣
(ap, Ap)

(bq , Bq)

]

= Hm,n
p,q

[

z

∣
∣
∣
∣
(ap + σ Ap, Ap)

(bq + σ Bq , Bq)

]

(see equation (1.60) in [24]).

We recall that theMeijer G-function is a special case of the H-function (see [18]), i.e.

Gm,n
p,q

[

z

∣
∣
∣
∣
(a1, ..., ap)
(b1, ..., bq)

]

= Hm,n
p,q

[

z

∣
∣
∣
∣
(a1, 1) ... (ap, 1)
(b1, 1) ... (bq , 1)

]

, (A.3)

and that the function Gp,0
p,p

[

x

∣
∣
∣
∣
...

...

]

vanishes, for any |x | > 1, p ∈ N (see [18], Property 3).

Let us consider the upper-incomplete gamma function, defined as �(ρ, x) := ∫ +∞
x e−t tρ−1dt.

We recall its following series representations

�(ρ, x) = �(ρ)

⎛

⎝1 − xρe−x
∞∑

j=0

x j

�(ρ + j + 1)

⎞

⎠ (A.4)

and

�(ρ, x) = �(ρ) −
∞∑

j=0

(−1) j xρ+ j

j !(ρ + j)
, (A.5)

for x > 0 and ρ �= 0,−1,−2, ... (see [1]).
Finally, we recall the definition of theMittag-Leffler function with three parameters (also

called Prabhakar function), for any x ∈ C,

Eγ
α,β (x) :=

∞∑

j=0

(γ ) j x j

j !�(α j + β)
, α, β, γ ∈ C, Re(α) > 0,
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where (γ ) j := �(γ + j)/�(γ ), together with the n-order differentiation formula (see [12]
and [11], for details), for any n ∈ N, λ ∈ C, x ∈ R

+ :
dn

dxn
xβ−1Eγ

α,β

(
λxα

) = xβ−n−1Eγ
α,β−n

(
λxα

)
. (A.6)

Moreover, it is proved in [23] that the Prabhakar function is completely monotone on R
+

(i.e. f (·) = Eγ
α,β (·) is infinitely differentiable and such that f : (0,+∞) → R with

(−1)k f (k)(x) ≥ 0 for any k ∈ N, x > 0) for the parameters inside the following ranges:
0 < α ≤ 1 and 0 < αγ ≤ β ≤ 1.

Appendix B. Holomorphic Property on Locally Convex Spaces

We recall some definitions and theorems on complex analysis in infinite dimensional convex
spaces, for further details see [10].We define here the complexification of a real Hilbert space
as a direct sum HC = H ⊕ iH = {ξ1 + iξ2|ξ1, ξ2 ∈ H}.
Definition B.1 Given a real Hilbert space H, the scalar product in the complexification HC

can be rewritten by using the bilinear extension of the scalar product in H:

〈h, g〉HC
= 〈h̄, g〉H for h, g ∈ HC

Definition B.2 Let be E a vector space on C. U is said “finitely open" if U ∩ F is open w.r.t.
the Euclidean topology on F, for each finite dimensional subspace F of E.

Definition B.3 Let E be a vector space on C, U ⊂ E a finitely open subset and F a locally
convex space. A function f : U ⊂ E → F is said “Gateaux" or “G-holomorphic" if ∀ξ ∈ U,
∀η ∈ E and φ ∈ F ′, the function C � λ → φ( f (ξ + λη)) ∈ C is holomorphic on some
neighborhood of 0 in C.

Note that we will apply this definition to functions in C, so we have that F ′ = C, so it is
sufficient to check the holomorphic property on f itself. The following lemma is useful in
the proof of Theorem 2.1, for further details see [22].

Lemma B.1 Let U ⊂ SC be open and f : U → C. Then f is holomorphic, if and only if
it is G-holomorphic and locally bounded, i.e. each point ξ ∈ U has a neighborhood whose
image under f is bounded.
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