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Abstract
This article is devoted to establishing two-weight estimates for commutators of
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singu-

lar integrals. We combine multilinearity with product spaces. A new type of two-weight
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1 Introduction

Commutators have the general form [b, T]: f +— bTf — T(bf). Here T is a singular
integral operator

Tf(x) = / K y)f () dy.
Rd

Well-known examples include the Hilbert transform H in dimension d = 1, which has the

kernel K (x, y) = ﬁ and the Riesz transforms R; in dimensions d > 2, which have the
kernel K (x, y) = #,j =1,...,d.

Our work revolves around the Coifman—Rochberg—Weiss [4] result, where the two-sided
estimate

IbllBmo < b, Tl e (rdy— Lrwey S N0lIBMO, p € (1,00),

was proved for a class of non-degenerate singular integrals 7 on R?. Here BMO stands for
functions of bounded mean oscillation:

lbllBmMO = Sup][ [b—
1 Jr

where the supremum is over all cubes / C R? and (b); = f, b := ﬁ J; b. The correspond-
ing two-weight problem concerns estimates from L”(u) to L? (1) for two different weights
W, A and has recently attracted interest after the work by Holmes—Lacey—Wick [10]. See
also e.g. [12, 15, 16]. Such estimates take the form

I, Tl zr -2 Gy Stila,.

(114, IPIIBMOW). IbliBMOW) = sup ﬁ / |b— ()1l
(1.1)

where v := u!/P).~1/? is the Bloom weight induced by 1, A € Apand v(R) := [pv

In this paper we establish that two-weight estimates for commutators can be proved
under the joint difficulty of multilinearity and product spaces. Both have been considered
separately before: see e.g. [1, 2, 11, 20, 23] for the multi-parameter work, and [13] and [18]
for the multilinear work. If T is a multi-parameter SIO, the corresponding result looks like
Eq. 1.1, but the correct BMO space is bmo(v)—the weighted little BMO. The difference
is that the supremum is over all rectangles instead of all cubes. We explain next how the
estimate looks in the multilinear situation.

For given exponents 1 < pi,..., p, <ocand 1/p=)".1/p; > 0, anatural form of a
weighted estimate in the n-variable context has the form
n n
T(fion ) [Jwi| ST fwille
= LP i=1

Notice that this is normalised somewhat differently from the linear case—the weights
are directly inside the L? norm instead of L”(w). This simply happens to be conve-
nient in the multilinear situation. The key thing is to only impose a joint condition on the
tuple of weights w = (wy,...,w,) € A 5 Tather than to assume individual conditions
wip e A pi- See Lerner, Ombrosi, Pérez, Torres and Trujillo-Gonzalez [14]. For the recent
multi-parameter version see [24]. We have so far discussed the usual multilinear weighted
estimates—in the two-weight situation, however, we study the jth commutator

[b5 T][(f]»vfn) = bT(.fla"'sfn)_T(flv""fj—lvbfivfj+]v"'7fi‘l)7
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Two-Weight Inequalities for Multilinear Commutators in Product Spaces 1747

and the goal is to change the weight w := []7_; w; induced by the tuple (w1, ..., w,) in
such a way that it corresponds with some tuple (wy, ..., A}, ..., w,) instead. A convenient
way to write this is to simply replace w with v~!w, where v := w j)ﬁl is the corresponding
Bloom weight. A one-parameter multilinear two-weight estimate first appared in [13], but
the authors had to content with individual assumptions on some weights, which is not ideal
in the multilinear case. The recent satisfactory multilinear result [18] is based on sparse
domination and the approach cannot be used in the multi-parameter setting at all. We will
instead adapt some of the very recent methods of [24]. Our result is the following full
bi-parameter analogue of [18].

Theorem 1.2 Let T be an n-linear bi-parameter Calderdon-Zygmund operator. Assume that
5:(pla~'~,pn)With 1 < Di < ooand

1 "1
—=) —>0
P i:lpz

With a fixed j € {1,...,n} let (wy,...,wy) and (wy,...,Aj,..., w,) be two tuples of
weights in the genuinely multilinear bi-parameter weight class A j and define the associated
Bloom weight v = wjk;l. If we have b € bmo(v) and v € A, then

n n
16, T1;(fre s fv ™ wlle S 1Blbmoqy [ [ ILfiwillzr,  w =] wi.

i=1 i=1

The corresponding lower bound holds if T is suitably non-degenerate.

Extrapolation methods are important in our current work—they are used to yield the
quasi-Banach range p < 1. The extrapolation theorem of Rubio de Francia says that if
”g”Ll’O(u)) 5 ”f”L”O(w) for some py € (1,00)and allw € Apo’ then ”g”Ll’(w) S ”f”Ll’(w)
for all p € (1,00) and all w € A,. In [8] (see also [6]) a multivariable analogue was
developed in the setting wl.p' € Ap,, i = 1,...,n. Very recently, in [21, 22, 26] it was
shown that also the genuinely multilinear weighted estimates can be extrapolated. We prove
a suitable two-weight adaptation that can be used in our current work.

Theorem 1.3 Let (f, f1,..., fn) be a tuple of measurable functions. Let 1 < p; < 00,
1 <i < n, % =y, %, and j € {1,...,n}. Assume that for all (wi, -, wy),
(wr, ..., Aj, ..., wy) € Ap with ij;1 € Ao, there holds that

n n
P Twl| STT0fwille
i=1 i=1
i#] Lp
Then for all (wy, - -+, wp), (W1, ..., Aj, -+, wy) € Ag with w.,-)ulfl €A andl < q; <
00,i # j,1/g=1/pj+ > i—1 1/q;i > O, there holds that
i#]

n n
P Twil| Sufwilge T Awills
=1 i=1

1 1=
i#] Ld i#]j
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1748 E. Airta et al.

Remark 1.4 This somewhat unusual formulation, where we do not extrapolate in p;, is
enough for our applications in this paper. We have not pursued how to get rid of this small
restriction, but it is helpful in the proof.

We also note that the extrapolation really holds with a single tuple of functions, but
often it is applied with some family JF consisting of tuples of measurable functions. Such
formulations follow from the stated one—one simply has to have uniform assumptions in
the tuple F, and then the conclusion holds for all function tuples in F as well.

2 Preliminaries

Throughout this paper, A < B means that A < CB with some constant C that we deem
unimportant to track at that point. We write A ~ B if A < B < A. Sometimes we e.g. write
A <¢ B if we want to make the point that A < C(¢)B.

2.1 Dyadic Notation

Given a dyadic grid D in RY I e Dandk € Z, k > 0, we use the following notation:

(1) £(1) is the side length of 1.

(2) I® e Dis the kth parent of I, i.e., I C 1% and £(1®) = 2ke(1).

(3) ch(]) is the collection of the children of I, i.e., ch(l) = {J e D: JU = I}.
(4)  Erf = (f)rly is the averaging operator, where (f); = f, f = |Tl|fl f.
(5) Ay f is the martingale difference Ay f =,y Es f — E1f-

(6) Ay xf is the martingale difference block

Arpf= ) Asf
JeD
JO=1
For an interval J C R we denote by J; and J, the left and right halves of J, respectively.
We define i = |J|~1/21, and b} = |J|71/2(1, — 1;,). Letnow I = I} x --- x I; C RY
be a cube, and define the Haar function h'}, n=,...,nq) €10, 1}d, by setting

hy=hj' & --@hy.

If n # 0 the Haar function is cancellative: [ K" = 0. We exploit notation by suppressing
the presence of n, and write 4; for some h? n # 0. Notice that for I € D we have
Ajf = (f, hr)h; (where the finite 7 summation is suppressed), ( f, hy) := f fhy.

2.2 Multi-parameter Notation

We will be working on the bi-parameter product space R = R x R%. We denote a
general dyadic grid in R% by D’. We denote cubes in D' by I, J, K’, etc. Thus, our dyadic
rectangles take the forms / P 12, 7V x J2, K1 x K2 etc. We usually denote the collection
of dyadic rectangles by D = D' x D2

If A is an operator acting on R, we can always let it act on the product space R? by
setting Alf(x) = A(f(:, x2))(x1). Similarly, we use the notation AlfifAis originally an
operator acting on R% . Our basic multi-parameter dyadic operators—martingale differences
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Two-Weight Inequalities for Multilinear Commutators in Product Spaces 1749

and averaging operators—are obtained by simply chaining together relevant one-parameter
operators. For instance, a bi-parameter martingale difference is

Arf=AnALf  R=1'xI?

When we integrate with respect to only one of the parameters we may e.g. write

(fs hpi)1(x2) 12/ fxr, x2)h i (xp) dxg
R4
or

(fip(x) == ]61 f(x1, x2) dxy.

2.3 Adjoints

Consider an n-linear operator 7' on RY = RU xR%, Let fi= fi1 ®fi2, i=1,...,n+1.We
set up notation for the adjoints of 7 in the bi-parameter situation. We let TJ*, jel0,...,n},
denote the full adjoints, i.e., T% = T and otherwise

(T(frsees fo)s Jut1) = (Tj*(fla---»fj—l:fn+lafj+17---,fn)a Si)-

A subscript 1 or 2 denotes a partial adjoint in the given parameter—for example, we define

(TCfre s S i) = AT oo ot Sl ® fR finte e f) £ ® f240).

Finally, we can take partial adjoints with respect to different parameters in different slots
also—in that case we denote the adjoint by le '2*’12*. It simply interchanges the functions
fjl1 and fn1 1 and the functions szz and fnz+]. Of course, we e.g. have le, 2’] = T/* and

L )
Tl0 Z’J = Tz" * 50 everything can be obtained, if desired, with the most general notation

le; ‘2*’j2*. In any case, there are (n + 1) adjoints (including 7T itself). Similarly, the bi-
parameter dyadic model operators that we later define always have (n + 1)? different forms.

2.4 Multilinear Bi-parameter Weights

A weight w(xy, x2) (i.e. a locally integrable a.e. positive function) belongs to the bi-
parameter weight class A, = A,,(IR‘Z1 x R®), 1 < p < oo, if

/o 1
[wla, == sgp<w>R<w1—P o ‘=s1;p<w>R<w Pl < oo,

where the supremum is taken over rectangles R—that is, over R = I'' x I% where I' C R%
is a cube. In contrast to the one-parameter definition, we take supremum over rectangles
instead of cubes.

We have

[w]Ap(Rd1 xRez) < 00 iff max (ess sup [w(xy, ')]Ap(Rdz), esssup [w(:, x2)]AP(Rd1) < 00,
x1€RY xreR%
2.1
and that

max [ esssup [w(xy, ')]Ap(Rdz)’ esssup [w(., xg)]Ap(Rd,) < [w]AP(Rd1 «R%2)>
X1 R4 X2 eR%
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1750 E. Airta et al.

while the constant [w]4 » is dominated by the maximum to some power. It is also useful
that (w);2, € A p(]Rdl) uniformly on the cube /2 C R%. For basic bi-parameter weighted
theory see e.g. [11]. We say w € Ao (RY x R%) if

[w]a, = sup (w)g exp ((log w’l)R) < Q.

R

It is well-known that

Aw@®T xR2) = [ ] A,R" xR®).

l<p<oo
We also define
[w]a, = sup (w) g esssup w!
R R

The following multilinear reverse Holder property is well-known—for the history and a
very short proof see e.g. [18, Lemma 2.5]. The proof in our bi-parameter setting is the same.

