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Abstract
We give an analytic description for the completion of C∞

0 (R+), where R+ = (0,∞), in
Dirichlet space D1,p(R+, ω) := {u : R+ → R : u is locally absolutely continuous on
R+ and ‖u

′ ‖L p(R+,ω) < ∞}, for given continuous positive weight ω defined on R+, where
1 < p < ∞. The conditions are described in terms of the modified variants of the Bp

conditions due to Kufner and Opic from 1984, which in our approach are focusing on the
integrability of ω−p/(p−1) near zero or near infinity. Moreover, we propose applications of
our results to: obtaining new variants of Hardy inequality, interpretation of boundary value
problems in ODE’s defined on the half-line with solutions in D1,p(R+, ω), new results from
complex interpolation theory dealing with interpolation spaces between weighted Dirichlet
spaces, and for deriving new Morrey type embedding theorems for our Dirichlet space.

Keywords Densities · Dirichlet space · Sobolev space · Asymptotics · Hardy inequality ·
Morrey inequality

Mathematics Subject Classification (2010) 46E35 · 26D10

1 Introduction

In this paper we are interested in weighted Dirichlet spaces

D1,p(R+, ω) = {u : R+ → R : u is locally absolutely continuous on R+ and

‖u
′ ‖L p(R+,ω) < ∞}.

Claudia Capone and Agnieszka Kałamajska contributed equally to this work.

B Agnieszka Kałamajska
A.Kalamajska@mimuw.edu.pl

Claudia Capone
c.capone@na.iac.cnr.it

1 Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche,
via Pietro Castellino 11, Napoli 80131, Italy

2 Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw,
ul. Banacha 2, Warsaw 02–097, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11118-023-10089-2&domain=pdf
http://orcid.org/0000-0002-9303-0051
http://orcid.org/0000-0001-5674-8059


1302 C. Capone, A. Kałamajska

In most situations we assume that the weight ω : R+ → R+, is continuous and 1 < p < ∞.
In some cases we also assume that ω satisfies the localized at the endpoint variant of the

general Bp-condition due to Kufner and Opic from [13]:

Bp(0) :
∫

(0,1)
ω(t)−1/(p−1)dt < ∞ or Bp(∞) :

∫
(1,∞)

ω(t)−1/(p−1)dt < ∞.

We address and analyze several problems related to such spaces.
Asymptotic behaviour. One of the topics of our interest is the asymptotic behaviour at the

endpoints of the elements of such spaces. Assume for example that ω ∈ Bp(0). Among our
results in this direction, we show in Theorem 3.1 that when ω ∈ Bp(0), u ∈ D p(R+, ω) and
c ∈ R, then the conditions (a),(b),(c) are equivalent, where

(a) ∃tn ↘ 0 : lim
tn→0

(u(tn) − c) = 0, (b) lim
t→0

u(t) = c, (1)

(c) lim
t→0

u(t) − c

�0
ω(t)

= 0 , where �0
ω(t) :=

(∫
(0,t)

ω(τ)
−1
p−1 dτ

)1− 1
p

.

As �0
ω(t) → 0 when t → 0, we clearly have (c) ⇒ (b) ⇒ (a). The nontrivial part is to

prove that the converse implications hold.
Similar analysis is also provided about behaviour near infinity.

Trace operator. There are several ways to define the trace of Sobolev function, see e.g.
[11], Section 6.10.5 for the classical approach.We ask about the limit (b) in (1) and we define

T r0u := lim
t→0

u(t). (2)

Clearly, one has to ask if such limit is well prescribed in our Dirichlet space setting. It is
always so, when we assume that ω ∈ Bp(0), see Theorem 3.1, part iii) and it is never so,
when ω /∈ Bp(0), see Theorem 4.4.

The norm on Dirichlet space. Let us note that the quantity ‖u
′ ‖L p(R+,ω) annihilates all

constants, therefore ‖u
′ ‖L p(R+,ω) cannot define the norm on Dirichlet space D1,p(R+, ω).

However, for any a ∈ R+, the quantity

‖u‖(a)

D1,p(R+,ω)
:= |u(a)| + ‖u

′ ‖L p(R+,ω), (3)

defines the norm on D1,p(R+, ω) and makes it a Banach space. Moreover, all such norms
‖ · ‖(a)

D1,p(R+,ω)
: a ∈ R+, are equivalent. See Fact 2.2.

In the case of ω ∈ Bp(0), we can extend the definition of the norm (3) also to a = 0,
by putting u(0) := T r0(u) in place u(a). Such modification gives also the equivalent norm.
In such case the trace operator is continuous as functional on our Dirichlet space equipped
with any of the proposed norms (3), including a = 0, see Theorem 3.1, part iv). In case of
ω ∈ Bp(∞), similar property holds with a = ∞, see Theorem 3.2.

Representation of functions. Let us focus on the case of ω ∈ Bp(0). Because in that case
the limit lim

t→0
u(t) does exist for any u in Dirichlet space and u

′
is integrable near zero, every

element u ∈ D1,p(R+, ω) can be represented as

u(t) − T r0u =
∫ t

0
u

′
(τ )dτ = Hu

′
(t),

where on the right hand side above we deal with Hardy transform of u
′
, remembering that

u
′
belongs to L p(R+, ω). This allows to deduce several further properties, for example
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Asymptotics, Trace, and Density 1303

applications to Hardy inequality, see Section 5.1. Similar representations hold in case of
ω ∈ Bp(∞). In this case we use the conjugate Hardy transform as in (35), see Theorem 3.2.

Questions about densities. Let us denote by D1,p
0 (R+, ω) the completion of C∞

0 (R+) in
D1,p(R+, ω) in any norm like (3). It is the natural question to ask about characterization of
weightsω, forwhich D1,p

0 (R+, ω) = D1,p(R+, ω). If that spaces are not the same,we can ask

if it is possible to characterize the space D1,p
0 (R+, ω) by some analytic conditions expressed

in terms of the weight ω. Let us focus again on the case of ω ∈ Bp(0). In Theorem 4.1 we
have proved that for such ω

D1,p
0 (R+, ω) = B0

p,ω(0) := {u ∈ D1,p(R+, ω) : lim
t→0

u(t) = 0} ⇐⇒ ω /∈ Bp(∞).

This gives the analytic description of weights for which D1,p
0 (R+, ω) is the kernel of trace

operator as in (2), in the case of ω ∈ Bp(0). Let us emphasize that the trace operator
u �→ T r0u in such case is well defined and continuous.

As the consequence of Theorem 3.1 and Theorem 4.4, in the case of ω /∈ Bp(0), the trace

operator T r0(·) at zero is not well defined. Therefore we can ask if the space D1,p
0 (R+, ω)

could still be characterized by some analytic conditions, without assuming that ω ∈ Bp(0).
Such characterization is provided in Theorem 4.3, which gives the precise analytic char-
acterization of D1,p

0 (R+, ω), expressed in terms of the conditions Bp(0) and Bp(∞). For
example, as follows from Theorems: 4.3 and 4.5, among the other statements, we show that

D1,p
0 (R+, ω) = B0

p,ω(0) ⇐⇒ ω ∈ Bp(0) \ Bp(∞).

Applications to: Hardy inequality, Boundary Value Problems (B.V.P.) in ODE’s, general-
ized Morrey Theorem and to complex interpolation theory. Having more precise information
about representation of function from our Dirichlet space, or about the asymptotic behaviour
of the functions from given Dirichlet space near zero or infinity, one can deduce more precise
variants of Hardy and conjugate Hardy inequality (see Section 5.1), or establish if the given
boundary value problem, presented in term of vanishing of function near zero or infinity in
the analyzed ODE, is well posed or not. The discussion is provided in Section 5.2. Moreover,
in Section 5.3 we focus on certain generalization of Morrey Theorem, which deals with
Bp-conditions. In Section 5.4 we have also presented some new applications of our results
to complex interpolation theory, dealing with weighted Dirichlet type spaces, inspired by
questions posed recently in [2].

Except the already mentioned applications, let us further explain why the analysis of
weighted Dirichlet spaces is important.

Weighted Dirichlet spaces on general domains

D1,p(�, ρ) :=
{

u ∈ D
′
(�) : ∂u

∂xi
∈ L p

ρ (�), i = 1, . . . , n

}
, (4)

where � ⊆ R
n is an open domain, D

′
(�) denotes the space of distributions on �, ρ is a

given weight function defined on �, are one of the crucial tools in the study of degenerate
PDE’s, see e.g. [10, 15].

Dirichlet spaces for functions defined on the half-line are important auxilary tools.
First of all, when asking about properties of the Dirichlet space like (4), one could consider

at first the simple case of � = R
n \ {0} (or � = R

n) and radial functions u(x) = v(|x |),
getting the condition v ∈ D1,p(R+, ω) for suitable weight ω.
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1304 C. Capone, A. Kałamajska

Dirichlet spaces related to the half-line naturally appear as a consequence of the pointwise
inequalities obtained in [18, p. 193-194], inspired by the capacitary estimates from [16]:

[−(u∗)′
(t)]q tr(q,n) � d

dt
�q,u(t), where 1 ≤ q ≤ n,

r(q, n) := n−q
n + (q −1),�q,u(t) := ∫

{|u|>u∗(t)}|∇u(x)|qdx , u∗ is the symmetric rearrange-

ment of u ∈ W 1,q
0 (�), � is a domain in Rn (see page 129 in [18]). They imply the following

estimates, holding for any p such that q ≤ p < ∞, with any weight function ω defined on
the half-line: ∫

R+
|(u∗)′

(t)|pω(t)dt �
∫
R+

|� ′
q,u(t)| p

q
ω(t)

t s(q,p,n)
dt,

where s(q, p, n) := r(q,n)p
q .

Dirichlet spaces related to the half-line can also serve as auxiliary tools in the a-priori
estimates for solutions of PDE’s and are related to their symmetric rearrangements. This
comes from the analysis, which originated in [14] and [23].

For example, the following result has been presented in [18] in Section 10 (we refer there
for the missing definitions). Let us consider the entropy solution of the nonlinear elliptic
equation of the form {−div(a(x, u,∇u)) = f v in �

u = 0 on ∂�,
(5)

where � is a sufficiently regular domain in Rn , n ≥ 2, μ = v(x)dx is a probability measure
on R

n , a(x, η, ξ) : � × R × R
n → R

n is a Carathéodory function such that for some fixed
p > 1

a(x, η, ξ) · ξ ≥ v(x)|ξ |p, for a.e. x ∈ �, and every (η, ξ) ∈ R × R
n .

It has been shown in Theorem 14 in [18] that if u ∈ W 1,1
0 (�, v) is a entropy solution of (5),

μ = v(x)dx , I (·) = I (Rn;μ)(·) is the isoperimetric profile of (Rn;μ) (see page 130), g∗
μ

means the decreasing rearrangement of g related to μ (see page 129), then

(−u∗
μ)

′
(t)I 2(t) ≤

∫
(0,t)

f ∗
μ(s)ds.

