Skip to main content
Log in

Fractional Leibniz-type Rules on Spaces of Homogeneous Type

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let (M,ρ,μ) be a space of homogeneous type satisfying the reverse doubling condition and the non-collapsing condition. In view of the lack of the Fourier transform in this setting, the authors obtain Leibniz-type rules of fractional order on (M,ρ,μ) under the assumptions of the heat kernel satisfying the upper bound estimate, the Hölder estimate and the stochastic completeness property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G.: Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc. 73, 890–896 (1967)

    Article  MathSciNet  Google Scholar 

  2. Auscher, P., Hytönen, T.: Orthonormal bases of regular wavelets in spaces of homogeneous type. Appl. Comput. Harmon. Anal. 34, 266–296 (2013). Erratum: Appl. Comput. Harmon. Anal. 39, 568–569 (2015)

    Article  MathSciNet  Google Scholar 

  3. Auscher, P., Qafsaoui, M.: Equivalence between regularity theorems and heat kernel estimates for higher order elliptic operators and systems under divergence form. J. Funct. Anal. 177, 310–364 (2000)

    Article  MathSciNet  Google Scholar 

  4. Auscher, P., Tchamitchian, P.: Square root problem for divergence operators and related topics. Astérisque 249, 1–172 (1998)

    MathSciNet  Google Scholar 

  5. Barlow, M.T., Bass, R.F.: Brownian motion and harmonic analysis on Sierpinski carpets. Canad. J. Math. 51, 673–744 (1999)

    Article  MathSciNet  Google Scholar 

  6. Barlow, M.T., Grigor’yan, A., Kumagai, T.: On the equivalence of parabolic Harnack inequalities and heat kernel estimates. J. Math. Soc. Japan 64, 1091–1146 (2012)

    Article  MathSciNet  Google Scholar 

  7. Barlow, M.T., Perkins, E.A.: Brownian motion on the sierpiński gasket. Probab. Theory Related Fields 79, 543–623 (1988)

    Article  MathSciNet  Google Scholar 

  8. Bényi, Á., Maldonado, D., Naibo, V.: What is a paraproduct? Notices Amer Math Soc. 57, 858–860 (2010)

    MathSciNet  Google Scholar 

  9. Bernicot, F., Maldonado, D., Moen, K., Naibo, V.: Bilinear sobolev-poincaré inequalities and Leibniz-type rules. J. Geom. Anal. 24, 1144–1180 (2014)

    Article  MathSciNet  Google Scholar 

  10. Brummer, J., Naibo, V.: Bilinear operators with homogeneous symbols,smooth molecules, and Kato-Ponce inequalities. Proc. Amer. Math. Soc. 146, 1217–1230 (2018)

    Article  MathSciNet  Google Scholar 

  11. Bui, H. -Q., Duong, X.T., Yan, L.: Calderón reproducing formulas and new Besov spaces associated with operators. Adv. Math. 229, 2449–2502 (2012)

    Article  MathSciNet  Google Scholar 

  12. Cao, J., Grigor’yan, A.: Heat kernels and Besov spaces associated with second order divergence form elliptic operators. J. Fourier Anal. Appl. 26, 3 (2020)

    Article  MathSciNet  Google Scholar 

  13. Chang, D. -C., Fu, X., Yang, D.: Boundedness of paraproducts on spaces of homogeneous type I. Appl. Anal. 101, 2144–2169 (2022)

    Article  MathSciNet  Google Scholar 

  14. Chang, D. -C., Fu, X., Yang, D.: Boundedness of paraproducts on spaces of homogeneous type II. Appl. Anal. 101, 2170–2196 (2022)

    Article  MathSciNet  Google Scholar 

  15. Christ, F.M., Weinstein, M.I.: Dispersion of small amplitude solutions of the generalized Kortewegde Vries equation. J. Funct. Anal. 100, 87–109 (1991)

    Article  MathSciNet  Google Scholar 

  16. Coifman, R.R., Meyer, Y.: Nonlinear Harmonic Analysis, Operator Theory and P.D.E., Beijing Lectures in Harmonic Analysis. Princeton University Press, Beijing (1984)