Lemma 2.2 Let u; € (0,00) and w; € Ao, i = 1,..., N, be bi-parameter weights. Then
for every rectangle R we have

o< {1),

Next we define multilinear bi-parameter Muckenhoupt weights. Original one-parameter
versions appeared in [14]. Our definition in the bi-parameter case is the same as in [24].

Definition 2.3 Given p = (p1,..., py) with 1 < pi,..., p, < oo we say that W =
(Wi, ..., wp) € Aj = Ap(RY x R%), if
0<w; < o0, i=1,...,n,
almost everywhere and
1 ;&
[@]a; :=sup (wP) g [ Jw; ") g < oo,

1
If p; = 1 we interpret (w, pi);" as esssupp wl._l, and if p = oo we interpret (w”)p as

esssupp w.

Conveniently, we can characterize the class A ; using the standard A, class. The lemma
is proven in [14] and the bi-parameter analog of the same proof is recorded in [24].

Lemma 2.4 Let p = (p1,...,pn) with1 < pi,...,p, <00, 1/p = X% ,1/pi >0,
W= (wi,...,wy) and w = []}_, w;. We have

[w ”I]A/s[w]A_, i=1,....n,
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Two-Weight Inequalities for Multilinear Commutators in Product Spaces 1751

and
[wPla,, < [0]3 .

1
In the case p; = 1 the estimate is interpreted as [w]" |4, < [w]z/_n, and in the case p = 00
4

we have [w—nl]A1 < [J}]Xﬁn.

Conversely, we have

1 n /
0la- < [wP]? | | TPl
(wla; = w7y, | [w; ] A

i=1 !

Most of the proofs are duality based and this makes the following lemma relevant.

Lemma 2.5 [19, Lemma 3.1] Let p = (p1,..., pu) With 1 < p1,...,p, < oo and

2 =015 €O D). Let b = (wi, ..., wy) € Aj withw = [[_; w; and define

= (W1, ..., Wi—1, w_l, Witls---s Wy),
Pl = (p1.-oPic1, P Pit1s s Do)
Then we have

(@14, = (W4,

p

In the main theorems of this paper we will be using the multilinear bi-parameter weights
-1
(Wi, ..o, wn), (A1, w2, oo, wy) € Apy,py,  and vi=2A7 w) € Ao,

where 1 < p1,...,pn <00, 1/p = Z?:l 1/pi > 0. Throughout this paper, we will be
using notation o; = wl._pi, ons1 = 0 'w)?, and ny = AI_PI as they will appear regularly.

In the linear case the assumption v € A, does not appear, since in fact u!/?A=1/7 ¢
Ay C Awo,if 1, A € Aj. In the multilinear setting, however, even the weaker Ao, condition
is not implied by the other assumptions, see e.g. Example 2.12 in [18]. Thus, it is necessary
to separately assume this—this is required e.g. for the duality estimates, such as, Lemma
3.3. See also Muckenhoupt-Wheeden [25], where v € A is required in the context of
BMO(v).

However, instead of the two separate conditions

(Wi, ..., wy) € A(py,.opy and (A, w2, ..., wyp) € Apy . py)>s

if we assume only that (wq, ..., w,, vw ) e A, ny, where v = kflwl and w =

[T/, wi, thatis

----- Pn,pP

we would automatically get that

n
Hwi owl=ve Apy1 C Ao
i=1
by Lemma 2.4.

Yet, it is unlikely that this assumption is enough for the boundedness of the commutator
as conjectured for the linear case in [17]. Although, we will show below that this assumption
is enough for the boundedness of Bloom type paraproducts in the Banach range and also
sufficient to conclude the lower bound of the commutator.
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1752 E. Airta et al.

On the other hand, the joint assumption for the weights is very natural for the two-weight

commutator estimates since the assumption (wi, ..., Wy, vw ) e Apy,....pn,p) 18 implied
by the two separate multilinear weight conditions andv € A
This is easy to verify. Let Zl_l o = % > 1 and assume that (wy,..., wy),
v
—1
(A, w2, .o, wy) € Apy,.ps and v i= A7 Wy € A

TTew: ™ w7k (vg

i=1

n 1
o [Twh R0 [ H(w Y7 )P

Il
;1
:uw‘_

i=1 i=2 =2
() N o pi n IR n s 5 1
» —p!
S 1_[< w; )R (A l—lw Vg (A 1R (w; ')R' (w”)
i=1 i=2
E [J}]Aﬁ[(}"lzw25~'~7wn)]Aﬁ

where in the step () we apply [18, Lemma 2.9] for v € Ax.
Motivated by the above discussion we give the following definition, where p’ does not
appear hence p > 1 is not needed.

Definition 2.6 Given p = (p1,..., py) with 1 < py,..., p, < oo, we say that W =
(W1, .oy Wy, Wat1) € A% = Ag(Rdl x R%), if
0<w; < o0, i=1,...,n+1,

almost everywhere and

l / /
- . PP TPy Pi
[w]A*pi ‘= sup <w>R<wn+1>R (w,‘ I>Rl < 00,
R i=1
where the supremum is over rectangles R
n+1 1 n 1

If p; = 1 we interpret (w;
esssupp w.

Morally the difference is that with A*]g we do not necessarily have

n
l_[wipero

i=1

ord " e A compared to assuming the two separate A; and v € A but we are equipped
withv € Ap41.
Furthermore, using this definition, we can write the following joint condition

-1
(Wi, oo wn, VW) € Agpy . py.p)
—1 A%
as (wy, ..., Wy, Vw )GA(m ,pn)_Aﬁ'
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2.5 A, Extrapolation

Besides of the extrapolation theorem proven in this paper, we also need to use the following
Aso-extrapolation result of [5].

Lemma 2.7 Let (f, g) be a pair of non-negative functions. Suppose that there exists some
0 < po < oo such that for every w € As, we have

/f”Ow < /g”"w. (2.8)

Then for all 0 < p < oo and w € A, we have

/fpw§/g”w.

In addition, let {(fi, gi)}i be a sequence of pairs of non-negative functions defined on R¢.
Suppose that for some 0 < po < 0o, (fi, gi) satisfies inequality (2.8) for every i. Then, for
all0 < p,q < oo and w € As(RY) we have

1 1
(Z(ﬁ)") Stwlas (Z(gm) :

LP(w) LP(w)

where {(f}, g;)}; is a sequence of pairs of non-negative functions defined on R4,
2.6 Maximal Functions

Let D = D! x D? be a fixed lattice of dyadic rectangles and define

Mp(fi,.... fu) = ;ggi]luﬁnm.

Proposition 2.9 If1 < py,..., py <occand 1/p =Y}, 1/pi we have

n
IMp(fr. ... fowlee S ]I fiwilln

i=1

for all multilinear bi-parameter weights W € Ap.

An efficient proof can be found in [24] (originally proved in [9]). Also, we often need
the result of R. Fefferman [7] (proof also recorded in [23, Appendix B]). Denote ( f )‘13 =

<75 Jr f du and define
M f = sup 1r(|f 1)k
R

Proposition 2.10 Let . € A,, p € (1,00), be a bi-parameter weight. Then for all s &
(1, 00) we have

141/
1M Fllzsay S D5 Pl .

In fact, we also need the analogous result in the one-parameter setting, but, of course,
this does not require A € Ax.
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1754 E. Airta et al.

2.7 Square Functions

We begin with the classical (dyadic) square function in the bi-parameter framework. Let
D = D' x D? be a fixed lattice of dyadic rectangles. We define the square functions

12 1/2
Spf = (Zmﬁ) CSpif = X 1A P

ReD I'eD!
and define 52Dz f analogously.
The lower bound estimate of the square function for A, weights is essential for many
/

estimates later on. The fact that the key weights w? and w; Pi are at least in Ao for the
multilinear weights of Definition 2.3 allows us to use this lower bound estimate.

Lemma 2.11 [t holds
I Loy S USp; FllLea S ISDFILraw)

for all p € (0, 00) and bi-parameter weights w € Aso.

The first inequality is the classical result found e.g. in [27, Theorem 2.5] and the latter
inequality can be deduced using the A, extrapolation, Lemma 2.7.

Notice that by disjointness of supports we have, for example, for all k = (k1,k2) €
{0, 1, ...}? that

172
Spf = S akafP| Ak = A}@’kl A%(Z,kz‘
K=K!xK2eD
Next, we take the definition of the n-linear square functions from [24]. For k = (ky, k2)

we set
1

n 2
ALty ) = Are(fis oo fo) = (Z Ak ik H<|ﬁ|>%1K) :
KeD i=2
In addition, we understand this so that Aj x can also take any one of the symmetric forms,

J . . _ 1 2 . . .
where each A Kk, appearing in Ag x = A Kk A k2.4, €N alternatively be associated with
any of the other functions f2, ..., f,. Thatis, Aj ; can, for example, also take the form

1

Ari(fie.oo fo) = (Z (A%, [iDK 1Ak, PoD ]"[<|ﬁ|>%(1K> .

KeD i=3
For k = (ky, ky, k3) we define
Ak (f1, oo fu)
2\ 2
n
=1 D | X Ak filx(Ak  fobx 8k Sk [ [k 1k :
K2eD? \K!eD! i=4
(2.12)

where we again understand this as a family of square functions. First, the appearing three
martingale blocks can be associated with different functions, too. Second, we can have the
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Two-Weight Inequalities for Multilinear Commutators in Product Spaces 1755

K! summation out and the K2 summation in (we can interchange them), but then we have
two martingale blocks with K2 and one martingale block with K'!.
Finally, for k = (ky, k2, k3, k4) we define

n
Ask(fis o ) = D UK k) i)k (1 AK sk 210k [ JUAiD ke 1k
i=3

KeD

where this is a family with two martingale blocks in each parameter, which can be moved
around.

Theorem 2.13 [24, Theorem 5.5.]If 1 < p1, ..., pp < 00 and% =", pi > 0 we have
n
1A (e fowllee ST fwillen.  j=1.2.3,

i=1

for all multilinear bi-parameter weights w € Ap.

Moreover, we need a certain linear estimate which appears regularly when dealing with
the commutator estimates.

Proposition 2.14 [24, Proposition 5.8.] Foru € A and p, s € (1, 00) we have

s

Z<Z<|Amfm|>2 @t;) < (Z|fm|s> W

<
<=

KeD K I Lp

3 BMO Spaces

Let D = D' x D? be a collection of dyadic rectangles on RY = R% x R%_ For a function
b e LlloC and a bi-parameter weight v € Ay, we define the usual dyadic weighted little

BMO norm of b as follows:

el = sup —— / b

In fact, the direct definition is not used that often and we will mostly invoke it through the
following H'-BMO type inequalities. Fori = 1 and i = 2 we have

1B, )1 S 16 lomo) 1S Fll 21wy S 1B llbmot) 15D f 1 1)

The first estimate follows from the one-parameter result [28], see e.g. [11]. For the second
inequality concerning square functions only see e.g. [1, Lemma 2.5].

Often when a supremum is taken over rectangles we also have a formulation of the norm
uniformly each parameter separately. We have

x1€R4 xeR®2

161lbmo(v) ~ max (eSS sup [|b(x1, )IIBMO®W(x1,-))> €ss sup [|b(-, x2)||BMO(v(-,xz))> (3.1)

where || - || BMO(p) is the standard one-parameter dyadic weighted BMO space. For proof
see e.g. [11].
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1756 E. Airta et al.