From there we easily deduce that∫
R+

|(u∗
μ)

′
(t)|pω(t)dt ≤

∫
R+

(∫
(0,t)

f ∗
μ(s)ds

)p
ω(t)

I 2p(t)
dt,

In particular u∗
μ belongs to D1,p(R+, ω), under suitable integrability conditions for f ∗

μ .
Another example which shows the importance in considering weighted Dirichlet spaces

related to the half-line is their application to the real interpolation theory via Hardy inequality
in the weighted L p setting. We refer to the pioneering work [5] and to the later contribution
[6].

Novelty and link with literature. To our best knowledge, our results concerning the asymp-
totic behaviour near the endpoints of the interval, of functions in the non trivially weighted
Dirichlet spaces, as summarized inTheorems 3.1 and 3.2, are new. In the non-weighted setting
they are motivated by Morrey Theorem, see Section 5.3. However, similar type conclusions
can be found also in the case of power weight in [9], on page 9.

Density results in the general Dirichlet space setting, are rather missing in the literature.
In the case of ω ≡ 1, they were obtained first by Sobolev in 1963 ([22]), and now they are
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Asymptotics, Trace, and Density 1305

well understood. See also e.g. [7, Theorem 4] and references therein, where density results
are obtained with respect to the semi norm ‖u

′ ‖L p(R+) as in Fact 2.2, instead of the norm
‖u‖(a) from (7). Our density analysis is based on the localized at endpoints Bp conditions
as in Definition 2.1, which, in our opinion, were not considered before. However, some
preliminary ideas for such conditions can be found in [13], see Remark 6.1.

Most of the classical density results deal with Sobolev spaces, not Dirichlet spaces. In case
of Sobolev spaces, the additional restriction on function u is provided, that is its integrability
with some power. We would like to emphasise that our density results mostly deal with the
norm (3), they are restricted to Dirichlet (not Sobolev) space, and characterize completely
the admitted weights.

As about the tools, for the analysis of asymptotic behaviour we use simple computations
based on Taylor’s formula in 1-d. To study density, we propose the technique, which in our
opinion is new in such setting. We call it the energy - caloric approximation, as it is based
on the variational technique. More precisely, we first find the function which minimizes the
energy functional ∫

(a,b)

|u ′
(τ )|p

ω(τ)dτ,

with the given boundary data at the endpoints {a, b}. In further step we extend such local
minimizers to compactly supported functions in the same Dirichlet-Sobolev class. See the
considerations in Sections 4.2 and 4.3.

Organization of the paper.After the preliminary results presented in Section 2, we analyze
questions about the asymptotic behaviour and trace in Section 3, while density results are
presented in Section 4. Main applications: to the deriving of Hardy inequality, to the well
posedness of B.V.P.’s, for deriving of Morrey-type theorems, as well as to complex interpo-
lation theory in Dirichlet space setting, are discussed in Section 5. Some additional remarks
are presented in Section 6, while in Section 7 we enclose some auxiliary computations and
complementary results, for reader’s convenience.

2 Notation and Preliminaries

2.1 Basic Notation

In most situations we deal with positive continuous functions ω : R+ → R+, referred as
positive weights, where, by positive expression, we mean that it is strictly larger than zero.
However for our purposeswe consider continuousweights only, wewill sometimes formulate
our statements in the more general setting.

We use standard notation: C∞
0 (R+), L p(R+, ω), L p

loc(R+, ω), Lip(R+), W 1,p(R+),

W 1,p
loc (R+), for smooth compactly supported functions, weighted L p-spaces and their local

variants, Lipschitz functions, the classical Sobolev spaces and their local variants. We will
also use the more specific notation for the local variants of L p and Sobolev - type spaces.
For 1 ≤ p < ∞, by L p

loc([0,∞)) we denote all functions f ∈ L p
loc(R+) which are p-

integrable near zero (shortly
∫
0 | f |pdτ < ∞), while by L p

loc((0,∞])we denote all functions
f ∈ L p

loc(R+), which are p-integrable near infinity (shortly
∫ ∞ | f |pdτ < ∞). In most

situations we will refer to the Lebesgue integral. However, we will also sometimes refer
to the Newtonian interpretation of the integral: by writing

∫ b
a f dτ we mean F(b) − F(a),
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1306 C. Capone, A. Kałamajska

where F
′ = f a.e.. By measurable sets, we mean sets that are measurable with respect to

the Lebesgue measure.
Let X be some subset of Lebesgue measurable functions defined on R+. By Xc we will

denote its subset consisting of functions with compact support in R+. When X ⊆ Z , where

(Z , ‖ · ‖Z ) is some Banach space, then by X
‖·‖Z will denote the completion of X in the norm

‖ · ‖Z . The symbol Z0 will be reserved for (C∞
0 (R+) ∩ Z)

‖·‖Z .
In our estimates, we will sometimes write f ∼ 1 if the function f defined on its respective

domain can be estimated from both sides by positive constants, while the notation F � G,
with some expressions F, G, willmean that the inequality F ≤ CG holdswith someuniversal
constant C .

2.2 General and Local Bp-conditions forWeights

We will deal with the following variants of the Bp-condition introduced by Kufner and Opic
in [13].

Definition 2.1 (Bp-conditions) Let ω : R+ → [0,∞) be a measurable function which is
positive almost everywhere, 1 < p < ∞. We say that

a) ω is a Bp-weight (shortly ω ∈ Bp) if ω−1/(p−1) ∈ L1
loc((0,∞)), see [13];

b) ω is a Bp-weight near zero (shortly ω ∈ Bp(0)) if
∫
0
ω−1/(p−1)dτ < ∞;

c) ω is a Bp-weight near infinity (shortly ω ∈ Bp(∞)) if
∫ ∞

ω−1/(p−1)dτ < ∞.

Note that both conditions Bp(0) and Bp(∞) imply that ω ∈ Bp . Moreover, by Hölder
inequality, for any measurable set K ⊆ [0,∞)

∫
K
| f (τ )|dτ =

∫
K
| f (τ )|ω(τ)

1
p ω(τ)

− 1
p ≤

(∫
K

| f (τ )|pω(τ)dτ

) 1
p
(∫

K
ω(τ)

−1
p−1 dτ

)1− 1
p

,

(6)

This implies the following observation.

Fact 2.1 Let ω, p be as in Definition 2.1. The following statements hold:

i) when ω ∈ Bp then L p(R+, ω) ⊆ L1
loc(R+);

ii) when ω ∈ Bp(0) then L p(R+, ω) ⊆ L1
loc([0,∞));

iii) when ω ∈ Bp(∞) then L p(R+, ω) ⊆ L1
loc((0,∞]).

In our specific situation, we assume that the weight ω is continuous and positive, which
guarantees that ω ∈ Bp . The conditions Bp(0) and Bp(∞), which to our best knowledge
were not introduced earlier, are motivated by the general Bp condition from [13]. More
precise information about Bp-conditions is provided in Remark 6.1.

2.3 Weighted Dirichlet Spaces

We start with the definition of weighted Dirichlet space.
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Asymptotics, Trace, and Density 1307

Definition 2.2 (weighted Dirichlet space) Let ω : R+ → [0,∞) be positive weight, that is
ω > 0 a.e., 1 < p < ∞. By D1,p(R+, ω) we will denote the Dirichlet space consisting with
all functions u ∈ W 1,1

loc (R+) such that

‖u‖∗
D1,p(R+,ω)

:=
(∫

R+
|u ′

(t)|p
ω(t)dt

) 1
p

< ∞.

Clearly, the expression ‖u‖∗
D1,p(R+,ω)

annihilates constant functions, so it defines the semi

norm on D1,p(R+, ω) but not the norm.
We are interested in Dirichlet spaces in the case when ω is continuous and positive, and so
ω ∈ Bp . In this case, we show that the homogeneous Dirichlet space D̃1,p(R+, ω) defined
below is complete. The proof is enclosed in the Appendix for reader’s convenience.

Fact 2.2 (Homogeneous Dirichlet space) Let ω, p be as in Definition 2.2 and consider the
relation: u ∼ v when u, v ∈ D1,p(R+, ω) and u − v ≡ c for some constant c ∈ R. Then

D̃1,p(R+, ω) := D1,p(R+, ω)
/∼ equipped with the norm

‖{u + c}c∈R‖∗
D̃1,p(R+,ω)

:= ‖u
′ ‖L p(R+,ω)

is a Banach space.

In the following fact we analyze the norms in Dirichlet spaces.

Fact 2.3 (The norms on D1,p(R+, ω) and the topology of convergence) Let ω, p be as in
Definition 2.2. Then for any a ∈ (0,∞) the expression

‖u‖(a)

D1,p(R+,ω)
:= ‖u

′ ‖L p(R+,ω) + |u(a)| (7)

is the norm on D1,p(R+, ω), which makes D1,p(R+, ω) a Banach space.
Moreover, for all a ∈ R+ the norms ‖ · ‖(a)

D1,p(R+,ω)
are equivalent on D1,p(R+, ω) and

‖un − u‖(a)

D1,p(R+,ω)

n→∞→ 0 ⇐⇒ (8)(
u

′
n → u

′
in L p(R+, ω) and un → u uniformly on compact sets in R+

)
.

Proof. We observe that D1,p(R+, ω) ⊆ W 1,1
loc (R+) ⊆ C(R+) and so the value u(a) is well

prescribed. In particular ‖ · ‖(a)

D1,p(R+,ω)
is the norm on D1,p(R+, ω).

Moreover, (D1,p(R+, ω), ‖ · ‖(a)

D1,p(R+,ω)
) is a Banach space, because when {un}n∈N is a

Cauchy sequence in D1,p(R+, ω), then, due to Fact 2.2, there exists v ∈ D1,p(R+, ω) such
that u

′
n converge to v

′
in L p(R+, ω).

Then for u(t) :=
∫ t

a
v

′
(τ )dτ + lim

n→∞ un(a) we have ‖un − u‖(a)

D1,p(R+,ω)
→ 0 as n → ∞.

The equivalence of norms is a consequence of the following estimate holding for any closed
interval I such that a, b ∈ I ⊂ R+, 0 < a < b < ∞:

|u(b) − u(a)| ≤
∫

(a,b)

|u ′
(τ )|ω(τ)

1
p ω(τ)

− 1
p dτ

≤
(∫

I
|u ′

(τ )|p
ωdτ

) 1
p
(∫

I
ω(τ)

−1
p−1 dτ

)1− 1
p = CI

(∫
R+

|u ′
(τ )|p

ωdτ

) 1
p

, (9)
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1308 C. Capone, A. Kałamajska

where CI :=
(∫

I
ω(τ)

−1
p−1 dτ

)1− 1
p

. As a consequence of (9) we get (8) with any b ∈ I and

un − u in place of u. �
More precise analysis, dealing with the conditions Bp(0) and Bp(∞), will be provided

in our next section.