    Google Scholar 

  17. Coifman, R.R., Weiss, G.: Analyse Harmonique Non-Commutative Sur Certains Espaces Homogénes Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)

    Book  Google Scholar 

  18. Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83, 569–645 (1977)

    Article  MathSciNet  Google Scholar 

  19. Coulhon, T., Kerkyacharian, G., Petrushev, P.: Heat kernel generated frames in the setting of Dirichlet spaces. J. Fourier Anal. Appl. 18, 995–1066 (2012)

    Article  MathSciNet  Google Scholar 

  20. Cruz-Uribe, D., Naibo, V.: Kato-ponce inequalities on weighted and variable Lebesgue spaces. Differ Integral Equ. 29, 801–836 (2016)

    MathSciNet  Google Scholar 

  21. Cruz-Uribe, D., Rios, C.: Gaussian bounds for degenerate parabolic equations. J. Funct. Anal. 255(2), 283–312 (2008)

    Article  MathSciNet  Google Scholar 

  22. Cruz-Uribe, D., Rios, C.: Corrigendum to “Gaussian bounds for degenerate parabolic equations. J. Funct. Anal. 255(2), 283–312 (2008). J. Funct. Anal. 267, 3507–3513 (2014)

    Article  MathSciNet  Google Scholar 

  23. Duong, X.T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18, 943–973 (2005)

    Article  MathSciNet  Google Scholar 

  24. Grafakos, L.: Multilinear operators in harmonic analysis and partial differential equations. Harmonic Analysis and Nonlinear Partial Differential Equations, 11-27 RIMS Kôkyûroku Bessatsu. B33, Res. Inst. Math. Sci. (RIMS), Kyoto (2012)

  25. Grafakos, L.: Classical Fourier Analysis. Third edition. Graduate Texts in Mathematics, vol. 249. Springer, New York (2014)

    Google Scholar 

  26. Grafakos, L., Liu, L., Yang, D.: Maximal function characterizations of Hardy spaces on RD-spaces and their applications. Sci. China Ser. A 51(12), 2253–2284 (2008)

    Article  MathSciNet  Google Scholar 

  27. Grafakos, L., Liu, L., Yang, D.: Vector-valued singular integrals and maximal functions on spaces of homogeneous type. Math. Scand. 104(2), 296–310 (2009)

    Article  MathSciNet  Google Scholar 

  28. Grafakos, L., Liu, L., Yang, D.: Boundedness of paraproduct operators on RD-spaces. Sci. China Math. 53, 2097–2114 (2010)

    Article  MathSciNet  Google Scholar 

  29. Grafakos, L., Maldonado, D., Naibo, V.: A remark on an endpoint Kato-Ponce inequality. Differ Integral Equ. 27, 415–424 (2014)

    MathSciNet  Google Scholar 

  30. Grafakos, L., Oh, S.: The Kato-Ponce inequality. Comm. Partial Differential Equations 39, 1128–1157 (2014)

    Article  MathSciNet  Google Scholar 

  31. Grigor’yan, A.: Heat kernels and function theory on metric measure spaces. Contemp. Math. 338, 143–172 (2003)

    Article  MathSciNet  Google Scholar 

  32. Grigor’yan, A.: On stochastically complete manifolds. DAN SSSR 290, 534–537 (1986) (in Russian) English translation: Soviet. Math. Dokl. 34(2), 310–313 (1987)

    Google Scholar 

  33. Grigor’yan, A., Hu, J.: Upper bounds of heat kernels on doubling spaces. Mosc. Math. J. 14, 505–563, 641–642 (2014)

    Article  MathSciNet  Google Scholar 

  34. Grigor’yan, A., Hu, J., Lau, K.-S.: Heat kernels on metric spaces with doubling measure, Fractal Geometry and Stochastics IV, 3-44, Progr Probab, vol. 61. Basel, Birkhäuser (2009)

    Google Scholar 

  35. Grigor’yan, A., Huang, X., Masamune, J.: On stochastic completeness of jump processes. Math. Z. 271, 1211–1239 (2012)

