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Abstract

In this paper we prove the fractional Gagliardo-Nirenberg inequality on homogeneous Lie
groups. Also, we establish weighted fractional Caffarelli-Kohn-Nirenberg inequality and
Lyapunov-type inequality for the Riesz potential on homogeneous Lie groups. The obtained
Lyapunov inequality for the Riesz potential is new already in the classical setting of RY.
As an application, we give two-sided estimate for the first eigenvalue of the Riesz poten-
tial. Also, we obtain Lyapunov inequality for the system of the fractional p-sub-Laplacian
equations and give an application to estimate its eigenvalues.
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1 Introduction
1.1 Fractional Gagliardo-Nirenberg Inequality

In the works of E. Gagliardo [9] and L. Nirenberg [14] (independently), they obtained the
following (interpolation) inequality

N 2)/2 2p—N(p-2))/2
CUIVal st Il P72, w e H'@®Y), (1.1)

”u”LP(RN)
where
{2§p§ooforN:2,

25p§%f0rN>2.
The Gagliardo-Nirenberg inequality on the Heisenberg group H” has the following form

)7 ggny < C IV ull S0l 22207207, (1.2)
where Vp is a horizontal gradient and Q is a homogeneous dimension of H". In [3],
the authors established the best constant for the sub-elliptic Gagliardo-Nirenberg inequal-
ity Eq. 1.2. Consequently, in [20] the best constants in Gagliardo-Nirenberg and Sobolev
inequalities were also found for general hypoelliptic (Rockland operators) on general graded
Lie groups.

In [15] the authors obtained a fractional version of the Gagliardo-Nirenberg inequality in
the following form:

el e vy < CLulf lluel ) Vu € C;(RY), (1.3)

L"(]RN)’

where [u];, ), is Gagliardo’s seminorm defined by

lu(x) — u(y)|?
[M]sp AN /RN |X _y|N+Sp dxdy,

forN>1, s€(0,1), p>1, a>1, vt >0, anda € (0, 1] is such that

1 1 s +1—a
—=al——-— .
T p N o

In this paper we formulate the fractional Gagliardo-Nirenberg inequality on the homoge-
neous Lie groups. To the best of our knowledge, in this direction systematic studies on the
homogeneous Lie groups started by the paper [18] in which homogeneous group versions
of Hardy and Rellich inequalities were proved as consequences of universal identities.

1.2 Fractional Caffarelli-Kohn-Nirenberg Inequality
In their fundamental work [2], L. Caffarelli, R. Kohn and L. Nirenberg established:

Theorem 1.1 Let N > 1, and let Iy, I», I3, a, b, d, § € R be such that l;,l» > 1, I3 >
0, 0<6<1,and

1+a 1+b 1+6d+(1—6)b 0 (1.4)
-+ =, -+ =, —+—m——F > 0. .
I N D N I3 N
Then,

PP ull s gy < CHRIVull iy gy 1310l e 4 € CERY) (15)
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if and only if

1 8d + (1 —68)>b 1 a—1 1 b
S S L Y -8 (—+2
TN (ll+ N )H )<12+N>’

a—d=>0, if §>0,

. 1 dd+ (1 =6)b 1 a—1
a—d<l1, ifé>0and —+ ——— = —
I3 N I N

. (1.6)

where C is a positive constant independent of u.

In [15] the authors proved the fractional analogues of the Caffarelli-Kohn-Nirenberg
inequality in weighted fractional Sobolev spaces. Also, in [1] a fractional Caffarelli-Kohn-
Nirenberg inequality for an admissible weight in RY was obtained.

Recently many different versions of Caffarelli-Kohn-Nirenberg inequalities have been
obtained, namely, in [24] on the Heisenberg groups, in [22] and [23] on stratified groups,
in [19] and [21] on (general) homogeneous Lie groups. One of the aims of this paper is
to prove the fractional weighted Caffarelli-Kohn-Nirenberg inequality on the homogeneous
Lie groups.

1.3 Fractional Lyapunov-type Inequality

Historically, in Lyapunov’s work [13] for the following one-dimensional homogeneous
Dirichlet boundary value problem (for the second order ODE)

{u”(x) + w@uix) =0, x € (a,b), 17

u(a) =u(b) =0,
it was proved that if u is a non-trivial solution of Eq. 1.7 and w(x) is a real-valued and
continuous function on [a, b], then necessarily

b 4
/ lw(x)|dx > P (1.8)

Nowadays, there are many extensions of Lyapunov’s inequality. In [5] the author obtains
Lyapunov’s inequality for the one-dimensional Dirichlet p-Laplacian

(' P20 (%)) + 0 (@u(x) =0, x € (a,b), 1 <p < oo, (1.9)
u(a) = u(b) =0, '
where w(x) € L'(a, b), so necessarily
b P
/a lw(x)|dx > m, 1 <p<oo. (1.10)

Obviously, taking p = 2 in Eq. 1.10, we recover the classical Lyapunov inequality Eq. 1.8.

In [10] the authors obtained interesting results concerning Lyapunov inequalities for
the multi-dimesional fractional p-Laplacian (—A,)*, 1 < p < oo, s € (0,1), with a
homogeneous Dirichlet boundary condition, that is,

{(—A,,)Su = wO)|u|P2u, x € Q,

u(x) =0, x e RN\ Q, (.10

where © c RY is an open set, | < p < oo, and s € (0, 1). Let us recall the following
result of [10].
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Theorem 1.2 Let @ C RN be an open set, and let € LY (Q) with 1 < % < 6 < o0,
be a non-negative weight. Suppose that problem Eq. 1.11 has a non-trivial weak solution
u € Wy’ (Q). Then

1

</w%ﬂd0§> CN, (1.12)
Q SP—g
rq

where C > 0 is a universal constant and rg, is the inner radius of Q.

