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Abstract
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1 Introduction

Commutators have the general form [b, T ] : f → bTf − T (bf ). Here T is a singular
integral operator

Tf (x) =
ˆ
Rd

K(x, y)f (y) dy.

Well-known examples include the Hilbert transform H in dimension d = 1, which has the
kernel K(x, y) = 1

x−y
, and the Riesz transforms Rj in dimensions d ≥ 2, which have the

kernel Kj(x, y) = xj −yj

|x−y|d+1 , j = 1, . . . , d.
Our work revolves around the Coifman–Rochberg–Weiss [4] result, where the two-sided

estimate

b BMO [b, T ] Lp(Rd )→Lp(Rd ) b BMO, p ∈ (1, ∞),

was proved for a class of non-degenerate singular integrals T on R
d . Here BMO stands for

functions of bounded mean oscillation:

b BMO := sup
I

 
I

|b − b I |,

where the supremum is over all cubes I ⊂ R
d and b I = ffl

I
b := 1

|I |
´
I
b. The correspond-

ing two-weight problem concerns estimates from Lp(μ) to Lp(λ) for two different weights
μ, λ and has recently attracted interest after the work by Holmes–Lacey–Wick [10]. See
also e.g. [12, 15, 16]. Such estimates take the form

[b, T ] Lp(μ)→Lp(λ) [μ]Ap ,[λ]Ap
b BMO(ν), b BMO(ν) := sup

I

1

ν(I )

ˆ
I

|b − b I |,
(1.1)

where ν := μ1/pλ−1/p is the Bloom weight induced by μ, λ ∈ Ap and ν(R) := ´
R

ν.
In this paper we establish that two-weight estimates for commutators can be proved

under the joint difficulty of multilinearity and product spaces. Both have been considered
separately before: see e.g. [1, 2, 11, 20, 23] for the multi-parameter work, and [13] and [18]
for the multilinear work. If T is a multi-parameter SIO, the corresponding result looks like
Eq. 1.1, but the correct BMO space is bmo(ν)—the weighted little BMO. The difference
is that the supremum is over all rectangles instead of all cubes. We explain next how the
estimate looks in the multilinear situation.

For given exponents 1 < p1, . . . , pn ≤ ∞ and 1/p = i 1/pi > 0, a natural form of a
weighted estimate in the n-variable context has the form

T (f1, . . . , fn)

n

i=1

wi

Lp

n

i=1

fiwi Lpi .

Notice that this is normalised somewhat differently from the linear case—the weights
are directly inside the Lp norm instead of Lp(w). This simply happens to be conve-
nient in the multilinear situation. The key thing is to only impose a joint condition on the
tuple of weights w = (w1, . . . , wn) ∈ Ap rather than to assume individual conditions
w

pi

i ∈ Api
. See Lerner, Ombrosi, Pérez, Torres and Trujillo-González [14]. For the recent

multi-parameter version see [24]. We have so far discussed the usual multilinear weighted
estimates—in the two-weight situation, however, we study the j th commutator

[b, T ]j (f1, . . . , fn) := bT (f1, . . . , fn) − T (f1, . . . , fj−1, bfj , fj+1, . . . , fn),
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and the goal is to change the weight w := n
i=1 wi induced by the tuple (w1, . . . , wn) in

such a way that it corresponds with some tuple (w1, . . . , λj , . . . , wn) instead. A convenient
way to write this is to simply replace w with ν−1w, where ν := wjλ

−1
j is the corresponding

Bloom weight. A one-parameter multilinear two-weight estimate first appared in [13], but
the authors had to content with individual assumptions on some weights, which is not ideal
in the multilinear case. The recent satisfactory multilinear result [18] is based on sparse
domination and the approach cannot be used in the multi-parameter setting at all. We will
instead adapt some of the very recent methods of [24]. Our result is the following full
bi-parameter analogue of [18].

Theorem 1.2 Let T be an n-linear bi-parameter Calderón-Zygmund operator. Assume that
p = (p1, . . . , pn) with 1 < pi ≤ ∞ and

1

p
=

n

i=1

1

pi

> 0.

With a fixed j ∈ {1, . . . , n} let (w1, . . . , wn) and (w1, . . . , λj , . . . , wn) be two tuples of
weights in the genuinely multilinear bi-parameter weight classAp and define the associated

Bloom weight ν = wjλ
−1
j . If we have b ∈ bmo(ν) and ν ∈ A∞, then

[b, T ]j (f1, . . . , fn)ν
−1w Lp b bmo(ν)

n

i=1

fiwi Lpi , w =
n

i=1

wi .

The corresponding lower bound holds if T is suitably non-degenerate.

Extrapolation methods are important in our current work—they are used to yield the
quasi-Banach range p < 1. The extrapolation theorem of Rubio de Francia says that if
g Lp0 (w) f Lp0 (w) for some p0 ∈ (1, ∞) and all w ∈ Ap0 , then g Lp(w) f Lp(w)

for all p ∈ (1, ∞) and all w ∈ Ap. In [8] (see also [6]) a multivariable analogue was
developed in the setting w

pi

i ∈ Api
, i = 1, . . . , n. Very recently, in [21, 22, 26] it was

shown that also the genuinely multilinear weighted estimates can be extrapolated. We prove
a suitable two-weight adaptation that can be used in our current work.

Theorem 1.3 Let (f, f1, . . . , fn) be a tuple of measurable functions. Let 1 ≤ pi ≤ ∞,
1 ≤ i ≤ n, 1

p
= n

i=1
1
pi

, and j ∈ {1, . . . , n}. Assume that for all (w1, · · · , wn),

(w1, . . . , λj , . . . , wn) ∈ Ap with wjλ
−1
j ∈ A∞, there holds that

f λj

n

i=1
i=j

wi

Lp

n

i=1

fiwi Lpi .

Then for all (w1, · · · , wn), (w1, . . . , λj , · · · , wn) ∈ Aq with wjλ
−1
j ∈ A∞ and 1 < qi ≤

∞, i = j , 1/q = 1/pj + n
i=1
i=j

1/qi > 0, there holds that

f λj

n

i=1
i=j

wi

Lq

fjwj L
pj

n

i=1
i=j

fiwi Lqi .
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Remark 1.4 This somewhat unusual formulation, where we do not extrapolate in pj , is
enough for our applications in this paper. We have not pursued how to get rid of this small
restriction, but it is helpful in the proof.

We also note that the extrapolation really holds with a single tuple of functions, but
often it is applied with some family F consisting of tuples of measurable functions. Such
formulations follow from the stated one—one simply has to have uniform assumptions in
the tuple F , and then the conclusion holds for all function tuples in F as well.

2 Preliminaries

Throughout this paper, A B means that A ≤ CB with some constant C that we deem
unimportant to track at that point. We write A ∼ B if A B A. Sometimes we e.g. write
A B if we want to make the point that A ≤ C( )B.

2.1 Dyadic Notation

Given a dyadic grid D in R
d , I ∈ D and k ∈ Z, k ≥ 0, we use the following notation:

(1) (I ) is the side length of I .
(2) I (k) ∈ D is the kth parent of I , i.e., I ⊂ I (k) and (I (k)) = 2k (I ).
(3) ch(I ) is the collection of the children of I , i.e., ch(I ) = {J ∈ D : J (1) = I }.
(4) EIf = f I 1I is the averaging operator, where f I = ffl

I
f = 1

|I |
´
I
f .

(5) I f is the martingale difference I f = J∈ch(I ) EJ f − EIf .
(6) I,kf is the martingale difference block

I,kf =
J∈D

J (k)=I

J f .

For an interval J ⊂ R we denote by Jl and Jr the left and right halves of J , respectively.
We define h0

J = |J |−1/21J and h1
J = |J |−1/2(1Jl

− 1Jr ). Let now I = I1 × · · · × Id ⊂ R
d

be a cube, and define the Haar function h
η
I , η = (η1, . . . , ηd) ∈ {0, 1}d , by setting

h
η
I = h

η1
I1

⊗ · · · ⊗ h
ηd

Id
.

If η = 0 the Haar function is cancellative:
´

h
η
I = 0. We exploit notation by suppressing

the presence of η, and write hI for some h
η
I , η = 0. Notice that for I ∈ D we have

I f = f, hI hI (where the finite η summation is suppressed), f, hI := ´
f hI .

2.2 Multi-parameter Notation

We will be working on the bi-parameter product space R
d = R

d1 × R
d2 . We denote a

general dyadic grid in R
di by Di . We denote cubes in Di by I i , J i,Ki , etc. Thus, our dyadic

rectangles take the forms I 1 × I 2, J 1 × J 2, K1 × K2 etc. We usually denote the collection
of dyadic rectangles by D = D1 × D2.

If A is an operator acting on R
d1 , we can always let it act on the product space R

d by
setting A1f (x) = A(f (·, x2))(x1). Similarly, we use the notation Aif if A is originally an
operator acting on R

di . Our basic multi-parameter dyadic operators—martingale differences
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and averaging operators—are obtained by simply chaining together relevant one-parameter
operators. For instance, a bi-parameter martingale difference is

Rf = 1
I 1

2
I 2f, R = I 1 × I 2.

When we integrate with respect to only one of the parameters we may e.g. write

f, hI 1 1(x2) :=
ˆ
R

d1
f (x1, x2)hI 1(x1) dx1

or

f I 1,1(x2) :=
 

I 1
f (x1, x2) dx1.

2.3 Adjoints

Consider an n-linear operator T on R
d = R

d1 ×R
d2 . Let fi = f 1

i ⊗f 2
i , i = 1, . . . , n+1. We

set up notation for the adjoints of T in the bi-parameter situation. We let T j∗, j ∈ {0, . . . , n},
denote the full adjoints, i.e., T 0∗ = T and otherwise

T (f1, . . . , fn), fn+1 = T j∗(f1, . . . , fj−1, fn+1, fj+1, . . . , fn), fj .

A subscript 1 or 2 denotes a partial adjoint in the given parameter—for example, we define

T (f1, . . . , fn), fn+1 = T
j∗

1 (f1, . . . , fj−1, f
1
n+1 ⊗ f 2

j , fj+1, . . . , fn), f
1
j ⊗ f 2

n+1 .

Finally, we can take partial adjoints with respect to different parameters in different slots
also—in that case we denote the adjoint by T

j1∗,j2∗
1,2 . It simply interchanges the functions

f 1
j1

and f 1
n+1 and the functions f 2

j2
and f 2

n+1. Of course, we e.g. have T
j∗,j∗
1,2 = T j∗ and

T
0∗,j∗

1,2 = T
j∗

2 , so everything can be obtained, if desired, with the most general notation

T
j1∗,j2∗

1,2 . In any case, there are (n + 1)2 adjoints (including T itself). Similarly, the bi-

parameter dyadic model operators that we later define always have (n+1)2 different forms.

2.4 Multilinear Bi-parameter Weights

A weight w(x1, x2) (i.e. a locally integrable a.e. positive function) belongs to the bi-
parameter weight class Ap = Ap(Rd1 × R

d2), 1 < p < ∞, if

[w]Ap := sup
R

w R w1−p p−1
R = sup

R

w R w
− 1

p−1 p−1
R < ∞,

where the supremum is taken over rectangles R—that is, over R = I 1 × I 2 where I i ⊂ R
di

is a cube. In contrast to the one-parameter definition, we take supremum over rectangles
instead of cubes.

We have

[w]Ap(Rd1 ×R
d2 ) < ∞ iff max ess sup

x1∈Rd1

[w(x1, ·)]Ap(Rd2 ), ess sup
x2∈Rd2

[w(·, x2)]Ap(Rd1 ) < ∞,

(2.1)
and that

max ess sup
x1∈Rd1

[w(x1, ·)]Ap(Rd2 ), ess sup
x2∈Rd2

[w(·, x2)]Ap(Rd1 ) ≤ [w]Ap(Rd1 ×R
d2 ),
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while the constant [w]Ap is dominated by the maximum to some power. It is also useful
that w I 2,2 ∈ Ap(Rd1) uniformly on the cube I 2 ⊂ R

d2 . For basic bi-parameter weighted
theory see e.g. [11]. We say w ∈ A∞(Rd1 × R

d2) if

[w]A∞ := sup
R

w R exp log w−1
R < ∞.

It is well-known that

A∞(Rd1 × R
d2) =

1<p<∞
Ap(Rd1 × R

d2).

We also define
[w]A1 = sup

R

w R ess sup
R

w−1.

The following multilinear reverse Hölder property is well-known—for the history and a
very short proof see e.g. [18, Lemma 2.5]. The proof in our bi-parameter setting is the same.

Lemma 2.2 Let ui ∈ (0, ∞) and wi ∈ A∞, i = 1, . . . , N , be bi-parameter weights. Then
for every rectangle R we have

N

i=1

wi
ui

R

N

i=1

w
ui

i

R

.

Next we define multilinear bi-parameter Muckenhoupt weights. Original one-parameter
versions appeared in [14]. Our definition in the bi-parameter case is the same as in [24].

Definition 2.3 Given p = (p1, . . . , pn) with 1 ≤ p1, . . . , pn ≤ ∞ we say that w =
(w1, . . . , wn) ∈ Ap = Ap(Rd1 × R

d2), if

0 < wi < ∞, i = 1, . . . , n,

almost everywhere and

[w]Ap
:= sup

R

wp
1
p

R

n

i=1

w
−pi

i

1
p
i

R < ∞,

where the supremum is over rectangles R,

w :=
n

i=1

wi and
1

p
=

n

i=1

1

pi

.

If pi = 1 we interpret w
−pi

i

1
p
i

R as ess supR w−1
i , and if p = ∞ we interpret wp

1
p

R as
ess supR w.

Conveniently, we can characterize the class Ap using the standard Ap class. The lemma
is proven in [14] and the bi-parameter analog of the same proof is recorded in [24].

Lemma 2.4 Let p = (p1, . . . , pn) with 1 ≤ p1, . . . , pn ≤ ∞, 1/p = n
i=1 1/pi ≥ 0,

w = (w1, . . . , wn) and w = n
i=1 wi . We have

[w−pi

i ]Anp
i

≤ [w]pi

Ap
, i = 1, . . . , n,
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and
[wp]Anp ≤ [w]pAp

.

In the case pi = 1 the estimate is interpreted as [w
1
n

i ]A1 ≤ [w]1/n
Ap

, and in the case p = ∞
we have [w− 1

n ]A1 ≤ [w]1/n
Ap

.

Conversely, we have

[w]Ap
≤ [wp]

1
p

Anp

n

i=1

[w−pi

i ]
1
p
i

Anp
i

.

Most of the proofs are duality based and this makes the following lemma relevant.