    Article  MathSciNet  Google Scholar 

  36. Grigor’yan, A., Huang, X.: Stochastic completeness of jump processes on metric measure spaces, Geometry and Analysis of Fractals, 209-224, Springer Proc. Math Stat., vol. 88. Springer, Heidelberg (2014)

    Google Scholar 

  37. Grigor’yan, A., Liu, L.: Heat kernel and Lipschitz-Besov spaces. Forum Math. 27, 3567–3613 (2015)

    Article  MathSciNet  Google Scholar 

  38. Grigor’yan, A., Telcs, A.: Sub-Gaussian estimates of heat kernels on infinite graphs. Duke Math. J. 109, 451–510 (2001)

    Article  MathSciNet  Google Scholar 

  39. Gulisashvili, A., Kon, M.: Exact smoothing properties of Schrödinger semigroups. Amer. J. Math. 118, 1215–1248 (1996)

    Article  MathSciNet  Google Scholar 

  40. Han, Y., Müller, D., Yang, D.: Littlewood-paley characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr. 279, 1505–1537 (2006)

    Article  MathSciNet  Google Scholar 

  41. Han, Y., Müller, D., Yang, D.: A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathodory spaces, Abstr. Appl. Anal. Art. ID 893409, 250 pp (2008)

  42. Hart, J., Torres, R.H., Wu, X.: Smoothing properties of bilinear operators and Leibniz-type rules in Lebesgue and mixed Lebesgue spaces. Trans. Amer. Math. Soc. 370, 8581–8612 (2018)

    Article  MathSciNet  Google Scholar 

  43. He, Z., Han, Y., Li, J., Liu, L., Yang, D., Yuan, W.: A complete real-variable theory of Hardy spaces on spaces of homogeneous type. J. Fourier Anal. Appl. 25, 2197–2267 (2019)

    Article  MathSciNet  Google Scholar 

  44. Hu, J.: A note on hajłasz-sobolev spaces on fractals. J. Math. Anal. Appl. 280, 91–101 (2003)

    Article  MathSciNet  Google Scholar 

  45. Hytönen, T., Kairema, A.: Systems of dyadic cubes in a doubling metric space. Colloq Math. 126, 1–33 (2012)

    Article  MathSciNet  Google Scholar 

  46. Jonsson, A.: Brownian motion on fractals and function spaces. Math. Z. 222, 495–504 (1996)

    Article  MathSciNet  Google Scholar 

  47. Kato, T.: Remarks on the Euler and Navier-Stokes equations in R2. In: Nonlinear functional Analysis and Its Applications, Part 2. Proceedings of Symposium on Pure Mathematics, vol. 45. Providence RI, AMS, pp 1–7 (1986)

  48. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  Google Scholar 

  49. Kenig, C., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Kortewegde Vries equation via the contraction principle. Comm. Pure. Appl. Math. 46, 527–620 (1993)

    Article  MathSciNet  Google Scholar 

  50. Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Amer. Math. Soc. 367, 121–189 (2015)

    Article  MathSciNet  Google Scholar 

  51. Kigami, J.: Analysis on Fractals Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  52. Li, D.: On Kato-Ponce and fractional Leibniz. Rev. Mat. Iberoam. 35, 23–100 (2019)

    Article  MathSciNet  CAS  Google Scholar 

  53. Li, P., Yau, S. -T.: On the parabolic kernel of the schrödinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  54. Liu, L., Yang, D., Yuan, W.: Besov-type and Triebel-Lizorkin-type spaces associated with heat kernels. Collect. Math. 67, 247–310 (2016)

    Article  MathSciNet  Google Scholar 

  55. Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, Volume 2 Cambridge Studies in Advanced Mathematics, vol. 138. Cambridge, UK (2013)

    Google Scholar 

  56. Naibo, V., Thomson, A.: Coifman-meyer multipliers: Leibniz-type rules and applications to scattering of solutions to PDEs. Trans. Amer. Math. Soc. 372, 5453–5481 (2019)

    Article  MathSciNet  Google Scholar 

  57. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80, 931–954 (1958)