In [4], the authors considered a system of ODE for p and g-Laplacian on the interval
(a, b) with the homogeneous Dirichlet condition in the following form:

= P72 (%)) = ) |u@x)][*2ux)|v(x)|P,
’ 2. ’ o B2 (1.13)
—([V' ()17 (%)) = g u()|*|v(x) [P v(x),
on the interval (a, b), with
u(a) = u(b) =v(a) =vb) =0, (1.14)
where f,g € L'(a,b), f,g>0,p,q > 1,0, $>0and
LA
p q

Then we have Lyapunov-type inequality for system Eq. 1.13 with homogeneous Dirichlet
condition Eq. 1.14:

a B
o b P b q
f+ﬁ§(b—wo?+§</’fuym) </mgQﬂM> , (1.15)

where p’ = -2 and ¢’ = -%-. In [11], the authors obtained the Lyapunov-type inequality

p—1 qg—1"
for a fractional p-Laplacian system in an open bounded subset & c RY with homogeneous
Dirichlet conditions. One of our goals in this paper is to extend the Lyapunov-type inequality
for the Riesz potential and for the fractional p-sub-Laplacian system on the homogeneous
Lie groups. These results are given in Theorem 5.1 and 5.7. Also, we give applications of the
Lyapunov-type inequality for the Riesz potential and for fractional p-sub-Laplacian system
on the homogeneous Lie groups. To demonstrate our techniques we consider the Riesz
potential in the Abelian case (RY, +) and give two side estimates of the first eigenvalue of
the Riesz potential in the Abelian case (RY, +).
Summarising our main results of the present paper, we prove the following facts:

® An analogue of the fractional Gagliardo-Nirenberg inequality on the homogeneous
group G;
An analogue of the fractional weighted Caffarelli-Kohn-Nirenberg inequality on G;
An analogue of the Lyapunov-type inequality for the Riesz potential on G;
An analogue of the Lyapunov-type inequality for the fractional p-sub-Laplacian system
on G.

The paper is organised as follows. First we give some basic discussions on fractional
Sobolev spaces and related facts on homogeneous Lie groups, then in Section 3 we present
the fractional Gagliardo-Nirenberg inequality on G. The fractional weighted Caffarelli-
Kohn-Nirenberg inequality on G is proved in Section 4. In Section 5 we discuss analogues
of the Lyapunov-type inequalities for the Riesz potential and fractional p-sub-Laplacian
system on G.
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2 Preliminaries

We recall that a Lie group (on R") G with the dilation
Dy(x) == (A xq, ..., A"x,), vi,...,v, >0, Dy : R" — R",

which is an automorphism of the group G for each A > 0, is called a homogeneous (Lie)
group. In this paper, for simplicity, we use the notation Ax instead of the dilation D, (x).
The homogeneous dimension of the homogeneous group G is denoted by

QO =vi+...+v,.
A homogeneous quasi-norm on G is a continuous non-negative function
G>3x 1 gx) €0, 00), 2.1)
with the properties

) qgkx) = q(x_l) for all x € G,
i) g(x) =Agq(x)forallx € Gand A > 0,
iii) ¢g(x)=0iff x =0.

Moreover, the following polarisation formula on homogeneous Lie groups will be used in
our proofs: there is a (unique) positive Borel measure o on the unit quasi-sphere wg =
{x € G: g(x) = 1}, so that for every f € L'(G) we have

ff(x)dx:foo Foryre o (y)dr. (2.2)
G 0 a)Q

We refer to [7] for the original appearance of such groups, and to [6] for a recent com-
prehensive treatment. Let p > 1, s € (0, 1), and let G be a homogeneous Lie group of
homogeneous dimension Q. For a measurable function u : G — R we define the Gagliardo

quasi-seminorm by
Ju(x) — ()| 1r
[M]v P.q — </ / qQ+Yp(y 5 x)dxdy) . (23)

Now we recall the definition of the fractional Sobolev spaces on homogeneous Lie groups
denoted by W*?4(G). For p > 1 and s € (0, 1), the functional space

WP9(G) = {u € LP(G) : u is measurable, [u]s, 4 < +00}, 2.4)

is called the fractional Sobolev space on G.
Similarly, if 2 C G is a Haar measurable set, we define the Sobolev space

WP 4(Q) = {u € LP(Q) : u is measurable,

1
lu(x) —u(y)|” v
u]s 0,4, 2 = </ /Q qQ“‘SP(y—] ox)d dy) < +OO} (25)

Now we recall the definition of the weighted fractional Sobolev space on the homoge-
neous Lie groups denoted by

WSPP9(G) = {u € LP(G) : u is measurable,
1
Bip Bap — 14 »
g7 (x)g" P (Y)u(x) — u(y)| g
s = dxd . 2.6
thep.pa </@/@ g2+ (y~1ox) xdy) <ok (26)
where 81, B2 € R with 8 = 1 + B> and it depends on B; and B>.
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1976 A. Kassymov et al.

As above, for a Haar measurable set @ ¢ G, p > 1,5 € (0, 1) and B;, B2 € R with
B = B1 + B2, we define the weighted fractional Sobolev space

WSPP9(Q) = {u € LP() : u is measurable,

Bip Bap - p ¥
q"1 P (x)g”P ()|ux) — uy)| !
[Wls,p.pg.2 = (/Q/Q 05T oD dxdy) <400} (27)

Obviously, taking 8 = 1 = 2 = 0in Eq. 2.7, we recover Eq. 2.5.
The mean of a function u is defined by

1
ug = ][udx = 7/ udx, ue LY(Q), (2.8)
Q 2] Ja

where |Q2| is the Haar measure of Q C G.
We will also use the decomposition of G into quasi-annuli Ay , defined by

Argi={xeG: 2F <q(x) <21y, (2.9)

where ¢ (x) is a quasi-norm on G.

3 Fractional Gagliargo-Nirenberg Inequality on G

In this section we prove an analogue of the fractional Gagliardo-Nirenberg inequality on the
homogeneous Lie groups. To prove Gagliardo-Nirenberg’s inequality we need some pre-
liminary results from [12], a version of a fractional Sobolev inequality on the homogeneous
Lie groups.