Lemma 2.5 [19, Lemma 3.1] Let p = (p1, . . . , pn) with 1 < p1, . . . , pn < ∞ and
1
p

= n
i=1

1
pi

∈ (0, 1). Let w = (w1, . . . , wn) ∈ Ap with w = n
i=1 wi and define

w i = (w1, . . . , wi−1, w
−1, wi+1, . . . , wn),

p i = (p1, . . . , pi−1, p , pi+1, . . . , pn).

Then we have
[w i]A

p i
= [w]Ap

.

In the main theorems of this paper we will be using the multilinear bi-parameter weights

(w1, . . . , wn), (λ1, w2, . . . , wn) ∈ A(p1,...,pn), and ν := λ−1
1 w1 ∈ A∞,

where 1 ≤ p1, . . . , pn ≤ ∞, 1/p = n
i=1 1/pi > 0. Throughout this paper, we will be

using notation σi = w
−pi

i , σn+1 = (ν−1w)p, and η1 = λ
−p1
1 as they will appear regularly.

In the linear case the assumption ν ∈ A∞ does not appear, since in fact μ1/pλ−1/p ∈
A2 ⊂ A∞, if μ, λ ∈ Ap. In the multilinear setting, however, even the weaker A∞ condition
is not implied by the other assumptions, see e.g. Example 2.12 in [18]. Thus, it is necessary
to separately assume this—this is required e.g. for the duality estimates, such as, Lemma
3.3. See also Muckenhoupt-Wheeden [25], where ν ∈ A∞ is required in the context of
BMO(ν).

However, instead of the two separate conditions

(w1, . . . , wn) ∈ A(p1,...,pn) and (λ1, w2, . . . , wn) ∈ A(p1,...,pn),

if we assume only that (w1, . . . , wn, νw−1) ∈ A(p1,...,pn,p ), where ν = λ−1
1 w1 and w =

n
i=1 wi, that is

sup
R

n

i=1

w
−pi

i

1
p
i

R ν−pwp
1
p

R ν R < ∞,

we would automatically get that
n

i=1

wi · νw−1 = ν ∈ An+1 ⊂ A∞

by Lemma 2.4.
Yet, it is unlikely that this assumption is enough for the boundedness of the commutator

as conjectured for the linear case in [17]. Although, we will show below that this assumption
is enough for the boundedness of Bloom type paraproducts in the Banach range and also
sufficient to conclude the lower bound of the commutator.
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On the other hand, the joint assumption for the weights is very natural for the two-weight
commutator estimates since the assumption (w1, . . . , wn, νw−1) ∈ A(p1,...,pn,p ) is implied
by the two separate multilinear weight conditions and ν ∈ A∞.

This is easy to verify. Let n
i=1

1
pi

=: 1
p

> 1 and assume that (w1, . . . , wn),

(λ1, w2, . . . , wn) ∈ A(p1,...,pn), and ν := λ−1
1 w1 ∈ A∞.

n

i=1

w
−pi

i

1
p
i

R (νw−1)−p
1
p

R ν R

=
n

i=1

w
−pi

i

1
p
i

R λ
p

1

n

i=2

w
p
i

1
p

R (λ
−p1
1 )

1
p1

n

i=2

(w
−pi

i )

1
p
i (wp)

1
p

R

(∗) n

i=1

w
−pi

i

1
p
i

R λ
p

1

n

i=2

w
p
i

1
p

R λ
−p1
1

1
p1
R

n

i=2

w
−pi

i

1
p
i

R wp
1
p

R

≤ [w]Ap
[(λ1, w2, . . . , wn)]Ap

,

where in the step (∗) we apply [18, Lemma 2.9] for ν ∈ A∞.
Motivated by the above discussion we give the following definition, where p does not

appear hence p > 1 is not needed.

Definition 2.6 Given p = (p1, . . . , pn) with 1 ≤ p1, . . . , pn ≤ ∞, we say that w =
(w1, . . . , wn,wn+1) ∈ A∗

p
= A∗

p
(Rd1 × R

d2), if

0 < wi < ∞, i = 1, . . . , n + 1,

almost everywhere and

[w]A∗
p

:= sup
R

w R w
−p

n+1

1
p

R

n

i=1

w
−pi

i

1
p
i

R < ∞,

where the supremum is over rectangles R,

w :=
n+1

i=1

wi and
1

p
=

n

i=1

1

pi

.

If pi = 1 we interpret w
−pi

i

1
p
i

R as ess supR w−1
i , and if p = ∞ we interpret wp

1
p

R as
ess supR w.

Morally the difference is that with A∗
p

we do not necessarily have

n

i=1

w
p
i ∈ A∞

or λ
−pj

j ∈ A∞ compared to assuming the two separate Ap and ν ∈ A∞ but we are equipped
with ν ∈ An+1.

Furthermore, using this definition, we can write the following joint condition

(w1, . . . , wn, νw−1) ∈ A(p1,...,pn,p )

as (w1, . . . , wn, νw−1) ∈ A∗
(p1,...,pn) = A∗

p
.
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2.5 A∞ Extrapolation

Besides of the extrapolation theorem proven in this paper, we also need to use the following
A∞-extrapolation result of [5].

Lemma 2.7 Let (f, g) be a pair of non-negative functions. Suppose that there exists some
0 < p0 < ∞ such that for every w ∈ A∞ we haveˆ

f p0w

ˆ
gp0w. (2.8)

Then for all 0 < p < ∞ and w ∈ A∞ we haveˆ
f pw

ˆ
gpw.

In addition, let {(fi, gi)}i be a sequence of pairs of non-negative functions defined on R
d .

Suppose that for some 0 < p0 < ∞, (fi, gi) satisfies inequality (2.8) for every i. Then, for
all 0 < p, q < ∞ and w ∈ A∞(Rd) we have

i

(fi)
q

1
q

Lp(w)

[w]A∞
i

(gi)
q

1
q

Lp(w)

,

where {(fj , gj )}j is a sequence of pairs of non-negative functions defined on Rd .

2.6 Maximal Functions

Let D = D1 × D2 be a fixed lattice of dyadic rectangles and define

MD(f1, . . . , fn) = sup
R∈D

n

i=1

|fi | R1R .

Proposition 2.9 If 1 < p1, . . . , pn ≤ ∞ and 1/p = n
i=1 1/pi we have

MD(f1, . . . , fn)w Lp

n

i=1

fiwi Lpi

for all multilinear bi-parameter weights w ∈ Ap.

An efficient proof can be found in [24] (originally proved in [9]). Also, we often need
the result of R. Fefferman [7] (proof also recorded in [23, Appendix B]). Denote f

μ
R :=

1
μ(R)

´
R

f dμ and define

M
μ
Df = sup

R

1R |f | μ
R .

Proposition 2.10 Let λ ∈ Ap, p ∈ (1, ∞), be a bi-parameter weight. Then for all s ∈
(1, ∞) we have

Mλ
Df Ls(λ) [λ]1+1/s

Ap
f Ls(λ).

In fact, we also need the analogous result in the one-parameter setting, but, of course,
this does not require λ ∈ A∞.
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2.7 Square Functions

We begin with the classical (dyadic) square function in the bi-parameter framework. Let
D = D1 × D2 be a fixed lattice of dyadic rectangles. We define the square functions

SDf =
R∈D

| Rf |2
1/2

, S1
D1f =

⎛

⎝

I 1∈D1

| 1
I 1f |2

⎞

⎠

1/2

and define S2
D2f analogously.

The lower bound estimate of the square function for A∞ weights is essential for many

estimates later on. The fact that the key weights wp and w
−pi

i are at least in A∞ for the
multilinear weights of Definition 2.3 allows us to use this lower bound estimate.

Lemma 2.11 It holds

f Lp(w) S
j

Dj f Lp(w) SDf Lp(w)

for all p ∈ (0, ∞) and bi-parameter weights w ∈ A∞.

The first inequality is the classical result found e.g. in [27, Theorem 2.5] and the latter
inequality can be deduced using the A∞ extrapolation, Lemma 2.7.

Notice that by disjointness of supports we have, for example, for all k = (k1, k2) ∈
{0, 1, . . .}2 that

SDf =
⎛

⎝

K=K1×K2∈D
| K,kf |2

⎞

⎠

1/2

, K,k = 1
K1,k1

2
K2,k2

.

Next, we take the definition of the n-linear square functions from [24]. For k = (k1, k2)

we set

A1(f1, . . . , fn) = A1,k(f1, . . . , fn) =
K∈D

| K,kf1| 2
K

n

i=2

|fi | 2
K1K

1
2

.

In addition, we understand this so that A1,k can also take any one of the symmetric forms,
where each j

Kj ,kj
appearing in K,k = 1

K1,k1

2
K2,k2

can alternatively be associated with

any of the other functions f2, . . . , fn. That is, A1,k can, for example, also take the form

A1,k(f1, . . . , fn) =
K∈D

| 2
K2,k2

f1| 2
K | 1

K1,k1
f2| 2

K

n

i=3

|fi | 2
K1K

1
2

.

For k = (k1, k2, k3) we define

A2,k(f1, . . . , fn)

=
⎛

⎜
⎝

K2∈D2

⎛

⎝

K1∈D1

| 2
K2,k1

f1| K | 1
K1,k2

f2| K | 1
K1,k3

f3| K

n

i=4

|fi | K1K

⎞

⎠

2
⎞

⎟
⎠

1
2

,

(2.12)

where we again understand this as a family of square functions. First, the appearing three
martingale blocks can be associated with different functions, too. Second, we can have the
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K1 summation out and the K2 summation in (we can interchange them), but then we have
two martingale blocks with K2 and one martingale block with K1.

Finally, for k = (k1, k2, k3, k4) we define

A3,k(f1, . . . , fn) =
K∈D

| K,(k1,k2)f1| K | K,(k3,k4)f2| K

n

i=3

|fi | K1K,

where this is a family with two martingale blocks in each parameter, which can be moved
around.

Theorem 2.13 [24, Theorem 5.5.] If 1 < p1, . . . , pn ≤ ∞ and 1
p

= n
i=1

1
pi

> 0 we have

Aj,k(f1, . . . , fn)w Lp

n

i=1

fiwi Lpi , j = 1, 2, 3,

for all multilinear bi-parameter weights w ∈ Ap.

Moreover, we need a certain linear estimate which appears regularly when dealing with
the commutator estimates.

Proposition 2.14 [24, Proposition 5.8.] For u ∈ A∞ and p, s ∈ (1,∞) we have

⎡

⎣

m K∈D
| K,kfm| 2

K

1K

u 2
K

s
2
⎤

⎦

1
s

u
1
p

Lp
m

|fm|s
1
s

u
− 1

p

Lp

.

3 BMO Spaces

Let D = D1 × D2 be a collection of dyadic rectangles on R
d = R

d1 × R
d2 . For a function

b ∈ L1
loc and a bi-parameter weight ν ∈ A∞ we define the usual dyadic weighted little

BMO norm of b as follows:

b bmo(ν) := sup
R∈D

1

ν(R)

ˆ
R

|b − b R|.

In fact, the direct definition is not used that often and we will mostly invoke it through the
following H 1-BMO type inequalities. For i = 1 and i = 2 we have

| b, f | b bmo(ν) Si
Di f L1(ν) b bmo(ν) SDf L1(ν).

The first estimate follows from the one-parameter result [28], see e.g. [11]. For the second
inequality concerning square functions only see e.g. [1, Lemma 2.5].

Often when a supremum is taken over rectangles we also have a formulation of the norm
uniformly each parameter separately. We have

b bmo(ν) ∼ max ess sup
x1∈Rd1

b(x1, ·) BMO(ν(x1,·)), ess sup
x2∈Rd2

b(·, x2) BMO(ν(·,x2)) (3.1)

where · BMO(ρ) is the standard one-parameter dyadic weighted BMO space. For proof
see e.g. [11].
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The following proposition gives an equivalent definition for the little BMO norm in
Bloom type two-weight setting. The equivalent definition is needed for the proof of the
lower bound of the commutator.

Proposition 3.2 Let ν, σ ∈ A∞. If νσ ∈ A∞, then it holds bmoσ (ν) = bmo(ν), where

bmoσ (ν) := {b ∈ L1
loc : sup

R

1

νσ(R)

ˆ
R

|b − b σ
R|σ < ∞}.

The proof can be adapted from the one-parameter version (see, for example, [18]). In
our case, the sparse method poses no problems as it can be adapted to rectangles when the
dyadic and sparse families inside of a rectangle R are attained by iteratively bisecting the
size of R. We omit the details.

We formulate the Muckenhoupt–Wheeden type estimates now.

Lemma 3.3 Let a ∈ BMO and w ∈ A∞. It holds

I∈D
a, hI w IϕI a BMO

I

ϕ2
I

1I

|I |

1
2

L1(w)

.

In particular the above one is a special case of the two-weight version. We state this as a
little bmo version.

Lemma 3.4 Let σ, ν ∈ A∞. Assume that b ∈ bmo(ν). Then we have

R=R1×R2

b, hR σ RϕR b bmo(ν)

R

ϕ2
R

1R

|R|

1
2

L1(σν)

.

Also, we have

R=R1×R2

b, hR1 ⊗ 1R2

|R2| σ RϕR b bmo(ν)

R2

⎛

⎝

R1

ϕ2
R

1R1

|R1|

⎞

⎠

1
2

⊗ 1R2

|R2|
L1(σν)

with a similar estimate when the cancellation is on the second parameter.

Proof Let us consider the first estimate above and use the duality

R=R1×R2

b, hR σ RϕR b bmo(ν)

ˆ
R

ϕ2
R σ 2

R

1R

|R|

1
2

ν.

By the reverse Hölder property of A∞ weights, Lemma 2.2, we have

σ R ν R σν R .

Hence, for all R ∈ D we haveˆ
ϕR σ R

1R

|R|ν
ˆ

ϕR

1R

|R|σν.
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The second part of the extrapolation result, Lemma 2.7, yields that

ˆ
R

ϕ2
R σ 2

R

1R

|R|

1
2

ν

ˆ
R

ϕ2
R

1R

|R|

1
2

σν

as desired.
For the second claim observe that, for example, we have

R=R1×R2

b, hR1 ⊗ 1R2

|R2| σ RϕR =
ˆ
R

d2
R2 R1

b, hR1 σ RϕR

1R2

|R2|

b bmo(ν)

ˆ
Rd

R2

⎛

⎝

R1

ϕ2
R σ 2

R

1R1

|R1|

⎞

⎠

1
2

⊗ 1R2

|R2|ν,

where we use the one-parameter duality for fixed variable on the second parameter. The
proof is concluded as above.

Using characterizations Eqs. 3.1 and 2.1, we have

Lemma 3.5 Let σ, ν ∈ A∞. Assume that b ∈ bmo(ν). For a fixed variable x1 ∈ R
d1 , we

have

R2

bx1 , hR2 σx1 R2ϕR2 b bmo(ν)

⎛

⎝

R2

ϕ2
R2

1R2

|R2|

⎞

⎠

1
2

L1
x2

(σx1 νx1 )

,

where gx1 denotes the one parameter function g(x1, ·). We have a similar estimate for a
fixed variable on Rd2 .