3 Asymptotics and Trace

3.1 Analysis in the Case of! ∈ Bp(0)

We start with the analysis within the case of ω ∈ Bp(0). We obtain the following statement,
which deals with trace operator defined at zero T r0(·), as in (12) below, and precisely
describes the elements of weighted Dirichlet space.

Theorem 3.1 (Asymptotic behaviour and trace at zero). Let ω : R+ → R+,
ω ∈ C(R+) ∩ Bp(0), 1 < p < ∞ and consider the following subsets in D1,p(R+, ω),
defined for c ∈ R:

R0
p,ω(c) :=

{
u ∈ D1,p(R+, ω), u(t) =

∫ t

0
u

′
(τ )dτ + c : u

′ ∈ L p(R+, ω)

}
; (10)

A0
p,ω(c) :=

{
u ∈ D1,p(R+, ω) : ∃tn ↘ 0 : lim

n→∞ u(tn) = c
}

;

B0
p,ω(c) :=

{
u ∈ D1,p(R+, ω) : lim

t→0
u(t) = c

}
;

C0p,ω(c) :=
{

u ∈ D1,p(R+, ω) : lim
t→0

u(t) − c

�0
ω(t)

= 0, supt>0
u(t) − c

�0
ω(t)

< ∞,

}
,

where �0
ω(t) =

(∫
(0,t)

ω(τ)
−1
p−1 dτ

)1− 1
p

.

The following statements hold.

i) For any c ∈ R, the set R0
p,ω(c) is a closed subset in D1,p(R+, ω), equipped with any

norm ‖ · ‖(a) as in (7), where a ∈ R+.
ii) For any c ∈ R

A0
p,ω(c) = B0

p,ω(c) = C0p,ω(c) = R0
p,ω(c). (11)

iii) For every u ∈ D1,p(R+, ω) there is c ∈ R such that u ∈ R0
p,ω(c). In particular, the

trace operator
T r0(u) := lim

t→0
u(t) =: u(0), (12)

is well defined for every u ∈ D1,p(R+, ω) and D1,p(R+, ω) = ∪c∈RR0
p,ω(c).

Moreover,

D1,p(R+, ω) =
{

u(t) =
∫ t

0
v(τ)dτ + c : c ∈ R, v ∈ L p(R+, ω)

}
.

iv) The quantity
‖u‖(0)

D1,p(R+,ω)
:= ‖u

′ ‖L p(R+,ω) + |T r0(u)| (13)
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Asymptotics, Trace, and Density 1309

is the norm on D1,p(R+, ω), which is equivalent to any norm ‖u‖(a)

D1,p(R+,ω)
, where

a ∈ R+.

Proof.We observe that the substitution of u − c in place of u, reduces the proofs of i) and ii)
to the case of c = 0. Therefore, for those statements, we only show the case of c = 0.

i): Let us consider any sequence {un}n∈N ⊆ R0
p,ω(0), such that

un(t)
n→∞→ u(t) in D1,p(R+, ω). By Fact 2.3

un → u uniformly on compact sets inR+ and u
′
n → u

′
in L p(R+, ω) .

As ω ∈ Bp(0), therefore the above convergence yields u
′
n → u

′
in L1(0, K ), for every

K > 0. Since un ∈ R0
p,ω(0), for every t > 0, we have

un(t) =
∫ t

0
u

′
n(τ )dτ

n→∞→ u(t) =
∫ t

0
u

′
(τ )dτ.

In particular u ∈ R0
p,ω(0) and so R0

p,ω(0) is closed.

ii): We start by proving the identity R0
p,ω(0) = B0

p,ω(0).
Let u ∈ R0

p,ω(0). Then

u(t) =
∫ t

0
u

′
(τ )dτ. (14)

Therefore u(t) → 0 as t → 0, hence u ∈ B0
p,ω(0). This gives R0

p,ω(0) ⊆ B0
p,ω(0).

On the other hand, if u ∈ B0
p,ω(0), then for every 0 < t < t < K , we have

u(t) − u(t) =
∫ t

t
u

′
(τ )dτ.

Since u
′ ∈ L1((0, K )) for any K , by taking the limit as t → 0, we get (14). Hence u ∈

R0
p,ω(0).

We will complete the proof of ii) by proving the identity:

A0
p,ω(0) = B0

p,ω(0) = C0p,ω(0).

We first show the equality
A0

p,ω(0) = B0
p,ω(0). (15)

Clearly, A0
p,ω(0) ⊇ B0

p,ω(0), so we have to prove the converse inclusion. To this aim, let us
take u ∈ A0

p,ω(0), and let tn → 0 be such that u(tn) → 0 as n → ∞. Then, for any t such
that 0 < tn < t

|u(t) − u(tn)| ≤
∫

(tn ,t)
|u ′

(τ )|dτ =
∫

(tn ,t)
|u ′

(τ )|ω 1
p (τ )ω

− 1
p (τ )dτ (16)

≤
(∫

(tn ,t)
|u ′

(τ )|p
ω(τ)dτ

) 1
p
(∫

(tn ,t)
ω(τ)

−1
p−1 dτ

)1− 1
p

≤
(∫

(0,t)
|u ′

(τ )|p
ω(τ)dτ

) 1
p
(∫

(0,t)
ω(τ)

−1
p−1 dτ

)1− 1
p

.
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1310 C. Capone, A. Kałamajska

After letting n → ∞, we get

|u(t)| ≤
(∫

(0,t)
|u ′

(τ )|p
ω(τ)dτ

) 1
p · �0

ω(t)
t→0→ 0, (17)

which proves (15).

Let us show that both sets in (15) are the same as C0p,ω(0). Indeed, let us consider u ∈ A0
p,ω(0).

Then, by (17), we deduce that u(t)/�0
ω(t)

t→0−→ 0. Hence u ∈ C0p,ω(0).

On the other hand, when u ∈ C0p,ω(0), then u(t)
t→0−→ 0, because 1/�0

ω(t)
t→0−→ ∞. Hence

u ∈ B0
p,ω(0) = A0

p,ω(0).

iii): Consider any sequence tn ↘ 0. Then, for any fixed t , by using (16), we get the
boundedness of {u(tn)}n∈N. By Bolzano-Weierstrass Theorem, we can extract a convergent
subsequence, which we will also denote by {u(tn)}n∈N. Let c be its limit.
By taking the limit as n → ∞ in (16) we get

|u(t) − c| ≤
(∫

(0,t)
|u ′

(τ )|p
ω(τ)dτ

) 1
p · �0

ω(t), (18)

which implies u(t) → c as t → 0. Hence, any function u ∈ D1,p(R+, ω) has the limit as
t → 0, which implies the well-posedness of the trace operator T r0(·).
We have also proved that any function u ∈ D1,p(R+, ω) belongs toB0

p,ω(c) for some c. This,

together with (11), gives the decomposition D1,p(R+, ω) =
⋃
c∈R

R0
p,ω(c).

iv): Due to the existence of the limit of u at zero, we can apply the estimate (9) with
b := a > 0 and a := 0, getting

|u(a) − T r0(u)| ≤ CI

(∫
R+

|u ′
(τ )|p

ωdτ

) 1
p

,where

CI =
(∫

(0,a)

ω−1/(p−1)dτ

)1− 1
p

. (19)

Hence

‖u‖(a)

D1,p(R+,ω)
=

(∫
R+

|u ′
(τ )|p

ωdτ

) 1
p + |u(a)| (20)

≤
(∫

R+
|u ′

(τ )|p
ωdτ

) 1
p + |u(a) − T r0(u)| + |T r0(u)|

(19)≤
(∫

R+
|u ′

(τ )|p
ωdτ

) 1
p + CI

(∫
R+

|u ′
(τ )|p

ωdτ

) 1
p + |T r0(u)|

= (1 + CI )

(∫
R+

|u ′
(τ )|p

ωdτ

) 1
p + |T r0(u)|

≤ (1 + CI ) ‖u‖(0)
D1,p(R+,ω)

.

123



Asymptotics, Trace, and Density 1311

On the other hand, by switching the role of a and 0 in (20), we obtain

‖u‖(0)
D1,p(R+,ω)

=
(∫

R+
|u ′

(τ )|p
ωdτ

) 1
p + |T r0(u)|

≤
(∫

R+
|u ′

(τ )|p
ωdτ

) 1
p + |T r0(u) − u(a)| + |u(a)|

≤
(∫

R+
|u ′

(τ )|p
ωdτ

) 1
p + CI

(∫
R+

|u ′
(τ )|p

ωdτ

) 1
p + |u(a)|

= (1 + CI )

(∫
R+

|u ′
(τ )|p

ωdτ

) 1
p + |u(a)|

≤ (1 + CI ) ‖u‖(a)

D1,p(R+,ω)
.

This together with (20), yields the equivalence of all norms discussed, and completes the
proof of the statement. �
As a consequence of the above statement, we have the following remarks.

Remark 3.1 (Representation of D̃1,p(R+, ω) for ω ∈ Bp(0))
Let ω : R+ → R+, ω ∈ Bp(0) ∩ C(R+), 1 < p < ∞, and let T r0(·) be as in (12). Then

R0
p,ω(0) is a Banach subspace of D1,p(R+, ω) (equippedwith any of the norms ‖·‖(a)

D1,p(R+,ω)

where a ∈ [0,∞)). Moreover, the mapping

D1,p(R+, ω) � u �→ u − T r0(u) ∈ R0
p,ω(0)

is constant precisely on abstract classes in D̃1,p(R+, ω) (see Fact 2.2) and defines the iso-
metric isomorphism between (D̃1,p(R+, ω), ‖ · ‖∗

D̃1,p(R+,ω)
) and

(R0
p,ω(0), ‖ · ‖(0)

D1,p(R+,ω)
). In particular in every abstract class in D̃1,p(R+, ω), there is the

representative vanishing at zero and D̃1,p(R+, ω) is represented as{
U =

{∫ t

0
v(τ)dτ + c

}
c∈R

: v ∈ L p(R+, ω) , ‖U‖∗
D̃1,p(R+,ω)

= ‖v‖L p(R+,ω)

}
.

Remark 3.2 (Asymptotic behaviour near zero) The statement i i) in Theorem 3.1 and (18)
yield that if ω ∈ Bp(0) ∩ C(R+) is positive, 1 < p < ∞, then for any u ∈ D1,p(R+, ω)

u(t) = T r0(u) + a(t) · �0
ω(t) ,

where a(t) is bounded, a(t)
t→0→ 0, and �0

ω(·) is as in (10).