From now on, unless specified otherwise, G will be a homogeneous group of homoge-
neous dimension Q.

Theorem 3.1 ([12], Fractional Sobolev inequality) Let p > 1, s € (0,1), Q > sp, and
let q(-) be a quasi-norm on G. For any measurable and compactly supported function u :
G — R there exists a positive constant C = C(Q, p, s, q) > 0 such that

ull} e ) = Clulspag- 3.1)

ko % _ _Op
where p* = p*(Q,s) = O—sp"

Theorem 3.2 Assume that Q > 2,5 € (0,1), p>1l,a>1,7>0,a€ (0,1], O > spand
1 1 s +1—a
—=al|l——-— .
T p QO o

lull e (@) < Clul?, ,lulljals), ¥ u e CLG), (32)

Then,

where C = C(s, p, Q,a,a) > 0.
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Proof of Theorem 3.2 By using the Holder inequality, for every % =a (% — 5) + % we
get

— 1—
Il ) = /G lul*dx = /G Tl O <l g Ml ey (33)
where p* = QQ_i 5 From Eq. 3.3, by using the fractional Sobolev inequality (Theorem 3.1),
we obtain
1- 1-
Nl gy < el o el @y < CTUlSS, g Ml
that is,
lull e (@) < Clul?, , lull «lg)- (3.4
where C is a positive constant independent of u#. Theorem 3.2 is proved. O

Remark 3.3 In the Abelian case (RY, +) with the standard Euclidean distance instead of the
quasi-norm, from Theorem 3.2 we get the fractional Gagliardo-Nirenberg inequality which
was proved in [15].

4 Weighted Fractional Caffarelli-Kohn-Nirenberg Inequality on G

In this section we prove the weighted fractional Caffarelli-Kohn-Nirenberg inequality on
the homogeneous Lie groups.

Theorem 4.1 Assume that Q > 2, s € (0,1), p > L, > 1, 7 > 0,a € (0,1],
B1, B2, B, i, v €R, 1 + B2 = B and

5o (Grie) rama (i g)
-+ S =al-+ +-a)(-+2). (4.1)
T 0 I4 0 a 0
Assume in addition that, 0 < 8 — o withy = ao + (1 — a)u, and
B—c<sonyif 421 P8 4.2)
—o <sonlyif —+-—==— . :
t Q0 p 0
Then foru € CC1 (G) we have
lg” ullLr@) < Clull, 5ol ulllzl). 4.3)
when % + % > 0, and foru € C}(G \ {e}) we have
lg” ullLe ) < Clulf , 5 lg" ull =), “.4)

when % + 5 < 0. Here e is the identity element of G.

Remark 4.2 In the Abelian case (RY, +) with the standard Euclidean distance instead of
quasi-norm in Theorem 4.1, we get the (Euclidean) fractional Caffarelli-Kohn-Nirenberg
inequality (see, e.g. [15], Theorem 1.1).
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To prove the fractional weighted Caffarelli-Kohn-Nirenberg inequality on G we will use
Theorem 3.2 in the proof of the following lemma.

Lemma 4.3 Assume that Q >2,s € (0,1),p>1,a>1,7>0,a € (0, 1] and

1> 1 s +1—a
->al———= .
T p QO o

Let X > 0and0 < r < R and set

Q={xeG: Ar <qg(x) < AR}

Then, for every u € C'(Q), we have

1 l—a

T a(sp—Q) e
(][ lu — ugzlrdx> < CrrA 7 [l 4.0 (][ |M|adx) ; (4.5)
o Q

where C, R is a positive constant independent of u and .

Proof of Lemma 4.3 Without loss of generality, we assume that 0 < s’ < s and 7/ > 7 are
such that

1 Y N l—a

——alz ,

T/ p QO o

Q={xeG: r<gqkx) <R}

and A = 1, then let Q; be

By using Theorem 3.2, Jensen’s inequality and [u]y , 4. @ < Cluls,p.q.0, We get

T 1
( |u_u§21|rdx> = 1 ”u_uQ] ”T = Cr,R”M—l/th ”LT,(QI)
Q) Ql|?

1—
< Crrlu — qu]?/’p,q,Q] ”u”LDL?QI)

u(x) — ug, — u(y) +ug,|” 2
<Crr (/ / rErr— dxdy ) |lulljlo,,
Q Jo qetsP(y=ox)

l—a

< Crrlulf , 4 0, IIMIIILE?Q]) < Crrlul§ , 4.0, (]{2 Iuladx) . (4.6)
1

where C, g > 0. Let us set u(Ax) instead of u(x), then

1 a
4 T lu(Ax) — u(ry)|? )5
d C, ——————dxd
<]€21 x) =R (/@1 /Ql g@Hr(yTox)

l1—a

1 o o
X (m /Q. lu(Ax)| dx) . @

u(Ax) —][ u(Ax)dx
Q)
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Thus, we compute

(/ @) = (i )

= (i [ o
19]
1
_ L/ )LQ‘M()\)_)LQ/ u(ry)d Td '
Ul Jo, a2 Y oo Jo, Y
_(; WOy — [ o fd>i
“ i@l Jo, [ T 19 ot I
a 1—a
lu(Ax) —u(ry)|? » 1 o o
<C'R</Q,/ g2+ (y~lox) dmy) <|§21|/Q1 ju(3x)] dx)
a 1—a
AZCALHSP |y (Ax) — u(Ay)|P P re o\ @
= Crr (/Q/g 32050+ 0+ (1 o x) d"dy> (m |/ xe Ol dx)
_ 2P CluGx) — uGy)|” P . g
B AP u(x) — u(y)|? a
_Cr,R<LL 207 Tox) dde>

(1 fweoreas) ™
_ Cr’R)‘u(A\'pp—Q)[ ]quQ (|Q|/ |u(x)| dx) . (48)

u(x) — ][u(x)dx
Q

1
) — @/;Zu(x)dx

T

1
LA u(ry)d(iy)

d (M))

<L

17

The proof of Lemma 4.3 is complete. O

Proof of Theorem 4.1 First let us consider the case Eq. 4.2, thatis, 8 —o < s and % + 5 =
% + ’3;. By using Lemma 4.3 with A = 2% r=1,R=2and Q = Ag,q, we get

l—a

1
ax ) < 25 e “ax) 4
lu —up,l'dx] =C p [M]S,p,q_Ak’q |u|®dx , 4.9
Ak.q Ak.q

where Ay 4 is defined in Eq. 2.9 and k € Z. Now by using Eq. 4.9 we obtain

f lul*dx = f lu—ua,,+ua.,l"dx <C / lua,|"dx —I—/ lu —ua,,|"dx
Akg Akg Akyqg Apg
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1980 A. Kassymov et al.