We omit the proof as it is analogous to the previous one.

4 Multilinear Bi-parameter Singular Integrals

4.1 Bi-parameter SIOs

We consider an n-linear operator T on R
d = R

d1 × R
d2 . Let ωi(t) = tαi , αi ∈ (0, 1], be

the usual Hölder modulus of continuity. We define that T is an n-linear bi-parameter SIO if
it satisfies the full and partial kernel representations as defined below.

4.1.1 Full Kernel Representation

Let fi = f 1
i ⊗f 2

i , i = 1, . . . , n+ 1. For both m ∈ {1, 2} there exists i1, i2 ∈ {1, . . . , n+ 1}
so that spt f m

i1
∩ spt f m

i2
= ∅. We demand that in this case we have the representation

T (f1, . . . , fn), fn+1 =
ˆ
R(n+1)d

K(xn+1, x1, . . . , xn)

n+1

i=1

fi(xi) dx,

where

K : R(n+1)d \ {(xn+1, x1, . . . , xn) ∈ R
(n+1)d : x1

1 = · · · = x1
n+1 or x2

1 = · · · = x2
n+1} → C
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is a kernel satisfying a set of estimates which we specify next. The kernel K is assumed to
satisfy the size estimate

|K(xn+1, x1, . . . , xn)|
2

m=1

1
n
i=1 |xm

n+1 − xm
i | dmn

.

In addition, we require the continuity estimate, for example, we demand that

|K(xn+1, x1, . . . , xn) − K(xn+1, x1, . . . , xn−1, (c
1, x2

n))

−K((x1
n+1, c

2), x1, . . . , xn) + K((x1
n+1, c

2), x1, . . . , xn−1, (c
1, x2

n))|

ω1
|x1

n − c1|
n
i=1 |x1

n+1 − x1
i |

1
n
i=1 |x1

n+1 − x1
i | d1n

×ω2
|x2

n+1 − c2|
n
i=1 |x2

n+1 − x2
i |

1
n
i=1 |x2

n+1 − x2
i | d2n

whenever |x1
n − c1| ≤ 2−1 max1≤i≤n |x1

n+1 − x1
i | and |x2

n+1 − c2| ≤ 2−1 max1≤i≤n |x2
n+1 −

x2
i |. Of course, we also require all the other natural symmetric estimates, where c1 can be

in any of the given n + 1 slots and similarly for c2. There are, of course, (n + 1)2 different
estimates.

Moreover, we expect to have the following mixed continuity and size estimates. For
example, we demand that

|K(xn+1, x1, . . . , xn) − K(xn+1, x1, . . . , xn−1, (c
1, x2

n))|

ω1
|x1

n − c1|
n
i=1 |x1

n+1 − x1
i |

1
n
i=1 |x1

n+1 − x1
i | d1n

· 1
n
i=1 |x2

n+1 − x2
i | d2n

whenever |x1
n −c1| ≤ 2−1 max1≤i≤n |x1

n+1 −x1
i |. Again, we also require all the other natural

symmetric estimates.

4.1.2 Partial Kernel Representations

Suppose now only that there exists i1, i2 ∈ {1, . . . , n+ 1} so that spt f 1
i1

∩ spt f 1
i2

= ∅. Then
we assume that

T (f1, . . . , fn), fn+1 =
ˆ
R

(n+1)d1
K(f 2

i )(x
1
n+1, x

1
1 , . . . , x1

n)

n+1

i=1

f 1
i (x1

i ) dx1,

where K(f 2
i ) is a one-parameter Calderón–Zygmund kernel with a constant depending on

the fixed functions f 2
1 , . . . , f 2

n+1. For example, this means that the size estimate takes the
form

|K(f 2
i )(x

1
n+1, x

1
1 , . . . , x1

n)| ≤ C(f 2
1 , . . . , f 2

n+1)
1

n
i=1 |x1

n+1 − x1
i | d1n

.

The continuity estimates are analogous.
We assume the following T 1 type control on the constant C(f 2

1 , . . . , f 2
n+1). We have

C(1I 2 , . . . , 1I 2) |I 2| (4.1)

and

C(aI 2 , 1I 2 , . . . , 1I 2) + C(1I 2 , aI 2 , 1I 2 , . . . , 1I 2) + · · · + C(1I 2 , . . . , 1I 2 , aI 2) |I 2|
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for all cubes I 2 ⊂ R
d2 and all functions aI 2 satisfying aI 2 = 1I 2aI 2 , |aI 2 | ≤ 1 and´

aI 2 = 0.
Analogous partial kernel representation on the second parameter is assumed when

spt f 2
i1

∩ spt f 2
i2

= ∅ for some i1, i2.

4.2 Multilinear Bi-parameter Calderón-Zygmund Operators

We say that T satisfies the weak boundedness property if

| T (1R, . . . , 1R), 1R | |R| (4.2)

for all rectangles R = I 1 × I 2 ⊂ R
d = R

d1 × R
d2 .

An SIO T satisfies the diagonal BMO assumption if the following holds. For all rectan-
gles R = I 1 × I 2 ⊂ R

d = R
d1 × R

d2 and functions aI i with aI i = 1I i aI i , |aI i | ≤ 1 and´
aI i = 0 we have

| T (aI 1 ⊗ 1I 2 , 1R, . . . , 1R), 1R | + · · · + | T (1R, . . . , 1R), aI 1 ⊗ 1I 2 | |R| (4.3)

and

| T (1I 1 ⊗ aI 2 , 1R, . . . , 1R), 1R | + · · · + | T (1R, . . . , 1R), 1I 1 ⊗ aI 2 | |R|.
An SIO T satisfies the product BMO assumption if it holds

S(1, · · · , 1) ∈ BMOprod

for all the (n + 1)2 adjoints S = T
j1∗,j2∗

1,2 . This can be interpreted in the sense that

S(1, · · · , 1) BMOprod = sup
D=D1×D2

sup

⎛

⎜
⎜
⎝

1

| |
R=I 1×I 2∈D

R⊂

| S(1, · · · , 1), hR |2
⎞

⎟
⎟
⎠

1/2

< ∞,

where hR = hI 1 ⊗ hI 2 and the supremum is over all dyadic grids Di on R
di and open sets

⊂ R
d = R

d1 × R
d2 with 0 < | | < ∞, and the pairings S(1, · · · , 1), hR can be

defined, in a natural way, using the kernel representations.

Definition 4.4 An n-linear bi-parameter SIO T satisfying the weak boundedness property,
the diagonal BMO assumption and the product BMO assumption is called an n-linear bi-
parameter Calderón–Zygmund operator (CZO).

Remark 4.5 In this paper we use the standard modulus of continuity ωi(t) = tαi , but in
many instances this can be weakened significantly. Recall that a function ω is a modulus of
continuity if it is an increasing and subadditive function with ω(0) = 0. Often the modified
Dini condition

ω Diniα :=
ˆ 1

0
ω(t) 1 + log

1

t

α
dt

t
< ∞, α ≥ 0,

for some α is required. Whenever the operator T is paraproduct free, a Dini condition is
sufficient for our results. By paraproduct free we mean that the paraproducts vanish, which
can be stated in terms of (both partial and full) “T1 = 0” type conditions. This is true, for
example, for convolution form SIOs.
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We mention that the required regularity is ωi ∈ Dini3/2, i = 1, 2, but the current proofs
only give this in the paraproduct free case. To get this low kernel regularity one needs to
adapt methods from [3].

We greatly simplify the study of singular integral operators through the following repre-
sentation theorem. The appearing “standard” dyadic model operators are defined after the
theorem.

Proposition 4.6 Suppose T is an n-linear bi-parameter CZO. Then we have

T (f1, . . . , fn), fn+1 = CT Eσ

u=(u1,u2)∈N2

ω1(2
−u1)ω2(2

−u2) Uu,σ (f1, . . . , fn), fn+1 ,

where CT enjoys a linear bound with respect to the CZO quantities and Uu,σ denotes some
n-linear bi-parameter dyadic operator (defined in the gridDσ ) with the following property.
We have that Uu = Uu,σ can be further decomposed using the standard dyadic model
operators as follows:

Uu = C

u1−1

i1=0

u2−1

i2=0

Vi1,i2 , (4.7)

where each V = Vi1,i2 is a dyadic model operator (a shift, a partial paraproduct or a full
paraproduct) of complexity km

j,V , j ∈ {1, . . . , n + 1}, m ∈ {1, 2}, satisfying
km
j,V ≤ um.

In above Eσ denotes the expectation over a natural probability space = 1 × 2,
the details of which are not relevant for us here, so that to each σ = (σ1, σ2) ∈ we can
associate a random collection of dyadic rectangles Dσ = Dσ1 × Dσ2 . The proposition is a
direct consequence of [3, Theorem 3.19 and Lemma 3.11.].

We will move on to introducing the so-called standard model operators and state the very
recent results for these.

4.3 Dyadic Model Operators

All the operators in this section are defined in some fixed rectangles D = D1 ×D2. We do
not emphasise this dependence in the notation.

4.4 Shifts

Let k = (k1, . . . , kn+1), where ki = (k1
i , k

2
i ) ∈ {0, 1, . . .}2. An n-linear bi-parameter shift

Sk takes the form

Sk(f1, . . . , fn), fn+1 =
K R1,...,Rn+1

R
(ki )

i =K

aK,(Ri)

n+1

i=1

fi, hRi
.

Here K,R1, . . . , Rn+1 ∈ D = D1 × D2, Ri = I 1
i × I 2

i , R
(ki )
i := (I 1

i )(k
1
i ) × (I 2

i )(k
2
i ) and

hRi
= hI 1

i
⊗ hI 2

i
. Here we assume that for m ∈ {1, 2} there exist two indices im0 , im1 ∈

{1, . . . , n + 1}, im0 = im1 , so that hIm
im0

= hIm
im0

, hIm
im1

= hIm
im1

and for the remaining indices
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i ∈ {im0 , im1 } we have hIm
i

∈ {h0
Im
i
, hIm

i
}. Moreover, aK,(Ri) = aK,R1,...,Rn+1 is a scalar

satisfying the normalization

|aK,(Ri)| ≤
n+1
i=1 |Ri |1/2

|K|n . (4.8)

Theorem 4.9 [24, Theorem 6.2.] Suppose Sk is an n-linear bi-parameter shift, 1 <

p1, . . . , pn,≤ ∞ and 1
p

= n
i=1

1
pi

> 0. Then we have

Sk(f1, . . . , fn)w Lp

n

i=1

fiwi Lpi

for all multilinear bi-parameter weights w ∈ Ap. The implicit constant does not depend
on k.

4.5 Partial Paraproducts

Let k = (k1, . . . , kn+1), where ki ∈ {0, 1, . . .}. An n-linear bi-parameter partial paraproduct
(Sπ)k with the paraproduct component on R

d2 takes the form

(Sπ)k(f1, . . . , fn), fn+1 =
K=K1×K2 I 1

1 ,...,I 1
n+1

(I 1
i )(ki )=K1

aK,(I 1
i )

n+1

i=1

fi, hI 1
i

⊗ ui,K2 , (4.10)

where the functions hI 1
i

and ui,K2 satisfy the following. There are i0, i1 ∈ {1, . . . , n + 1},
i0 = i1, so that hI 1

i0
= hI 1

i0
, hI 1

i1
= hI 1

i1
and for the remaining indices i ∈ {i0, i1} we have

hI 1
i

∈ {h0
I 1
i

, hI 1
i
}. There is i2 ∈ {1, . . . , n + 1} so that ui2,K

2 = hK2 and for the remaining

indices i = i2 we have ui,K2 = 1
K2

|K2| . Moreover, the coefficients are assumed to satisfy

(aK,(I 1
i ))K2 BMO = sup

K2
0 ∈D2

⎛

⎜
⎝

1

|K2
0 |

K2⊂K2
0

|aK,(I 1
i )|2

⎞

⎟
⎠

1/2

≤
n+1
i=1 |I 1

i | 1
2

|K1|n . (4.11)

Of course, (πS)k is defined symmetrically.

Theorem 4.12 [24, Theorem 6.7.] Suppose (Sπ)k is an n-linear partial paraproduct, 1 <

p1, . . . , pn ≤ ∞ and 1
p

= n
i=1

1
pi

> 0. Then, for every 0 < β ≤ 1 we have

(Sπ)k(f1, . . . , fn)w Lp β 2maxj kj β

n

i=1

fiwi Lpi

for all multilinear bi-parameter weights w ∈ Ap.

4.6 Full Paraproducts

An n-linear bi-parameter full paraproduct takes the form

(f1, . . . , fn), fn+1 =
K=K1×K2

aK

n+1

i=1

fi, ui,K1 ⊗ ui,K2 , (4.13)
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where the functions ui,K1 and ui,K2 are like in Eq. 4.10. The coefficients are assumed to
satisfy

(aK) BMOprod = sup
1

| |
K⊂

|aK |2
1/2

≤ 1,

where the supremum is over open sets ⊂ R
d = R

d1 × R
d2 with 0 < | | < ∞.

Theorem 4.14 [24, Theorem 6.21.] Suppose is an n-linear bi-parameter full paraprod-
uct, 1 < p1, . . . , pn ≤ ∞ and 1/p = n

i=1 1/pi > 0. Then we have

(f1, . . . , fn)w Lp

n

i=1

fiwi Lpi

for all multilinear bi-parameter weights w ∈ Ap.

In fact, the above theorem is a special case of the Bloom type inequality. The following
operator and result have obvious extensions in the product BMO setting. We consider an
n-linear bi-parameter paraproduct

b(f1, . . . , fn), fn+1 =
K=K1×K2

b, v0,K1 ⊗ v0,K2

n+1

i=1

fi, vi,K1 ⊗ vi,K2 . (4.15)

Here we assume that for m ∈ {1, 2} there exist two indices im0 , im1 ∈ {0, . . . , n+1}, im0 = im1 ,
so that vim0 ,Km = hKm , vim1 ,Km = hKm and for the remaining indices i ∈ {im0 , im1 } we

have vi,Km = 1Km

|Km| . Moreover, here we will assume that we at least have 0 ∈ {i1
0 , i1

1 } or

0 ∈ {i2
0 , i2

1 }.
Later on, paraproducts will also appear as a result of standard expansions of products

bf =
I i∈Di

b, hI i i f, hI i i⊗hIi hI i +
I i∈Di

b, hI i i f I i ,i⊗hIi +
I i∈Di

b I i ,i f, hI i i⊗hIi .

In the first term, the worst case is if hIi hI i is non-cancellative hence equals to 1I i /|I i |.
Often it is enough to consider the worst-case scenario.