3.2 Analysis in the Case of! ∈ Bp(∞)

Let us assume that ω ∈ Bp(∞) ∩ C(R+) is positive, 1 < p < ∞. The aim of this section is
to establish an analogous results to Theorem 3.1, to represent the Dirichlet space through the
trace operator, but in the case ω ∈ Bp(∞). The result stated below can be obtained by using
very similar arguments to those used for the proof of Theorem 3.1. Since we will deal with
the Bp(∞)-condition, we have to provide the analysis when t is sufficiently large. The proof
is left to the reader with some general suggestions enclosed in order to treat this different
setting:
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1312 C. Capone, A. Kałamajska

• we first modify the appropriate definitions for the sets from Theorem 3.1;
• in the proofs, we substitute the previously used limit conditions: t ↘ 0, tn ↘ 0 by:

t ↗ ∞, tn ↗ ∞, respectively;
• in place of (14) we deal with the representation

u(t) = −
∫ ∞

t
u

′
(τ )dτ ;

• in place of (18) we deal with

|u(t) − c| ≤
(∫

(t,∞)

|u ′
(τ )|p

ω(τ)dτ

) 1
p · �∞

ω (t), (21)

which forces c = lim
t→∞ u(t).

The following statement holds.

Theorem 3.2 (Asymptotic behaviour and trace at infinity) Let ω : R+ → R+, ω ∈ C(R+)∩
Bp(∞), 1 < p < ∞. For any c ∈ R, let us consider the following subsets in D1,p(R+, ω):

R∞
p,ω(c) :=

{
u ∈ D1,p(R+, ω), u(t) =

∫ ∞

t
v(τ)dτ + c : v ∈ L p(R+, ω)

}
; (22)

A∞
p,ω(c) :=

{
u ∈ D1,p(R+, ω) : ∃ tn ↗ ∞ : lim

n→∞ u(tn) = c
}

;
B∞

p,ω(c) :=
{

u ∈ D1,p(R+, ω) : lim
t→∞ u(t) = c

}
;

C∞
p,ω(c) :=

{
u ∈ D1,p(R+, ω) : lim

t→∞
u(t) − c

�∞
ω (t)

= 0, supt>0
u(t) − c

�∞
ω (t)

< ∞,

}
,

where �∞
ω (t) =

(∫
(t,∞)

ω(τ)
−1
p−1 dτ

)1− 1
p

.

The following statements hold.

i) For any c ∈ R, the set R∞
p,ω(c) is a closed subset in D1,p(R+, ω), equipped with any

norm ‖ · ‖(a)

D1,p(R+,ω)
as in (7), where a ∈ R+.

ii) For any c ∈ R

A∞
p,ω(c) = B∞

p,ω(c) = C∞
p,ω(c) = R∞

p,ω(c).

iii) For every u ∈ D1,p(R+, ω) there is c ∈ R such that u ∈ R∞
p,ω(c). In particular, the

operator
T r∞(u) := lim

t→∞ u(t) =: u(∞), (23)

is well defined for every u ∈ D1,p(R+, ω) and D1,p(R+, ω) = ∪c∈RR∞
p,ω(c).

Moreover,

D1,p(R+, ω) =
{

u(t) =
∫ ∞

t
v(τ)dτ + c : c ∈ R, v ∈ L p(R+, ω)

}
.

iv) The quantity
‖u‖(∞)

D1,p(R+,ω)
= ‖u

′ ‖L p(R+,ω) + |T r∞(u)|
is the norm on D1,p(R+, ω), which is equivalent to any norm ‖u‖(a), where a ∈ R+.
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Remark 3.3 (Representation of D̃1,p(R+, ω) for ω ∈ Bp(∞)) Let ω : R+ → R+, ω ∈
Bp(∞) ∩ C(R+) and 1 < p < ∞, and let T r∞(·) be as in (23). Then R∞

p,ω(0) is a Banach

subspace of D1,p(R+, ω) (equipped with any of the norms ‖·‖(a)

D1,p(R+,ω)
where a ∈ (0,∞]).

Moreover, the mapping

D1,p(R+, ω) � u �→ u − T r∞(u) ∈ R∞
p,ω(0)

is constant precisely on abstract classes in D̃1,p(R+, ω) (see Fact 2.2) and defines the iso-
metric isomorphism between D̃1,p(R+, ω) and (R∞

p,ω(0), ‖ · ‖(∞)

D1,p(R+,ω)
). In particular in

every abstract class in D̃1,p(R+, ω) there is the representative vanishing at infinity and
D̃1,p(R+, ω) represents as{

U =
{∫ ∞

t
v(τ)dτ + c

}
c∈R

: v ∈ L p(R+, ω) , ‖U‖∗
D̃1,p(R+,ω)

=‖v‖L p(R+,ω)

}
.

Remark 3.4 (Asymptotic behaviour near infinity) The statement ii) in Theorem 3.2 and (21)
yield that if ω : R+ → R+, ω ∈ Bp(∞) ∩ C(R+) and 1 < p < ∞, then for every
u ∈ D1,p(R+, ω)

u(t) = T r∞(u) + a(t) · �∞
ω (t) ,

where a(t) is bounded, a(t)
t→∞→ 0, and �∞

ω (·) is as in (22).

4 Characterization ofD1,p
0 (R+,!) and Density Results

4.1 The Space D1,p
0 (R+,!) and First Density Results

We start with the following definition.

Definition 4.1 [The space D1,p
0 (R+, ω), the case of ω ∈ Bp]

When ω ∈ Bp , 1 < p < ∞, by D1,p
0 (R+, ω) we will denote the subset of all functions

u ∈ D1,p(R+, ω), for which there exists a sequence {φn}n∈N ⊆ C∞
0 (R+), which satisfies:

φ
′
n → u

′
in L p(R+, ω) and φn → u uniformly on compact sets in R+, as n → ∞.

ByFact 2.3, D1,p
0 (R+, ω) is the same as the completion ofC∞

0 (R+) in the space D1,p(R+, ω)

equipped with any of the norms ‖ · ‖(a)

D1,p(R+,ω)
, where a ∈ R+ can be taken arbitrary. In

particular, it is the Banach subspace of
(D1,p(R+, ω), ‖ · ‖(a)

D1,p(R+,ω)
), with an arbitrary a ∈ R+.

The following fact is rather obvious to the specialists, but for reader’s convenience we submit
its proof.

Lemma 4.1 Let ω : R+ → R+, ω ∈ C(R+) and 1 < p < ∞. Then for any a ∈ R+

D1,p
0 (R+, ω) = Lipc

‖·‖(a)

D1,p (R+,ω) = (
D1,p(R+, ω)

)
c

‖·‖(a)

D1,p (R+,ω) .

Proof. Clearly,
C∞
0 (R+) ⊆ Lipc(R+) ⊆ (

D1,p(R+, ω)
)

c .
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1314 C. Capone, A. Kałamajska

Hence, it suffices to show that
(
D1,p(R+, ω)

)
c

‖·‖(a)

D1,p (R+,ω) ⊆ D1,p
0 (R+, ω). For that, take

u ∈ (D1,p(R+, ω))c with the support [a, b] ⊆ R+. As on compactly supported sets ω ∼ 1,
therefore u ∈ D1,p(R+) and u is compactly supported. By standard convolution arguments,
the convolutions uε(x) := φε ∗ u, with the classical mollifier functions φε(x) = ε−1φ(x/ε),
where φ ∈ C∞

0 (R), 0 ≤ φ ≤ 1, suppu ⊆ [−1, 1] and ∫
R

φ dx = 1, converge to u in the
topology of D1,p(R+, ω). Moreover, their supports are subsets of J := [a/2, 3/2b] for the
sufficiently small ε’s. Again, asω ∼ 1 on J , therefore uε’s converge to u also in D1,p(R+, ω).
This shows that u ∈ D1,p

0 (R+, ω). �

In the preceding sections we will analyze independently the cases: ω ∈ Bp(0) and ω ∈
Bp(∞).

4.2 The Case of! ∈ Bp(0)

Let ω : R+ → R+, ω ∈ Bp(0) ∩ C(R+) and 1 < p < ∞, and let us consider the space

D1,p
0 (R+, ω) as in Definition 4.1. According to Theorem 3.1, part iv), it is the completion of

C∞
0 (R+) in D1,p(R+, ω) equipped with the norm ‖ · ‖(0). As C∞

0 (R+) ⊆ R0
p,ω(0) and by

Theorem 3.1 R0
p,ω(0) is a closed subspace in D1,p(R+, ω), we deduce that

D1,p
0 (R+, ω) ⊆ R0

p,ω(0), when ω ∈ Bp(0) ∩ C(R+) is positive. (24)

We address the question about density:

When D1,p
0 (R+, ω) = R0

p,ω(0) ?

The statement given below answers to this question.

Theorem 4.1 (Characterization of weights for D1,p
0 (R+, ω) = R0

p,ω(0))
Let ω : R+ → R+, ω ∈ Bp(0) ∩ C(R+), 1 < p < ∞. Then

D1,p
0 (R+, ω) = R0

p,ω(0) ⇐⇒ ω /∈ Bp(∞).

The proof will be based on the following lemma, whose proof is submitted in the Appendix
for reader’s convenience.

Lemma 4.2 (Energy minimizer with the nontrivial constraint at the left end).
Let ω : R+ → R+, ω ∈ C(R+), 0 < k < K < ∞, 0 �= a ∈ R, 1 < p < ∞, and consider
energy functional

Eω(φ) :=
∫

(k,K )

|φ ′
(t)|p

ω(t)dt, φ ∈ W 1,p((k, K )), φ(k) = a, φ(K ) = 0. (25)

Then the minimum of Eω(·) is achieved at

φ(k,K ,a)(t) := a

(∫
(k,K )

ω
−1
p−1 (τ )dτ

)−1 ∫
(t,K )

ω
−1
p−1 (τ )dτ.

Now we are in position to prove Theorem 4.1.

Proof of Theorem 4.1: ”⇐�” (Eω- caloric approximation):
We have called this part of the proof “ω- caloric approximation”, because the construction
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of the approximation sequence involves the energy minimizers of (25).
Assume that ω ∈ (C(R+) ∩ Bp(∞)) \ Bp(0). Thanks to (24) we only have to prove that

R0
p,ω(0) ⊆ D1,p

0 (R+, ω).
The proof follows by two steps.
Step 1. Reduction argument. We show that it suffices to prove that any u ∈
D1,p(R+, ω), such that

u ≡ 0 near zero and u ≡ 1 on (k,∞), for some k > 0, (26)

belongs to D1,p
0 (R+, ω).

Indeed, let us take u ∈ R0
p,ω(0). We notice that functions in the form

ũn(t) :=
∫ t

0
u

′
(τ )χ( 1n ,n)(τ )dτ (27)

converge to u in (D1,p(R+, ω), ‖ · ‖(0)) (see (13)), they are zero near zero and constant
near infinity. Clearly, if that constant equals zero, then according to Lemma 4.1, we have
ũn ∈ D1,p

0 (R+, ω). In the other case, we are left with the proof that ũn ∈ D1,p
0 (R+, ω).

Obviously, it suffices to consider Cũn instead of ũn , with constant C such that Cũn ≡ 1 near
infinity.
Step 2. Proof in the special case. We prove that any u ∈ D1,p(R+, ω) as in (26)
belongs to D1,p

0 (R+, ω).