    Article  MathSciNet  Google Scholar 

  58. Oh, S., Wu, X.: On L1 endpoint Kato-Ponce inequality. Math. Res. Lett. 27, 1129–1163 (2020)

    Article  MathSciNet  Google Scholar 

  59. Pietruska-Pałuba, K.: Heat kernels on metric spaces and a characterisation of constant functions. Manuscripta Math. 115, 389–399 (2004)

    Article  MathSciNet  Google Scholar 

  60. Pietruska-Pałuba, K.: Heat kernel characterisation of Besov-Lipschitz spaces on metric measure spaces. Manuscripta Math. 131, 199–214 (2010)

    Article  MathSciNet  Google Scholar 

  61. Qafsaoui, M.: On a class of higher-order operators with complex coefficients, elliptic in the sense if gårding’s inequality differential and integral equations. Differ. Inregral. Equ. 16, 1223–1248 (2003)

    MathSciNet  Google Scholar 

  62. Song, L., Yan, L.: A maximal function characterization for Hardy spaces associated to nonnegative self-adjoint operators satisfying Gaussian estimates. Adv. Math. 287, 463–484 (2016)

    Article  MathSciNet  Google Scholar 

  63. Strichartz, R.S.: Function spaces on fractals. J. Funct. Anal. 198, 43–83 (2003)

    Article  MathSciNet  Google Scholar 

  64. Sturm, K.T.: Analysis on local Dirichlet spaces I. Recurrence, conservativeness and Lp,-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    MathSciNet  Google Scholar 

  65. Torres, R.H., Ward, E.L.: Leibniz’s rule, sampling and wavelets on mixed Lebesgue spaces. J. Fourier Anal. Appl. 21, 1053–1076 (2015)

    Article  MathSciNet  Google Scholar 

  66. Yang, J., Liu, Z., Wu, X.: Leibniz-type rules for bilinear and biparameter Fourier multiplier operators with applications. Potential Anal. 55, 189–209 (2021)

    Article  MathSciNet  Google Scholar 

  67. Yang, J., Liu, Z., Wu, X.: Weighted Leibniz-type rules for bilinear flag multipliers. Banach J. Math. Anal. 15(56), 39 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the referees for their careful reading and helpful comments which indeed improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguang Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

LL was supported by the National Natural Science Foundation of China (# 11771446).

Appendix

Appendix

Besides Examples 1.1 and 1.2, we present another three examples of heat kernels generated from differential operators on \({\mathbb {R}^n}\), which also satisfy the setup in Section 1.2.

Example A.1

On the classical Euclidean space \({\mathbb {R}^n}\), consider

$$L= \text{div} (\mathbf{A} \nabla)$$

with A being a real symmetric matrix of bounded measurable functions satisfying the uniformly elliptic condition, that is,

$$\left\langle \mathbf{A}\xi,\xi \right\rangle\ge \lambda |\xi|^{2}\quad \text{for all}\ \xi\in{\mathbb{R}^n},$$

where λ is a positive constant. From Aronson [1, Theorem 1], it follows that the heat kernel {pt}t> 0 of \(\{e^{-tL}\}_{t\ge 0}\) is non-negative and satisfies the two-sided Gaussian estimate

$$ p_{t}(x,y)\asymp \frac{C}{t^{n/2}}\exp \left( -c\frac{|x-y|^{2}}{t}\right). $$

The Hölder regularity of the heat kernel {pt}t> 0 was due to Nash [57, Part IV].

Example A.2

Let \(({\mathbb {R}^n}, \omega )\) be the weighted Euclidean space endowed with the Euclidean metric, where ω is a non-negative, locally integrable function which we assume is either in the Muckenhoupt class A2. On this weighted manifold \(({\mathbb {R}^n}, \omega )\), consider the degenerate operator

$$L_{\omega} =\frac1\omega \text{div} \left( \mathbf{A} \nabla \right),$$

where A is a real symmetric matrix of measurable functions satisfying the degenerate ellipticity condition

$$ \begin{cases} \lambda \omega(x)|\xi|^{2}\le \left\langle \mathbf{A}\xi,\xi \right\rangle; \\ \left|\left\langle \mathbf{A}\xi,\eta \right\rangle\right|\le {\Lambda} \omega(x)|\xi||\eta|, \end{cases} $$

for some constants λ and Λ such that \(0<\lambda \le {\Lambda }<\infty \), and for all \(\xi ,\eta \in \mathbb C^{n}\). Of course, if ω = 1, then Lω goes back to the operator L in Example A.1.