We denote these expansions as j1,j2(b, f ), (j1, j2) ∈ {1, 2, 3}2, where the indices dic-
tates the form of the paraproduct. More specifically, in the above language of the multilinear
paraproduct: if jm = 1 then im0 = 0 and im1 = 1, if jm = 2 then im0 = 0 and im1 = 2, and
if jm = 3 then im0 = 1 and im1 = 2. In all of the cases the unmentioned slot do not have the
cancellation. Hence, notice that when j1 = 3 = j2 we have no cancellation for the function
b meaning that it is not a paraproduct as such.

Proposition 4.16 Let b be a paraproduct as described above. Fix p = (p1, . . . , pn) so
that 1 < pi ≤ ∞, define 1

p
= n

i=1
1
pi

and assume 1 < p < ∞. Let (w1, . . . , wn, ν)

be a tuple of weights. Assume that

b ∈ bmo(ν) and (w1, . . . , wn, νw−1) ∈ A∗
p.

Then we have

b(f1, . . . , fn)ν
−1w Lp b bmo(ν)

n

i=1

fiwi Lpi . (4.17)
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Moreover, if λj = wjν
−1 for some j = 1, 2, . . . n such that

(w1, . . . , wj−1, λj , wj+1, . . . , wn), (w1, . . . , wn) ∈ Ap,

then Eq. 4.17 holds for all 1 < pi ≤ ∞ such that p ∈ (n−1,∞).

Proof It suffices to show that

| b(f1, . . . , fn), fn+1 | b bmo(ν)

n

i=1

fiwi Lpi · fn+1νw−1
Lp .

Case I. We have 0 ∈ {i1
0 , i1

1 } and 0 ∈ {i2
0 , i2

1 }. We consider the concrete case

b(f1, . . . , fn), fn+1

=
K=K1×K2

b, hK1 ⊗ hK2 f1, hK1 ⊗ 1
K2

|K2| f2,
1
K1

|K1| ⊗ hK2
n+1
i=3 fi K .

We have

b(f1, . . . , fn), fn+1 b bmo(ν)

K∈D
| 1

K1f1| 2
K | 2

K2f2| 2
K

n+1

i=3

|fi | 2
K1K

1
2

L1(ν)

b bmo(ν)

n

i=1

fiwi Lpi · fn+1νw−1
Lp .

Here the first step used that ν ∈ A∞—which follows as (w1, . . . , wn, νw−1) ∈ A∗
p

—and
the estimate

| b, f | b bmo(ν) SDf L1(ν).

The second step used Theorem 2.13 together with the assumption (w1, . . . , wn, νw−1) ∈
A∗

p
.

Case 2. We have 0 ∈ {i1
0 , i1

1 } but 0 ∈ {i2
0 , i2

1 } (or the other way around). We consider the
concrete case

b(f1, . . . , fn), fn+1

=
K

b,
1K1

|K1| ⊗ hK2 f1,
1K1

|K1| ⊗hK2 f2, hK1 ⊗ 1K2

|K2| f3, hK1 ⊗ 1K2

|K2|
n+1

i=4

fi K .

We have

A(f1, . . . , fn), fn+1

b bmo(ν)

⎛

⎜
⎝

K2

⎛

⎝

K1

| 2
K2f1| K | 1

K1f2| K | 1
K1f3| K

n

i=4

|fi | K1K

⎞

⎠

2
⎞

⎟
⎠

1
2

L1(ν)

b bmo(ν)

n

i=1

fiwi Lpi · fn+1νw−1
Lp ,

where we used the estimate

| b, f | b bmo(ν) S2
D2f L1(ν)

1763Two-Weight Inequalities for Multilinear Commutators in Product Spaces



and Theorem 2.13.
The second claim is obtained by using extrapolation, Theorem 1.3.

Let λ and w be bi-parameter weights such that for some 1 < p < ∞ we have λ−p ,

w−p ∈ A∞. Assume also that ν := λ−1w ∈ A∞ and b ∈ bmo(ν). Then we have a
weighted variant of the paraproduct operator

b,ηf1, f2 =
K=K1×K2

b, hK f1, hK f2
η
K, (4.18)

where η = λ−p .

Proposition 4.19 Let p ∈ (1, ∞). Let λ and w be bi-parameter weights such that
λ−p , w−p ∈ A∞. Let b,η be a weighted paraproduct operator defined via Eq. 4.18, we
have

b,η(f )λ Lp b bmo(ν) f w Lp .

Proof The result follows from a variant of techniques seen in the proof of Proposition
4.16. For example, by duality we have terms like Eq. 4.18. Introducing a weight averages
σ K σ −1

K = 1, where σ = w−p , we can apply Lemma 3.4. Hence, we get

| b,ηf1, f2 | b bmo(ν)

ˆ
K

f1, hK
2

σ 2
K

( f2
η
K)2 1K

|K|

1
2

σν

≤ b bmo(ν)

ˆ
M

η
Df2

K

f1, hK
2

σ 2
K

1K

|K|
2

σν

≤ b bmo(ν) M
η
Df2 Lp (η)

K

f1, hK
2

σ 2
K

1K

|K|
2

σ
1
p

Lp

b bmo(ν) f2λ
−1

Lp f1w Lp .

In the same setting as above we can have, for example, the following mixed type
weighted paraproduct

b,ηf1, f2 =
K=K1×K2

b, hK1 ⊗ 1K2

|K2| f1, hK f2, hK2 2
η

K2,2

K1 .

We use a symmetrical definition if we have b,
1
K1

|K1| ⊗ hK2 . We also consider the case

b,ηf1, f2 =
K=K1×K2

b, hK1 ⊗ hK2 f1, hK1 ⊗ 1K2

|K2| f2, hK2 2
η

K2,2

K1 .

Here we use the same notation as above for the weighted averages

ϕ
μ

K1 = 1

μ(K1)

ˆ
K1

ϕ dμ, μ := η K2,2,
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but now only in the first parameter. Recall from Section 2.4 that η K2,2 is a one-parameter
weight in R

d1 .

Proposition 4.20 For a weighted paraproduct operator b,η as described above, we have

| b,ηf1, f2 | b bmo(ν) f w Lp Si
Df2λ

−1
Lp ,

where i is either 1 or 2 depending on which parameter the cancellation is.

Proof Let us, for example, consider the paraproduct written above, where we have

b, hK1 ⊗ 1
K2

|K2| . Similar to the previous proof, we use Lemma 3.4 but this time the second

claim. Then the main difference to the previous proof is that we face e.g.

⎛

⎝

K2

M
η

K2,2

D1 ( f, hK2 2)
2 ⊗ 1K2

|K2|

⎞

⎠

1
2

Lp (η)

.

Nevertheless, the claim follows quite easily via an extrapolation trick (see [24, Lemma 9.2]),
since for fixed p = 2 we have

ˆ
R

d1
M

η
K2,2

D1 ( f, hK2 2)

2

η K2,2 [η]A∞

ˆ
R

d1
f, hK2

2
2 η K2,2.

For the references below, we state a lemma regarding the square functions of partial
paraproducts. For the lemma, it is relevant in which slots the cancellation appears. The
square function can be taken corresponding to the cancellation on the (n + 1)-th slot. For
example, if (Sπ)k is a form of partial paraproduct such that there is a cancellation on the (n+
1)-th slot on the second parameter, then we have the boundedness of the second parameter
square function of this operator, namely SD2(Sπ)k . Similarly, SD1(Sπ)k and SD(Sπ)k must
have the corresponding cancellation to be bounded.

Lemma 4.21 Let U be a square function of partial paraproduct stated in above. Let 1 <

pi ≤ ∞ and 1
p

= n
i=1

1
pi

> 0. It holds

U(f1, . . . , fn)w Lp β 2maxj kj β
n

i=1

fiwi Lpi ,

where w = n
i=1 wi, (w1, . . . , wn) ∈ A(p1,...,pn).

Proof The result follows almost identically to the proof of [24, Theorem 6.7.]. We take the
partial paraproduct of the form

⎛

⎜
⎝

K∈D

⎛

⎜
⎝

(I 1
i )(ki )=K1

aK,(I 1
i )

n

i=1

fi, hI 1
i

⊗ 1K2

|K2| h0
I 1
n+1

⊗ h0
K2

⎞

⎟
⎠

2⎞

⎟
⎠

1
2

.
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Using the dualisation trick in [24] for p > 1, we choose a sequence of functions
(fn+1,K)K ∈ Lp ( 2) with norm (fn+1,K)K Lp ( 2)

≤ 1, and we look at

K∈D (I 1
i )(ki )=K1

aK,(I 1
i )

n

i=1

fi, hI 1
i

⊗ 1K2

|K2| fn+1,Kw, h0
I 1
n+1

⊗ h0
K2

≤
K1 (I 1

i )(ki )=K1

n+1
i=1 |I 1

i | 1
2

|K1|2
ˆ
R

d2

⎛

⎝

K2

AK2( f1, hI 1
1

, . . . , fn+1,Kw, h0
I 1
n+1

)

2 1K2

|K2|

⎞

⎠

1
2

,

where

AK2(g1, . . . , gn+1) =
n

i=1

gi K2 gn+1, h
0
K2 .

We write

|I 1
i |− 1

2 fi, h
0
I 1
i

⊗ 1K2

|K2| = fi K +
ki−1

3=0 (L1
i )

( i )=K1

fi, hL1
i
⊗ 1K2

|K2| hL1
i I 1

i

for i ∈ {1, 2, . . . , n} whenever we have the non-cancellative Haar function, expect when
complexity is zero.

We are reduced to bounding

K1 (L1
i )

( i )=K1

n
i=1 |L1

i |
1
2

|K1|n

×
ˆ
R

d2

⎛

⎝

K2

AK2( f1, hL1
1

, . . . , fn, hL1
n

, fn+1,Kw, h0
L1

n+1
)

2 1K2

|K2|

⎞

⎠

1
2

, (4.22)

where hL1
i

= hL1
i

for at least one index i, and n+1 = kn+1. Moreover, if hL1
i

= h0
L1

i

, then

we have complexity i = 0.
We consider an example to see how we can use the idea in [24] in this setting. The goal

is to prove

g L1 ≤
n

i=1

fiwi Lpi fn+1w
−1

Lp ,

where

f1 :=
K

|f1,Kw|2
1
2

and g is equal to

K1 (L1
i )

( i )=K1

n
i=1 |L1

i |
1
2

|K1|n
1K1

|K1|

×
⎛

⎝

K2

AK2( f1, hL1
2

, . . . , fn, hL1
n

, fn+1,Kw, h0
L1

n+1
)

2 1K2

|K2|

⎞

⎠

1
2

.
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By extrapolation [21], we just need to prove that

gv
L

2
n+1

≤
n

i=1

fivi L2 fn+1vn+1 L2 , (v1, . . . , vn+1) ∈ A(2,...,2).

Following the proof in [24], everything will be the same except that for f̃n+1, we need to
control

⎛

⎝

K1

|Fn+1,K1 |2
⎞

⎠

1
2

v−1
n+1

L2

=
⎛

⎝

K1

|Fn+1,K1 |2
⎞

⎠

1
2

γ
1
2

n+1

L2

,

where

Fn+1,K1 = 1K1

(I 1
n+1)

(kn+1)=K1

|I 1
n+1|

1
2

|K1|

⎛

⎝

K2

|fn+1,K |w, h0
I 1
n+1

⊗ h0
K2

2

γn+1
2
K

1K2

|K2|

⎞

⎠

1
2

,

and γn+1 = v−2
n+1. For brevity, in below we just write I 1

n+1
instead of

(I 1
n+1)

(kn+1)=K1 .

So it remains to prove some variant of Proposition 2.14, which is straightforward. In fact,
for the above model case, since γn+1 ∈ A2(n+1), we have

(γ
− 1

2
n+1, γ

1
2n+1

n+1 , · · · , γ
1

2n+1
n+1 ) ∈ A(2,∞,··· ,∞).

Thus,

Fn+1,K1 ≤ 1K1

I 1
n+1

|I 1
n+1|

1
2

|K1|

⎛

⎝

K2

|fn+1,K |w, h0
I 1
n+1

⊗ h0
K2

2 γ
− 1

2n+1
n+1

2·(2n+1)
K

1K2

|K2|

⎞

⎠

1
2

.

If kn+1 = 0, we simply have

Fn+1,K1 ≤
⎛

⎝

K2

MD(|fn+1,K |w, γ
− 1

2n+1
n+1 , · · · , γ

− 1
2n+1

n+1 )

2
⎞

⎠

1
2

.
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Then it is just a matter of vector-valued estimates for the multilinear maximal function and
we are done. If k1 > 0, then let s > 1 be such that d1/s is sufficiently small, we have

Fn+1,K1

≤ 2
kn+1d1

s 1K1

⎛

⎜
⎝

I 1
n+1

|I 1
n+1|

s
2

|K1|s

⎛

⎝

K2

|fn+1,K |w, h0
I 1
n+1

⊗ h0
K2

2

γn+1
2
K

1K2

|K2|

⎞

⎠

s
2
⎞

⎟
⎠

1
s

≤ 2
kn+1d1

s 1K1

⊗
⎛

⎜
⎝

I 1
n+1

|I 1
n+1|

s
2

|K1|s

⎛

⎝

K2

|fn+1,K |w, h0
I 1
n+1

⊗ h0
K2

2 γn+1
− 1

2n+1

K1,1

2·(2n+1)

K2

1K2

|K2|

⎞

⎠

s
2
⎞

⎟
⎠

1
s

≤ 2
kn+1d1

s 1K1

⊗
⎛

⎜
⎝

I 1
n+1

|I 1
n+1|

s
2

|K1|s

⎛

⎝

K2

MD2( |fn+1,K |w, h0
I 1
n+1

, γn+1
− 1

2n+1

K1,1
, · · · , γn+1

− 1
2n+1

K1,1
)

2
⎞

⎠

s
2
⎞

⎟
⎠

1
s

.

Then the fact that

( γn+1
− 1

2
K1,1

, γn+1

1
2n+1

K1,1
, · · · , γn+1

1
2n+1

K1,1
) ∈ A(2,∞,··· ,∞)(R

d2)

with characteristic independent of K1 gives us that

⎛

⎝

K1

|Fn+1,K1 |2
⎞

⎠

1
2

γ
1
2

n+1

2

L2

≤ 2
2kn+1d1

s

K1

ˆ
R

d2
γn+1 K1,1

×
⎛

⎜
⎝

I 1
n+1

|I 1
n+1|

s
2

|K1| s
2

⎛

⎝

K2

MD2( |fn+1,K |w, h0
I 1
n+1

, γn+1
− 1

2n+1

K1,1
, · · · , γn+1

− 1
2n+1

K1,1
)

2
⎞

⎠

s
2
⎞

⎟
⎠

2
s

2
2kn+1d1

s

K1

ˆ
R

d2

⎛

⎜
⎝

I 1
n+1

|I 1
n+1|

s
2

|K1| s
2

⎛

⎝

K2

|fn+1,K |w, h0
I 1
n+1

2

⎞

⎠

s
2
⎞

⎟
⎠

2
s

γn+1
−1
K1,1

≤ 2
2kn+1d1

s

K1

ˆ
R

d2

⎛

⎜
⎝

I 1
n+1

|I 1
n+1|

1
2

|K1| 1
2

⎛

⎝

K2

|fn+1,K |w, h0
I 1
n+1

2

⎞

⎠

1
2
⎞

⎟
⎠

2

γn+1
−1
K1,1

.