Let u ∈ D1,p(R+, ω) be as in (26). For any n ∈ N and k < tn , let

un(t) :=
⎧⎨
⎩

u(t) if t < k
φ(k,tn ,1)(t) if t ∈ [k, tn]

0 if t > tn

where φ(k,tn ,1) is as in Lemma 4.2 and tn ↗ ∞. Clearly, the un’s are compactly supported.
We will show that

un
n→∞→ u in (D1,p(R+, ω), ‖ · ‖(0)

D1,p(R+,ω)
), (28)

which, together with Lemma 4.1, will close the assertion for this part of the statement. We
have ∫

R+
|(un − u)

′
(t)|p

ω(t)dt =
∫

(k,tn)

|(1 − φ(k,tn ,1)(t))
′ |p

ω(t)dt (29)

=
∫

(k,tn)

|φ(k,tn ,1)(t)
′ |p

ω(t)dt =
∫

(k,tn)

ω
−p
p−1 (t)(∫

(k,tn)
ω

−1
p−1 (τ )dτ

)p · ω(t)dt

=
(∫

(k,tn)

|ω −1
p−1 (τ )|p

dτ

)−p ∫
(k,tn)

ω
−1
p−1 (τ )dτ =

(∫
(k,tn)

ω
−1
p−1 (τ )dτ

)1−p

.

As ω /∈ Bp(∞) and p > 1,
∫

(k,tn)

ω
−1
p−1 (τ )dτ

n→∞→ ∞, consequently

(∫
(k,tn)

ω
−1
p−1 (τ )dτ

)1−p
n→∞→ 0.

This implies (28).

“�⇒”:
Suppose that D1,p

0 (R+, ω) = R0
p,ω(0). We will show that ω /∈ Bp(∞).
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Clearly the function

u(t) :=
⎧⎨
⎩

0 if t ≤ 1
t − 1 if t ∈ [1, 2]
1 if t > 2

belongs toR0
p,ω(0)(= D1,p

0 (R+, ω)), and so there is the sequence {un}n∈N ⊆ C∞
0 (R+) such

that un → u in (D1,p(R+, ω), ‖ · ‖(2)
D1,p(R+,ω)

), and in all the equivalent norms. In particular

ξn := un(2)
n→∞→ 1 and Eω(un) :=

∫
(2,tn)

|u ′
n(τ )|p

ω(τ)dτ
n→∞→ 0,

for any tn > 2. Let {tn}n∈N be any sequence such that supp un ⊆ (0, tn) and tn ↗ ∞ as
n → ∞. According to Lemma 4.2, the energy Eω(φ(2,tn ,ξn)) cannot be larger than Eω(un).
Therefore we also have

In := Eω(φ(2,tn ,ξn)) =
∫

(2,tn)

|(φ(2,tn ,ξn))
′
(τ )|p

ω(τ)dτ
n→∞→ 0.

Since

In = |ξn |p
∫
(2,tn )

⎛
⎜⎝ ω

− 1
p−1

∫
(2,tn ) ω

− 1
p−1 (τ )dτ

⎞
⎟⎠

p

ω(t)dt = |ξn |p
(∫

(2,tn )
ω

− 1
p−1 (τ )dτ

)1−p
,

it follows that the above converges to zero if and only if

lim
t→∞

∫
(2,t)

ω
− 1

p−1 (τ )dτ = ∞,

equivalently ω /∈ Bp(∞). This completes the proof of the statement. �.

4.3 Analysis in the Case of! ∈ Bp(∞)

Let us assume that ω : R+ → R+, ω ∈ Bp(∞) ∩ C(R+) and 1 < p < ∞. Our aim is to

analyze the properties of the space D1,p
0 (R+, ω), the completion ofC∞

0 (R+) in D1,p(R+, ω)

equipped with the norm ‖ · ‖(∞)

D1,p(R+,ω)
, defined in Theorem 3.2. As C∞

0 (R+) ⊆ R∞
p,ω(0),

where the latter space, due to Theorem 3.2, is a closed subspace in D1,p(R+, ω), we deduce
that

D1,p
0 (R+, ω) ⊆ R∞

p,ω(0). (30)

The goal of this section is the following characterization theorem.

Theorem 4.2 (Characterization of weights for D1,p
0 (R+, ω) = R∞

p,ω(0))
Let ω : R+ → R+, ω ∈ Bp(∞) ∩ C(R+) and 1 < p < ∞. Then

D1,p
0 (R+, ω) = R∞

p,ω(0) ⇐⇒ ω /∈ Bp(0).

The proof is an easy modification of the proof of Theorem 4.1, so we only sketch it. We
start by stating the following result similar to that of Lemma 4.2. Its proof can be easily
obtained either by the internal symmetry argument, or by suitable modification of the proof
of Lemma 4.2. We leave it to the reader.
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Lemma 4.3 (Energy minimizer for the nontrivial constraint at the right end).
Let ω : R+ → R+, ω ∈ Bp ∩ C(R+) and 1 < p < ∞, 0 < k < K < ∞, 0 �= a ∈ R, and
consider energy functional

Ẽω(φ) :=
∫

(k,K )

|φ ′
(t)|p

ω(t)dt, φ ∈ W 1,p((k, K )), φ(k) = 0, φ(K ) = a.

Then the minimum of Ẽω(·) is achieved at

φ̃(k,K ,a)(t) := a

(∫
(k,K )

ω
−1
p−1 (τ )dτ

)−1 ∫
(k,t)

ω
−1
p−1 (τ )dτ.

We are in position to sketch the proof of Theorem 4.2.

Proof of Theorem 4.2. “⇐�” (Ẽω - caloric approximation):
Assume that ω ∈ Bp(∞) \ Bp(0). As (30) holds, we only have to prove that R∞

p,ω(0) ⊆
D1,p
0 (R+, ω).

Let u ∈ R∞
p,ω(0). We will show that u ∈ D1,p

0 (R+, ω).
The proof consists of two steps.

Step 1. Reduction argument. We show that it suffices to prove that any u ∈
D1,p(R+, ω), such that

u ≡ 1 on some (0, c) where c > 0, u ≡ 0 near ∞, (31)

belongs to D1,p
0 (R+, ω).

To this aim, we note that functions

ũn(t) := −
∫ ∞

t
u

′
(τ )χ( 1n ,n)(τ )dτ

are proportional to functions as in (31), and they converge to u in (D1,p(R+, ω), ‖ · ‖(∞)).

Step 2. Proof in the special case.
We prove that any u ∈ D1,p(R+, ω) as in (31) belongs to D1,p

0 (R+, ω). To this purpose, let
us consider the following sequence dealing with 0 < sn < c, sn ↘ 0:

un(t) :=
⎧⎨
⎩

u(t) if t > c
φ̃(sn ,c,1)(t) if t ∈ [sn, c]

0 if t < sn,

where φ̃(sn ,c,1) is as in Lemma 4.3. Obviously, the un’s are compactly supported and so they

belong to D1,p
0 (R+, ω), by Lemma 4.1. By similar computations as in (29), we get

∫
R+

|(un − u)
′
(t)|p

ω(t)dt =
(∫

(sn ,c)
ω

−1
p−1 (τ )dτ

)1−p
n→∞→ 0,

because ω /∈ Bp(0). Therefore u ∈ D1,p
0 (R+, ω).
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“�⇒”:
We prove that the condition D1,p

0 (R+, ω) = R1,p(∞) forces the condition ω /∈ Bp(0). To

this aim, assume that D1,p
0 (R+, ω) = R1,p(∞) and let

u(t) :=
⎧⎨
⎩

1 if t ≤ 1
2 − t if t ∈ [1, 2]
0 if t > 2

Then u ∈ R∞
p,ω(0) ⊆ D1,p

0 (R+, ω). Hence, there exists a sequence {un}n∈N ⊆ C∞
0 (R+)

such that un → u in (D1,p(R+, ω), ‖ · ‖(1)
D1,p(R+,ω)

). In particular

ξn := un(1)
n→∞→ 1 and Ẽω(un) :=

∫
(sn ,1)

|u ′
n(τ )|p

ω(τ)dτ
n→∞→ 0,

where supp un ⊆ (sn,∞), for some sn ↘ 0. By Lemma 4.3, the energy In := Ẽω(φ̃(sn ,1,ξn))

cannot be larger than Ẽω(un), therefore

In := |ξn |p
(∫

(sn ,1)
ω

−1
p−1 (τ )dτ

)1−p
n→∞→ 0.

Consequently ω /∈ Bp(0), which completes the proof. �

4.4 Analytic Description of D1,p
0 (R+,!) in General Case

Our main statement in this section reads as follows.

Theorem 4.3 (Description of D1,p
0 (R+, ω) for all admitted weights) . Let ω : R+ → R+,

ω ∈ C(R+) and 1 < p < ∞. Then we have.

i) If ω ∈ Bp(0) \ Bp(∞), then

D1,p
0 (R+, ω) = R0

p,ω(0).

ii) If ω ∈ Bp(∞) \ Bp(0), then

D1,p
0 (R+, ω) = R∞

p,ω(0).

iii)If ω /∈ Bp(0) ∪ Bp(∞), then

D1,p
0 (R+, ω) = D1,p(R+, ω).

iv)If ω ∈ Bp(0) ∩ Bp(∞), then

D1,p
0 (R+, ω) = R0

p,ω(0) ∩ R∞
p,ω(0).

Proof. i) and ii): Statements i) and ii) have been already obtained in Theorems 4.1 and 4.2.
We are left with the proofs of parts iii) and iv).

iii):Assume thatω /∈ Bp(0)∪Bp(∞). Let u ∈ D1,p(R+, ω) and let us consider the Lipschitz
resolution of the unity on R+: φ0, φ1, defined by

φ1(t) = 1χ(0,1) + (−t + 2)χ[1,2], φ0(t) := 1 − φ1(t).
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We have to prove that u ∈ D1,p
0 (R+, ω). As u = φ0u + φ1u, it suffices to consider the

following cases: a) u ≡ 0 near 0 and b) u ≡ 0 near ∞.
In case a), suppose that u ≡ 0 on (0, a] for some a > 0. Then functions as in (27) converge
to u in (D1,p(R+, ω), ‖ · ‖(a)

D1,p(R+,ω)
), they are zero on (0, a] and constant when t > n.

Therefore the proof reduces to the case of u ≡ 0 near zero and u ≡ Const near ∞. Then we
repeat all the arguments from the proof of Theorem 4.1, Step 2, in the proof of the implication
“⇐�”.
In case b), the argument at the beginning of the proof of Theorem 4.2 reduces that case to
the situation when u ≡ Const near 0 and u ≡ 0 near to infinity. Then we use precisely the
same arguments as in the proof of Theorem 4.2, Step 2 in part “⇐�”.

iv): Let ω ∈ Bp(0) ∩ Bp(∞).

By (24) and (30) we have D1,p
0 (R+, ω) ⊆ R0

p,ω(0)∩R∞
p,ω(0), . Therefore it suffices to show

that the converse inclusion holds. For that, assume that u ∈ R0
p,ω(0) ∩R∞

p,ω(0). Note that in

particular u is bounded and, by Fact 2.1, u
′ ∈ L1

loc([0,∞)) ∩ L1
loc((0,∞]) = L1((0,∞)).