Ag
=C / |, |"dx + |Akq lu —up,, | dx
A |Ak.gl Jay,

-4
=C (IAk,qIIuAk,qlt + |Ak,q|]£ lu — uAk,qI’dX)
k.q

ak(sp—Q)t

T at 1 o
= C | [Akgllua, " +2 7 |Ak’q|[”]s.p,q,Ak.q [Ak,ql Ja Jul"dx
4 k.q

(1—a)t
o

ak(sp—Q)t
P

k
<C (2Q luag, ™ +2 5.P.4.Akg

_ QU—ayk -
kO == [u]eT ||”||(LH(Z),;>> . (410

Then, from Eq. 4.10 we get

/ g7* (lulFdx < 20+ Dre / ulFdx < C2@T K|y o
Ak,q Ak,q
ak(sp=Q)t  9(-a)rk

17
+ Ok B gl ) = €20 o

alsp—Q)r _ 0(l-a)r kpB12kppa _ p 2
L+ colrereseers )k / / 2PLIRN) —u g,
Ak,q YAk q 2 PﬂqQ#‘XP (y7 ° )C)

(l—a)r
o

zkau
x ( / |u(x)°‘dx) < C2 QTR T
k.

Arg ko

at
P

+ el

yrbQ HLOT - QUEAT —apr—pr(l—a) Jk / / 4" @ @) —ul”
Ak,q Y Arkq qQ+Sp(yil O)C)

(l—a)t
o

x(f q“”(x)u(xn“dx) < 2Oy, 7
AkAq

(Vr+Q+ HGP;Q)r - 20-a) 7aﬁrfur(lfa))k

17
+C2 W1 g a0 U @D

Here by Eq. 4.1, we have

asp—Qr QU —a)

yt+0+ - —apt — ut(l —a)
y 1 aGp—0) (-a af pd —a>)
= 4=+ - -
or (Q = Op « 0 0
1 B-s 1 u) a(sp—Q) (I—a) ap u(l—a))

= -+ +d-a)(-+=)+ - -

Q’(“(p 0 ) ( “)(a 0 Op « 0 0

=0. 4.12)

Thus, we obtain
/A 7" lul"dx = C20F My [+ CLul, 5 4 4 Na" ulfaler o (413)

k.q
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and by summing over k from m to n, we get

n
f " ()lul"dx = / T @lulfdx < C Y 20Ty, |7
un Ak {2’"<q(x)<2”+1}

k=m*"K.q k=m

n
1—
+C YT, a0 @l L (@.14)
k=m

where k,m,n € Zandm <n — 2.
To prove Eq. 4.3 let us choose n such that

suppu C Bon, (4.15)

where By» is a quasi-ball of G with the radius 2".
The following known inequality will be used in the proof.

Lemma 4.4 (Lemma 2.2, [16]) Let £ > 1 and n > 1. Then exists a positive constant C
depending & and n such that 1 < ¢ <&,

(lal +16D" < ¢lal” + Ya,beR. (4.16)

C
WW",

Let us consider the following integral

T
‘;Ak+l,qUAk,q ';Ak+l,qUAk,q

1

|Akt1.g] + 1Akgl Jags guae,

= u— u
|Ak+1,q| + |Ak,q| Ak+1,q Afy1,¢dVUALq

On the other hand, a direct calculation gives

Ak+1,dYAk q Ak+1,dVAk g

1
[Ak+1,g] + 1Akgl \Jar1, A 1.0UAR,
1

> u
[Ak+1,9] +1Akgl Ja,,

dx

dx

T
u— ][ u
Afy1,qVUAkq
T

dx +/ u— ][ u
A Ak+1.qYAk g

T
dx) .

k.q

T

dx

T T
dx + / u— ][ u| dx
Akg Ak+1,gUAkq
T
_ ][ "
Ak+1,YAk 4
1
u— u|dx
Ak,q Ak+],qUAk.q

z B —
|Ak+1,q| + |Ak.q|

dx

T

@ Springer



1982 A. Kassymov et al.

1 |Akq] |Akq]
. wdy — — 1Akl dx — —— 21 udx
|Akr1gl + 1Ak gl | Jay, [Art1,gl + [Akgl Jay, [Art1,q] + 1Akgl Jar,
_ 1 |Aki1ql _ kgl udx
[Akr1gl + [Acgl |[Akrrgl + 1Akgl Ja, Akl +1Akgl T,
1 T
= A |/ udx — |Agq| udx
(Ak41,9] + 1ArgD? / Akg ! Art1q
m A 1 1
_ [Akt1,9114kq] . udx — —— udx
(Akt1.gl +14kgD? |1Akgl Jag, [Aks1gl Jag,
A1l 1Ak el o 20200
= WAtargl + 1Ag,gh? A~ “aual” = € e iy sy ~

220kp—0
= CWWAHM - MA;(,,,\r > Cluag,,, — MAk_q|T~ (4.17)