By Minkowski’s inequality,
⎛

⎝

K2

|fn+1,K |w, h0
I 1
n+1

2

⎞

⎠

1
2

≤
⎛

⎝

K2

|fn+1,Kw|2
⎞

⎠

1
2

, h0
I 1
n+1

.
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We are left with estimating

K1

ˆ
R

d2

⎛

⎜
⎝

(I 1
n+1)

(kn+1)=K1

|I 1
n+1|

1
2

|K1| 1
2

⎛

⎝

K2

|fn+1,Kw|2
⎞

⎠

1
2

, h0
I 1
n+1

⎞

⎟
⎠

2

γn+1
−1
K1,1

=
ˆ
Rd

K1

K2 |fn+1,Kw|2 1
2

2

K1

γn+1
2
K1,1

1K1γn+1

≤
ˆ
Rd

K1

⎛

⎝

K2

|fn+1,Kw|2
⎞

⎠

1
2

2

K1

γ
− 1

2n+1
n+1

2·(2n+1)

K1,1
1K1γn+1

ˆ
Rd

K1

⎛

⎝

K2

|fn+1,Kw|2
⎞

⎠

1
2 ·2

γ −1
n+1

= fn+1vn+1
2
L2 .

This completes the proof. The case p ≤ 1 follows from extrapolation [22].

5 The Upper Bound

In this section, we prove the following theorem.

Theorem 5.1 Let p = (p1, . . . , pn) so that 1 < pi ≤ ∞, define 1/p = n
i=1 1/pi >

0. Let (w1, . . . , wn), (λ1, w2, . . . , wn) ∈ Ap and let the associated Bloom weight ν =
w1λ

−1
1 ∈ A∞. Assume that b ∈ bmo(ν).

For a multilinear bi-parameter dyadic model operator U, defined in the Section 4.3, we
have

[b,U ]1(f1, . . . , fn)ν
−1w Lp k b bmo(ν)

n

i=1

fiwi Lpi .

Here the constant depends on the complexity k = (k1, . . . , kn) = ((k1
1, k2

1), . . . ,

(k1
n+1, k

2
n+1)) whenever U is a shift or a partial paraproduct. Dependence of the complexity

is

Cβ2maxi kiβ for every β ∈ (0, 1], if U is a partial paraproduct

(1 + max{k1
1, k2

1, k1
n+1, k

2
n+1})

1
2 , if U is a shift.

(5.2)

We divide the analysis of each model operator into different subsections. The bounded-
ness of these model operator commutators yields the boundedness of the commutators of
Calderón-Zygmund operators via Proposition 4.6.

In the proof, we consider the boundedness n
i=1 Lpi (w

pi

i ) → Lp(ν−pwp) for p > 1
since Theorem 1.3 will extend the result to the quasi-Banach range. Recall the notation of
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dual weights: σi = w
−pi

i , σn+1 = (ν−1w)p, and η1 = λ
−p1
1 . Here we chose to consider the

commutators acting on the first function slot as the other ones are symmetrical.

5.1 The Shift Case

We consider the following commutator

[b, Sk]1(f1, . . . , fn) = bSk(f1, . . . , fn) − Sk(bf1, . . . , fn),

where Sk := S
1,2
(k1,...,kn+1)

is a standard multilinear bi-parameter shift.
The idea is to expand the commutator so that a product bf paired with Haar functions is

expanded in the bi-parameter fashion only if both of the Haar functions are cancellative. In a
mixed situation, we expand only in R

d1 or Rd2 , and in the remaining fully non-cancellative
situation we do not expand at all. This strategy has been important in the recent multi-
parameter results—see e.g. [1, 3, 20, 23].

We focus on a commutator, where the cancellation appears in a mixed situation on first
and last slots, that is, we have a commutator that is expanded as follows

3

j1=1

1
j1

(b, Sk(f1, . . . , fn)) −
3

j2=1

Sk(
2
j2

(b, f1), . . . , fn). (5.3)

This case essentially gathers all the methods for estimating these commutators. More
involved expansions are considered with partial paraproducts.

Both terms are handled separately whenever we have a bounded paraproduct, that is
i
ji
, ji = 3 (or bi-parameter j1,j2 , (j1, j2) = (3, 3)). Otherwise, we need to add and

subtract certain averages of the function b to obtain enough cancellation. We analyse the
second term in Eq. 5.3 as the first term is similar (swap the roles of functions f1 and fn+1
together with weights η1 and wp).

We begin with the term

Sk(
2
1(b, f1), . . . , fn)

=
K1×K2∈D1×D2

I
j
i ∈Dj

(I
j
i )

(k
j
i

)=Kj

i=1,...,n+1,j=1,2

a
K(I

j
i )

J 2∈D2

b, hJ 2 2 f1, hJ 2 2 ⊗ hJ 2hJ 2 , h
0
I 1

1
⊗ hI 2

1

×
n

i=2

fi, hIi
hI 1

n+1
⊗ h0

I 2
n+1

.

By the zero average of Haar functions, we always have J 2 ⊂ I 2
1 . Now the important obser-

vation is that when J 2 I 2
1 we must have hJ 2hJ 2 = 1

J2

|J 2| and we can replace
1
J2

|J 2| , hI 2
1
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with
η11

J2

η1(J
2)

, hI 2
1

. Thus, we can change the order of the operators, and we can split the dual
form of the term as follows

Sk(
2
1(b, f1), . . . , fn), fn+1

=
K∈D I

j
i ∈Dj

(I
j
i )

(k
j
i

)=Kj

i=1,...,n+1,j=1,2

a
K(I

j
i )

J 2 I 2
1 ∈D2

b, hJ 2 2 f1, hJ 2 2
η11J 2

η1(J 2)
, h0

I 1
1

⊗ hI 2
1

×
n

i=2

fi, hIi
fn+1, hI 1

n+1
⊗ h0

I 2
n+1

+
K∈D I

j
i ∈Dj

(I
j
i )

(k
j
i

)=Kj

i=1,...,n+1,j=1,2

a
K(I

j
i )

b, hI 2
1

2 f1, hI 2
1

2, h
0
I 1

1

× hI 2
1
hI 2

1
, hI 2

1

n

i=2

fi, hIi
fn+1, hI 1

n+1
⊗ h0

I 2
n+1

=
ˆ
R

d1
J 2∈D2

b, hJ 2 2 f1, hJ 2 2 S1∗
k (f2, . . . , fn+1)

η1
J 2,2

−
ˆ
R

d1
J 2∈D2

b, hJ 2 2 f1, hJ 2 2 S1∗
k,J 2(f2, . . . , fn+1)

η1
J 2,2

+ E,

where S1∗
k,J 2 differs from the usual adjoint so that we have I 2

1 ⊂ J 2. We do not explicitly
handle the term E as it is similar to the case j2 = 2 (note that we have more cancellation than
we need). Since the truncated operator S1∗

k,J 2 can be dominated by the A∞ weighted square

functions lower bound, we can drop the dependence on cube J 2. Then, the estimations of
the first two terms are very similar, hence one might think of S1∗

k as such or as S2
DS1∗

k

below. The boundedness follows simply by using Proposition 4.19 and the boundedness of
multilinear shifts. Namely,

ˆ
R

d1
J 2∈D2

b, hJ 2 2 f1, hJ 2 2 S1∗
k (f2, . . . , fn+1)

η1
J 2,2

b bmo(ν) f1w1 Lp1 S1∗
k (f2, . . . , fn+1)

L
p1 (η1)

b bmo(ν)

n

i=1

fiwi Lpi fn+1νw−1
Lp

since η
1/p1
1 = λ−1

1 = νw−1 n
i=2 wi and (w2, . . . , wn, νw−1) ∈ A(p2,...,pn,p ) by Lemma

2.5.
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The term, where j2 = 2, is significantly more straightforward to estimate. We consider
the dual form and estimate

| S( 2
2(b, f1), . . . , fn), fn+1 |

=
K∈D I

j
i ∈Dj

(I
j
i )

(k
j
i

)=Kj

i=1,...,n+1,j=1,2

a
K(I

j
i )

b, hI 2
1

2 f1 I 2
1 ,2, h

0
I 1

1

n

i=2

fi, hIi
fn+1, hI 1

n+1
⊗ h0

I 2
n+1

≤
ˆ
R

d1
K2

(I 2
1 )

(k2
1 )=K2

|I 2
1 |1/2| b, hI 2

1
2| |f1| I 2

1 ,2AK2,(k1
n+1,k

1
i11

,k2
i21

)(f2, . . . , fn+1)

=
ˆ
R

d1
K2

(I 2
1 )

(k2
1 )=K2

|I 2
1 |1/2| b, hI 2

1
2 σ1 I 2

1 ,2|
|f1| I 2

1 ,2

σ1 I 2
1 ,2

AK2,(k1
n+1,k

1
i11

,k2
i21

)(f2, . . . , fn+1)

where AK2,(k1
n+1,k

1
i11

,k2
i21

), i
m
1 ∈ {2, . . . , n} is from family of operators such that the square

sum

⎛

⎝

K2

A2
K2,(k1

n+1,k
1
i11

,k2
i21

)
(f2, . . . , fn+1)1K2

⎞

⎠

1
2

is an A2,k type square function. We use Lemma 3.5 with a fixed variable on the first
parameter and get

| S( 2
2(b, f1), . . . , fn), fn+1 |

b bmo(ν)

ˆ
⎛

⎜
⎜
⎝

K2
(I 2

1 )
(k2

1 )=K2

|f1| 2
I 2

1 ,2

σ1
2
I 2

1 ,2

A2
K2,(k1

n+1,k
1
i11

,k2
i21

)
(f2, . . . , fn+1)1I 2

1

⎞

⎟
⎟
⎠

1/2

σ1ν

≤ b bmo(ν)

ˆ
M

σ1
D2(f1σ

−1
1 )A2,(k1

n+1,k
1
i11

,k2
i21

)(f2, . . . , fn+1)σ1ν

≤ b bmo(ν) M
σ1
D2(f1σ

−1
1 ) Lp1 (σ1) A2,(k1

n+1,k
1
i11

,k2
i21

)(f2, . . . , fn+1)λ
−1
1 L

p1

b bmo(ν) f1w1 Lp1 A2,(k1
n+1,k

1
i11

,k2
i21

)(f2, . . . , fn+1)νw−1
n

i=2

wi

L
p1

b bmo(ν)

n

i=1

fiwi Lpi fn+1νw−1
Lp .

In the above estimates, it is enough to note that the maximal function is bounded since,
by Fubini’s theorem, we can work with a fixed variable on the first parameter and use the
classical one-parameter result.
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Lastly, we are left with the paraproducts of the illegal form

1
3(b, Sk(f1, . . . , fn)), fn+1 − Sk(

2
3(b, f1), . . . , fn), fn+1

=
K I

j
i ∈Dj

(I
j
i )

(k
j
i

)=Kj

i=1,...,n+1,j=1,2

a
K(I

j
i )

f1, h
0
I 1

1
⊗ hI 2

1

n

i=2

fi, hIi
b I 1

n+1,1
fn+1, hI 1

n+1
⊗ h0

I 2
n+1

−
K I

j
i ∈Dj

(I
j
i )

(k
j
i

)=Kj

i=1,...,n+1,j=1,2

a
K(I

j
i )

b I 2
1 ,2f1, h

0
I 1

1
⊗ hI 2

1

n

i=2

fi, hIi
fn+1, hI 1

n+1
⊗ h0

I 2
n+1

.

Here we introduce the martingale blocks to the function b. We write

b I 1
n+1,1

= b I 1
n+1,1

− b I 1
n+1×I 2

n+1
+ b I 1

n+1×I 2
n+1

− b I 1
n+1×K2

+ b I 1
n+1×K2 − b K1×K2 + b K1×K2

and likewise for b I 2
1 ,2. The extra b K1×K2 simply cancels with the one from b I 2

1 ,2.
Hence, in the commutator we can expand as follows

( b I 1
n+1,1

− b I 1
n+1×I 2

n+1
)1I 2

n+1
=

J 2⊂I 2
n+1

b,
1I 1

n+1

|I 1
n+1|

⊗ hJ 2 hJ 2 , (5.4)

b I 1
n+1×K2 − b K1×K2 =

I 1
n+1 J 1⊂K1

b, hJ 1 ⊗ 1K2

|K2| hJ 1 I 1
n+1

, (5.5)

b I 1
n+1×I 2

n+1
− b I 1

n+1×K2 =
I 2
n+1 J 2⊂K2

b,
1I 1

n+1

|I 1
n+1|

⊗ hJ 2 hJ 2 I 2
n+1

. (5.6)

Observe that we have omitted the terms raised from b I 2
1 ,2 because they are similar. On

the other hand, we shall only work with Eqs. 5.4 and 5.5 because Eq. 5.6 is analogous.
We begin with the dual form of Eq. 5.4

K I
j
i ∈Dj

(I
j
i )

(k
j
i

)=Kj

i=1,...,n+1,j=1,2

a
K(I

j
i )

J 2⊂I 2
n+1

b,
1I 1

n+1

|I 1
n+1|

⊗ hJ 2 |I 2
n+1|−

1
2 f1, h

0
I 1

1
⊗ hI 2

1

×
n

i=2

fi, hIi
fn+1, hI 1

n+1
⊗ hJ 2 .

1773Two-Weight Inequalities for Multilinear Commutators in Product Spaces



By similar arguments as that in the proof of Lemma 3.4, we have

I
(kn+1)

n+1 =K

|I 1
n+1|

1
2 |I 2

n+1|
1
2

J 2⊂I 2
n+1

b,
1I 1

n+1

|I 1
n+1|

⊗ hJ 2 |I 2
n+1|−

1
2 fn+1, hI 1

n+1
⊗ hJ 2

b bmo(ν)

I
(kn+1)

n+1 =K

ˆ
R

d1
h0

I 1
n+1

ˆ
R

d2

⎛

⎜
⎝

J 2⊂I 2
n+1

fn+1, hI 1
n+1

⊗ hJ 2
2 1J 2

|J 2|

⎞

⎟
⎠

1
2

ν

b bmo(ν)

(I 1
n+1)

(k1
n+1)=K1

ˆ
Rd

h0
I 1
n+1

⊗ 1K2

×
⎛

⎝

J 2

fn+1, hI 1
n+1

⊗ hJ 2
2

σn+1
2
I 1
n+1×J 2

1J 2

|J 2|

⎞

⎠

1
2

σn+1ν.