Moreover,

u(t) =
∫ t

0
u

′
(τ )dτ = −

∫ ∞

t
u

′
(τ )dτ.

Thus we have ∫ ∞

0
u

′
(τ )dτ = 0 and u

′ ∈ L1(R+).

For each n ∈ N, consider

un(t) :=
∫ t

0
χ( 1n ,n)

(
u

′
(τ ) − cn

)
dτ, where cn = 1

n − 1
n

∫ n

1
n

u
′
(τ )dτ.

Then

u
′
n(τ ) = χ( 1n ,n)

(
u

′
(τ ) − cn

)
,

∫ ∞

0
u

′
n(τ )dτ = 0, u

′
n ∈ L1(R+) ∩ L p(R+, ω).

Consequently

un(t) =
∫ t

0
u

′
n(τ )dτ = −

∫ ∞

t
u

′
n(τ )dτ, u

′
n ∈ L p(R+, ω).

Moreover, we have un
n→∞→ u in D1,p(R+, ω) and un is supported in

[
1

n
, n

]
. This together

with Lemma 4.1 implies that u ∈ D1,p
0 (R+, ω) and ends the proof of the statement. �

4.5 Sharpness in Theorems: 3.1, 3.2 and 4.3

This section is devoted to the proof of sharpness in statements i) in Theorems 3.1 and 3.2,
and the converse implications in Theorem 4.3.

We have the following result.

Theorem 4.4 (Sharpness in Theorems 3.1, 3.2, parts i)) .
Let ω : R+ → R+, ω ∈ C(R+) and 1 < p < ∞. Then the following statements hold.
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i) R0
p,ω(0) is a closed subset in D1,p(R+, ω) ⇐⇒ ω ∈ Bp(0).

ii) R∞
p,ω(0) is a closed subset in D1,p(R+, ω) ⇐⇒ ω ∈ Bp(∞).

Proof. The implications “⇐�” were already proven in Theorem 3.1, 3.2, parts i). We are left
with the proofs of the converse implications.
“�⇒:”
i): We argue by contradiction. Assume that the implication does not hold, that is R0

p,ω(0)
is a closed subset in D1,p(R+, ω), but ω /∈ Bp(0). We have either a) ω ∈ Bp(∞) or b)
ω /∈ Bp(∞).

If a) holds , then by part ii) of Theorem 4.3, D1,p
0 (R+, ω) = R∞

p,ω(0).
The function

u(x) :=
⎧⎨
⎩

1 if x ∈ (0, 1)
−x + 2 if x ∈ [1, 2)

0 if x ≥ 2
(32)

belongs to R∞
p,ω(0), which is D1,p

0 (R+, ω). Hence, it can be approximated in D1,p(R+, ω)

by functions with compact support inR+. Such functions take the value zero near the origin,
so they belong to R0

p,ω(0). But their limit, the function u(·), does not belong to R0
p,ω(0), as

u ≡ 1 near the origin. ThereforeR0
p,ω(0) cannot be closed. The condition a) is not possible.

Let us suppose that b)holds.ByTheorem4.3, part iii),wehave D1,p
0 (R+, ω) = D1,p(R+, ω).

Thus, the function u defined in (32) belongs to D1,p
0 (R+, ω). We can argue as in the previous

case, obtaining the contradiction that R0
p,ω(0) is closed. Therefore necessarily ω ∈ Bp(0).

ii): Let us assume that the implication “�⇒” does not hold, that isR∞
p,ω(0) is a closed subset

in D1,p(R+, ω) but ω /∈ Bp(∞).
We have either a) ω ∈ Bp(0) or b) ω /∈ Bp(0). Both conditions, by Theorem 4.3, imply that

D1,p
0 (R+, ω) = R0

p,ω(0) or D1,p
0 (R+, ω) = D1,p(R+, ω), respectively.

Let us consider the function

u(x) :=
⎧⎨
⎩

0 if x ∈ (0, 1)
x − 1 if x ∈ [1, 2)
1 if x ≥ 2

It belongs to D1,p
0 (R+, ω). By arguments as in the proof of part i), we get a contradiction in

both cases: a) and b), which proves ii).
The proof of the statement is complete. �
Let us proceed by proving the converse implications in Theorem 4.3.
We state the following

Theorem 4.5 (Sharpness of conditions on weights in Theorem 4.3) .
Let ω : R+ → R+, ω ∈ C(R+) and 1 < p < ∞. Then we have.
i) D1,p

0 (R+, ω) = R0
p,ω(0) ⇐⇒ ω ∈ Bp(0) \ Bp(∞).

ii)] D1,p
0 (R+, ω) = R∞

p,ω(0) ⇐⇒ ω ∈ Bp(∞) \ Bp(0).

iii)] D1,p
0 (R+, ω) = D1,p(R+, ω) ⇐⇒ ω /∈ Bp(0) ∪ Bp(∞).

iv) D1,p
0 (R+, ω) = R0

p,ω(0) ∩ R∞
p,ω(0) ⇐⇒ ω ∈ Bp(0) ∩ Bp(∞).

Proof. For each of the statements we only have to prove the implication “�⇒”.
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“�⇒:”
i):As D1,p

0 (R+, ω) = R0
p,ω(0), thereforeR0

p,ω(0) is a closed subset in D1,p(R+, ω). Hence,
by statement i) in Theorem 4.4, we get ω ∈ Bp(0). We have only two possibilities: a)
ω ∈ Bp(0) \ Bp(∞) or b) ω ∈ Bp(0)∩ Bp(∞). We will show that condition b) cannot hold.
We argue by contradiction. If the condition b) was true then, by Theorem 4.3, it would imply
D1,p
0 (R+, ω) = R0

p,ω(0) ∩ R∞
p,ω(0), and consequently R0

p,ω(0) = R0
p,ω(0) ∩ R∞

p,ω(0). It
would follow that R0

p,ω(0) \ R∞
p,ω(0) = ∅, while the function

u(x) :=
⎧⎨
⎩

0 if x ∈ (0, 1)
x − 1 if x ∈ [1, 2)
1 if x ≥ 2

(33)

belongs to R0
p,ω(0) \ R∞

p,ω(0). We arrive at a contradiction, therefore only the condition a)
can be true. This proves the statement i).

ii): We argue similarly as before. As we have D1,p
0 (R+, ω) = R∞

p,ω(0), therefore R∞
p,ω(0)

is closed. Hence, by statement ii) in Theorem 4.4, we get ω ∈ Bp(∞).
We have only two possibilities: either a) ω ∈ Bp(∞) \ Bp(0) or b) ω ∈ Bp(0) ∩ Bp(∞).

We will show that condition b) cannot hold.
Indeed, if b) would hold, then, from Theorem 4.3, statement iv), we would deduce that
R∞

p,ω(0) = R0
p,ω(0) ∩ R∞

p,ω(0). This would imply R∞
p,ω(0) \ R0

p,ω(0) = ∅, while the
function

u(x) :=
⎧⎨
⎩

1 if x ∈ (0, 1)
−x + 2 if x ∈ [1, 2)

0 if x ≥ 2
(34)

belongs to R∞
p,ω(0) \ R0

p,ω(0). The contradiction shows that the condition a) holds and this
completes the proof of the statement ii).

iii): By contradiction, let us assume that D1,p
0 (R+, ω) = D1,p(R+, ω) and ω ∈ Bp(0) ∪

Bp(∞). Then we have either: a) or b) or c), where a) ω ∈ Bp(0) \ Bp(∞), b) ω ∈ Bp(∞) \
Bp(0), c) ω ∈ Bp(0) ∩ Bp(∞).

According to Theorem 4.3, we get either D1,p
0 (R+, ω) = R0

p,ω(0), or D1,p
0 (R+, ω) =

R∞
p,ω(0), or D1,p

0 (R+, ω) = R0
p,ω(0) ∩ R∞

p,ω(0), respectively. Consequently, we would
have either D1,p(R+, ω) = R0

p,ω(0), or D1,p(R+, ω) = R∞
p,ω(0), or D1,p(R+, ω) =

R0
p,ω(0) ∩R∞

p,ω(0), respectively. However, those identities cannot be true. For example, the
function u ≡ 1 belongs to D1,p(R+, ω), while it does not belong to any of the sets:R0

p,ω(0),
R∞

p,ω(0), R0
p,ω(0) ∩ R∞

p,ω(0). The contradiction proves iii).

iv): Let us suppose that the implication does not hold, that is D1,p
0 (R+, ω) = R0

p,ω(0) ∩
R∞

p,ω(0), but ω /∈ Bp(0) ∩ Bp(∞). Then either a) or b) or c) holds, where a) ω ∈ Bp(0) \
Bp(∞), b) ω ∈ Bp(∞) \ Bp(0), c) ω /∈ Bp(0) ∪ Bp(∞).
By Theorem 4.3, those conditions imply: R0

p,ω(0) ∩ R∞
p,ω(0) = R0

p,ω(0), or R0
p,ω(0) ∩

R∞
p,ω(0) = R∞

p,ω(0), or R0
p,ω(0) ∩ R∞

p,ω(0) = D1,p(R+, ω), respectively.
In first two situations we would have R0

p,ω(0) \ R∞
p,ω(0) = ∅ or R∞

p,ω(0) \ R0
p,ω(0) = ∅,

which are false, thanks to either (33) or (34), respectively. The third situation cannot be
true also, because the function u ≡ 1 belongs to D1,p(R+, ω), but it does not belong to
R0

p,ω(0) ∩ R∞
p,ω(0). In any case we get the contradiction, which proves the validity of iv)

and finishes the proof of the statement. �
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5 Applications

Let us present several example applications of our results.

5.1 Application to Hardy Inequality

Let us consider classical Hardy and the conjugate Hardy operators, respectively:

Hv(t) :=
∫

(0,t)
v(τ ) dτ, v ∈ L1

loc([0,∞)), H∗v(t) :=
∫

(t,∞)

v(τ ) dτ, v ∈ L1
loc((0,∞]).

(35)
In Theorems 3.1 and 3.2 we have shown that Hardy type operators are isometric embed-
dings between L p(R+, ω) and R0

p,ω(0) or R∞
p,ω(0), respectively. Precisely, it follows from

Theorem 3.1 and 3.2 that

H : L p(R+, ω)
isometry→ (R0

p,ω(0), ‖ · ‖(0)
D1,p(R+,ω)

), when ω ∈ Bp(0),

H∗ : L p(R+, ω)
isometry→ (R∞

p,ω(0), ‖ · ‖(∞)

D1,p(R+,ω)
), when ω ∈ Bp(∞).

In the first case the inverse is u �→ u
′
, while in the second case it is −u

′
.

Such identification can be further used to obtain the extended variants of Hardy type
inequality, where the class of admissible functions is defined in terms of limits of u at 0 or at
∞.