From Eq. 4.17 and Lemma 4.3, we obtain

T
|MAk+1<q—MAk,q| fC][ u—][ u| dx
Aks1,4qUArg Ap+1,qUAkq

(1—a)T
o

ak(sp—Q) ra o 4
<
<C r [u $,0:q,Ak+1,qYAk.q A AL |u] dx . ( 18)
k+1.9 q

By using this fact, taking T = 1 we have

|uAk_q| =< |uAk+|'q - uAk,ql + |uAk+1yq|

(d-a)
ak(sp—0) “

|uAk+|,q|+C2 p [u]?qﬂ,q,Ak+l,qUAk,q ][ |u|*dx , (4.19)
Ag+1,4YAk g

IA

and by using Lemma 4.4 with n = 7, ¢ = 277+Q¢ where ¢ =

2 .
Q o " W < 1, simce
YT+ > (), we have

(I—-a)T

+O)k k+ D+
20+ |uAk.q|T = 2k Fhire Q)IMAHLA + C[u]éapﬂq Aququllq (x)u”L“(AquUAkq)

By summing over k from m to n and by using Eq. 4.15 we have

n n
Z 2()/T+Q)k|uAk’q I” < Z 02(k+1)(VT+Q)|uAk+Lq |7
k=m k=m

(I—a)t
+C Z [u]gsap,ﬁ,%AkH qYAkq llg™ Ceyu ”L“(Ak+1 qYArg) (4-20)
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By using Eq. 4.20, we compute

n n
(A=) Y 20ty (7 <20t Dmyy, 7 (1) Y 20Ok,
k=m k=m+1

n
(1—a)t
= ¢ Z[u];,ap,ﬂ,q,Ak+1_qUAk’q ”qﬂ(x)u||La(Ak+l.qUAk,q). (421)

This yields
n

(yt+0)k (1—a)t
Z 27 |uA "<C Z s P B4, Akt1,gUAkq ”qﬂ(x)u”L“(AI\H qYAkg)" (4.22)

k=m

From Egs. 4.14 and 4.22, we have

n
YT(x)|u|tdx < C ult H(x)u (la_”)r .
/{2,n<q(x)<2n+l}" ()|u|"dx < k;,,[ |V el CoT | ATV

(4.23)
Let s, ¢t > 0 be such that s 4+ ¢ > 1. Then for any xi, yx > 0, we have

n n s n !
Z xXpyp < (Z xk> (Z yk> . (4.24)
k=m k=m

By using this inequality in Eq. 4.23 with s = 1.t = (l_a’m o+ e > lands > g—o,
we obtain
1—.
/ ¢ Olul"dx < Clull’, o) oy g @ullpa 4 0 (429
{g(x)>2m} k=m*"K:q

Inequality Eq. 4.3 is proved.
Let us prove Eq. 4.4. The strategy of the proof is similar to the previous case. Choose m
such that
suppu N Bom = @. (4.26)

From Lemma 4.3 we have
(1—a)t

. atk(sp—Q) ra o o
|uAk+l,q - uAk#' =Cc2 [u]S,P,q,AHl qYAkg |u|"dx
' ' Ak+1,qYAkq

1427712
2

By Lemma 4.4 and choosing ¢ = < 1,since y7 + Q < 0, we have

(yT+Q)(k+1) k(yt+0) (1—a)t
20O g, 1T < 20 Dy, 17+ CLull, g an e, 19" Ul ey o)

and by summing over k from m to n and by using Eq. 4.26 we obtain

(yt+0)k (I—a)t
Z 2070 |MA "=C Z u]y PB4, Ak+1.9qYAk.q ”qﬂ(x)u||L‘Y(Ak+l.qUAk,q)' (4.27)
k=m—1

From Eqs. 4.14 and 4.27, we establish that

n—1
yf < I (1 a T
/{2'" <q(x)<2n+1} )lul*dx < € Z [u]s PB4 Akt YAk g llg (x)u”La(AkH aYAkg)"

k=m—1
(4.28)
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Now by using Eq. 4.24 we get
vT dx < C ’ FOulletn g @29
/{q(mw} Ol dx < CIul, 5 0 W @ulSe L @29)
The proof of the case s > B — o is complete.
Let us prove the case of § — o > s. Without loss of generality, we assume that
[u]s,p,ﬂ,q = ”u”LO‘(G) =1, (4.30)
where

LA

0
We also assume that a; > 0, 1 > ap and 71, 7 > 0 with
1 ap 1—ap

— ==+ , “4.31)
(%3 P o
and
1-— 11—
if 4 4 % .0, then — =274 a8
) 1P o 0
. a l1—a as 1 1 ap 1—a; as
if — —— <0, then — > — > — + ——. (432
p o o T T p o )
Taking yy = a1+ (1 —ap)p and y» = ax(B — s) + (1 — az) u, we obtain
L »n (1 B— > ( u)
74_7 >a +5" )+ Ud—a) — (4.33)
0 P 0 0
and ) L B |
V2 1%
—+ 2o (-+ 22 +(1—az)( —>. (4.34)
n 0 (P 0 ) 0
Let a; and a; be such that
la —ayp| and |a — ay| are small enough, (4.35)
. B—s 1 uw
a <a<ap, if —+ > — 4+ —, (4.36)
0 a 0
— 1
m<a<@,ﬁ—+ﬁQS<7+% 437)
By using Eqs. 4.35-4.37 in Egs. 4.33, 4.34 and 4.1, we establish
1 1 1
R 4 I A £ ) 4.38)

n Q0 t 0 n Q0
From Eq. 4.32 in the case % + L= % > OQwitha > 0, 8 — o > s and Eq. 4.35, we get

o

11 y(Los Ly, @ 0 439
‘L'_Tl_(a_al <P_Q_Ot>+Q(ﬂ_0)> , @
and
1 1 1 1 a
f—*Z(a—az)(*—*)-i-*(ﬂ—U—s)>0- (4.40)
T 1% )4 (o4 0

From Egs. 4.32, 4.39 and 4.40, we have
1>7, T2>T.
Thus, using this, Eq. 4.35 and Holder’s inequality, we obtain
llg” )ullLz=@\z)) < Cllg” (ullLn (), (4.41)

@ Springer



Anisotropic Fractional Gagliardo-Nirenberg, Weighted... 1985

and
llg” ®)ullz)y < Cllg”@)ullL= ), (4.42)

where B is the unit quasi-ball. By using the previous case, we establish

lg” @ull @) < Clull!, 4, llg" (ool o) < C. (4.43)
and

lg”@ullLe@ < Clul?, 4, lg* @ull 2, < C. (4.44)
The proof of Theorem 4.1 is complete. O

Remark 4.5 By taking in Eq. 44a = 1,7t = p, 1 = B2 = 0,and y = —s, we get
an analogue of the fractional Hardy inequality on homogeneous Lie groups (Theorem 2.9,

[12]).