The following proposition gives an equivalent definition for the little BMO norm in
Bloom type two-weight setting. The equivalent definition is needed for the proof of the
lower bound of the commutator.

Proposition 3.2 Letv,0 € Ax. If Vo € Ao, then it holds bmo, (v) = bmo(v), where

bmo, (v) :=1{b € Llac' sup a(R) / b — (b)%lo < oo}

The proof can be adapted from the one-parameter version (see, for example, [18]). In
our case, the sparse method poses no problems as it can be adapted to rectangles when the
dyadic and sparse families inside of a rectangle R are attained by iteratively bisecting the
size of R. We omit the details.

We formulate the Muckenhoupt—Wheeden type estimates now.

Lemma 3.3 Leta € BMO and w € Axo. It holds

> ta. hi)(whrer S llallsmo (Z ¢ |1|>

1D Ll(w)

In particular the above one is a special case of the two-weight version. We state this as a
little bmo version.

Lemma 3.4 Let o, v € Ax. Assume that b € bmo(v). Then we have

1

1 2
3" (b hR)(0)r¢R S 1Bllbmom) (Zﬁq;,)
R

R=R!xR? Ll((Tl))

Also, we have

1 151 1p2
E <b hpi ® 5 >( YROR S 11bllomo(v) E (plz? R] ® R2
R=R!xR? |R | R? R! |R | |R |
= Ll(ov)

with a similar estimate when the cancellation is on the second parameter.

Proof Let us consider the first estimate above and use the duality

l

1
Y. (b hr)O)RER S IIbllbmow)/(Z“’R i |1§|>

R=R!'xR?
By the reverse Holder property of Ao, weights, Lemma 2.2, we have
(@)r(V)R < (OV)R.

Hence, for all R € D we have
1r 1r
QR{OYR—V §/¢R—av.
/ [R| [R|
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The second part of the extrapolation result, Lemma 2.7, yields that

/(Zw%w%ﬁ]g)l /(Z 2|R|)l

R

as desired.
For the second claim observe that, for example, we have

1
> <thl®|R2|> RSDR—/ Y D bhgi)o R§0R|I§22|

R=R'xR? RZ R!
1
1p 1p2
b 2 R ® —F .
< Illomory / Z | o
where we use the one-parameter duality for fixed variable on the second parameter. The
proof is concluded as above. O

Using characterizations Egs. 3.1 and 2.1, we have

Lemma 3.5 Let 0,v € Ax. Assume that b € bmo(v). For a fixed variable x| € R we

have
1

1p2
gbxl, hg2) (o) R ore S 1B lbmoty) Zw?ﬂ | ];*2 :

L)ICZ (O',tl Vxq )

where gy, denotes the one parameter function g(x1,-). We have a similar estimate for a
fixed variable on R%.

We omit the proof as it is analogous to the previous one.

4 Multilinear Bi-parameter Singular Integrals
4.1 Bi-parameter SIOs

We consider an n-linear operator 7' on R? = R x R%. Let w; (t) = 1%, o; € (0, 1], be
the usual Holder modulus of continuity. We define that 7 is an n-linear bi-parameter SIO if
it satisfies the full and partial kernel representations as defined below.

4.1.1 Full Kernel Representation
Let f; = f!® f2i = 1,...,n+ 1. Forboth m € {1, 2} there exists i1, i € {1,...,n+1}
so that spt fl’l" N spt fl’;’ = (). We demand that in this case we have the representation

n+1

(T(frs-os fu)s far1) = /R<n+|>d K (Xnt1, X150 Xn) Hfi(xt')dx,

i=1
where

. 1)d hd. 1 1 2 2
K.]R(”Jr) \{(xn+1,x1,...,xn)e]R("+) .xl:--.:xn+lorx1:---:xn_H}—>(C
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is a kernel satisfying a set of estimates which we specify next. The kernel K is assumed to
satisfy the size estimate

1

2

<11
K (Xpg1, X1, - X)) S dmr
m=1 (Zz_l |xn+1 ‘xi |)

In addition, we require the continuity estimate, for example, we demand that

|K Gt X1, -y X0) — K (ot X1, -, X, (1 X))
1 2 1 2 1.2
=K (15 €7 X1s ey xn) + K (X400, €7, X1, 0o Xp—1, (€75 X))
1
X, —¢C 1
< o ( | | - ) i
Zz_l |xn+1 Xi | (Zl—l |xn+l - |)

i ) 1
n 2 2 d
2=t o =) (0 w2, = 2"

whenever |x —cll<2- max1<l<” x!

Xy

-3l <2 max1<,<n |x2
1

n+l — X | and |xn+1 n+1
l.2|. Of course, we also require all the other natural symmetric estimates, where ¢' can be
in any of the given n + 1 slots and similarly for ¢?. There are, of course, (n 4 1) different
estimates.
Moreover, we expect to have the following mixed continuity and size estimates. For

example, we demand that

1 .2
| K (Xn+15 X15 -+ Xn) — K (X1, X1, -0 Xn—1, (€ axn))|

- Ix! — ¢l 1 1
~ W1 Z |x )C1| 1n\din ’ 2 dyn
=1 n41 i (Zz_l |xn+l - X |) (Zl—l |xn+1 X |)

whenever |x —c'l <27 " max l<i<n |x] xl. |. Again, we also require all the other natural

symmetrlc estimates.

n+1

4.1.2 Partial Kernel Representations

Suppose now only that there exists i1, iz € {1, ..., n+ 1} so that spt fl} N spt fé = (. Then
we assume that
n+1
- !
<T(f17-“’fn)’fn+l>_‘/R(nJrl)dl (f )(xn+l7x1’-~- )ll_[lf (.X )dx
where K 2 is a one-parameter Calder6n—Zygmund kernel with a constant depending on
the fixed functions f12, e fn 1 For example, this means that the size estimate takes the

form
1

s
(szl |xn+l xi1|) "

Ky G ¥ i)l < CUT s fi)

The continuity estimates are analogous.
We assume the following 7'1 type control on the constant C( flz, RN an +1)- We have
Cp, ..., 1p) <12 (4.1)
and

Capp, ... 1)+ Clpap, 1p,... . 1)+ +Cp, ... 1p,ap2) < |12
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for all cubes /7> C R% and all functions a,» satisfying a2 = 1p2ap2, |app| < 1 and

fap=0.
Analogous partial kernel representation on the second parameter is assumed when
spt flzl N spt fé = () for some iy, i>.

4.2 Multilinear Bi-parameter Calderén-Zygmund Operators

We say that T satisfies the weak boundedness property if
KT (R, ..., 1g), 1r)| S IR 4.2)

for all rectangles R = I' x I ¢ RY = RY x R%,

An SIO T satisfies the diagonal BMO assumption if the following holds. For all rectan-
gles R = I' x I ¢ RY = R x R% and functions a;; with a;i = 1ia;i, |a;i] < 1 and
[ a;i = 0 we have

(T(ap @ 1p, 1k, ..., 1p), IR} + -+ (TR, ..., 1p),apn ® 12)| S|IR|  (4.3)
and
KT(p ®ap, g, ..., 1R), IR + -+ (T (g, ..., 1r), Ipn ®ap)| S IR
An SIO T satisfies the product BMO assumption if it holds
S(1,---,1) € BMOpod

for all the (n + 1)? adjoints § = le 12*] 2* This can be interpreted in the sense that

172

1 2
ISCL, -+, DIIBMOpq =  SUp  sup il E KS(L, -+, 1), hpr)l < 00,
D=D'xD? & R=I'x12eD
RCQ

where g = h;1 ® hj2 and the supremum is over all dyadic grids D' on R% and open sets
Q c RY = RY x R with 0 < || < oo, and the pairings (S(1,---, 1), hg) can be
defined, in a natural way, using the kernel representations.

Definition 4.4 An n-linear bi-parameter SIO T satisfying the weak boundedness property,
the diagonal BMO assumption and the product BMO assumption is called an n-linear bi-
parameter Calderén—Zygmund operator (CZO).

Remark 4.5 In this paper we use the standard modulus of continuity w;(f) = %, but in
many instances this can be weakened significantly. Recall that a function w is a modulus of
continuity if it is an increasing and subadditive function with @ (0) = 0. Often the modified
Dini condition

! 1\* dt
lolpini, :== [ @ () 1+10g; - <00 o >0,
0
for some « is required. Whenever the operator T is paraproduct free, a Dini condition is
sufficient for our results. By paraproduct free we mean that the paraproducts vanish, which

can be stated in terms of (both partial and full) “T1 = 0” type conditions. This is true, for
example, for convolution form SIOs.
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We mention that the required regularity is w; € Dini3/, i = 1, 2, but the current proofs
only give this in the paraproduct free case. To get this low kernel regularity one needs to
adapt methods from [3].

We greatly simplify the study of singular integral operators through the following repre-
sentation theorem. The appearing “standard” dyadic model operators are defined after the
theorem.

Proposition 4.6 Suppose T is an n-linear bi-parameter CZO. Then we have

(TUis o s i) =CrBs Y 01Q27 @227 Uuio (fis - fu)s fat1)s

u=(u,ur)eN?

where Ct enjoys a linear bound with respect to the CZO quantities and U, 5 denotes some
n-linear bi-parameter dyadic operator (defined in the grid D, ) with the following property.
We have that U, = U, s can be further decomposed using the standard dyadic model
operators as follows:

ur—luy—1

Ue=CY Y Vi @.7)

i1=0 i2=0
where each V. = V;, ;, is a dyadic model operator (a shift, a partial paraproduct or a full
paraproduct) of complexity k;’fv, je{l,....,n+ 1}, m € {1, 2}, satisfying

m
kj,V < Up.

In above E, denotes the expectation over a natural probability space 2 = Q| x Q,
the details of which are not relevant for us here, so that to each o0 = (01, 02) € Q we can
associate a random collection of dyadic rectangles D, = Dy, X Dy,. The proposition is a
direct consequence of [3, Theorem 3.19 and Lemma 3.11.].

We will move on to introducing the so-called standard model operators and state the very
recent results for these.

4.3 Dyadic Model Operators

All the operators in this section are defined in some fixed rectangles D = D! x D?. We do
not emphasise this dependence in the notation.

4.4 Shifts

Letk = (ki, ..., knt1), where k; = (k!, k?) € {0, 1, ...}>. An n-linear bi-parameter shift
S takes the form

n+1

(St s ) =D Y akry [ [ i Fr)-
i=1

Here K, Ry, ..., Ryy1 € D =D x D2, Ry = I} x 12, R* := (1H*) x (1)*) and

hg; = hj1 @ hj2. Here we assume that for m € {1, 2} there exist two indices iy, i’ €
1 1 ~ ~
{1,....,n+ 1}, if" # i, so that h’f?;ﬂ = hli’g’, hl’;% = h,l_»;l;l and for the remaining indices
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i & {ig',i{"} we have fz]im € {h(])_,,,, hym}. Moreover, ak (r;) = QK,R,,..,R,., 1S @ scalar
i 1
satisfying the normalization
+1
lak, (r)! < iz 1R |1/2. (4.8)
’ 1 |K|n

Theorem 4.9 [24, Theorem 6. 2] Suppose Sy is an n-linear bi-parameter shift, 1 <

n

pl,...,p”,fooand%:Zl 1—,>0 Then we have

ISk Cfrs-oos fowlie S T fwilln

i=1
for all multilinear bi-parameter weights W € A 5 The implicit constant does not depend
on k.