The necessary and sufficient conditions for boundedness of Hardy operator H and conju-
gate Hardy operator H∗ as acting from L p(R+, ω) to Lq(R+, h), where 1 < p, q < ∞ are
known, see e.g. [12, 15, 19, 21]. For reader’s convenience we enclose them in the Appendix
in Theorems 7.1 and 7.2. Let us call them (C) - in the case of conditions for H , and (C∗) -
in the case of conditions for H∗, respectively.

We have the following example statement, which deepens our understanding of the Hardy
inequality. As the Bp(0) condition seems not known before, in our opinion, the result is new.

Theorem 5.1 (Analysis of Hardy inequality) .Suppose that the pair of weight functions (h, ω),
with positive ω ∈ C(R+), satisfies the condition (C) as in Theorem 7.1, 1 < q, p < ∞.

Then the following statements hold.

i) We have h ∈ L1
loc((0,∞]) and ω ∈ Bp(0). In particular:

• the operator T r0(u) := lim
t→0

u(t) is well defined for every u ∈ D1,p(R+, ω);

• the set R0
p,ω(0) = {u ∈ D1,p(R+, ω) : T r0(u) = 0} is closed subspace in

D1,p(R+, ω);
• the inequality

(∫
R+

|u(t)|q h(t) dt

) 1
q ≤ C

(∫
R+

|u ′
(t)|p

ω(t) dt

) 1
p

, (36)

holds for every u ∈ R0
p,ω(0), with constant C> 0 independent on u.

ii) When h /∈ L1(R+), then inequality (36) with right hand side finite holds precisely on the
set R0

p,ω(0). In particular, the continuous embedding of Banach spaces X ⊆ Lq(R+, h),

which is proven to hold for X = R0
p,ω(0), cannot be extended to any subspace X ⊆

D1,p(R+, ω) which is an essential superset of R0
p,ω(0).
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iii) When h ∈ L1(R+), then inequality (36) extends to inequality

‖u‖Lq (R+,h) ≤ C
(
‖u

′ ‖L p(R+,ω) + |T r0(u)|
)

, u ∈ D1,p(R+, ω), (37)

with constant C independent on u. Moreover, (36) holds on every subspace V ⊆
D1,p(R+, ω) which does not contain the nonzero constant functions.

Proof. i): The fact that h ∈ L1
loc((0,∞]) and ω ∈ Bp(0) follows from Conditions (C), see

Theorem 7.1. The fact thatR0
p,ω(0) is closed subspace in D1,p(R+, ω) and that the operator

T r0(·) is well defined on D1,p(R+, ω) follows from Theorem 3.1. By the same theorem,
R0

p,ω(0) is precisely the range of Hardy transforms under the action of Hardy operator H

applied to L p(R+, ω). Therefore, under Conditions (C), (36) holds on R0
p,ω(0). Now we

prove the remaining statements.

ii): We already know that (36) holds on R0
p,ω(0). On the other hand, when u /∈ R0

p,ω(0)
then T r0(u) = c �= 0, and in such case the left hand side in (36) cannot be finite as h is not
integrable near zero.

iii): By triangle inequality ‖u‖Lq (R+,h) ≤ ‖u − T r0(u)‖Lq (R+,h) + |T r0(u)|Lq (R+,h) and
by the application of (36) to u − T r0(u) ∈ R0

p,ω(0), we easily get (37). Let V be any
subspace of D1,p(R+, ω) which does not contain nonzero constant functions. Then the
seminorm ‖u‖∗

D1,p(R+,ω)
is the norm on V and so X1 := (V , ‖ · ‖∗

D1,p(R+,ω)
), as well as

X2 := (V , ‖ · ‖(0)
D1,p(R+,ω)

) (see Theorem 3.1), are Banach spaces. Moreover, the identity
operator id : X2 → X1 is a continuous linear bijection. Let us apply Banach Inverse
Mapping Theorem ([20]):

Theorem 5.2 (Banach’s Inverse Mapping Theorem). Let X , Y be Banach spaces and let
T : X �→ Y be a linear bounded operator. If T is bijective, then T −1 : Y �→ X is bounded.

It guarantees that the inverse, id : X1 → X2 is bounded. This implies that the norms
‖ · ‖∗

D1,p(R+,ω)
and ‖ · ‖(0)

D1,p(R+,ω)
are comparable on V . Thus, we can substitute the norm

‖·‖(0)
D1,p(R+,ω)

by the norm ‖·‖∗
D1,p(R+,ω)

in (37), when dealing with u ∈ V , with the eventual
change of constant in the estimate. Therefore the second statement in iii) follows.
Note that if we consider for example V := {u ∈ D1,p(R+, ω) : u(1) = 0}, which is proper
closed subspace of D1,p(R+, ω)which does not contain the nonzero constant functions, then
inequality (36) holds on V . On the other hand, the space V cannot be compared withR0

p,ω(0)
in the sense that R0

p,ω(0) \ V �= ∅ and V \ R0
p,ω(0) �= ∅. �

Remark 5.1 (Possible analysis of conjugate Hardy inequality). Similar considerations based
on the analysis ofHardy conjugate transform H∗ lead to the validity of (36), equippedwith the
condition lim

t→∞ u(t) = 0, under Conditions (C∗) for the admitted weights (see Theorem 7.2).

Remark 5.2 (Links with the solvability of second order elliptic ODEs). As shown in [4],
when � ⊆ Rn is an open domain, 1 < p < ∞, ρ ∈ Bp(�), that is ρ−1/(p−1) is locally
integrable in �, then the validity of the Poincaré inequality∫

�

|u|pρdx ≤ C
∫

�

|∇u|pρdx, u ∈ W 1,p
0 (�, ρ),

is equivalent to the solvability of degenerate elliptic PDE’s

div
(
ρ(x)|∇u|p−2∇u

) = f ∈ (W 1,p
0 (�, ρ))∗,
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whereW 1,p
0 (�, ρ) is the completionof smooth compactly supported functions inW 1,p(�, ρ),

X∗ is the dual space to X . One could consider the case of � = R+ and ask about the validity
of inequalities ∫

R+
|u(x)|pρdx ≤ C

∫
R+

|u ′
(x)|pρdx, u ∈ D1,p

0 (R+, ρ),

to deduce the solvability of ODE’s like
(
ρ(x)|u ′

(x)|p−2u
′
(x)

)′
= f ∈

(
W 1,p

0 (R+, ρ)
)∗

.

5.2 Application to Formulation of Dirichlet Boundary Conditions
for Solutions of ODE’s

The following remark contributes to the interpretation and well-posedness of boundary con-
ditions of Dirichlet type, in various problems dealing with ODE’s.

Remark 5.3 Our analysis allows to interpret precisely Dirichlet type boundary conditions for
u ∈ D1,p(R+, ω) with 1 < p < ∞:

lim
t→0

u(t) = c when ω ∈ Bp(0), or lim
t→∞ u(t) = c when ω ∈ Bp(∞). (38)

We already know (see Theorems: 3.1 and 3.2) that, for u ∈ D1,p(R+, ω), in both cases the
above conditions can be equivalently stated as

lim
t→0

u(t) − c
(∫

(0,t) ω(τ)
− 1

p−1 dτ
)1− 1

p

= 0 , when ω ∈ Bp(0), (39)

lim
t→∞

u(t) − c
(∫

(t,∞)
ω(τ)

− 1
p−1 dτ

)1− 1
p

= 0 , when ω ∈ Bp(∞).

As in later conditions the denominators converge to zero, (39) is stronger than (38) if we
do not assume that u ∈ D1,p(R+, ω). We can now confirm that the boundary conditions
defined by (39) are well posed and equivalent for functions in the respective Dirichlet space
D1,p(R+, ω).

5.3 Generalization of Morrey’s Inequality

Morrey’s inequality in 1-dimension says that when 1 < p < ∞ then for any u ∈
D1,p(R+, ω ≡ 1)

‖u‖
C
0,1− 1

p (R+)
= supx,y∈R+

|u(x) − u(y)|
|x − y|1− 1

p

≤ ‖u
′ ‖L p(R+), (40)

see e.g [1], Lemma 4.28 on page 99.

Remark 5.4 Using a simple modification of inequalities (15), we deduce that when ω ∈
C(R+) ω > 0, 1 < p < ∞, then for any u ∈ D1,p(R+, ω)

‖u‖
C
0,1− 1

p
ω (R+)

:= supx,y∈R+
|u(x) − u(y)|
dw,p(x, y)

1− 1
p

≤ ‖u
′ ‖L p(R+,ω),
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where dw,p(x, y) := ∫ y
x ω

− 1
p−1 (τ ) dτ replaces dist(x, y)

1− 1
p = |x − y|. Observe that the

function dω,p(x, y) obeys the properties of distance function on R+ and replaces |x − y| in
(40).

5.4 Application to Complex Interpolation Theory forWeighted Dirichlet Spaces

In the paper [2], on page 2434, in the third question, the authors have asked about certain
complex interpolation results for the weighted homogeneous Sobolev spaces, which in our
setting we call Dirichlet spaces:

D1,p(U , ω) :=
{

u ∈ L1
loc(U ) : ∂u

∂xi
∈ L p(U , ω), for i = 1, . . . , n

}
,

where U ⊆ R
n is an open set and ω : U → R+ is a given weight. The authors have focused

on the case of p ∈ [1,∞), n = 1, and U = R for the special class of weights, which satisfy
the compact boundedness condition as in Definition 1.3 on page 2383. That condition is
satisfied by every positive continuous function defined on R. In that case the mappings

ψ �→
∫ x

0
ψ(t)dt and its inverse φ �→ φ

′
(41)

give the isomorphic identification between the two Banach couples

((D1,p0(R, ω0), (D1,p1(R, ω1)) and ((L p0(R, ω0), (L p1(R, ω1)).

Let (X , Y )θ denote the complex interpolation pair betweenBanach spaces X , Y . It is deduced
from the Calderón type generalization of Stein-Weiss Theorem, as in [2], in Remark 3.2 on
page 2397, that one has:

((L p0(R, ω0), L p1(R, ω1))θ = L pθ (R, ωθ ),

where ω

1
pθ

θ = ω

1−θ
p0

0 ω

θ
p1
1 , 1

pθ
= 1−θ

p0
+ θ

p1
.

From there it follows that

((D1,p0(R, ω0), D1,p1(R, ω1))θ = D1,pθ (R, ωθ ).

The precise arguments are submitted in Section A.4 on pages 2439 and 2440 in [2].

Consider now the case of U = R+, p0, p1 ∈ (1,∞) and weights ω0, ω1 such that either
a) or b) holds when a) ω0, ω1 ∈ Bp(0) or b) ω0, ω1 ∈ Bp(∞) are positive and continuous,
1 < p < ∞. In case a), the mappings (41), while in case b), the mapping

ψ �→ −
∫ ∞

x
ψ(t)dt and its inverse φ �→ φ

′
.

give the isomorphic identification between the two Banach couples

((D1,p0(R+, ω0), (D1,p1(R+, ω1)) and ((L p0(R+, ω0), (L p1(R+, ω1)).

