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Abstract
In this paper we prove the fractional Gagliardo-Nirenberg inequality on homogeneous Lie
groups. Also, we establish weighted fractional Caffarelli-Kohn-Nirenberg inequality and
Lyapunov-type inequality for the Riesz potential on homogeneous Lie groups. The obtained
Lyapunov inequality for the Riesz potential is new already in the classical setting of .
As an application, we give two-sided estimate for the first eigenvalue of the Riesz poten-
tial. Also, we obtain Lyapunov inequality for the system of the fractional -sub-Laplacian
equations and give an application to estimate its eigenvalues.
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1 Introduction

1.1 Fractional Gagliardo-Nirenberg Inequality

In the works of E. Gagliardo [9] and L. Nirenberg [14] (independently), they obtained the
following (interpolation) inequality

2 2
2

2 2 2
2

1 (1.1)

where
2 for 2

2 2
2 for 2.

The Gagliardo-Nirenberg inequality on the Heisenberg group has the following form

2 2
2

2 2 2
2 (1.2)

where is a horizontal gradient and is a homogeneous dimension of . In [3],
the authors established the best constant for the sub-elliptic Gagliardo-Nirenberg inequal-
ity Eq. 1.2. Consequently, in [20] the best constants in Gagliardo-Nirenberg and Sobolev
inequalities were also found for general hypoelliptic (Rockland operators) on general graded
Lie groups.

In [15] the authors obtained a fractional version of the Gagliardo-Nirenberg inequality in
the following form:

1 1 (1.3)

where is Gagliardo’s seminorm defined by

for 1 0 1 1 1 0 and 0 1 is such that

1 1 1
.

In this paper we formulate the fractional Gagliardo-Nirenberg inequality on the homoge-
neous Lie groups. To the best of our knowledge, in this direction systematic studies on the
homogeneous Lie groups started by the paper [18] in which homogeneous group versions
of Hardy and Rellich inequalities were proved as consequences of universal identities.

1.2 Fractional Caffarelli-Kohn-Nirenberg Inequality

In their fundamental work [2], L. Caffarelli, R. Kohn and L. Nirenberg established:

Theorem 1.1 Let 1, and let 1, 2, 3, be such that 1 2 1, 3
0 0 1 and

1

1

1

2

1

3

1
0. (1.4)

Then,

1
3 1

1
2

(1.5)
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if and only if

1

3

1 1

1

1
1

1

2

0 if 0

1 if 0 and
1

3

1 1

1

1
(1.6)

where is a positive constant independent of .

In [15] the authors proved the fractional analogues of the Caffarelli-Kohn-Nirenberg
inequality in weighted fractional Sobolev spaces. Also, in [1] a fractional Caffarelli-Kohn-
Nirenberg inequality for an admissible weight in was obtained.

Recently many different versions of Caffarelli-Kohn-Nirenberg inequalities have been
obtained, namely, in [24] on the Heisenberg groups, in [22] and [23] on stratified groups,
in [19] and [21] on (general) homogeneous Lie groups. One of the aims of this paper is
to prove the fractional weighted Caffarelli-Kohn-Nirenberg inequality on the homogeneous
Lie groups.

1.3 Fractional Lyapunov-type Inequality

Historically, in Lyapunov’s work [13] for the following one-dimensional homogeneous
Dirichlet boundary value problem (for the second order ODE)

0

0
(1.7)

it was proved that if is a non-trivial solution of Eq. 1.7 and is a real-valued and
continuous function on , then necessarily

4
. (1.8)

Nowadays, there are many extensions of Lyapunov’s inequality. In [5] the author obtains
Lyapunov’s inequality for the one-dimensional Dirichlet -Laplacian

2 0 1

0
(1.9)

where 1 , so necessarily

2
1

1 . (1.10)

Obviously, taking 2 in Eq. 1.10, we recover the classical Lyapunov inequality Eq. 1.8.
In [10] the authors obtained interesting results concerning Lyapunov inequalities for

the multi-dimesional fractional -Laplacian , 1 0 1 , with a
homogeneous Dirichlet boundary condition, that is,

2

0
(1.11)

where is an open set, 1 and 0 1 . Let us recall the following
result of [10].
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Theorem 1.2 Let be an open set, and let with 1
be a non-negative weight. Suppose that problem Eq. 1.11 has a non-trivial weak solution

0 . Then
1

(1.12)

where 0 is a universal constant and is the inner radius of .