4.5 Partial Paraproducts

Letk = (ky, ..., kpy1), where k; € {0, 1, ...}. An n-linear bi-parameter partial paraproduct
(S7)x with the paraproduct component on R takes the form

n+1

(STORCf1s s S for)) = Y Y agan [ [k ®uige), @10)
K=K'xK? },..1! i=1
(l[])(k) K!
where the functions i{,; and u; g2 satisfy the following. There are ip, i} € {1,...,n + 1},
io # i1, so that Elvl =h;, il‘l_l = h;1 and for the remaining indices i ¢ {io, i1} we have
IO IO I] l]

,1 e {(n° h;1}. Thereis iy € {1 ...,n + 1} so that U, g2 = h g2 and for the remaining

A

indices i # ip we have u; g2 Moreover, the coefficients are assumed to satisfy

IKZ\
1/2

1 5 l—ln+l| 1|7
Iy, ) xelBpo = sup | —— > dag.an) ST @I
Ky 2ep? | 0| K2 2 ! | |
CK}

Of course, (7.5) is defined symmetrically.

Theorem 4.12 [24, Theorem 6.7. ] Suppose (Sm)y is an n-linear partial paraproduct, 1 <

Pls---» Pn Sooand%=27 | p > (. Then, for every 0 < B < 1 we have

ISTRCf1s s fdwlle Sp 2™ kP H I fiwill Lo

i=1

for all multilinear bi-parameter weights w € Aj.
4.6 Full Paraproducts

An n-linear bi-parameter full paraproduct IT takes the form

n+1
(O(f1 e ) i) = Y ax [ [ i u g0 ®ugg2), (4.13)
K=K!xK? i=1
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where the functions u; g1 and u; k> are like in Eq. 4.10. The coefficients are assumed to
satisfy

1/2
1
l@r)llBMOyee = sup | = »  lakl*] <1,
prod o |Q| Z

KcQ

where the supremum is over open sets 2 C R = R% x R with 0 < || < oo.

Theorem 4.14 [24, Theorem 6.21.] Suppose 11 is an n-linear bi-parameter full paraprod-
uct, 1 < pi,...,pn <ocoand1/p =737 1/p; > 0. Then we have

n
A fowliee S T T 1 fwilln

i=1

Sfor all multilinear bi-parameter weights w € Aj.

In fact, the above theorem is a special case of the Bloom type inequality. The following
operator and result have obvious extensions in the product BMO setting. We consider an
n-linear bi-parameter paraproduct

n+1

(M (fion f)s far) = Y (bovg g1 ®vg ) [ [(fiovig1 @ vig2). (4.15)

K=K!xK?2 i=1

Here we assume that for m € {1, 2} there exist two indices i(’J", i{" €{0,...,n+1}, i #i",
so that vm gm = hgm, vim gm = hgn and for the remaining indices i ¢ {ig', 1"} we

have v; gm = ‘%‘,',’]l. Moreover, here we will assume that we at least have 0 € {ié, i 11} or
0 € {ig, i7}.
Later on, paraproducts will also appear as a result of standard expansions of products

bf: Z <b,h1[>i<f,hli>i®hlihli+ Z <b, h[i)i(f)ﬁj@h[i"‘ Z (b)[i’i<f,h1[>i®hli.

lieD! IieD! lieD!

In the first term, the worst case is if 4,k is non-cancellative hence equals to 1,i /|I°].
Often it is enough to consider the worst-case scenario.

We denote these expansions as I1;, ;, (b, ), (j1, j2) € {1, 2, 3}2, where the indices dic-
tates the form of the paraproduct. More specifically, in the above language of the multilinear
paraproduct: if j, = 1 then i(’)” = 0andi{" =1, if j,, = 2 then i(’)" =0andi" =2, and
if j, = 3 then i’ =1 and i]" = 2. In all of the cases the unmentioned slot do not have the
cancellation. Hence, notice that when j; = 3 = j, we have no cancellation for the function
b meaning that it is not a paraproduct as such.

Proposition 4.16 Let 1, be a paraproduct as described above. Fix p = (py, ..., py) 50
that 1 < p; < oo, define 1_ Z?:l i and assume 1 < p < oo. Let (wy, ..., wy, V)
be a tuple of weights. Assume that

b €bmo(v)  and (w,,...,w,,,uw*‘)eA;g.

Then we have

n
Tt Sy wllze < I6Momoy [ I fiwillor. .17)

i=1
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Moreover, if A j = wjv’lforsomej =1,2,...n such that
W1y oo Wil Ajy Wit ds v ey Wy), (W, ..., Wy) € Ap,

then Bq. 4.17 holds for all 1 < p; < oo such that p € (n™!, 00).

Proof 1t suffices to show that
n
KT (fis s fuds Fae D)) S IBllomoty [ [ frwillr - Il furvw™ Ml -
i=1
Case I. We have 0 € {i&, ill} and 0 € {i(%, ilz}. We consider the concrete case
(e (f1, .-+ s fu)s fug1)
= Y g @) (fihg ® ) o i © i) T (i)

K=K!xK?
We have
n+1 %
(y(f1, - fa)s Far1) S 1Bllbmocw) (Z<|A}<1f1|> (AT 0% [TUAD%
KeD i=3
L(v)
n
S WBllomoty [ [ I fiwillrs - Il farvw ™",

i=1

Here the first step used that v € As—which follows as (wy, ..., wy, vw‘l) S A*ﬁ—and

the estimate
1B, )1 S 1Bllbmow) 15D fll L1 1)
The second step used Theorem 2.13 together with the assumption (w1, ..., w,, vw™') €
A%,
P
Case 2. We have 0 ¢ {ié, i 11} but0 € {ié, ilz} (or the other way around). We consider the
concrete case

(T (frs e os ), Jur1)

g1 1x 12 \
:Z<b’ K] ®h"2><f“ |K1|®hK2><f2’h’<‘®|1<2|><f3’h’<‘®|1<2 >H ToK
We have
(ACf1, -0 o)y fut1)

n

Sblomowy || D [ D (A% ik 1Ak 2k (AL 3Dk [ [U A D& 1k
K2 \ K! i=4
Li(v)

n
-1
S bllomoqy [ [ fwillze -l fugrvw ™"l
i=1

where we used the estimate

1B, £)1 S 1bllbmot) 1S5z £ 1l L1 )
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and Theorem 2.13.
The second claim is obtained by using extrapolation, Theorem 1.3. O

Let A and w be bi-parameter weights such that for some 1 < p < co we have AP,

w P e Acso. Assume also that v := A~'w € Ay and b € bmo(v). Then we have a
weighted variant of the paraproduct operator
(Mppfi. f) = Y (b hg)(fihg)( )k (4.18)
K=K1xK?

where n = AP

Proposition 4.19 Let p € (1,00). Let A and w be bi-parameter weights such that
AP wTP e Ay Let Tl ;) be a weighted paraproduct operator defined via Eq. 4.18, we
have

Mo (NI e S 1B lbmow Il fwllzr-

Proof The result follows from a variant of techniques seen in the proof of Proposition
4.16. For example, by duality we have terms like Eq. 4.18. Introducing a weight averages
<U>K<O'>I_<l =1, where 0 = w™?, we can apply Lemma 3.4. Hence, we get

(f1,hg)? :
|<Hb,ﬂflv f2>| S ”b“bmo(‘})/<Z<O.>ZK(<f)K) |K|) ov

K K
iohg)? g\
1, MK K
< 16l /M"fz YULAKIZ 2K ) 5
mow) | P ; ()% IK]
Grohg) 1k ) o
1, MK K =
< Wb lomo 1M ol Lt oy [ D2 5= | o7
— (02 K]
Lr
< Wb llomoty LA~ Il frawll o

O

In the same setting as above we can have, for example, the following mixed type
weighted paraproduct

<”)K2,2

1g
<Hb,ﬂf17f2> - Z <b hK1 ® > fl»hK f2,hK2>2>K1

2
K=K!xK? K=

We use a symmetrical definition if we have <b K' ®h K2> We also consider the case

1'% () g2
(M fi. f)= Y. (bhg1 ® hK2)<f1, hir ® o > ((fa, hg2)a) 7
K=K!xK?2
Here we use the same notation as above for the weighted averages

(@) = gdu, = g2p,

w(K) Jg
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but now only in the first parameter. Recall from Section 2.4 that (1) k2 , is a one-parameter
weight in RY!

Proposition 4.20 For a weighted paraproduct operator 1y, , as described above, we have

Ty, f10 2] S Ibllbmon Il FwllLr 1SS oA~

where i is either I or 2 depending on which parameter the cancellation is.

Proof Let us for example, consider the paraproduct written above, where we have
(b h ® A5
claim. Then the main difference to the previous proof is that we face e.g.

. Similar to the previous proof, we use Lemma 3.4 but this time the second

2 2

Y MR ) ©
o K]

LP ()

Nevertheless, the claim follows quite easily via an extrapolation trick (see [24, Lemma 9.2]),
since for fixed p’ = 2 we have

2
L, [M;"f e, h;d)z)] (e S s [ U i3in) e

O

For the references below, we state a lemma regarding the square functions of partial
paraproducts. For the lemma, it is relevant in which slots the cancellation appears. The
square function can be taken corresponding to the cancellation on the (n + 1)-th slot. For
example, if (S7)y is a form of partial paraproduct such that there is a cancellation on the (n+
1)-th slot on the second parameter, then we have the boundedness of the second parameter
square function of this operator, namely Sp2 (S7)x. Similarly, Sp1 (Sm)g and Sp (Sm)i must
have the corresponding cancellation to be bounded.

Lemma 4.21 Let U be a square function of partial paraproduct stated in above. Let 1 <
pi <00 and% == % > 0. It holds

n
WU ol Sp 2™ 8P T T frwillr,

i=1

where w = [i'_; wi, (Wi, ..., wn) € Apy.....py)-

Proof The result follows almost identically to the proof of [24, Theorem 6.7.]. We take the
partial paraproduct of the form

2\ 2

agan | 1\fi-h 11®]K22 @ h
S5 walllnie s

+1
KeD \ (1})k) =K1 "
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Using the dualisation trick in [24] for p > 1, we choose a sequence of functions
(fat1.8)k € LP (¢2) with norm ICfat 1.6k 2y < 1, and we look at

> 2 am>ﬂ<ﬁ» Il®|K2><fn+1KU)h ® hY%)

KeD (] )(k) K! )Hl

l—[n+1 |I |— _ 0 2 1K2
<> > [ X ek w1 ) 5]
K" R%2 ! | 1K
K! (1 ki) =1 K2
where
n
Ag2(1, s gnp1) = (]‘[(gnkz) (gnr1, M.
i=1
We write

ki—1
1 ’ 1
|Ii1|*%<f,-,h[1)il®|1§22|>:(fi)1(+ ) » <f,, L1®|1§22|><h s

£3=0 (L[l)(gi)=1(1

fori € {1,2,...,n} whenever we have the non-cancellative Haar function, expect when
complexity is zero.
We are reduced to bounding

1
[T 1L
Z Z |K1|”
K! (Ll.l)“i):Kl
1
2
~ ~ 12
<[ S AT i, ey D ) @22)
K2

where h;1 = h; 1 for at least one index i, and £, 1 = k,1. Moreover, if h;1 = h(b, then
1 1 v i

we have complexity ¢; = 0.
We consider an example to see how we can use the idea in [24] in this setting. The goal

is to prove
n
s —1
lgllz < (1"[ ||ﬁwi||Lpf> I frrw ™ s
i=1
where

fii= (Z|fl,Kw|2)
K

and g is equal to

> oy T, ILH2 1
|K1|" K]
K! (L[)(l)le
1
~ ~ 2 1K2
x| 2 |Are AT oo g Uk, G ) e

K2
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By extrapolation [21], we just need to prove that
lgvll 2 =< IIHﬁmeWﬁ+HMHHp, W1 ) € A,
Following the proof in [24], everything will be the same except that for £, , we need to

control

1 1

1
—1 _ 2
2 :| wenkt ] vl = E :| T <1 ol IS [

L? L?