Then by standard calculus, we can reduce the problem to

ˆ
Rd

K1

AK1,k2
1 ,k1

i11
,k2

i21

(f1, · · · , fn)1K1

(I 1
n+1)

(k1
n+1)=K1

h0
I 1
n+1

×
⎛

⎝

J 2

fn+1, hI 1
n+1

⊗ hJ 2
2

σn+1
2
I 1
n+1×J 2

1J 2

|J 2|

⎞

⎠

1
2

σn+1ν,

where AK1,k2
1 ,k1

i11
,k2

i21

(f1, · · · , fn) is defined such that

⎛

⎝

K1

AK1,k2
1 ,k1

i11
,k2

i21

(f1, · · · , fn)

2

1K1

⎞

⎠

1
2

is an A2,k type square function. Notice that σn+1ν = (ν−1w)pν = (wp)
1
p ((ν−1w)p)

1
p ∈

A∞. The rest follows from estimates such as Hölder’s inequality, Theorem 2.13, and
Proposition 2.14.
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Finally, we consider the dual form of Eq. 5.5

K I
j
i ∈Dj

(I
j
i )

(k
j
i

)=Kj

i=1,...,n+1,j=1,2

a
K(I

j
i )

I 1
n+1 J 1⊂K1

b, hJ 1 ⊗ 1K2

|K2| hJ 1 I 1
n+1

n+1

i=1

fi, hIi

≤
ˆ
R

d2
K1 J 1⊂K1

(J 1)>2
−k1

n+1 (K1)

|J 1|− 1
2 | b, hJ 1 1|

K2
I

j
i ∈Dj

(I
j
i )

(k
j
i

)=Kj

I 1
n+1⊂J 1

i=1,...,n+1,j=1,2

|a
K(I

j
i )

|
n+1

i=1

| fi, hIi
|1K2

|K2|

≤
ˆ
R

d2
K1

k1
n+1−1

j1
n+1=0

(J 1)
(j1

n+1)=K1

|J 1| 1
2 | b, hJ 1 1|

×
K2

AK,(k2
1 ,k1

i11
,k2

i21
)(f1, . . . , fn) | 1

J 1,k1
n+1−j1

n+1
fn+1| J 1×K2 1K2 ,

where AK,(k2
1 ,k1

i11
,k2

i21
) is defined such that

⎛

⎜
⎝

K1

⎛

⎝

K2

AK,(k2
1 ,k1

i11
,k2

i21
)(f1, . . . , fn)1K

⎞

⎠

2
⎞

⎟
⎠

1
2

is an A2,k type square function.
This resembles the term that we faced earlier with paraproduct 2. The only meaningful

difference is the extra summation. The estimations are similar when we divide and multiply
with σn+1 J 1×K2 . To be more precise, that is, we write

ˆ
R

d2

k1
n+1−1

j1
n+1=0

(J 1)
(j1

n+1)=K1

|J 1| 1
2 | b, hJ 1 1| | 1

J 1,k1
n+1−j1

n+1
fn+1| J 1×K2 1K2

=
ˆ
R

d2

(J 1)
(j1

n+1)=K1

0≤j1
n+1≤k1

n+1−1

|J 1| 1
2 | b, hJ 1 1| σn+1 J 1×K2

| 1
J 1,k1

n+1−j1
n+1

fn+1| J 1×K2

σn+1 J 1×K2
1K2

b bmo(ν)

ˆ
Rd

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(J 1)
(j1

n+1)=K1

0≤j1
n+1≤k1

n+1−1

| 1
J 1,k1

n+1−j1
n+1

fn+1| 2
J 1×K2

σn+1
2
J 1×K2

1J 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1
2

νσn+11K2 ,
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where we have used Lemma 3.4. The rest of the argument is rather standard and thus the
object is bounded by

(1 + k1
n+1)

1
2 b bmo(ν)

n

i=1

fiwi Lpi fn+1νw−1
Lp ,

where dependence (1 + k1
n+1)

1
2 emerges from the summation of 0 ≤ j1

n+1 ≤ k1
n+1 − 1. This

completes the analysis of the commutator of this form.
Although other forms of shifts lead to different expansions, the methods shown above

are sufficient to handle those as well. Since we are dealing with multilinear shifts, we now
encounter terms in the shift case that are non-cancellative. In comparison, this does not
happen in the linear case in [23], where we always expand in the bi-parameter fashion. For
example, if we look at the term bS(f1, . . . , fn) − S(

1,2
3,3(b, f1), . . . , fn), we have

(b − b I 1
1 ×I 2

1
)1I 1

n+1×I 2
n+1

.

We write

(b − b I 1
1 ×I 2

1
)1I 1

n+1×I 2
n+1

= ((b − b I 1
n+1×I 2

n+1
) + ( b I 1

n+1×I 2
n+1

− b I 1
1 ×I 2

1
))1I 1

n+1×I 2
n+1

= (b − b I 1
n+1,1

− b I 2
n+1,2

+ b I 1
n+1×I 2

n+1
)1I 1

n+1×I 2
n+1

+( b I 1
n+1,1

− b I 1
n+1×I 2

n+1
)1I 1

n+1×I 2
n+1

+( b I 2
n+1,2

− b I 1
n+1×I 2

n+1
)1I 1

n+1×I 2
n+1

+( b I 1
n+1×I 2

n+1
− b I 1

1 ×I 2
1
)1I 1

n+1×I 2
n+1

.

The above terms are expanded to the martingale blocks and differences in a standard way
like terms Eqs. 5.4 and 5.5. Note that the first term on the right-hand side produces a bi-
parameter martingale difference inside of the rectangle I 1

n+1 ×I 2
n+2. We will analyse similar

terms in the following subsection.

5.2 Partial Paraproducts

As explained earlier, we will now focus on more involved expansions of the commutator.
We show the most representative case out of those. Although we demonstrated the main
ideas of the estimates already in the shift case, we need to use more complex estimates due
to the more complicated structure of the partial paraproducts.

We do not repeat the expansion strategy and instead straight away consider separately

(Sπ)(
1,2
j1,j2

(b, f1), . . . , fn), fn+1

=
K1,K2 (I 1

i )(ki )=K1

aK(I 1
i )

1,2
j1,j2

(b, f1), hI 1
1

⊗ hK2

n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2|

for (j1, j2) = (3, 3). We collect most of the mixed index (j1 = j2) cases, as the methods
can be attained from these.
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Let us begin with the term, where j1 = 1, j2 = 2, that equals

K1,K2 (I 1
i )(ki )=K1

aK(I 1
i )

1,2
1,2(b, f1), hI 1

1
⊗ hK2

n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2|

=
J 1,K2

b, hJ 1 ⊗ hK2 f1, hJ 1 ⊗ 1K2

|K2|

×
K1 (I 1

i )(ki )=K1

aK(I 1
i )

n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2| hI 1
1

η1 K2,2

J 1

−
J 1,K2

b, hJ 1 ⊗ hK2 f1, hJ 1 ⊗ 1K2

|K2|

×
K1 (I 1

i )(ki )=K1

I 1
1 ⊂J 1

aK(I 1
i )

n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2| hI 1
1

η1 K2,2

J 1

+
K1,K2 (I 1

i )(ki )=K1

aK(I 1
i ) b, hI 1

1
⊗ hK2 |I 1

1 |− 1
2

n+1

i=1

fi, hI 1
i

⊗ 1K2

|K2| .

Similarly to the previously seen techniques, for the second term we use the square function
lower bound to get rid of the restriction I 1

1 ⊂ J 1. Thus, via Proposition 4.20 we can bound
the first two terms by

b bmo(ν) f1w1 Lp1 SD(Sπ)k(f2, . . . , fn+1)λ
−1
1 L

p1
.

Clearly, Lemma 4.21 is enough to conclude the claim. The estimate for the remaining term is
easier. We apply Lemma 3.4 and note that we have more cancellation than we need. Hence,
we control

|I 1
1 |− 1

2 f1, hI 1
1

⊗ 1K2

|K2| σ1
−1
I 1

1 ×K2 1I 1
1 ×K2 ≤ M

σ1
D (f1σ

−1
1 )1I 1

1 ×K2 .

Thus, we are left to estimate

b bmo(ν) M
σ1
D (f1σ

−1
1 )SD(Sπ)k(f2, . . . , fn+1)σ1ν L1 .

The desired estimate follows by Hölder’s inequality and Lemma 4.21. We remark that the
remaining term essentially contains the idea to handle 1,1.

The term with 2,1 is analogous to the previous one. We remark that in this case, the
weighted paraproduct operator has the weight η1 I 1

1
as the localization of the operator is at
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that level on the first parameter. The cases 3,1 and 1,3 can be handled similarly. For the
sake of the completeness, we give a sketch of the case 3,1. As before, we write

(Sπ)( 3,1(b, f1), . . . , fn), fn+1

=
K1,J 2 (I 1

1 )(k1)=K1

b,
1I 1

1

|I 1
1 | ⊗ hJ 2 f1, hI 1

1
⊗ hJ 2

×
K2 J 2 (I 1

i )(ki )=K1

i=1

aK(I 1
i )

n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2| hK2

J 2

+
K1,K2 (I 1

i )(ki )=K1

aK(I 1
i ) b,

1I 1
1

|I 1
1 | ⊗hK2 |K2|− 1

2 f1, hI 1
1

⊗ hK2

n+1

i=2

fi, hI 1
i
⊗ 1K2

|K2| .

For the second term, we again use Lemma 3.4 and treat

|K2|− 1
2 | f1, hI 1

1
⊗ hK2 | σ1

−1
I 1

1 ×K2 1I 1
1 ×K2 ≤ M

σ1 I1
1 ,1

D2 ( f1, hI 1
1

1 σ1
−1
I 1

1 ,1
)1I 1

1 ×K2 .

Then after applying Hölder’s inequality twice we reduce the problem to bounding

b bmo(ν)

⎛

⎜
⎝

K1 (I 1
1 )(k1)=K1

M
σ1 I1

1 ,1

D2 ( f1, hI 1
1

1 σ1
−1
I 1

1 ,1
)

2

1I 1
1

⎞

⎟
⎠

1
2

Lp1 (σ1)

× SD(Sπ)k(f2, . . . , fn+1)λ
−1
1 L

p1
.

The estimate is done by Proposition 2.14 and Lemma 4.21. For the first term, we split as
usual to

K1,J 2 (I 1
1 )(k1)=K1

b,
1I 1

1

|I 1
1 | ⊗ hJ 2 f1, hI 1

1
⊗ hJ 2

×
K2 (I 1

i )(ki )=(I 1
1 )(k1)

i=1

aK(I 1
i )

n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2| hK2

η1 I1
1 ,1

J 2

−
K1,J 2 (I 1

1 )(k1)=K1

b,
1I 1

1

|I 1
1 | ⊗ hJ 2 f1, hI 1

1
⊗ hJ 2

×
K2⊂J 2 (I 1

i )(ki )=(I 1
1 )(k1)

i=1

aK(I 1
i )

n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2| hK2

η1 I1
1 ,1

J 2

.

We focus on the first term as the other one is very similar once square function lower bound
is applied inside of the average over J 2. Rewrite the first term as

J 1,J 2

b,
1J 1

|J 1| ⊗ hJ 2 f1, hJ 1 ⊗ hJ 2 (Sπ)k(f2, · · · , fn+1), hJ 1 1
η1 J1,1

J 2 .
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Then the estimate is done by Proposition 4.20 and Lemma 4.21.
We continue with the term, where j1 = 2, j2 = 3, that is,

K1,K2 (I 1
i )(ki )=K1

aK(I 1
i )

1,2
2,3(b, f1), hI 1

1
⊗ hK2

n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2|

=
K1,K2 (I 1

1 )(k1)=K1

b, hI 1
1
⊗ 1K2

|K2| f1, hK2 2 I 1
1

(I 1
i )(ki )=K1

i=1

aK(I 1
i )

n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2| .

Note that we can rewrite the above as

J 1,J 2

b, hJ 1 ⊗ 1J 2

|J 2| σ1 J 1×J 2

f1,
1
J1

|J 1| ⊗ hJ 2

σ1 J 1×J 2
(Sπ)k(f2, · · · , fn), hJ 1 ⊗ hJ 2 .

Then there is nothing new here; by Lemma 3.4 we have that the above is dominated by

b bmo(ν)

J 2

⎛

⎝

J 1

M
σ1 J2,2

D1 ( f1, hJ 2 2 σ1
−1
J 2,2

)

2

× (Sπ)k(f2, · · · , fn), hJ 1 ⊗ hJ 2
2 1J 1

|J 1|
1
2 1J 2

|J 2|
L1(σ1ν)

.

The estimate is then completed by applying Hölder’s inequality twice, Proposition 2.14 and
Lemma 4.21.

Symmetrically, we can work with 3,2. Lastly, we focus on terms with 3,3 type illegal
paraproducts. We choose here the type of term which we did not consider in the shift section:

(Sπ)k( 3,3(b, f1), . . . , fn) − b(Sπ)k(f1 . . . , fn), fn+1 .

Notice that we have

1,2
3,3(b, f1), hI 1

1
⊗ hK2 fn+1, h

0
I 1
n+1

⊗ 1K2

|K2| − f1, hI 1
1

⊗ hK2 bfn+1, h
0
I 1
n+1

⊗ 1K2

|K2|
= b I 1

1 ×K2 f1, hI 1
1

⊗ hK2 fn+1, h
0
I 1
n+1

⊗ 1K2

|K2| − f1, hI 1
1

⊗ hK2 bfn+1, h
0
I 1
n+1

⊗ 1K2

|K2|
= b I 1

1 ×K2 − b I 1
n+1×K2 f1, hI 1

1
⊗ hK2 fn+1, h

0
I 1
n+1

⊗ 1K2

|K2|
− f1, hI 1

1
⊗ hK2 (b − b I 1

n+1×K2)fn+1, h
0
I 1
n+1

⊗ 1K2

|K2| . (5.7)

Now on the right-hand side of the above Eq. 5.7, we have two distinct cases where the first
part is similar to the ones seen in the analysis of the shift commutator. We begin with this
familiar case. However, now without using the sharper Eq. 5.5 expansion since, in this case,
it does not matter if we have a square root dependence or a linear one. Observe that

| b I 1
1 ×K2 − b I 1

n+1×K2 | b bmo(ν)(νI 1
1 ,K2 + νI 1

n+1,K
2),

where
νQ1,K

2 :=
J 1∈D1

Q1 J 1⊂K1

ν J 1×K2 , Q1 ∈ {I 1
1 , I 1

n+1}.
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Then our term is bounded by

b bmo(ν)

K (I 1
i )(ki )=K1

|aK,(I 1
i )|| f1, hI 1

1
⊗ hK2 |

n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2|
×(νI 1

1 ,K2 + νI 1
n+1,K

2).