From there, by the same arguments as in [2], we deduce that

((D1,p0(R+, ω0), D1,p1(R+, ω1))θ = D1,pθ (R+, ωθ ),

where ω

1
pθ

θ = ω

1−θ
p0

0 ω

θ
p1
1 , 1

pθ
= 1−θ

p0
+ θ

p1
. As local Bp conditions: Bp(0) and Bp(∞) have

not been analyzed eariler (see Remark 6.1), in our opinion the result is new.
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6 Perspectives for Further Development, Remarks, andOpenQuestions

Let us collect some remarks, focusing on the link with literature and further possible exten-
sions.

Remark 6.1 (Local Bp conditions in literature). In general the localized Bp conditions are
missing in the literature. However, in [13], having positive almost everywhere weight ω

defined on open set � ⊆ R
n , the authors consider the so-called “exceptional set” Mp(�) :=

{
x ∈ � :

∫
�∩V (x)

ω−1/(p−1)(y)dy = ∞, for every neighborhood V (x) of x

}
.

In our case � = R+ and ω ∈ Bp(R+), so Mp(�) = ∅, but the extension of the above
definition also to x ∈ �̄ in place of x ∈ �, would lead in our situation to the validation of
conditions Bp(0) and Bp(∞).

Our results can be extended further in several directions. Let us propose some of them.

Remark 6.2 (Possible extensions).
(a) The choice of another domain. All the results that we will stated deal with functions
defined on the half line. However, without major changes in the proofs, one can consider
instead any interval (a, b) in place of R+. We have focused on functions defined on R+ to
make our presentation simpler.
(b) Possible discontinuities inside the interval. We have assumed in all our statements, that
weight function ω is positive and continuous inside the interval R+. It would be interesting
to know how much this assumption can be weakened.
(c) Higher order Dirichlet spaces. Instead of D1,p(R+, ω), one could consider higher order
Dirichlet spaces

Dk,p(R+, ω) = {u : R+ → R : u is locally absolutely continuous on R+ and

‖u(k)‖L p(R+,ω) < ∞}.
where k ∈ N and u(k) is the distributional derivative of u, and ask similar questions.
(d) Fractional order Dirichlet spaces. Instead of D1,p(R+, ω), one could consider fractional
order Dirichlet spaces, where the derivative u

′
is replaced by the fractional one, u(α), where

0 < α < 1. One can use the Caputo, Riemann-Liouville, or Grünwald-Leitnikov derivatives,
as discussed for example in the book [17].

Remark 6.3 (About Muckenhoupt weights). In many papers the authors deal with Muck-
enhoupt weights. Let ω : R → R+ be the Muckenhoupt weight, 1 < p < ∞. Then, by
definition, ω satisfies the Ap Muckenhoupt condition (see [19])

supI

(∫
I

1

|I |
∫

I
ω(t)dt

) (∫
I

1

|I |
∫

I
ω(t)−1/(p−1)dt

)p−1

< ∞,

where I are intervals in R. However our weights are continuous inside R+, they do not need
to satisfy the Ap condition. For example, such a one is ω(t) = t p−1, because ω−1/(p−1) is
not integrable near zero.

According to the discussion made in Section 5.4, we address an open question, which
naturally arises from our discussion.
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Open Question 6.1 Suppose that ω0, ω1 are continuous positive weights defined on R+,
1 < p < ∞, such that ω0 ∈ Bp(0)\ Bp(∞) and ω1 ∈ Bp(∞)\ Bp(0). What is the complex
interpolation space

((D1,p0(R+, ω0), D1,p1(R+, ω1))θ ,

where θ ∈ (0, 1)?

Remark 6.4 (Similar questions in the Sobolev space setting). Our results can be linked with
therecent result by Kaczmarek and second author [8], where the authors deal with power
weighted Sobolev spaces (with ω(x) = xα, α ∈ R)

W 1,p(R+, xα) := {u ∈ W 1,1
loc (R+) : ‖u‖W 1,p(R+,xα) := ‖u‖L p(R+,xα) + ‖u

′ ‖L p(R+,xα)},
and derive similar results, such as e.g. the analysis of trace operator, asymptotic behaviour
near endpoints: 0 and ∞, density results, applications to complex interpolation theory. As
Sobolev spaces and Dirichlet spaces are not the same, despite similarities, our approach
requires different analysis and it cannot be considered as direct generalization of results by
Kaczmarek and second author.

7 Appendix

7.1 The Complementary Proofs

Proof of Fact 2.2.The proof is based onmodification of arguments from [13], where Sobolev
spaces instead of Dirichlet spaces were considered.

LetUn := {un +c}c∈R be a Cauchy sequence in D̃1,p(R+, ω). Then for any fixed a ∈ R+
the function

vn :=
∫ t

a
u

′
n(τ )dτ

is the representative of eachUn in its class in D̃1,p(R+, ω).As {u ′
n}n∈N is theCauchy sequence

in L p(R+, ω), which is complete, so u
′
n

n→∞→ g in L p(R+, ω) for some g ∈ L p(R+, ω).

The arguments as in (6) allow to conclude that, in the case of ω ∈ Bp , we have u
′
n

n→∞→ g

in L1
loc(R+), which gives vn

n→∞→ v := ∫ t
a g(τ )dτ ∈ D1,p(R+, ω) uniformly on compact

sets. This gives

Un
n→∞→ U := {v + c}c∈R in D̃1,p(R+, ω),

because ‖Un − U‖∗
D̃1,p(R+,ω)

=

= ‖{vn − v + c}c∈R‖∗
D̃1,p(R+,ω)

= ‖(vn − v)
′ ‖L p(R+,ω) = ‖u

′
n − g‖L p(R+,ω)

n→∞→ 0.

We have shown that the space D̃1,p(R+, ω) is complete. �
Proof of Lemma 4.2.An easy verification shows that φ(k,K ,a) belongs to the admissible class
for the functional, that is the non-weighted Sobolev space W 1,p((k, K )). We will show that
φ(k,K ,a) is the unique minimizer of (25). We give the proof for a = 1, because φ(k,K ,a)(t) =
aφk,K ,1(t). As E(·) is convex functional and the admissible subset of W 1,p((k, K )) is convex
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closed set, DirectMethods in the Calculus ofVariations (see e.g. [3]), give existence of unique

minimizer of E(·). Let us call such a minimizer φ0. Let T (t) := t − K

k − K
and

Ẽ(v) :=
∫

(k,K )

|(T (t) + v(t))
′ |p

ω(t)dt =
∫

(k,K )

∣∣∣∣ 1

k − K
+ v

′
(t)

∣∣∣∣
p

ω(t)dt,

where v ∈ W 1,p((k, K ), ω), v(k) = v(K ) = 0.

We have
φ0 is minimizer of E(·) ⇐⇒ v0 := φ0 − T is minimizer of Ẽ(·).

By Direct Methods in Calculus of Variations, because the functional is nontrivial, coercive
and convex on W 1,p((k, K )) and ω ∼ 1 on [k, K ], we deduce that there exists a unique
minimizer of Ẽ . To find the minimizer, we compute Euler-Lagrange equation corresponding
to the minimizer.

For any v ∈ C∞
0 ((k, K )) we have

0 = d

ds
Ẽ(v0 + sv)|s=0

= p
∫

(k,K )

{∣∣∣∣ 1

k − K
+ v

′
0(t)

∣∣∣∣
p−1

sgn

(
1

k − K
+ v

′
0(t)

)
ω(t)

}
v

′
(t)dt .

As ω is continuous, the function inside brackets {·} is integrable over (k, K ) and its weak
derivative is zero. Thus this function is constant and hence

∣∣∣∣ 1

k − K
+ v

′
0(t)

∣∣∣∣
p−1 {

sgn

(
1

k − K
+ v

′
0(t)

)}
= Const

ω(t)
. (42)

Denote �r (a) := |a|r−1a = |a|r sign a, where r > 0, a ∈ R. Then �r is invertible and
�−1

r (a) = � 1
r
(a). Applying � 1

p−1
to both sides in (42), we get

1

k − K
+ v

′
0(t) = � 1

p−1

(
Const

ω(t)

)
= c1

ω(t)
1

p−1

, for some c1 ∈ R.

This implies

v
′
0(t) = − 1

k − K
+ c1ω(t)−1/(p−1), consequently

v0(t) =
∫ t

k
v

′
0(τ )dτ = − 1

k − K
(t − k) + c1

∫ t

k
ω(τ)−1/(p−1)dτ ,

for some constant c1. Recalling that v0(K ) = 0, we deduce that

c1 = −
(∫

(k,K )

ω(τ)−1/(p−1)dτ

)−1

,

which allows to conclude the statement. �

7.2 Some Results about Hardy and Hardy Conjugate Operators

Recall that we deal with Hardy and conjugate Hardy operators as in (35).
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Theorem 7.1 (Conditions (C), [21]). For positive weights
ω, h : R+ → [0,∞) ∪ {∞} and 1 < p, q < ∞, the Hardy operator

H : L p(R+, ω) → Lq(R+, h)

is bounded if and only if i) or ii) holds, where

i) 1 < p ≤ q < ∞ and

E1 := supt∈(0,∞)

(∫
(t,∞)

h(τ )dτ

) 1
q

(∫
(0,t)

ω(τ)
− 1

p−1 dτ

) 1
p
′

< ∞,

ii) 1 < q < p < ∞ and

E2 :=
∫
R+

(∫
(t,∞)

h(τ )dτ

) p
p−q

(∫
(0,t)

ω(τ)
− 1

p−1 dτ

) p(q−1)
p−q

ω(t)−
1

p−1 dt < ∞,

E3 :=
∫
R+

(∫
(t,∞)

h(τ )dτ

) q
p−q

h(t)

(∫
(0,t)

ω(τ)
− 1

p−1 dτ

) q(p−1)
p

dt < ∞.

Theorem 7.2 (Conditions (C∗), Theorems: 7.4 and 7.6 in [12]). For positive weights ω, h :
R+ → [0,∞) ∪ {+∞} and 1 < p, q < ∞, the conjugate Hardy operator

H∗ : L p(R+, ω) → Lq(R+, h)

is bounded if and only if i) or ii) holds, where

i) 1 < p ≤ q < ∞ and

A := supt∈R+ A(t) < ∞, and lim
t→0

A(t) = lim
t→∞ A(t) = 0, where

A(t) :=
(∫

(0,t)
h(τ )dτ

) 1
q

(∫
(t,∞)

ω(τ)
− 1

p−1 dτ

)1− 1
p

.

ii) 1 < q < p < ∞ and

A :=
∫
R+

(∫
(0,t)

h(τ )dτ

) p
p−q

(∫
(t,∞)

ω(τ)
− 1

p−1 dτ

) p(q−1)
p−q

ω(t)−
1

p−1 dt .
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