]
ol

where

0 0 2 2
|]1+1|2 (|f"+1’K|w’hI'}+l®hK2) 1

_ K2
Foigr =1k Z KT Y K7
(1), pkn+D =K1 K2 ntlk

’

and y,4+1 = v, 7. For brevity, in below we just write ) 1 instead of Z( 1, Dt g1+

n—H
So it remains to prove some variant of Proposition 2. 14 Wthh is stralghtforward In fact,
for the above model case, since ¥, 4+1 € Az(n+1), We have

1 1

U I ) € A oo
Thus,
1
|I |7 1 1 2
1 n 2-(2n+1 K2
&ﬂmflm§:[}| D0 ekl By ®h><ﬁ?ﬂg”)ﬁﬁ
e
If k41 = 0, we simply have
1
5\ 2
Foi1 k1 < Z [MD(|fn+1 Klw, v, ol ,J/,,f{”')}

K2
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Then it is just a matter of vector-valued estimates for the multilinear maximal function and
we are done. If k| > 0, then let s > 1 be such that d /s’ is sufficiently small, we have

Fo k1
s =
B 0 0 \2 A
< 2k"4+/1d1 1 14112 otrxw, h1nl+1 ® h2) lg2
=2 e | 2 (KT (Var1)% K2

1 2
In+l K

kny1d1

f 2 s/ 1K1

|In]+1|7 0 0 2 _2n]+] 2@t lg2
E KIp E <|fn+1,K|w»hll+l®hK2> <Vn+1>K1’1 IK2|
1! K2 "
n+l
kny141
52 s/ lKl

[S15]
@

TAM: . T
o> Kin DM fusr ks by ) ) 7 ) i)
Inl+l K2
Then the fact that
_1 L 1
(s 1) i p e D ETS s (Va1 D) € Ao, o0 (R™)
with characteristic independent of K! gives us that

1
2

1
2 2
§ :|Fn+1.l<1| Y+l
K! 12

2kn+/1d1
<277 Y | asdg
R%2
Kl

1

'z 1 _1 7?2
1 n n
E s E |:M’D2((|fn+l,K|w’ h(1)1+1>7 na) iy o V) iy )]

K12
U REAVE
N
2y yd |1! |% Al
n+191
+1 0 2 -1
< V7 Z/ Z n R Z(|f”+1’K|w7hll ) <yn+1)K11
“Jr2 \ T |K1|2 > w 7
K In+l K
1\ 2
%1 d 11! |% ’
n+191
1y +1 0 \2 -1
S V) IR DMl D WTARITN N I
PO VI L S L V'S "
n

By Minkowski’s inequality,

2
0 |2 2 0
E (Ifnr1xlw, by ) < E | fur1,kw| hy
n+1 K2 n+1

K2

D=
~
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We are left with estimating

| 2

1 2
n+l| 0 -1
E Ad < E [ fa+1, Kw| sh1’11+1> (Vn+1>K|’1

)(kn+l) Kl |K1|7

<(ZK2 |fn+l,Kw|2)é>2

1
-Lx " Ly
Rd k! (Vn+l>K1’1

2
n 2-2n+1
/Rd2< S el > T

K2 K!

2 -1
5/ S S 1w ] v
d
R K! K?

z 2
= || fa+1Vn+1 ||L2'

This completes the proof. The case p < 1 follows from extrapolation [22]. O

5 The Upper Bound

In this section, we prove the following theorem.

Theorem 5.1 Let p = (p1,..., pn) so that 1 < p; < oo, define 1/p = Y '_, 1/p;
0. Let (wi, ..., wp), (A1, w2, ..., w,) € Ap and let the associated Bloom weight v =
wlkfl € Axo. Assume that b € bmo(v).

For a multilinear bi-parameter dyadic model operator U, defined in the Section 4.3, we
have

\Y

n
Ib. UL (i v~ wllze St 1Blomowy [ ] 1 fiwil e
i=1

Here the constant depends on the complexity k = (ki,...,k,) = ((kL, k%), e,
(k; 1 k}% 1)) whenever U is a shift or a partial paraproduct. Dependence of the complexity

is

iCﬂZmaxi kB for every B € (0, 1], if U is a partial paraproduct 52)

(1 + max{k!, &2, kL K2, D2, if U is ashife

We divide the analysis of each model operator into different subsections. The bounded-
ness of these model operator commutators yields the boundedness of the commutators of
Calderdén-Zygmund operators via Proposition 4.6.

In the proof, we consider the boundedness [[7_, L7 (wfi) — LP(vPwP)forp > 1
since Theorem 1.3 will extend the result to the quasi-Banach range. Recall the notation of
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1770 E. Airta et al.

_y oy .
dual weights: o; = w; bi ,Opntl = (v_l w)?, and n; = A, PI Here we chose to consider the
commutators acting on the first function slot as the other ones are symmetrical.

5.1 The Shift Case

We consider the following commutator

B, Skli(fis ooy fr) = bSk(f1, ooy fu) = SkBf1, .., fu)s

where Sy 1= S (1k12 ki) is a standard multilinear bi-parameter shift.

The idea is to expand the commutator so that a product bf paired with Haar functions is
expanded in the bi-parameter fashion only if both of the Haar functions are cancellative. In a
mixed situation, we expand only in R or R%, and in the remaining fully non-cancellative
situation we do not expand at all. This strategy has been important in the recent multi-
parameter results—see e.g. [1, 3, 20, 23].

We focus on a commutator, where the cancellation appears in a mixed situation on first
and last slots, that is, we have a commutator that is expanded as follows

3 3
DT B, Sk (s s f) = Y S, f1), - fo). (5.3)

Ji=1 »=1

This case essentially gathers all the methods for estimating these commutators. More
involved expansions are considered with partial paraproducts.

Both terms are handled separately whenever we have a bounded paraproduct, that is
Hi.[, Ji # 3 (or bi-parameter I}, ;,, (ji, j2) # (3, 3)). Otherwise, we need to add and
subtract certain averages of the function b to obtain enough cancellation. We analyse the
second term in Eq. 5.3 as the first term is similar (swap the roles of functions f; and f,+
together with weights n; and w?).

We begin with the term

ST (B, f1), -y fa)

= 3 > aK(,i,-)< > (b,h,z)z(fl,hjz)z®h,thz,h?11 ®h112>

K!xK2eD! xD? 1/ epi J2eD?
13

it .
)=k
i=1,..,n+1,j=1.2

n

Ty, @,

. n+1
i=2

By the zero average of Haar functions, we always have J Zcl 12 Now the important obser-

Lo 1 1
vation is that when J? C 112 we must have h j2h ;2 = ﬁ and we can replace (ﬁ, h112>
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. nil
th (—I=
with (55

form of the term as follows

h 1|2>' Thus, we can change the order of the operators, and we can split the dual

(Sk(T3 (D, f1)s -y fa)s fut1)

mlyp o
= Z Z aK(Il])< Z <b7hJ2>2<flvh12>2nl(J2)7hlll ®h112>

KeD  [epi 1CIeD?

o ;
=k
i=1,...n+1,j=12

7 0 0

[T By @9 )+ 3 agfbatfihp) b
i=2 KeD I,-jeDj

RINCANS

1, =1,2

n

thphp hp) [ B faer by @B )

im n+1
= /Rdl Y ok (fi k)2 (S (fa s far )
J2eD?
[ S e
J2eD?
where § I: *ﬂ differs from the usual adjoint so that we have 12 C J?. We do not explicitly

handle the term E as it is similar to the case j, = 2 (note that we have more cancellation than
we need). Since the truncated operator S]i* 2 can be dominated by the Ao, weighted square
functions lower bound, we can drop the dependence on cube J2. Then, the estimations of
the first two terms are very similar, hence one might think of S,l* as such or as 512) S,!*
below. The boundedness follows simply by using Proposition 4.19 and the boundedness of
multilinear shifts. Namely,

/Rdl Z <b’h’2>2<f1’hﬂ)l(sli*(fzv~-~,fn+1))7}12,2

J2eD?
1
S 1Blbmo L fiwillo 15" (fas s fas DIy, -
n
-1
S 1Bllbmot [ [ fiwillor Il fusrvw ™1l 0
i=1
. 1/p} — _ _
since nl/p' = A] M= yw T, wi and (wa, ..., wy,, vw™) € A(p,. . p,.p») Dy Lemma
2.5.
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1772 E. Airta et al.

The term, where j, = 2, is significantly more straightforward to estimate. We consider
the dual form and estimate

(STIEB, f1)s - fa)s fot1)]
_ ’ 3 3 am,)<(b,h,z (Fi) oo >]_[ oo Bt By @10 )
KeD I_/Eij i = n+1

=i
i=1,..n+1,j=1,2

/Z > IR Rl fiD 2 AR Ky s )
R4 I

(12 (k ) —K2

IA

{(LAhp
/Rdl Yo 2 b hphaton) ol <01>12 KZ,(k,lH,k,‘l,k?z)(fz,---,fn+1)
2 11

K2 (,2 *?) —K2

m . .
where AKZ’(krIz+l’k,~]l ~k[22)’ ii" € {2,...,n} is from family of operators such that the square
1 1

sum

=

ZAkz (kl k,‘l,k?z)(fz’"”'f”+1)1K2
1.1

is an Ap type square function. We use Lemma 3.5 with a fixed variable on the first
parameter and get

USTI3(B, f1)s vy fa)s fut1)]

1/2
(i,
N ||b||bmo(v)/ Z Z WA K k}]ykgz)(fz,...,fn+1)1112 o1V
K2 pebogz A2 A

—1
= ||b||bmo(v)/Mgz(f101 )AZ,(k;H,k_l] ,k'Zz)(fL-»-vfnJrl)UlV

—1
<||b||bmo(v)||M (flal )”Ll’l(a])”Az(kl k}l,kgz)(fz""’f"+l))‘l ||Lp’l
4

S 1B lbmowy Il frwt ll e

n
-1
AQ,(k;ﬂ’kill] vkiz%)(fz’ T fn+1)vw 1_[ Wi

i=2

/
L"1

n
S 1Blbmoewy [ [Ifiwillr I furrvw ™"l
i=1

In the above estimates, it is enough to note that the maximal function is bounded since,

by Fubini’s theorem, we can work with a fixed variable on the first parameter and use the
classical one-parameter result.
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Lastly, we are left with the paraproducts of the illegal form

(T, Sk(f1s s f))s fat1) — (Sk(T3(B, £1), -y fu)s futt)

n

=> X aK(,l_j)<f1,h‘;ll®h,;>]‘[<ﬁ,%:,-><<b>,;+l,1fn+1,h1,;ﬂ®h?”z+l>

K IijeDj i=2

: 0 - 0
-2 X aggp(@pasi iy @) [T i) G by @45, ).