We first consider νI 1
n+1,K

2 . We fix jn+1 ∈ {1, . . . , kn+1} and it suffices to bound

K1 (I 1
i )(ki )=K1 K2

|aK,(I 1
i )| ν

(I 1
n+1)(jn+1)×K2 | f1, hI 1

1
⊗ hK2 |

n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2|

K1 (I 1
i )(ki )=K1

n+1
i=1 |I 1

i | 1
2

|K1|n
ˆ
R

d1

1
(I 1

n+1)
(jn+1)

|(I 1
n+1)

(jn+1)|

×
ˆ
R

d2

⎛

⎝

K2

| f1, hI 1
1

⊗ hK2 |2
n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2|
2 1K2

|K2|

⎞

⎠

1
2

ν,

where we have applied Lemma 3.3. Recall the strategy in [24], when hI 1
i

= hI 1
i

we do not

do anything and when hI 1
i

= h0
I 1
i

and I 1
i = K1 we expand

|I 1
j |− 1

2 fj , h
0
I 1
j

1 = f I 1
j ,1 = fj K1,1 +

kj

ij =1

1
(I 1

j )
(ij )fj (I 1

j )
(ij −1)

,1
.

We have

K1 (I 1
i )(ki )=K1

n+1
i=1 |I 1

i | 1
2

|K1|n
ˆ
R

d1

1
(I 1

n+1)
(jn+1)

|(I 1
n+1)

(jn+1)| |I
1
n+1|

1
2

×
ˆ
R

d2

⎛

⎝

K2

| f1, hI 1
1

⊗ hK2 |2
n

i=2

fi, hI 1
i

⊗ 1K2

|K2|
2

fn+1 K1×K2
2 1K2

|K2|

⎞

⎠

1
2

ν

≤
K1 (I 1

i )(ki )=K1

i=n+1

n
i=1 |I 1

i | 1
2

|K1|n
ˆ
Rd

1K1

×
⎛

⎝

K2

| f1, hI 1
1

⊗ hK2 |2
n

i=2

fi, hI 1
i

⊗ 1K2

|K2|
2

|fn+1| 2
K1×K2

1K2

|K2|

⎞

⎠

1
2

ν.

Since (w1, · · · , wn, νw−1) ∈ A(p1,··· ,pn,p ), the same proof as in [24, Section 6.B]
yields the desired estimate. The proof of 1

(I 1
n+1)

(in+1)fn+1 (I 1
n+1)

(in+1−1),1 with in+1 ≥
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jn+1 is similar. So we only focus on in+1 < jn+1. By simple calculus, we reduce to
bounding

K1 (I 1
i )(ki )=K1

i=n+1

n
i=1 |I 1

i | 1
2

|K1|n
ˆ
R

d1

1
(L1

n+1)
(jn+1−in+1)

|(L1
n+1)

(jn+1−in+1)| |L
1
n+1|

1
2

×
ˆ
R

d2

⎛

⎝

K2

| f1, hI 1
1

⊗ hK2 |2
n

i=2

fi, hI 1
i
⊗ 1K2

|K2|
2

fn+1, hL1
n+1

⊗ 1K2

|K2|
2 1K2

|K2|

⎞

⎠

1
2

ν.

Denote (L1
n+1)

(jn+1−in+1) = Q1
n+1, and write

fn+1, hL1
n+1

⊗ 1K2

|K2| =
fn+1, hL1

n+1
⊗ 1

K2

|K2|
σn+1 Q1

n+1×K2
σn+1 Q1

n+1×K2 .

By the reverse Hölder and A∞ extrapolation, we can get σn+1 out of the square sum. Then
using

fn+1, hL1
n+1

⊗ 1
K2

|K2|
σn+1 Q1

n+1×K2
≤ M

σn+1 Q1
n+1,1

D2 ( fn+1, hL1
n+1

1 σn+1
−1
Q1

n+1,1
)1K2

we arrive at

K1 (I 1
i )(ki )=K1

i=n+1

n
i=1 |I 1

i | 1
2

|K1|n
ˆ
Rd

1K1Fn+1,K1

×
⎛

⎝

K2

| f1, hI 1
1

⊗ hK2 |2
n

i=2

fi, hI 1
i

⊗ 1K2

|K2|
2 1K2

|K2|

⎞

⎠

1
2

νσn+1,

where

Fn+1,K1 :=
(Q1

n+1)
(kn+1−jn+1)=K1

1Q1
n+1

|Q1
n+1| (L1

n+1)
(jn+1−in+1)=Q1

n+1

|L1
n+1|

1
2

×M
σn+1 Q1

n+1,1

D2 ( fn+1, hL1
n+1

1 σn+1
−1
Q1

n+1,1
).

By Hölder’s inequality, it suffices to bound the Lp(wp) norm of

⎛

⎜
⎜
⎜
⎝

K1

1K1

⎡

⎢
⎢
⎢
⎣
(I 1

i )(ki )=K1

i=n+1

n
i=1 |I 1

i | 1
2

|K1|n

⎛

⎝

K2

| f1, hI 1
1
⊗hK2 |2

n

i=2

fi, hI 1
i
⊗ 1K2

|K2|
2 1K2

|K2|

⎞

⎠

1
2

⎤

⎥
⎥
⎥
⎦

2⎞

⎟
⎟
⎟
⎠

1
2

and
⎛

⎝

K1

F 2
n+1,K1

⎞

⎠

1
2

Lp (σn+1)

.
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Simply control the outer 2 norm by 1 norm—then we can again use the estimate in [24,
Section 6.B] to conclude the first term. For the second term, note that

⎛

⎝

K1

F 2
n+1,K1

⎞

⎠

1
2

Lp (σn+1)

=
⎛

⎜
⎝

K1

⎡

⎢
⎣

(Q1
n+1)

(kn+1−jn+1)=K1

1Q1
n+1

|Q1
n+1| (L1

n+1)
(jn+1−in+1)=Q1

n+1

|L1
n+1|

1
2

×M
σn+1 Q1

n+1,1

D2 ( fn+1, hL1
n+1

1 σn+1
−1
Q1

n+1,1
)

2
1
2

Lp (σn+1)

=
⎛

⎜
⎝

Q1
n+1

1Q1
n+1

⎡

⎢
⎣

(L1
n+1)

(jn+1−in+1)=Q1
n+1

|L1
n+1|

1
2

|Q1
n+1|

×M
σn+1 Q1

n+1,1

D2 ( fn+1, hL1
n+1

1 σn+1
−1
Q1

n+1,1
)

2
1
2

Lp (σn+1)

,

which again can be handled exactly as in [24, p.23]. Now we turn to consider the case
Q1 = I 1

1 . Similarly,

K1 (I 1
i )(ki )=K1 K2

|aK,(I 1
i )| ν (I 1

1 )(j1)×K2 | f1, hI 1
1

⊗ hK2 |
n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2|

K1 (I 1
i )(ki )=K1

n+1
i=1 |I 1

i | 1
2

|K1|n
ˆ
R

d1

1(I 1
1 )(j1)

|(I 1
1 )(j1)|

×
ˆ
R

d2

⎛

⎝

K2

| f1, hI 1
1

⊗ hK2 |2
n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2|
2 1K2

|K2|

⎞

⎠

1
2

ν.

Similar as [24], we may without loss of generality assume either hI 1
i

= hI 1
i

or otherwise

I 1
i = K1. As before, by reverse Hölder and A∞ extrapolation the object is dominated by

K1 (I 1
i )(ki )=K1

n+1
i=1 |I 1

i | 1
2

|K1|n
ˆ
R

d1

1(I 1
1 )(j1)

|(I 1
1 )(j1)|

×
ˆ
R

d2

⎛

⎝

K2

| f1, hI 1
1

⊗ hK2 |2
σ1

2
(I 1

1 )(j1)×K2

n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2|
2 1K2

|K2|

⎞

⎠

1
2

νσ1.

Next, we write

n+1

i=2

fi, hI 1
i

⊗ 1K2

|K2| ≤ MD2( f2, hI 1
2

1, · · · , fn+1, hI 1
n+1

1).
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Then by Hölder’s inequality the estimate is reduced to

A :=

⎛

⎜
⎜
⎝

K1

⎛

⎜
⎝

(I 1
1 )(k1)=K1

|I 1
1 | 1

2

1(I 1
1 )(j1)

|(I 1
1 )(j1)|

⎛

⎝

K2

| f1, hI 1
1

⊗ hK2 |2
σ1

2
(I 1

1 )(j1)×K2

1K2

|K2|

⎞

⎠

1
2
⎞

⎟
⎠

2
⎞

⎟
⎟
⎠

1
2

Lp1 (σ1)

and

B :=

⎛

⎜
⎜
⎜
⎝

K1

1K1

⎡

⎢
⎢
⎢
⎣
(I 1

i )(ki )=K1

i=1

n+1
i=2 |I 1

i | 1
2

|K1|n MD2( f2, hI 1
2

1, · · · , fn+1, hI 1
n+1

1)

⎤

⎥
⎥
⎥
⎦

2⎞

⎟
⎟
⎟
⎠

1
2

L
p1 (η1)

.

Again, the estimate of A can be found in [24, Section 6.B] and we omit the details. For B,
we shall prove

B fn+1νw−1
Lp

n

i=2

fiwi Lpi .

By the extrapolation theorem, it suffices to prove

⎛

⎜
⎜
⎜
⎝

K1

1K1

⎡

⎢
⎢
⎢
⎣

(I 1
i )(ki )=K1

i=1

n+1
i=2 |I 1

i | 1
2

|K1|n MD2( f2, hI 1
2

1, · · · , fn+1, hI 1
n+1

1)

⎤

⎥
⎥
⎥
⎦

2⎞

⎟
⎟
⎟
⎠

1
2

v

L
2
n

≤
n+1

i=2

fivi L2 ,

provided (v2, · · · , vn+1) ∈ A(2,··· ,2) and v = n+1
i=2 vi . Note that for a fixed K2, if we

denote ζi = v−2
i , 2 ≤ i ≤ n + 1, then

n+1

i=2

| fi, hI 1
i

1|
K2

=
n+1

i=2

| fi, hI 1
i

1|
K2

ζi K1×K2
ζi K1×K2

1

v
2
n n

K1×K2

n+1

i=2

| fi, hI 1
i

1|
K2

ζi K1×K2

≤ inf
x∈K1×K2

⎛

⎜
⎝Mv

2
n

D

⎛

⎜
⎝

n+1

i=2

M
ζi K1,1

D2 (| fi, hI 1
i

1| ζi
−1
K1,1

)1K1

1
n

v− 2
n

⎞

⎟
⎠

⎞

⎟
⎠

n

.
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Whence

1K1MD2( f2, hI 1
2

1, · · · , fn+1, hI 1
n+1

1)

≤
⎛

⎜
⎝Mv

2
n

D

⎛

⎜
⎝

n+1

i=2

M
ζi K1,1

D2 (| fi, hI 1
i

1| ζi
−1
K1,1

)1K1

1
n

v− 2
n

⎞

⎟
⎠

⎞

⎟
⎠

n

and by the vector-valued estimate for Mv
2
n

D and Hölder’s inequality, we have

⎛

⎜
⎜
⎜
⎝

K1

1K1

⎡

⎢
⎢
⎢
⎣

(I 1
i )(ki )=K1

i=1

n+1
i=2 |I 1

i | 1
2

|K1|n MD2( f2, hI 1
2

1, · · · , fn+1, hI 1
n+1

1)

⎤

⎥
⎥
⎥
⎦

2⎞

⎟
⎟
⎟
⎠

1
2

v
L

2
n

n+1

i=2

⎛

⎜
⎝

K1

1K1

⎡

⎢
⎣

(I 1
i )(ki )=K1

|Ii | 1
2

|K1|M
ζi K1,1

D2 (| fi, hI 1
i

1| ζi
−1
K1,1

)

⎤

⎥
⎦

2⎞

⎟
⎠

1
2

L2(ζi )

.

Recall that when hI 1
i

= h0
I 1
i

, then according to our convention I 1
i = K1 and

(I 1
i )(ki )=K1

|Ii | 1
2

|K1|M
ζi K1,1

D2 (| fi, hI 1
i

1| ζi
−1
K1,1

)=M
ζi K1,1

D2 (| fi K1 | ζi
−1
K1,1

)≤M
ζi

D(fiζ
−1
i ).

Again the rest can be estimated as in [24, Section 6.B].
Next, we consider the latter part of Eq. 5.7. Notice that by Lemma 3.4 we have

|I 1
n+1|

1
2 |K2| (b − b I 1

n+1×K2)fn+1, h
0
I 1
n+1

⊗ 1K2

|K2|
=

I×J⊂I 1
n+1×K2

b, hI ⊗ hJ fn+1, hI ⊗ hJ +
I⊂I 1

n+1

b, hI ⊗ 1K2

|K2| fn+1, hI ⊗ 1K2

+
J⊂K2

b,
1I 1

n+1

|I 1
n+1|

⊗ hJ fn+1, 1I 1
n+1

⊗ hJ

b bmo(ν)

ˆ
I 1
n+1×K2

R∈D

fn+1, hR
2

σn+1
2
R

1R

|R|

1
2

νσn+1

+ b bmo(ν)

ˆ
I 1
n+1×K2

⎛

⎝

I∈D1

fn+1, hI ⊗ 1
K2

|K2|
2

σn+1
2
I×K2

1I

|I |

⎞

⎠

1
2

νσn+1

+ b bmo(ν)

ˆ
I 1
n+1×K2

⎛

⎜
⎜
⎝

J∈D2

fn+1,
1
I1
n+1

|I 1
n+1|

⊗ hJ
2

σn+1
2
I 1
n+1×J 2

1J

|J |

⎞

⎟
⎟
⎠

1
2

νσn+1.
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Then e.g. dominating
⎛

⎝

I∈D1

fn+1, hI ⊗ 1
K2

|K2|
2

σn+1
2
I×K2

1I

|I |

⎞

⎠

1
2

≤
⎛

⎝

I∈D1

M
σn+1 I,1

D2 ( fn+1, hI σn+1
−1
I,1)

2 1I

|I |

⎞

⎠

1
2

allows us to view these square functions (which are bounded on Lp (σn+1)) as the new
fn+1. So that by Hölder’s inequality, the related term in the commutator boils down

to estimating the partial paraproduct

K1,K2
(I 1

j )
(kj )=K1

aK(I 1
i ) f1, hI 1

1
⊗ hK2

n

i=2

fi, hI 1
i

⊗ 1K2

|K2| h0
I 1
n+1

⊗ 1K2

|K2|w
Lp

,

which is exactly the standard one.
Following the expansion methods and estimations introduced earlier, we can handle

the other forms of commutators similarly. Compared to the shift case, the more difficult
challenges arise from the terms of forms, where we have

( b I 1
1 ×K2 − b K) f1, hI 1

1
⊗ hK2 ,

( b I 1
1 ×K2 − b K) f1, hI 1

1
⊗ 1K2

|K2| ,

( b I 1
1 ×K2 − b K) f1, h

0
I 1

1
⊗ hK2 ,

and

( b I 1
1 ×K2 − b K) f1, h

0
I 1

1
⊗ 1K2

|K2| .