According to Cruz-Uribe and Rios [22, Theorem 1], upon setting

$$d\mu(x)=\omega(x) dx,$$

the semigroup \(\{e^{-tL_{\omega }}\}_{t\ge 0}\) has a heat kernel {pt}t> 0 such that

$$ \begin{array}{@{}rcl@{}} e^{-tL_{\omega}} f(x) ={\int}_{{\mathbb{R}^n}} p_{t}(x,y) f(y) d\mu(y)\quad \text{for all}\ f\in L^{2}({\mathbb{R}^n}). \end{array} $$

Moreover, for all \(t\in (0,\infty )\) and \(x,y, y^{\prime }\in {\mathbb {R}^n}\), the heat kernel pt satisfies the weighted Gaussian bound

$$ \begin{array}{@{}rcl@{}} |p_{t}(x,y)|\le C \frac 1{\sqrt{\mu(B(x, t^{1/2})) \mu(B(y, t^{1/2}))}} \exp\left( -c\frac{|x-y|^{2}}{t}\right) \end{array} $$
(A.1)

and the Hölder estimate

$$ \begin{array}{@{}rcl@{}} |p_{t}(x,y)-p_{t}(x,y^{\prime})|&\leq& C\left( \frac{|y-y^{\prime}|}{t^{1/2}+|x-y|}\right)^{\theta} \frac 1{\sqrt{\mu(B(x, t^{1/2})) \mu(B(y, t^{1/2}))}} \\ &&\times\exp\left( -c\frac{|x-y|^{2}}{t}\right) \end{array} $$
(A.2)

whenever \(|y-y^{\prime }|\leq (t^{1/2}+|x-y|)/2\), where the Hölder exponent 𝜃 is in (0, 1].

From Eqs. A.1 and A.2, it follows that the heat kernel {pt}t> 0 satisfies (UE) and (HE) with dw = 2 and 𝜃 ∈ (0, 1). The stochastic completeness property (SC) was proved in [21, Theorem 1.7].

Example A.3

Let \(m\in {\mathbb N}\). Consider on the classical Euclidean space \({\mathbb {R}^n}\) the homogeneous elliptic operator of order 2m of the form

$$L_{0}=(-1)^{m}{\sum}_{|\alpha|=|\beta|=m}\partial^{\alpha}(a_{\alpha,\beta}\partial^{\beta}),$$

where {aα,β(x)} is a symmetric matrix of complex-valued bounded measurable functions on \({\mathbb {R}^n}\) satisfying the strong Gårding inequality: for all functions u in the Sobolev space \(W^{m,2}({\mathbb {R}^n})\),

$$(L_{0}u,u)\ge \delta_{0} \|\nabla^{m} u\|^{2}_{L^{2}({\mathbb{R}^n})}$$

for some constant δ0 > 0.

  1. (i)

    Under the case 2mn, according to Auscher and Tchamitchian [4, p. 59, Propositon 28], the semigroup \(\{e^{-tL_{0}}\}_{t\ge 0}\) has a heat kernel {pt}t> 0 satisfying that for all t > 0 and \(x,y,y^{\prime }\in {\mathbb {R}^n}\),

    $$ \begin{array}{@{}rcl@{}} |p_{t}(x,y)|\le C\frac{1}{t^{n/(2m)}} \exp\left\{-c\left( \frac{|x-y|}{t^{1/(2m)}}\right)^{\frac{2m}{2m-1}}\right\} \end{array} $$
    (A.4)

    and, for \(|y-y^{\prime }|\le (t^{1/(2m)}+|x-y|)/2\),

    $$ \begin{array}{@{}rcl@{}} |p_{t}(x,y^{\prime}) - p_{t}(x,y)|\!\le\! C\frac{1}{t^{n/(2m)}}\left( \frac{|y^{\prime}-y|}{t^{1/(2m)}+|x-y|}\right)^{\theta} \exp\left\{ - c\left( \frac{|x - y|}{t^{1/(2m)}}\right)^{\frac{2m}{2m-1}}\right\},\\ \end{array} $$
    (A.5)

    where C and c are positive constants, and the Hölder exponent 𝜃 can be any number in (0,1).