K /e i=2

N :
)=k

Here we introduce the martingale blocks to the function b. We write

<b>11

n+1’

=0 =0 e (b)I}Hfo <b>ll+l><K2

ntl> n+l>< n+1 )

+<b>]nl+1><[(2 - (b>K1xK2 + <b>K1><K2

and likewise for (b) 2o The extra (b)g1, x> simply cancels with the one from (b) 2o
Hence, in the commutator we can expand as follows

I
Wby, = D)t 2 V2, = 22 <b |I]':‘|®hﬂ>h,2, (54)
‘12C1n+1
1
D), ke = Blgiagz = ) <b hjy® |K2|>(h,1) . (5
n-%—lC‘IlCK1
L
(b)11}+]X13+l _<b>lnl+|><K2 = Z <b |1 ::1| ®h!2> <h12>1n2+|' (.6)
n

12, CJ2CK?

Observe that we have omitted the terms raised from (b) 2 , because they are similar. On

the other hand, we shall only work with Egs. 5.4 and 5.5 because Eq. 5.6 is analogous.
We begin with the dual form of Eq. 5.4

1
. In+l 2 -1 0
’2 § gy D <b, T |®h12>|1n+1| fi @)

[ ED} J2C1112+1 n+l

ahH 4=k

n
X n(fl’ h[,')(fnJrlvh[nlJrl ®h]2> .

i=2
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By similar arguments as that in the proof of Lemma 3.4, we have

1,
1 b2 Iny1 2 -4
E 112114412 § : <b’ |11”+ | Qhy2 ) Ly 2<fn+1’h1"1+1 ® hy2)
1m0 — Tl ntl

2

1,2
0 2 °J
Sblwoy 3 [ # [ ey @R
I;ﬁnﬁl;K ey
0
Slblwoy Y [ A @1
n+

o
at =kt

<f”“’h1n‘+| ® h2)? 1z

2 2
(On+1) [J=]
" Inl+l><J2

2

J2

On+1V.

Then by standard calculus, we can reduce the problem to

/RdZAKI,k%,k..I,kg(fl,~~~,fnnKl >
K! h

1
(Ir}+l)(k"+l):K1
1
L ho h2)? 2
(fns1 AT ® hy2) 1)

2 2
(On+1) /=]
! ]er+1><12

On+1V,

2

J2

where AKlJﬁz’k,ll 2, (f1, -+, fn) is defined such that
11

1
2

2
Z |:AK1,k%,k}1,k.22(fl’ Tt fn)i| 11(1
h

K!

1 1
is an Ap x type square function. Notice that 0,41V = W lw)Py = (PP (v lw)P)? €
Aco. The rest follows from estimates such as Holder’s inequality, Theorem 2.13, and
Proposition 2.14.
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Finally, we consider the dual form of Eq. 5.5

+1
12 1
Z ) k) > <b hp® |K2|>(hjl>1nl+ H(fzahl>
I/eDi 1l CJlck! i=1
U=k
i=1, 041, j=1,2
n+1 Lo
-1 ~ 1k
s/MZ IR RD DD DR ) (Rl o
J cKl I/ epi i=1
1 .
(=2 k) g
Lgcl!
=1,ntl,j=1,2
n+l .
1,5
s/Rd 3 Z S G
2 .
K! /rtl+l_0(11)<jn+l) K!
1
X Ap 201 2(f1, ..y (A . 1) r2le2,
XZ: K,(kl,ki{,kilz)f In Jl,k’iﬂ,]nlﬂfw nxk2lg
where A W2 K% is defined such that
i
1
2\ 2

> 24k, (k2,kll,k2 Y1 ) lk

K! K2

is an Ap j type square function.

This resembles the term that we faced earlier with paraproduct IT,. The only meaningful
difference is the extra summation. The estimations are similar when we divide and multiply
with (0,,41) j14 x2. To be more precise, that is, we write

n+l
/Rdz Z S b A Tl gt S D e
jn+1_0(11)(jn+1) Kl

1
. <|A11 A Snr1l JIxK?
15 K1 " Int
721D, Ry 1) 1k ”
R% (Ont1) j1xk2

i1
(Jl)(./,,+|)=K1

1 1
0§/n+1§k11+1_]
1
2
1 2
<|A‘ll'kr]l+l_jy:+1 Jnt1 I)J] < K2
S/ ”b”bmo(v) Z ) 111 V0n+11K2,
R4 1 (Un+]>JlxK2
IHUn+ =g
-1 1
051)1+1 5kn+1_]
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where we have used Lemma 3.4. The rest of the argument is rather standard and thus the
object is bounded by

1 \1 ‘ -1
(L4 kL ) 2 16 lbmoty [ T Ifrwill o Il fusrvw ™l
i=1
where dependence (1 + kr]l H)% emerges from the summation of 0 < jr: = klll - 1. This
completes the analysis of the commutator of this form.

Although other forms of shifts lead to different expansions, the methods shown above
are sufficient to handle those as well. Since we are dealing with multilinear shifts, we now
encounter terms in the shift case that are non-cancellative. In comparison, this does not
happen in the linear case in [23], where we always expand in the bi-parameter fashion. For
example, if we look at the term bS(f1, ..., fn) — S(H;:%(b, f1), ..., fn), we have

b - (b>11 12)1 Ly <Dy

We write

b - (b)1|1><112)11nl+1><13+1 = (b- (b)ll 1X13+|) + ((b>1nl+1><13 - <b)11X12))111+1X1n2+1

== = Oz O 2 I 2
+(@)yr (b>1n+1><1 )11,,+1x1,,2+1
(D)2 2= O 2 Dtz
+(<b>1,}+1><’n2+1 (b) 1 x12)11‘+lxl,,+1

The above terms are expanded to the martingale blocks and differences in a standard way
like terms Eqgs. 5.4 and 5.5. Note that the first term on the right hand side produces a bi-
parameter martingale difference inside of the rectangle I,} In 1o+ We will analyse similar
terms in the following subsection.

5.2 Partial Paraproducts

As explained earlier, we will now focus on more involved expansions of the commutator.
We show the most representative case out of those. Although we demonstrated the main
ideas of the estimates already in the shift case, we need to use more complex estimates due
to the more complicated structure of the partial paraproducts.

We do not repeat the expansion strategy and instead straight away consider separately

(ST)ATG2, (b, £1), - fu)s Fur1)

n+1

> 2 akap(T, e . h1‘®h1<2>1_[<fh 1'®|Kz|>

KI,KZ (]il)(ki)=Kl i=2

for (j1, jo) # (3, 3). We collect most of the mixed index (j; # j») cases, as the methods
can be attained from these.
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Let us begin with the term, where j; = 1, j» = 2, that equals

n+1

1,2
Z Z aK(Iil)<Hl,2(b’ fl)ahlll ® hg2) 1_[<ﬁ7 1) ® |K2|>
KI,KZ(Iil)(ki)zK] i=2
]KZ
= Y (bhp®@hg){fi.hy @ 5
S |K=|
n+1 | M)g2,
2
X<Z > “K(1>1_[<f“ 11®|152|>h >
K! (Iil)(ki):l(l i=2 Ji
1K2
= > bhp @hga)(frhp® K-
e |K|
n+l1 1 g2 5
2
(2,5 el o)
K! (Iil)(ki>:Kl J!
Ilcg!
, 12
+ Z Z aK(I)(b h11®h[(2>|11 l_[<fz7 11®|152|>
KI,KZ(]il)(ki)zKl i=1

Similarly to the previously seen techniques, for the second term we use the square function
lower bound to get rid of the restriction / 11 C J'. Thus, via Proposition 4.20 we can bound
the first two terms by

1B oot I f1wi Lo ISDSTI (2, s fr DA -

Clearly, Lemma 4.21 is enough to conclude the claim. The estimate for the remaining term is
easier. We apply Lemma 3.4 and note that we have more cancellation than we need. Hence,
we control

I} {01 >,1xK211 <> = Mp (fiof )11 Ix K2

h <f1’ 0 |K2|>

Thus, we are left to estimate

15llbmow) 1M D (fio) NS (STK(fas -y fusDovll L1

The desired estimate follows by Holder’s inequality and Lemma 4.21. We remark that the
remaining term essentially contains the idea to handle IT; ;.

The term with I ; is analogous to the previous one. We remark that in this case, the
weighted paraproduct operator has the weight (1) 1 as the localization of the operator is at
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that level on the first parameter. The cases I13 1 and IT; 3 can be handled similarly. For the
sake of the completeness, we give a sketch of the case I13 ;. As before, we write

((Sm)(IT3,1(D, f1)s -+ fr)s frt1)

I
Z Z <b,|]lll®hj2>(flshlll®h12)
1

KI’JZ (11])(k1):K1

n+1
1[(2
X<Z > aK(I)l_[<f” "®|K2|> >
KZ;JZ (Iil)(kl-):Kl J2
i#l
1 n+1
2
+Z Z aK(1)< | |®hK2>|K | (fl 11®hK2>1_[<ﬁ1 11®|K2|>

KI,KZ (Iil)(kl-):Kl =2
For the second term, we again use Lemma 3.4 and treat
2L _1 (‘7”1]141 1
K221 frs by ®th)|(01)IllxK21,llx,(z =My, ((fl,h111>1<01>11171)111|><,(2-
Then after applying Holder’s inequality twice we reduce the problem to bounding
1

(o1) 1

2
bllbmooy [ D D [MDZ (fihphifo >,‘1)] Ly

K! (lll)(kl):Kl
LP1(ay)

X ISDSTI( 2 s fr DAL

The estimate is done by Proposition 2.14 and Lemma 4.21. For the first term, we split as
usual to

1,1
Z Z <b i |®h12><f1,hlll®hjz)
1

KLJ2 (ah*o=k!

n+1
1K2
X<Z > “K(I)H<fh ;@ |Kz|>hl<2>
K2 (1h®) =(1}y kD)
il

1
- > <b,“;|®h,z><f1,h,ll®h,z>
1

KI’JZ (Ill)(kl):Kl

n+1

1K2

< XX aanll{nie )

K2CJ2 (1i1)<kl->=(111)(k,)
i#l

We focus on the first term as the other one is very similar once square function lower bound

is applied inside of the average over J2. Rewrite the first term as

(ﬂl),llvl

J2

(711)111_1

J2

1
Z <b |le'| ®h12>(.f1,hjl ®h12)(((5n)k(f2, o fur ) B >711>,1 3
JJ?
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Then the estimate is done by Proposition 4.20 and Lemma 4.21.
We continue with the term, where j; = 2, j, = 3, that is,

n+1
1
Z Z a[(([il)<n§:§(bv f])’hlll ® hg2) l_[<fu 1! ® |K2|>
K1,K2 (Iil)(ki):Kl i=2

n+1

> o <” h"®|1<2|>“f“h'<2>2>1# 2 “K<’>H<f” "®|K2|>

K1.K2 (1)*D=K! (b =k!
i#1
Note that we can rewrite the above as

1
] (fl»ﬁ®h12>
Z <b hj ® |J2|>(Ul)leJ27

(ST f2s -+ 5 fa) hyr @ hj2).
_Il,,lz (O'])JIXJZ

Then there is nothing new here; by Lemma 3.4 we have that the above is dominated by

2
(o1)
16 llbmotw) | Y Z[M DA frh ) >,2‘2)]

J? J!