In [4], the authors considered a system of ODE for and -Laplacian on the interval
with the homogeneous Dirichlet condition in the following form:

2 2

2 2 (1.13)

on the interval with

0 (1.14)

where 1 0, 1 0 and

1.

Then we have Lyapunov-type inequality for system Eq. 1.13 with homogeneous Dirichlet
condition Eq. 1.14:

2 (1.15)

where 1 and 1 . In [11], the authors obtained the Lyapunov-type inequality

for a fractional -Laplacian system in an open bounded subset with homogeneous
Dirichlet conditions. One of our goals in this paper is to extend the Lyapunov-type inequality
for the Riesz potential and for the fractional -sub-Laplacian system on the homogeneous
Lie groups. These results are given in Theorem 5.1 and 5.7. Also, we give applications of the
Lyapunov-type inequality for the Riesz potential and for fractional -sub-Laplacian system
on the homogeneous Lie groups. To demonstrate our techniques we consider the Riesz
potential in the Abelian case and give two side estimates of the first eigenvalue of
the Riesz potential in the Abelian case .

Summarising our main results of the present paper, we prove the following facts:

An analogue of the fractional Gagliardo-Nirenberg inequality on the homogeneous
group ;
An analogue of the fractional weighted Caffarelli-Kohn-Nirenberg inequality on ;
An analogue of the Lyapunov-type inequality for the Riesz potential on ;
An analogue of the Lyapunov-type inequality for the fractional -sub-Laplacian system
on .

The paper is organised as follows. First we give some basic discussions on fractional
Sobolev spaces and related facts on homogeneous Lie groups, then in Section 3 we present
the fractional Gagliardo-Nirenberg inequality on . The fractional weighted Caffarelli-
Kohn-Nirenberg inequality on is proved in Section 4. In Section 5 we discuss analogues
of the Lyapunov-type inequalities for the Riesz potential and fractional -sub-Laplacian
system on .
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2 Preliminaries

We recall that a Lie group (on ) with the dilation

1
1 1 0

which is an automorphism of the group for each 0 is called a homogeneous (Lie)
group. In this paper, for simplicity, we use the notation instead of the dilation .
The homogeneous dimension of the homogeneous group is denoted by

1 .

A homogeneous quasi-norm on is a continuous non-negative function

0 (2.1)

with the properties

i) 1 for all ,
ii) for all and 0,
iii) 0 iff 0.

Moreover, the following polarisation formula on homogeneous Lie groups will be used in
our proofs: there is a (unique) positive Borel measure on the unit quasi-sphere

1 so that for every 1 we have

0

1 . (2.2)

We refer to [7] for the original appearance of such groups, and to [6] for a recent com-
prehensive treatment. Let 1, 0 1 , and let be a homogeneous Lie group of
homogeneous dimension . For a measurable function we define the Gagliardo
quasi-seminorm by

1

1

. (2.3)

Now we recall the definition of the fractional Sobolev spaces on homogeneous Lie groups
denoted by . For 1 and 0 1 , the functional space

is measurable (2.4)

is called the fractional Sobolev space on .
Similarly, if is a Haar measurable set, we define the Sobolev space

is measurable

1

1

. (2.5)

Now we recall the definition of the weighted fractional Sobolev space on the homoge-
neous Lie groups denoted by

is measurable

1 2

1

1

(2.6)

where 1 2 with 1 2 and it depends on 1 and 2.
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As above, for a Haar measurable set , 1, 0 1 and 1 2 with
1 2, we define the weighted fractional Sobolev space

is measurable

1 2

1

1

. (2.7)

Obviously, taking 1 2 0 in Eq. 2.7, we recover Eq. 2.5.
The mean of a function is defined by

1 1 (2.8)

where is the Haar measure of .
We will also use the decomposition of into quasi-annuli defined by

2 2 1 (2.9)

where is a quasi-norm on .