    Note that Eq. A.4 is just (UE). Based on [4, p. 55, Proposition 25] (see also [4, p. 69, Remarks 3]), the upper bound estimate Eq. A.4 guarantees the stochastic completeness property (SC). Moreover, observe that Eq. A.5 implies that for all \(x,y,y^{\prime }\in {\mathbb {R}^n}\) satisfying \(|y-y^{\prime }|\le t^{1/(2m)}\),

    $$ \begin{array}{@{}rcl@{}} |p_{t}(x,y^{\prime})-p_{t}(x,y)|\le C\frac{1}{t^{n/(2m)}}\left( \frac{|y^{\prime}-y|}{t^{1/(2m)}}\right)^{\theta} \exp\left\{-c\left( \frac{|x-y|}{t^{1/(2m)}}\right)^{\frac{2m}{2m-1}}\right\}, \end{array} $$
    (A.6)

    thereby leading to (HE). Indeed, when \( t^{1/(2m)}/2 \le |y-y^{\prime }|\le t^{1/(2m)}\), by Eq. A.4, we have

    $$ \begin{array}{@{}rcl@{}} |p_{t}(x,y^{\prime})-p_{t}(x,y)| &&\le |p_{t}(x,y^{\prime})|+|p_{t}(x,y)|\\ &&\lesssim \frac{1}{t^{n/(2m)}} \left( \exp\left\{-c\left( \frac{|x-y^{\prime}|}{t^{1/(2m)}}\right)^{\frac{2m}{2m-1}}\right\} +\exp\left\{-c\left( \frac{|x-y|}{t^{1/(2m)}}\right)^{\frac{2m}{2m-1}}\right\}\right)\\ &&\approx \frac{1}{t^{n/(2m)}}\exp\left\{-c\left( \frac{|x-y|}{t^{1/(2m)}}\right)^{\frac{2m}{2m-1}}\right\}\\ &&\approx C\frac{1}{t^{n/(2m)}}\left( \frac{|y^{\prime}-y|}{t^{1/(2m)}}\right)^{\theta}\exp\left\{-c\left( \frac{|x-y|}{t^{1/(2m)}}\right)^{\frac{2m}{2m-1}}\right\}. \end{array} $$

    Altogether, under n ≤ 2m, the heat kernel {pt}t> 0 satisfies (SC), (UE) and (HE) with dw = 2m and arbitrary 𝜃 ∈ (0, 1).

  2. (ii)

    In general, assuming further that L0 has the Dirichlet property (see [3, Definition 5]), Auscher and Qafsaoui [3, Theorem 12] proved that the heat kernel {pt}t> 0 satisfies Eq. A.4 and, for all t > 0 and all \(x,y,y^{\prime }\in {\mathbb {R}^n}\),

    $$ \begin{array}{@{}rcl@{}} |p_{t}(x,y^{\prime})- p_{t}(x,y)|\le C\frac{1}{t^{n/(2m)}}\left( \frac{|y^{\prime}-y|}{t^{1/(2m)}}\right)^{\nu}, \end{array} $$
    (A.7)

    where C is a positive constant, and ν can be any number in (0,1). We claim that an application of Eqs. A.4-A.7 and the geometric mean inequality yields that Eq. A.6 holds whenever \(|y-y^{\prime }|\le t^{1/(2m)}\). Indeed, when \(|y-y^{\prime }|\le t^{1/2m}\), it follows from Eq. A.4 that

    $$ \begin{array}{@{}rcl@{}} |p_{t}(x,y^{\prime})-p_{t}(x,y)| &\le |p_{t}(x,y^{\prime})|+|p_{t}(x,y)|\lesssim \frac{1}{t^{n/(2m)}}\exp\left\{\!-c\!\left( \!\frac{|x-y|}{t^{1/(2m)}}\!\right)^{\frac{2m}{2m-1}}\!\right\}. \end{array} $$