1

2 1]2
172

1,
X((S]T)k(f2a"' 5fﬂ)7hj1®hj2>2|TJl|> .
L(oyv)
The estimate is then completed by applying Holder’s inequality twice, Proposition 2.14 and
Lemma 4.21.
Symmetrically, we can work with IT53 5. Lastly, we focus on terms with IT3 3 type illegal

paraproducts. We choose here the type of term which we did not consider in the shift section:

(Sm)(T33(h, f1), ..o\ fu) = BSTOR(f1-- - fu)s fut1)-

Notice that we have

12 1g2
1,2
(n3’3(bs f])ah]ll ®hK2><fﬂ+1’h(I)nl |Ié<2|> (flvhlll ®hK2><bf}‘l+]vh(I)nl |Ié(2|>

1 142
— 0 0 K
= <b>111><K2<f1’h111 ®h[(2><fn+lyh[n1 |K2|> (fl 11 ®h[<2><bfn+ls hlnl |K2|>

1g2
0 K
= (B)1xe = )1 k) Ui gy @ higa) <fn+1,h,, | K2|>

1
—(fi kg @ hyo) <<b Oy e e By 1§|> (5.7

Now on the right-hand side of the above Eq. 5.7, we have two distinct cases where the first

part is similar to the ones seen in the analysis of the shift commutator. We begin with this

familiar case. However, now without using the sharper Eq. 5.5 expansion since, in this case,

it does not matter if we have a square root dependence or a linear one. Observe that
|<b>111><1(2 - (b>17}+1><K2| S ”b”bmo(v)(V[ll’Kz + VI:11+1’K2)’

where

. 1 1 41

Vo, k2 ‘= 2: W jixk2, O €{ly, 1,4}
JleD!
ngJ]CKl
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Then our term is bounded by

n+1
1g2
1Bllbmowy Y D ag qyllfi by @ hge2) T <f,, 11®|,§2|>‘
K (Il.])(ki):l(l i=2

X (V71 Vrl .
( Iviz + In+1*K2)

We first consider v;1 e We fix j,+1 € {1, ..., ky41} and it suffices to bound
n+1>

n+1
Z Z Z'aK(I)| )(11 Un+1) x2 11, ,l®h,<z|1_[

Kl k=1 K2

1K2
<f” i ® |K2|>
n+1 |1 |2

- R
Y ¥ e [ e

1
Kl (1hk) =1 4 |(In+1)(]n+l)|

n+1

/ Z|f1 by @) [

1K2 21K2
sy @ )| Ty |

where we have applied Lemma 3.3. Recall the strategy in [24], when %1_1 = h;1 we do not
do anything and when h = h(l),-l and Ii1 # K we expand

1—4 0
1172 (g Hgn = (0= () K11+Z (, i Fi i

ij=1

We have

1 .
Z Z 12 1} |2/ 1(1,,1+1)(""+‘) TARE
Kt R '

1 ( )yt
d Jn+1
K'Y (1) =K! (L)Y

Nl—=

<[ Zm by ®h2)
T 1414
L2 W/RHK'

KU (1h)*)=k!
i#n+1

Lo \|? 2 1g2
<ﬁ, I |KK2 >‘ [ far1) k1 w2 | ﬁ

Dl

2
12
2 K
(|fl’l+l|)leK2|I(72|

Yol @) P ]
K2 i=

~ 1K2

Since (wi, -+, wy, vw_l) € A(p,,pn,p). the same proof as in [24, Section 6.B]
yields the desired estimate. The proof of (

1 ) . .
A(11+1)(in+])fn+l>(1r:+l)(l,,+1—l)71 with Inyl =
n
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Jn+1 1s similar. So we only focus on i,+1 < j,+1. By simple calculus, we reduce to
bounding

Z Z [T 14} 2 1(L111+1)("’”+17i”+‘) VAL
(KT Jrar (L, ) Unti=ine)| n+l

K' (k) =k!
i#n+1
1
/ Y kg @h fh® f ®1K221K2
g 2y V1 @ ] ke RSRLTro) v
Denote (L1 )(f"+1 ’"+1)—Q1 and write

1

1
le) (s, © )

Jhya
<fn+l |K2|

(Ont+1) 0l w2
(0n+1)Qi+lsz Qi1

By the reverse Holder and Ao, extrapolation, we can get 0,4+ out of the square sum. Then
using

f+],h 1 ® >‘ (ont1) 1
‘< " Lyy |K2 <M 0

n+l f I’l -1 1
< +1, 0 ) 1{on+1) Vg2
(‘7n+1)Q1+]><K2 D? " Lo " er1+1*1 K
n
we arrive at
n 3
[T, 12/ v
Z Z [K 1 ; K1 n4+1,K1
K k) =k! Re
i#n+1
3
n 2
~ 1K2 lKZ
> KAk fiihp @ =5 | vous.
Z | L IR 1K
where
1Q1+] .
Py n =
Fop gt = Z 0l | Z [Lpi]?
(Q)] Y1 =in+ D) =g 1 n+1 )</n+1 “int) = Q"+1
<0'n+1)Q1+1 |
><M " yh 0, .
fn+1 Ln+1)l( n+l>Qn+| )

By Holder’s inequality, it suffices to bound the L? (w”) norm of

f h ® 1K2 2 1K2
v IK2[[] |K2

Y|y Tt Xy e[
Kl

k; =
uhH*d=k! i=2
i#n+1

and

1
2
Z n+1,K!

LY (041)
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1782 E. Airta et al.

Simply control the outer £2 norm by £! norm—then we can again use the estimate in [24,
Section 6.B] to conclude the first term. For the second term, note that

Z n+1,K!

1
2

LP (p41)

1
_ Z Z erm Z |L +1|2

1
K! (Q']]+l)(kn+1’jn+l>=](1 |Q”+1| )</n+1 “int1) =l

n+l

Nl—=

((T}'Hrl>Ql+1 1 2
M " ,h
XM, (st gy Dowsn) gl >]
LY (0411)
1
IL),,17
=11 X e > P
O S 10},
Qn+l (Lzlz+1 Y141 ):er1+1 n+
1
<ffn+1>Ql+I | 2\ 2
XMDZ ((fn+l’erl,+ M <Un+1>Q1+] 1)] s
LY (ou11)

which again can be handled exactly as in [24, p.23]. Now we turn to consider the case
Q' =1]. Similarly,

n+1

YD D lag gl Wanun el (i ,1®th|]—[
=2

Kl (ahk)=k! K2

IKZ
<f“ "®|K2|>‘

Z Z 1—[n+1 |I |2 / 1(1]1)(/',)
K1 R /

1
KU (hto =K1 1D I]

n+1

1K2 2 1K2
Lo 2ty @ e ] <f” |1<2|>’ K7

i=2

Similar as [24], we may without loss of generality assume either ﬁl_l = h;1 or otherwise

I il = K. As before, by reverse Holder and A, extrapolation the object is dominated by
y oy Medd o
K Jw '

1
Kt =k! SR
[(frhy @ hga)]? ]

[ 2 I

2
K2 (01>(111)(j1)XK2 i=2

(S

1K2 2 lKZ
fish 1 ®| %7/ K7 voi.

Next, we write

n+1

[

i=2

1g ~ ~
<fla @ |K2|>’ < Mp2((fas hyph, - ,(fn+1,h1”1+])1)-
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Then by Holder’s inequality the estimate is reduced to

1\ 2\ 2
A Z Z |Il|% 1(111)<j1) Zl(flvh111®h1(2>|2 1K2
= 1 NG 2 2
k1 \ahko=k! |(Il)(m| K2 (Ul)(lf)(jl)xKZ K=
LP1(ay)
and
202
I—[nJrllI |7 - -
ZlK‘ > i Mo by s By 1)
uhH*=xk' K
i#l /
L1 ()

Again, the estimate of A can be found in [24, Section 6.B] and we omit the details. For B,
we shall prove

n
-1
B S M farrow ™ [ [ I fiwillo

i=2

By the extrapolation theorem, it suffices to prove

2\ 2
1 1
[T 1112
ZIKI Z # 1)2( f27 11 fn+1, 1) v
1 (k) =k! IK7
i#l 2
Ln

n+1

< [T Ifvillze,
=2

provided (v2, -+, vp41) € A,..2 and v = ]_[:':21 v;. Note that for a fixed K2, if we
denote {; = v;z, 2<i<n+1,then

n+1
EW” D)
= lli! <|<{;>K1i:2>1<2 (&) k1 xk2

Y (I

<
~o 2o 1_[ (CiYk1y k2
<v">K1><K2 =2 1/ KIxK
n
n+1 &) n 2
. n gl ~n
< Iérllsz M} |:1_[M Kk 1|§z>K1 )lkl] v
xekK!x
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Whence

Lt Mpa (s Fg == (ot g 1)

,2, ntl (i) kL1 ’ 2
< | M5 l_[M ((fis 11)1|§z)K1 Mg | vor

2
and by the vector-valued estimate for M} and Holder’s inequality, we have

2\ 2
1 1
15 112 ~ ~
Z]Kl Z WMDZ((fz,hlzl)l,“-,(fn+1,h1r}+])1) v’m
K (It)(k) K!
i1
ENE
i L2 @
i i
ST X | 2 Mo Tyl )
i=2 K! (Il-l)(ki):K]
L&)

Recall that when /1 = h(I)l’ then according to our convention Ii] =K' and
t i

{l k11

|I|2MZ1K1 M <M§’ 1
> M2 (i hilied g )= (g6 g1 ) = MBS,

|K
(1’_1)(1(,'):[(1
Again the rest can be estimated as in [24, Section 6.B].
Next, we consider the latter part of Eq. 5.7. Notice that by Lemma 3.4 we have

12 0 lg2
AR (0= Oy, o o By © )

1g
= Y b @b fart, ki @by + Y <b hi ® =5 >(fn+1 hr ® 1g2)
IxJcI! ,xKZ icil, K=
+ Z l”+1 Qhy (f,,+1,111 Qhy)
]CK2 | +1| n+1
1
(far1,hR)? 1R \°
< 16llbmow) /1 X > "72@ VO 41
IaxK2 \gep  (On+1)R
1
1.0 2 2
(for1:h1 ® 55507 1
+||b||bm0(v) Z LS & VOju+1
2 2 1]
Lok \ o (Ot e
1y 1
U g onn? |
+||b||bmo(u>/ 2 o ) i I
In+1XK JeD? n+l1 1r:+lx‘,2
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Then e.g. dominating

2

IeD!

(far1,h1 ® ‘Kz ) 1

2
(UnJrl)IXKz |I|

2 1
7]

= | X [Mpr v h )]

I1eD!

allows us to view these square functions (which are bounded on LY (0n+1)) as the new
fn+1- So that by Holder’s inequality, the related term in the commutator boils down
to estimating the partial paraproduct

n

1K2 0 1K2
Jh h i h, ,
L, axaptinhy e K2>n<f "®|K2|> Bk

K1LK? (%) g1 i=2

Lr
which is exactly the standard one.