Remark 4.6 In the Abelian case (RN , +) with the standard Eucledian distance instead of
the quasi-norm and by taking in Eq. 44a = 1,7t = p, 81 = B = 0,and y = —s, we get
the fractional Hardy inequality (Theorem 1.1, [8]).

Now we consider the critical case % + 5 =0.

Theorem 4.7 Assume that Q > 2, s € (0,1), p > 1, > 1, v > 1,a € (0,1],
Bi. B2, Bk, v ER B1+B2=5,

1.v_, (1 L) l—a (1 ﬁ) 445
+ St ) ra-al g ) (4.45)

Assume in addition that, 0 < 8 —o <swithy =aoc + (1 —a)pu.
If% + 6 = 0 and suppu C Bg, then, we have

< Clull , 4 la" ul ), u e CLG), (4.46)
LY(G)

q(x)

where Bg = {x € G : q(x) < R} is the quasi-ball and 0 < r < R.

Proof of Theorem 4.7 The proof is similar to the proof of Theorem 4.1. In Eq. 4.13,
summing over k from m to n and fixing ¢ > 0, we have

/ il <€ Z a—.
N X J——T}
{q(x)>2m)} lnH—a (ﬁ) n+1—k)+e Akyg
X

+CZ[u]S,,MA,{ lg" Cooula iy ) (447)

From Lemma 4.3, we have

l—a

ak(sp—Q) o £
|uAk+1.q - uAk_q| S C2 P [u]s Ps9q, Ak+| qUAkq |M| d.X .
Ak+quAkq
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(n+l —k)®

By using Lemma 4.4 with ¢ = e

we get

|“Ak_q|r |uAk+1vq|r
(n+1-KbF ~ (n+ 5 —k)F

1— (1
+Cr+1-b™ S[M]S PB4, Ak 1,gYAkq llg" (X)MHLO‘(ZAT«H qYAkg) (4.48)

For ¢ > 0 and n > k, we have

1 1 1
- ~ . 4.4
(n—k+Df  (n—k+3F @—k+DIF* (4.49)

By using this fact, Eqs. 4.48, 4.49 and ¢ = v — 1, we obtain

n

lua,| (-a)yt
2 (n+1" o _CZ 05 s e 19" QO T oy (50)

From Eqgs. 4.47 and 4.50, we establish

qyr(x) T - at (1—-a)t
lul*dx < C ) [ul§ llg" ()ull o . (4.51)
/{q(x)>2m} In® % kgn:l $,P:B.q,Ak+1,dYAk g LY(Ag+1,qYAk.q)
By using Eqs. 4.24 with 445 and 0 < $ — 0 < s, where s = 24,1 = (=4 " \e have
s +t > 1 and we arrive at
qyf(x) M (I-a)t
| wrar=c S g e PRI @)
{g(x)>2"} 7@ k=m
Theorem 4.7 is proved. O

5 Lyapunov-type Inequalities for the Fractional Operators on G

In this section we prove the Lyapunov-type inequality for the Riesz potential and for the
fractional p-sub-Laplacian system on homogeneous Lie groups. Note that the Lyapunov-
type inequality for the Riesz operator is new even in the Abelian case (RY, +). Also,
we give applications of the Lyapunov-type inequality, more precisely, we give two side
estimates for the first eigenvalue of the Riesz potential of the fractional p-sub-Laplacian
system.

Let us consider the Riesz potential on a Haar measurable set 2 C G that can be defined
by the formula

. u(y)
Ru(x) = /Q 7{]9—25()1—1 Ox)dy, 0<2s<Q. 5.1

The (weighted) Riesz potential can be also defined by

R(wi)(x) = f o()u(y)

— 2Ty, 0<2 : 52
0 g2 G Ton ™ 7T s=e ©-2

Theorem 5.1 Let @ C G be a Haar measurable set and let Q > 2 > 2s > 0 and

let 1 < p < 2. Assume that © € L™9(R), gyl € L71(Q x ©) and Cp =
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Letu € L7T(Q), u # 0, satisfy

1
TO0=2s (=1~ _p_
HqQ Fo7on) | L7T (axe)

R(wu) (x) = / w(y)u(y)

———————dy = u(x), forae. x € Q. (5.3)
Qg2 B0 ox)

Then

1
> —. 5.4
ol 2, o = & (5:4)

Proof of Theorem 5.1 In Eq. 5.3, by using Holder’s inequality for p, 6 > 1 with % + # =

P ﬁ
dy
1
14 rd
dy

P P
dy) . 55

landé—i-&: 1, we have

1
w()uy) IR
/g‘qu*Z“(y*I Ox)dy‘ < (/Q lo(u(y)l d)’) ( A

€1 1
9 po o o'p
< (f ()P dy) (f ()| de) (
Q Q Q
1

= lloll oo ey lutll o /‘7
Q) Lro(Q) o qQ—Zs(y—lox)

Let p’ be such that p’ = pf’ and then § = % Thus, we get

1

lu(x)| = m

g9 2 (y"lox)

» p-1
= v
lu(x)| < ||a)||L257( fluell L@ ( o= 23(),—1 e dy) ) (5.6)
From Eq. 5.6 we calculate
p—1
! & dxd ’
<
Il ey o S Nl e ol ey priryse pre (A
= Collwll L5 el o (5.7
P () LrT(@)
Finally, since u # 0, this implies
1
> —. 5.8
ol 25 00 2 & (5.8)
Theorem 5.1 is proved. O