We already handled the first and the symmetric case of the last one. By modifying the above
methods, we can estimate the other two terms.

5.3 Full Paraproducts

Although the full paraproducts have the more complicated product BMO coefficients, they
do not require as much analysis as the partial paraproducts. Since no unseen methods are
needed to conclude the boundedness of full paraproduct commutators, we omit the details.

6 The Lower Bound

Let K be a standard bi-parameter full kernel as described earlier. In this section, we
additionally assume that K is a multilinear non-degenerate kernel.

That is, for any given rectangle R = I 1 × I 2 there exists R = I 1 × I 2 such that
(I i) = (I i), d(I i, I i) ∼ (I i), and there exists some ζ ∈ C with |ζ | = 1 such that for

all x ∈ R and y1, . . . , yn ∈ R there holds

Re ζK(x, y1, . . . , yn)
1

|R|n .

We are going to assume the weak type boundedness of the commutator. Suppose that

sup
A⊂R

1

n
i=1 σi(R)

1
pi

1R[b, T ]j (1Rσ1, . . . , 1Aσj , . . . , 1Rσn)ν
−1w

Lp,∞ < ∞,
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where recall that σi = w
−pi

i and ν = λ−1
j wj . Clearly, this is a weaker assumption than

[b, T ]j :
n

i=1

Lpi (w
pi

i ) → Lp(ν−pwp) < ∞.

We do not assume the two separate Ap conditions here. It is enough to assume that we
have the two tuples (w1, . . . , wn), (w1, . . . , λj , . . . , wn) of weights satisfying

(w1, . . . , wn, νw−1) ∈ A∗
p.

Let us denote ν−pwp by σn+1.
We employ the idea of the median method to prove that

b ∈ bmoν(σj ) := {b ∈ L1
loc : sup

R∈D
inf
c∈R

1

νσj (R)

ˆ
R

|b − c|σj < ∞}

under the weaker assumption above. We additionally need to assume that νσj ∈ A∞ since
when ν, σj , νσj ∈ A∞ it follows that this is equivalent with the Bloom type little BMO
definition, see Proposition 3.2.

Remark 6.1 We get νσj ∈ A∞ for free whenever λ
−pj

j ∈ A∞ since

νσj = λ−1
j w

1−pj

j = (λ
−pj

j )

1
p
j (σj )

1
pj ∈ A∞.

Fix rectangle R ∈ D. We take arbitrary α ∈ R and x ∈ R ∩ {b ≥ α}, where R is a
rectangle that satisfies the non-degeneracy property. Thus, we have

1

|R|
ˆ

R

(α − b)+σj

n

i=1
i=j

σi(R)

|R|

Re ζ

ˆ
R∩{b≤α}

ˆ
R

. . .

ˆ
R

(b(x) − b(yj ))K(x, y1, . . . , yn)

n

i=1

σi(yi) dyi .

We let α be the median of b on R, i.e.

min(|R ∩ {b ≤ α}|, |R ∩ {b ≥ α}|) ≥ |R|
2

= |R|
2

.

As σn+1 ∈ A∞ we have that σn+1(R ∩ {b ≥ α}) ∼ σn+1(R) ∼ σn+1(R).
Thus, we get

σn+1(R)
1
p

1

|R|
ˆ

R

(α − b)+σj

n

i=1
i=j

σi(R)

|R| CK
b (σ1, . . . , σn) Lp,∞(σn+1)

n

i=1

σi(R)
1
pi ,

(6.2)
where

CK
b (σ1, . . . , σn)(x)

:= 1R∩{b≥α}(x) Re ζ

ˆ
R∩{b≤α}

ˆ
R

. . .

ˆ
R

(b(x) − b(yj ))K(x, y1, . . . , yn)

n

i=1

σi(yi) dyi .
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Recall that

1 ≤
n

i=1

σi

1
p
i

R σn+1

1
p

R ν R ≤ [(w1, . . . , wn, νw−1)]A∗
p

< ∞.

Rearranging terms in Eq. 6.2 and using the observation, we get

1

ν Rσj (R)

ˆ
R

(α − b)+σj 1.

By the reverse Hölder property, we have

1

ν Rσj (R)

1

νσj (R)
.

By symmetrical estimates, we also get

1

νσj (R)

ˆ
R

(b − α)+σj 1.

This completes the proof.

7 Two-Weight Extrapolation

This section is devoted to proving Theorem 1.3.
The strategy of the proof will be similar as in [21] and [22]. We only prove the case

qn = pn, 1 < qn ≤ ∞, qi = pi for all 2 ≤ i ≤ n − 1.

Let us first recall the following lemma, whose proof can be found in [22, Lemma 2.14].

Lemma 7.1 Let w

1
n−1+ 1

pi

i ∈ A n

n−1+ 1
pi

, 1 ≤ i ≤ n − 1. Let w = (
n−1
i=1 wi)

ρ ∈ Anρ , where

ρ = (1 + n−1
i=1

1
pi

)−1. Then (w1, · · · , wn) ∈ Ap if and only if

W := wnw
1

pn ∈ Apn,p(w).

Note that it is also recorded in [22, Lemma 2.14] that if (w1, · · · , wn) ∈ Ap, then we
always have

w =
n−1

i=1

wi

ρ

∈ Anρ, w

1
n−1+ 1

pi

i ∈ A n

n−1+ 1
pi

, i = 1, · · · , n − 1.

With this at hand, since we have

(w1, w2, · · · , wn) ∈ A(p1,··· ,pn−1,qn), (λ1, w2, · · · , wn) ∈ A(p1,··· ,pn−1,qn),

recalling that
1

q
= 1

p1
+ · · · + 1

pn−1
+ 1

qn

,

we have

w =
n−1

i=1

wi

ρ

∈ Anρ, λ = λ1

n−1

i=2

wi

ρ

∈ Anρ
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and

Ww = wnw
1
qn ∈ Aqn,q(w), Wλ = wnλ

1
qn ∈ Aqn,q(λ).

Then the goal is to prove

f λ1w
−1
1 Ww Lq(w) fnw

−1Ww Lqn (w)

n−1

i=1

fiwi Lpi ,

which can also be written as

f Wλ Lq(λ) fnλ
−1Wλ Lqn (λ)

n−1

i=1

fiwi Lpi .

We split the proof to the following cases:
Case 1: 1/s := 1/q − 1/p = 1/qn − 1/pn > 0. Without loss of generality we may

assume

0 < fnwn Lqn = fnw
−1Ww Lqn (w) = fnλ

−1Wλ Lqn (λ) < ∞.

Let

h = fnw
qn
n

fnwn Lqn

= fnw
−1W

qn
w

fnw−1Ww Lqn (w)

= fnλ
−1W

qn

λ

fnλ−1Wλ Lqn (λ)

,

so that we have h
Lqn (w

−qn
n )

= 1. Define

R h =
∞

k=0

(M
λ
Mw)(k)h

2k M
λ
Mw

k

L
(1+ qn

q )
(w

−qn
n )

=:
∞

k=0

(M
λ
Mw)(k)h

2k M
λ
Mw

k
,

where
Mwg = Mw(gW

−qn
w )W

qn
w , M

λ
g = Mλ(gW

−qn

λ )W
qn

λ .

Let us explain why R is well-defined. Indeed, since Ww ∈ Aqn,q(w), we have W
−qn
w ∈

A
1+ qn

q

(w) and Mw is bounded on L
(1+ qn

q
)
(W

−qn
w w) = L

(1+ qn
q

)
(w

−qn
n ) (see [24, Lemma

8.2]). Likewise M
λ

is bounded on L
(1+ qn

q
)
(w

−qn
n ). Now set

H = R (h

qn

(1+ qn
q )

)
(1+ qn

q )

qn .

Then the above discussion easily yields

h ≤ H, H
Lqn (w

−qn
n )

h
Lqn (w

−qn
n )

= 1

and

Mw H

qn

(1+ qn
q ) ≤ M

λ
Mw H

qn

(1+ qn
q ) ≤ 2 M

λ
Mw H

qn

(1+ qn
q )

M
λ

H

qn

(1+ qn
q ) ≤ M

λ
Mw H

qn

(1+ qn
q ) ≤ 2 M

λ
Mw H

qn

(1+ qn
q )

,

which give that

[H
qn

(1+ qn
q )

W
−qn
w ]A1(w) ≤ 2 M

λ
Mw and [H

qn

(1+ qn
q )

W
−qn

λ ]A1(λ) ≤ 2 M
λ
Mw .
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Finally, set vn = H− qn
s w

1+ qn
s

n . It remains to check

(w1, · · · , wn−1, vn), (λ1, · · · , wn−1, vn) ∈ Ap. (7.2)

Equivalently, we check

vnw
1

pn ∈ Apn,p(w) and vnλ
1

pn ∈ Apn,p(λ),

which will be completely similar as that in [22, p. 106]. Indeed, once we have Eq. 7.2, then

f Wλ Lq(λ) = f vnλ
1
q
+ 1

qn H
qn
s w

− qn
s

n Lq ≤ f vnλ
1
q
+ 1

qn Lp H
qn
s w

− qn
s

n Ls

f vnλ
1
q
+ 1

qn Lp = f vnλ
1
p

+ 1
pn Lp fnvn Lpn

n−1

i=1

fiwi Lpi .

The proof is completed by noticing that

fnvn Lpn = hw
−qn
n fnwn Lqn vn

Lpn
≤ fnwn Lqn H 1− qn

s w
−qn+1+ qn

s
n Lpn

= fnwn Lqn H
qn
pn w

− qn
pn

n Lpn fnwn Lqn .

Case 2: 1/s := 1/p − 1/q = 1/pn − 1/qn > 0. Note that this case allows qn = ∞. As

observed in the above, W
−qn
w ∈ A

1+ qn
q

(w) and thus Mw is bounded on L
1+ qn

q (W
−qn
w w) =

L
1+ qn

q (w
−qn
n ). Likewise, Mλ is bounded on L

1+ qn
q (w

−qn
n ). Denote by MλMw the norm

of MλMw on L
1+ qn

q (w
−qn
n ). We introduce the following Rubio de Francia algorithm:

Rg =
∞

k=0

(MλMw)(k)g

2k MλMw
k

.

By duality, there exists some 0 ≤ h ∈ L
s
p (W

q
λ λ) such that h

L
s
p (W

q
λ λ)

= 1 and

f Wλ Lq(λ) = f p
1
p

L
q
p (W

q
λ λ)

=
ˆ

f phW
q
λ λ

1
p

.

Set

H = R

⎛

⎜
⎝h

s

p(1+ qn
q )

w

qn

1+ qn
q

n (W
q
λ λ)

1

1+ qn
q

⎞

⎟
⎠

p(1+ qn
q )

s

w
− qnp

s
n (W

q
λ λ)−

p
s .

Then it is easy to check that

h ≤ H, H
L

s
p (W

q
λ λ)

h
L

s
p (W

q
λ λ)

= 1
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and
⎡

⎢
⎣w

qn

1+ qn
q

n (W
q
λ λ)

1

1+ qn
q H

s

p(1+ qn
q )

⎤

⎥
⎦

A1(w)

≤ 2 MλMw ;

⎡

⎢
⎣w

qn

1+ qn
q

n (W
q
λ λ)

1

1+ qn
q H

s

p(1+ qn
q )

⎤

⎥
⎦

A1(λ)

≤ 2 MλMw .

Denote vn = H
1
p W

q
p

λ λ
− 1

pn , we claim

(w1, · · · , wn−1, vn), (λ1, · · · , wn−1, vn) ∈ Ap. (7.3)

Assume Eq. 7.3 for the moment, then

f Wλ Lq(λ) = ´
f phW

q
λ λ

1
p ≤ f vnλ

1
pn

Lp(λ) fnvn Lpn

n−1

i=1
fiwi Lpi .

We can conclude this case by noticing that

fnvn Lpn ≤ fnwn Lqn vnw
−1
n Ls = fnwn Lqn H

1
p W

q
p

λ λ
− 1

pn w−1
n Ls

= fnwn Lqn H
1
p W

q
s

λ λ
1
s Ls fnwn Lqn .

It remains to prove Eq. 7.3. Similar as before, it suffices to prove

vnw
1

pn ∈ Apn,p(w) and vnλ
1

pn ∈ Apn,p(λ).

Since

1 − p(1 + qn

q
)

s
= pqn

qpn

,

for arbitrary rectangle Q, direct calculus gives us

1

w(Q)

ˆ
Q

v
p
n w

p

pn w

1
p = 1

w(Q)

ˆ
Q

HW
q
λ λ

− p

pn w
p

pn
+1

1
p

= 1

w(Q)

ˆ
Q

H(W
q
λ λ)

p
s w

pqn
s

n W

pqn
pn

λ λ
− p

pn w
p

pn
+1

1
p

≤
⎛

⎜
⎝

1

w(Q)

ˆ
Q

w

qn

1+ qn
q

n (W
q
λ λ)

1

1+ qn
q H

s

p(1+ qn
q )

w

⎞

⎟
⎠

1+ qn
q

s

1

w(Q)

ˆ
Q

W
q
λ λ

− q

qn w
q

qn
+1

qn
qpn

inf
Q

w
qn
s

n (W
q
λ λ)

1
s H

1
p

1

w(Q)

ˆ
Q

Wq
ww

qn
qpn

.
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Thus

1

w(Q)

ˆ
Q

v
p
n w

p

pn w

qn
qpn 1

w(Q)

ˆ
Q

v
−pn
n

1
pn

1

w(Q)

ˆ
Q

Wq
ww

qn
qpn 1

w(Q)

ˆ
Q

w
pnqn

s
n (W

q
λ λ)

pn
s H

pn
p v

−pn
n

1
pn

= 1

w(Q)

ˆ
Q

Wq
ww

qn
qpn 1

w(Q)

ˆ
Q

w
−qn
n

1
pn ≤ [Ww]

qn
pn

Aqn,q (w)

This proves vnw
1

pn ∈ Apn,p(w). The proof of vnλ
1

pn ∈ Apn,p(λ) is similar.
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