Following the expansion methods and estimations introduced earlier, we can handle
the other forms of commutators similarly. Compared to the shift case, the more difficult
challenges arise from the terms of forms, where we have

D) 12 = DY) f1s byt ® Dga),

1
((b)]]lXKZ_(b)K)<fls [l®|1é<22|>

() 1 k2 — (DY) (1, hlll ® hg2),

(D)1 g2 — (b K)(fl, i |K2|>

We already handled the first and the symmetric case of the last one. By modifying the above
methods, we can estimate the other two terms.

and

5.3 Full Paraproducts

Although the full paraproducts have the more complicated product BMO coefficients, they
do not require as much analysis as the partial paraproducts. Since no unseen methods are
needed to conclude the boundedness of full paraproduct commutators, we omit the details.

6 The Lower Bound

Let K be a standard bi-parameter full kernel as described earlier. In this section, we
additionally assume that K is a multilinear non-degenerate kernel. _ _

That is, for any given rectangle R = [ U x I? there exists R = I' x I? such that
oI = E(I Ny d(I, T ) ~ £(I'), and there exists some ¢ € C w1th |¢] = 1 such that for
all x € R and Y1, ..., ¥n € R there holds

1
IR|"

We are going to assume the weak type boundedness of the commutator. Suppose that

ReZK (X, y1,.--5Yn) 2

sup ——— 1z, T]j(1got, ..., 140, ..., lRan)v_lw‘
ACRTTI oy (R)Pi

< 00,
LP>®

@ Springer



1786 E. Airta et al.

_pl{

where recall that o; = w; ' and v = A;lw j- Clearly, this is a weaker assumption than

(b, T1;: [[LP ) - LP(~PwP)| < oc.

i=1

We do not assume the two separate Aj conditions here. It is enough to assume that we
have the two tuples (w1, ..., wy), (Wi, ..., A}, ..., w,) of weights satisfying

(Wi, ..., we,vw ) € A’g.

Let us denote v ?w? by 0;,41.
We employ the idea of the median method to prove that

1
beb Ni=1{belLl : inf b — clo;
mo, (o) := { loc ;tel%ngWj(R)/Rl cloj < oo}

under the weaker assumption above. We additionally need to assume that vo; € A since
when v, 0, v0; € Ay it follows that this is equivalent with the Bloom type little BMO
definition, see Proposition 3.2.

i

Remark 6.1 We get vo; € A for free whenever )\;p € Ay since

1

1
_/ _/ -—
1P ”f')”ﬁ'(o,)f’f € Aco.

~1
voj =i, w; =@

Fix rectangle R € D. We take arbitrary « € R and x € RN {b > «}, where Risa
rectangle that satisfies the non-degeneracy property. Thus, we have

1 / " 0i(R)

— | (¢ —b) O“l |

IR Jr LR
i#j

srec [ [ b0 = boynr @ [T d
RN{b<a} JR R i=1

We let a be the median of b on ﬁ, i.e.

o ~ IRl _IR|
min(|[RN{d <a}|,[RN{b=a}]) = > =5
AS 0py1 € Ao we have that o, 1 (RN {b > a}) ~ 0us1(R) ~ opp1(R).

Thus, we get

11 ~ 6i(R) " 1
an+1(R)p—|R| /(oc—b)wjl | ]R| SICK @1 olLre S [ Joi (R,
R . N
i=1 i=1

i#]
(6.2)
where
CI{((UI’ ey Un)(x)

= lgm{bza}(x)Rei/m{b<a}/R.../R(b(x)—b(yj))K(x,yl,...,yn)]_[m(yi)dyi.

i=1
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Recall that

1
P —1
(Ot ) g (VIR < [(wi, ..., wy, v Nax < oo.

>U¥‘._.

fl_[m

Rearranging terms in Eq. 6.2 and using the observation, we get

71 b <1
(1) 70} (R) /R(“_ o =1

By the reverse Holder property, we have
1 > 1 .
(vVIroj(R) ™ voj(R)
By symmetrical estimates, we also get

/(b—a)+(rj <1.
R

vo;j(R)
This completes the proof.

7 Two-Weight Extrapolation
This section is devoted to proving Theorem 1.3.
The strategy of the proof will be similar as in [21] and [22]. We only prove the case
gn # Pn, 1 < qn <00,q; = piforall2 <i <n—1.
Let us first recall the following lemma, whose proof can be found in [22, Lemma 2.14].

1

n71+L.
Lemma 7.1 Let w, ieA_n 1<i<n-—1 Letw= (H - w,)p € Ayp, where
nfl+7

o=+ Z;:ll i)’l. Then (w1, -+ , wy) € Aj if and only if

a
W =w,wrm € Ap, ,(W).

Note that it is also recorded in [22, Lemma 2.14] that if (w1, ---, w,) € Ajp, then we
always have

n—1 p ll
n71+7 .
=(1_[w,-) € App, w; teA n, i=1,---,n—1.
i=1

n71+[Tl_

With this at hand, since we have

(Wi, w2, -+, Wa) € Ay parngn)s (AL W2, s W) € Apy e pu_ign)s
recalling that
1 1 1
q P1 Pn—1 qn’

we have

n—1 P n—1 4

= (H w,) € Ap, A= (xl Hu},) € App
i=1 i=2
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and 1 1
Wy = w, 0% € Ay q(@), Wi =w,htn €Ay, 4().
Then the goal is to prove
n—1
L awy Wollo@y S @™ Wl @ [ ] I fiwillo,
i=1

which can also be written as
R n—1
1 Willgagy S 1A~ Wallgan gy [T il
i=1
We split the proof to the following cases:
Case1: 1/s :=1/q — 1/p = 1/q, — 1/p, > 0. Without loss of generality we may
assume

0 < Il fuwnlizan = 1 fa® ' WllLa @) = I fuh ™ Wall pau gy < 0.

Let , ,
_ Jn wn _ I w! Wg)n . fn’):_1 W)?n
B | frown |l Lan - ”fnw_leHL‘m(@) B ”fn;:_lWA”an@)!
so that we have ||/|| —g,. = 1. Define
Lan (w, ™)
U TR UL
- a1k - k LAl Nk
k=0 zk”MXM@”L(Hﬁ)’(w;qﬁ,) k=0 2 ”MXM@”
where
Myg = Ma(eWo ™ Wi, Mig = My(gW, "W,

Let us explain why R’ is well-defined. Indeed since W, € Aqn ¢ (W), we have W,, S

1+ + (W) and M is bounded on L4+ (qu” ) = L4+ (w,, q") (see [24, Lemma
q

qn / s
8.2]). Likewise Mﬁ is bounded on L' T¢” (wy, q"). Now set

‘ln/ q;l ,
H R/(h“#r(m)/)%
Then the above discussion easily yields
h<H. AHI, g SHAL, g =1

an (wy ) T Lan (w, M)

and

‘In/ ‘ln/ qn/
/ a+2ry g a+2ry AT AN a4
M (H G ) < MM, (H ¢ ) < 2|\ MEMG || H "

qn[ lIn, lIn
qn y/ 4qn v ‘/n/
M’;'\<H(1+q)) SM/)/:M/@<H(1+4)><2”M/M/ ||H(1+ )

which give that

qn qn

ﬁ, 7 ﬁ/ o
[H" 8 W, "4, @) < 2IMaMG | and  [HT " W], o) < 2| MM
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’
1+ .
Finally, set v, = H™ £ wn ¢ . It remains to check

(Wi, -+ s Wp—1, V), (A1, -+, Wy—1, Un) € Aj. (7.2)
Equivalently, we check

L
o~ /
n

s ~
vWh € Ap, p(W) and vAPn € A ,(A),

which will be completely similar as that in [22, p. 106]. Indeed, once we have Eq. 7.2, then

1

T ~id w -
IfWillpagy = Nfvad® i H's wy " llpa < [ fvad® oo llH S wy * lzs
1,1 n—1

< ok e = 10k T e S Wfyun o [ frwilin-

i=1

The proof is completed by noticing that

1=~ 14
= IfnwnllLan |1 H !

[l Zrn

761/
W ovaleon = [ fowallzonva|

‘1/1
| frown || Lan ||H”" wy " leen S N fawallpan .

Case2:1/s :=1/p—1/q =1/p, — 1/g, > 0. Note that this case allows g, = 00. As

g . ) o gl
observed in the above, W,, In ¢ A1+q,2 (w) and thus My is bounded on L'ty (Wy q”w) =
q

an gl g
L' (wy, q”). Likewise, M5 is bounded on L't (wy, q"). Denote by || M5 M| the norm

4qn —q
of M; My on L't (wy, n ). We introduce the following Rubio de Francia algorithm:

_ i (M5 M) Mg
= 2 IM M |

By duality, there exists some 0 < h € L» (WqA) such that ||h||Lp W) = land

1
1 ~\ 7
IfWall Ly = ||fp||p — = (/f”th)»)
P (WIR)

Set
, ﬁ(H%)
s q" 1 $ ,
‘h/t 1/1 _’inﬂ
H :R hp(l+ ) ‘J (Wq)h)w 5 (Wq)\)ii.
Then it is easy to check that
B He IH e ST e = 1
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and
an_ | s
G gy 1 a+ ’/1)
wy T (W' H? < 2||M5Mzll;
Ay ()
fir/z/ l s
T Wi <2|M;Mg].
ALG)
DN PN
Denote v, = H? W,” 1 #n, we claim
(wlv ey, Whp—1, vn)a ()"15 e, Wh—1, Un) € A[;' (7'3)

Assume Eq. 7.3 for the moment, then

1 ~L n—1
||fWK||Lq(X) = (f fphW)iI;:)P < | fopArn ”Ll’(’):) S | fruvnllLpn l_[ Il fiwillppi -

i=1

We can conclude this case by noticing that

A

1 41
—1 - —
I favallLen < | fawnllLan lvaw, N = Il fawnllLan | H? WA Prw,

1 [P N)
I fonwnllLan |H? W, A5 s S Ml fuwnllzan -

It remains to prove Eq. 7.3. Similar as before, it suffices to prove

~L ~
€Ay, p(Ww) and VAP € Ap,.pQ).

S8

VW P
Since

4y
_ A+ pa,
s ap,’

for arbitrary rectangle Q, direct calculus gives us

1
( / p’*pk@) :<7Al /Hqu pi@/ZJrl)p
w(Q) w(Q) Jo

an P‘In 7# L,«I»l r
= / (Wq}\,)sw p”)\‘ Pn wl’n
0(Q)

‘111

an

it (i (Wi ( 1 /W‘P)‘W
inf [ w,, s —_— m .
o\ " w(Q) Jo ”

@ Springer

A

1
Il s

4 441

1
Al /w Z (qu)1+ an Hp(1+ 'l)A (;/ WA)” qn W 9n
D(Q) Jo D(Q) Jo



Two-Weight Inequalities for Multilinear Commutators in Product Spaces 1791

Thus

’
qn

n_ 1
(Al / vmﬁ@m (Al / U;p;,>p:,
w(Q) Jo w(Q) Jo

s

1 R4 1 Phdn Py Ph
< (Ai WlL,]jUJ)W ,\7/ wy * (Wf)»)pf H»r v,,p"
w(Q) Jo w(Q) Jo
a5 i /
(ot 1) (s ) o
w(Q) Jo " w(Q) Jo " T @
1

This proves v, € A pn,p(W). The proof of A Ph € A P ,,(/):) is similar.
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