Let us consider the following spectral problem for the Riesz potential:
u(y)
Ru(x) = ﬁdy =Aiulx), x€2, 0<2s <. 5.9)
Qg2 ¥y ox)
We recall the Rayleigh quotient for the Riesz potential:
JaJa ng)f)u(—vl) dxdy
A1(Q) = sup 9= o) , (5.10)
M#O ”u”Lz(Q)

where 11 (2) is the first eigenvalue of the Riesz potential.
So, a direct consequence of Theorem 5.1 is
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Theorem 5.2 Let @ C G be a Haar measurable set and Q > 2 > 2s > 0 and let

1 < p < 2. Assume that € L%(Q X Q). Then for the spectral problem

1
g2 (y~Tox)
Eq. 5.9, we have

2—
M) < ColQl T . G.11)

1
where Cy = Hi r .
0 q2725(y~Tox) LP-T(QxQ)

Proof of Theorem 5.2 By using Eq. 5.10, Theorem 5.1 and w = ﬁ we obtain
2—
1(Q) < Col2 7 (5.12)
Theorem 5.2 is proved. O

In the Abelian group (RY, +) we have the following consequences. To the best of our
knowledge, these results seem new (even in this Euclidean case).
Let us consider the Riesz potential on Q@ C R¥:

Ru(x) =/ %dy, 0<2s <N, (5.13)
Q lx —y[V==s
and the weighted Riesz potential
R(wu) (x) = / %dy, 0<2s<N. (5.14)

Then we have following theorem:

Theorem 5.3 Ler Q C RV, N > 2, bea measurable set with | < oo, 1 < p <2
P
andlet N > 2 > 2s > 0. Assume that v € L2~ P(Q) € Lr-1(Q2 x Q) and let

S=|—=l = . Assume that u € LT (), u # 0, satisfies
=yl LPT(QxQ)
R(wu)(x) =u(x), x € Q.
Then |
IIwIILZL z 3 (5.15)

Proof of Theorem 5.3 In Theorem 5.1 we set G = (RY, +) and take the standard Euclidean
distance instead of the quasi-norm. O

Let us consider the spectral problem for Eq. 5.13:

Ru(x) = / : ”(yv)v —dy =hu(x), 0<2s <N, (5.16)

Theorem 5.4 Let Q Cc RN, N > 2, beasethth|§2| < 09, 1<p<2andN22>
2s > 0and 1 < p < 2. Assume that o € L2~ P(Q) € L%(Q x ) and

T = )\N =

1
|X7y|N—2s

S = p . Then for the spectral problem Eq. 5.16 we have,

L7 T (QxQ)

A1(Q) <21 (B) < SIBI 7. (5.17)
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where B C RN is an open ball, .1 () is the first eigenvalue of the spectral problem Eq. 5.16
with || = | B].

2—p
Proof of Theorem 5.4 The proof of A1(B) < S|B|TI is the same as the proof of Theorem
5.2. From [17] we have

A1(B) = A1(8).

The proof of Theorem 5.4 is complete. O

In [12] the authors proved a Lyapunov-type inequality for the fractional p-sub-Laplacian
with the homogeneous Dirichlet condition. Here we establish Lyapunov-type inequality for
the fractional p-sub-Laplacian system for the homogeneous Dirichlet problem. Namely, let
us consider the fractional p-sub-Laplacian system:

(—=Ap )Mt (x) = @1 () |ur ()9 20y () |ua (0)[*2 . Jup (X) %, x € Q,
(= py )22 (x) = w2 (0)|ur ()| uz (x) %2 2up (x) . . . Jup (X)[%, x € Q,

(5.18)
(=2 ) "t () = @ 0O |1 )| 2 (0)[* .t (0] 2un (%), x € R,
with homogeneous Dirichlet conditions
ui(x) =0, xeG\Q, i=1,...,n, (5.19)

where Q C G is a Haar measurable set, w; € L1(Q), w; > 0, s; € (0, 1), pi € (1,00) and

(—Ap,4)* is the fractional p-sub-Laplacian on G defined by

. . Pi—2(y. .
(= Apy.)* i (@) = 2 lim [ui (x) — u; (y).l , (?z(x) ui(y))
N0 JG\B, (x.5) q@tsiri(y=1 o x)

dy, x €G,
i=1,...,n. (5.20)

Here B, (x, 8) is a quasi-ball with respect to g, with radius 8, centred at x € G, and o; are
positive parameters such that

DRt (5.21)
i=l1

To prove a Lyapunov-type inequality for the system we need some preliminary results from
[12], the so-called fractional Hardy inequality on the homogeneous Lie groups.

Theorem 5.5 ([12], Fractional Hardy inequality) For all u € C°(G) we have

()| ,
C[G qps(x) dx < [u]S»P"I’ (522)

where p € (1,00), s € (0, 1), and C is a positive constant.

We denote by rq 4 the inner quasi-radius of €2, that is,

re,q =max{g(x) : x € Q}. (5.23)
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Definition 5.6 We say that (u1, ..., u,) € []_; ng’pi (2) is a weak solution of Egs. 5.18—
5.19if for all (vi,...,v,) € [, Wéi‘pi(Q), we have

/ / ot () — i D)1~ 2 (i () — i () (v (x) — Ui()’))dxd
q2tsiri(y=lox) Y

i—1 n
= /Q i) | [Tl | [ TT 1ol | I o)1%~2us (ryvi (x)dx, - (5.24)
j=1 j=i+l

foreveryi =1,...,n.

Now we present the following analogue of the Lyapunov-type inequality for the
fractional p-sub-Laplacian system on G.

Theorem 5.7 Lets; € (0, 1) and p; € (1, 00) be such that Q > s;p; foralli =1,...,n
Let w; € LY () be a non-negative weight and assume that

}<9<oo.

If Eqgs. 5.18-5.19 admits a nontrivial weak solution, then

O

> Q 0> s
1_[||wl|| 7 ag 7, (5.25)

LG(Q)
where C > 0 is a positive constant.