    Given any 𝜖 ∈ (0, 1), taking the geometric mean between the last inequality and Eq. A.7 leads to

    $$ \begin{array}{@{}rcl@{}} |p_{t}(x,y^{\prime})-p_{t}(x,y)| &\le \left( \frac{|y^{\prime}-y|}{t^{1/(2m)}}\right)^{\nu \epsilon} \frac{1}{t^{n/(2m)}}\exp\left\{-c\left( \frac{|x-y|}{t^{1/(2m)}}\right)^{\frac{2m}{2m-1}}\right\}. \end{array} $$

    So, setting 𝜃 = ν𝜖 yields Eq. A.6. Consequently, the heat kernel {pt}t> 0 satisfies (SC), (UE) and (HE) with dw = 2m and arbitrary 𝜃 ∈ (0, 1).

To continue, we present several examples (especially when n ≤ 2m) enjoying the aforementioned Dirichlet property so that the corresponding heat kernel {pt}t> 0 satisfies (SC), (UE) and (HE) with dw = 2m and 𝜃 ∈ (0, 1):

  1. (a)

    Assume that the coefficients aα,β are constants. Under such an assumption, the strong Gårding inequality is equivalent to the following ellipticity condition (see [61, Section 1.4])

    $$ \text{Re}{\sum}_{|\alpha|=|\beta|=m} a_{\alpha,\beta}(x) \zeta^{\beta}\zeta^{\alpha} \ge \delta |\zeta|^{2m}\quad \text{for all}\ \zeta\in {\mathbb{R}^n}, $$

    where δ is a positive constant. In this case, Auther-Qafsaoui [3, Proposition 45] proved that the Dirichlet property holds automatically for L0, so that (UE) and (HE) hold with dw = 2m and 𝜃 ∈ (0, 1).

  2. (b)

    Let \(BMO({\mathbb {R}^n} )\) be the space of locally integrable functions f on \({\mathbb {R}^n}\) such that

    $$ \begin{array}{@{}rcl@{}} \|f\|_{BMO({\mathbb{R}^n})}:=\sup_{\text{balls} B\subset {\mathbb{R}^n}}\frac{1}{B}{\int}_{B}|f(x)-f_{B}| dx<\infty, \end{array} $$

    where fB denotes the integral average of f over the ball B. Obviously, constant functions are in \(BMO({\mathbb {R}^n})\). According to [3, Proposition 47], there exists a small constant \(\varepsilon _{0}\in (0,\infty )\) such that if

    $$\sup\left\{\|a_{\alpha,\beta}\|_{BMO({\mathbb{R}^n})}:\ |\alpha|=|\beta|=m\right\}<\varepsilon_{0},$$

    then L0 has the Dirichlet property, which ensures (UE) and (HE) with dw = 2m and 𝜃 ∈ (0, 1).

  3. (c)

    Assume that the coefficients aα,β are constants and a is a complex bounded function on \({\mathbb {R}^n}\). Consider the operator \(L=L_{0}^{\ast } a L_{0}\) with non-smooth coefficients. According to [3, Proposition 51], the heat kernel \(\{{p_{t}^{L}}\}_{t>0}\) of the semigroup \(\{e^{-tL}\}_{t\ge 0}\) satisfies (UE) and (HE) with dw = 4m and 𝜃 ∈ (0, 1).

    In particular, taking L0 = (−Δ)m and a ≡ 1, we see that the associated heat kernel of (−Δ)2m satisfies (UE) and (HE) with dw = 4m and 𝜃 ∈ (0, 1).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, Y. Fractional Leibniz-type Rules on Spaces of Homogeneous Type. Potential Anal 60, 555–595 (2024). https://doi.org/10.1007/s11118-022-10061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-022-10061-6

Keywords

Mathematics Subject Classification (2010)

Navigation