Remark 5.8 In Theorem 5.7, by taking n = 1 and o1 = p, we establish the Lyapunov-type
inequality for the fractional p-sub-Laplacian on G (see, e.g. [12, Theorem 3.1]).

Proof of Theorem 5.7 For alli =1, ..., n, let us define

& =vipi+ 1 —y)pl, (5.26)
and
_ 0
Si Pi
; = ——, 5.27
vi= g, (5.27)

where pl* = ﬁ is the Sobolev conjugate exponent as in Theorem 3 1. Notice that for

alli = ,n we have y; € (0,1) and & = p;0’, where 0/ = . Then for every
ie{l,. n}weget
. & . &
P JTCON
rQ’q Q quSsz (x)

and by using Holder’s inequality with the following exponents v; = )/L and Ui + & =1, we
get '

/ @ / g GOV g 1 =7
X

quSer(x) q)/iSiPi(x)
) i Vi ad
([ O Y ([ gorian) ™ 52
Q q%Pi(x) Q
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On the other hand, from Theorem 3.1, we obtain

T pr-y)
</ |u,»(x)|”idx> < Cluils! p.q >
Q

and from Theorem 5.5, we have

lu; ()P Y i
< 2 dx < C[ui]s,-,};i,q

Q q%iPi(x)
Thus, from Eq. 5.28 and by taking u; (x) = v;(x) in Eq. 5.24, we get

[ IO <ty o = it
o Si\Pisq,2 Uilsi,pi.q

q}’: Si Pi (x) -
& ’
n i n 0
=C /wi(x)nlujla-"dx =C /a)i(x)l_[|uj|°‘-fdx ,
Q . Q -
j=1 j=1
foreveryi = 1, ..., n. Therefore, by using Holder’s inequality with exponents 6 and 6, we

obtain
/ Jui ()1 - o
O e < Cllas 7 / ;0 dx.
o g = Cleillig 9,1:[1 !

By using Holder’s inequality and Eq. 5.21, we get

n n o
/ l_[ |Mj(x)|0lj6’dx < 1_[ (/ Iuj|9’p-"dx>“
¢ j=1 j=1 e

This implies that

9
|ui(x)| 0'p; v
[ s et cuw,nL@(Q) T( ] o
. &i . &i
[ [ et
Q Qq qul sz(x)

<C||wl||L6(Q) </ |u]| P/dx>

Thus, for every ¢; > 0 we have

/ |ui(X)|Sid ) 1 (/ lui (x)|5d >e[
X = Vo u;(x)|>*dx
Q rgétpt rse_zt’)’tstl’l Q t

q

So we establish

%

p Pj
<C||w,||L9(m (/ ey 7 ,dx> ,
1 Y e
—_— u; (X pldx
rZ?:Wijﬁj% , (/ i (0] )

Q.9 i=1

so that
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o Zr;zﬂj

( / |ui<x>|9”’fdx> g
Q

n

(H sznm) [1

This yields
1 " 0/ u Z?:l 4 —€;
. pi Vi
s <€ ]"[ Jonl e, [T (juito” 7 ax) L6529
ro q i=1
where C is a positive constant. Then, we choose ¢;, i = 1, ..., n, such that
n
ai Yy t_jej
@—ei =0, i=1,...,n.
pi
Consequently, from Eq. 5.21 we have the solution of this system
=" i=1..n (5.30)
pi
From Egs. 5.29, 5.27 and 5.30 we arrive at
Oa;
L Q 03" s
]"[uw,nm(m aq (5.31)
Theorem 5.7 is proved. O

Now, let us discuss an application of the Lyapunov-type inequality for the fractional
p-sub-Laplacian system on G. In order to do it we consider the spectral problem for the
fractional p-sub-Laplacian system in the following form:

(=Apy)" w1 (x) = M@0 ]ur () 2ur ()2 (D1 .. Juy (0], x € Q,
(=4 py ) 2u2(x) = Aoa@(0)u1 (0] 2. ()|2 Uz (x) . .. |y ()|, x € Q,

(=Apy )" 1n (%) = An0tn@(0) |1 (0|1 |2 ()2 . iy ()% U (x), x € Q,
(5.32)
with
ui(x) =0, xeG\Q, i=1,...,n, (5.33)
where @ C G is a Haar measurable set, ¢ € L'(Q), ¢ > Oand s; € (0,1), p; €
(1,00), i=1,...,n.

Definition 5.9 We say that A = (11, ..., A,) is an eigenvalue if the problem Egs. 5.32-5.33
admits at least one nontrivial weak solution (u1, ..., u,) € []_; Wéi’p Q).

Theorem 5.10 Lets; € (0, 1) and p; € (1, 00) be such that Q > s;p;, foralli =1,...,n
and

}<0<oo.

Let ¢ € LY(Q) with lellLe(qy # 0. Then, we have

Pk Pk
ay Oay
C 1 1
Ak = o o

: i
Gctl

i 0 i aisi—
n:‘l=l,i#k)‘i] VQ% L n?lz#k“ Jo 97 (x)dx
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where C is a positive constantand k =1, ..., n.

Proof of Theorem 5.10 In Theorem 5.7 by taking wy = Arare(x), k =1,...,n, we have

90‘7’( M n Oa; n % Qigzﬂ T
i i Jj=1°7%J
o 1" [T @7 [Thel /g = Cra, =7
i=1,i#k i=1
Thus, using Eq. 5.21 we obtain
m M n Oa; n
3 —i 0-6375sje;
o A l_[ (QiA;) Pi fwg(x)dx > Crq, =
i=1,i%k £
This implies
Qo
A > < k=1,...,n
e R 0 ’ Y
o rg ™ T iz @id) P [ ¢ ()dx
Finally, we get that
Pk Pk
ap Oay
C 1 1
)"k > — a; Oa: )
Xk Pi 03 isi—0 T
[Tz 2 rsz% - [Tizrimee” oo )dx
k=1,...,n. (5.35)
Theorem 5.10 is proved. O
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