3 Fractional Gagliargo-Nirenberg Inequality on

In this section we prove an analogue of the fractional Gagliardo-Nirenberg inequality on the
homogeneous Lie groups. To prove Gagliardo-Nirenberg’s inequality we need some pre-
liminary results from [12], a version of a fractional Sobolev inequality on the homogeneous
Lie groups.

From now on, unless specified otherwise, will be a homogeneous group of homoge-
neous dimension .

Theorem 3.1 ([12], Fractional Sobolev inequality) Let 1, 0 1 , and
let be a quasi-norm on . For any measurable and compactly supported function

there exists a positive constant 0 such that

(3.1)

where .

Theorem 3.2 Assume that 2, 0 1 , 1, 1, 0, 0 1 , and

1 1 1
.

Then,

1 1 (3.2)

where 0.
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Proof of Theorem 3.2 By using the Hölder inequality, for every 1 1 1 we
get

1 1 (3.3)

where . From Eq. 3.3, by using the fractional Sobolev inequality (Theorem 3.1),
we obtain

1 1

that is,

1 (3.4)

where is a positive constant independent of . Theorem 3.2 is proved.

Remark 3.3 In the Abelian case with the standard Euclidean distance instead of the
quasi-norm, from Theorem 3.2 we get the fractional Gagliardo-Nirenberg inequality which
was proved in [15].

4 Weighted Fractional Caffarelli-Kohn-Nirenberg Inequality on

In this section we prove the weighted fractional Caffarelli-Kohn-Nirenberg inequality on
the homogeneous Lie groups.

Theorem 4.1 Assume that 2, 0 1 , 1, 1, 0, 0 1 ,
1 2 , 1 2 and

1 1
1

1
. (4.1)

Assume in addition that, 0 with 1 and

only if
1 1

. (4.2)

Then for 1 we have

1 (4.3)

when 1 0, and for 1 we have

1 (4.4)

when 1 0. Here is the identity element of .

Remark 4.2 In the Abelian case with the standard Euclidean distance instead of
quasi-norm in Theorem 4.1, we get the (Euclidean) fractional Caffarelli-Kohn-Nirenberg
inequality (see, e.g. [15], Theorem 1.1).
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To prove the fractional weighted Caffarelli-Kohn-Nirenberg inequality on we will use
Theorem 3.2 in the proof of the following lemma.

Lemma 4.3 Assume that 2, 0 1 , 1, 1, 0, 0 1 and

1 1 1
.

Let 0 and 0 and set

.

Then, for every 1 , we have

1 1

(4.5)

where is a positive constant independent of and .

Proof of Lemma 4.3 Without loss of generality, we assume that 0 and are
such that

1 1 1

and 1, then let 1 be

1 .

By using Theorem 3.2, Jensen’s inequality and , we get

1
1

1
1

1
1 1 1 1

1 1

1
1

1 1

1 1

1
1

1

1

1
1 1

1

1

(4.6)

where 0. Let us set instead of , then

1 1

1

1 1
1

1

1 1

1

. (4.7)
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Thus, we compute

1
1 1

1

1 1
1

1

1 1 1 1

1

1

1 1

1

1 1

1

1 1
1

1

1 1

1

1 1

2

2 1

1

1 1

1

1

1
1

1

1
1

1
1

. (4.8)

The proof of Lemma 4.3 is complete.

Proof of Theorem 4.1 First let us consider the case Eq. 4.2, that is, and 1

1 . By using Lemma 4.3 with 2 , 1 2 and , we get

1

2

1

(4.9)

where is defined in Eq. 2.9 and . Now by using Eq. 4.9 we obtain
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2
1

1

2 2 2 2
1 1 . (4.10)

Then, from Eq. 4.10 we get

2 1 2

2 2 2 2
1 1 2

2
1 2 12 2

2 1

2

2

1

2

2
1 1 1 2

1

1

2

2
1 1 1 . (4.11)

Here by Eq. 4.1, we have

1
1

1 1 1

1
1

1 1 1

0. (4.12)

Thus, we obtain

2 1 (4.13)
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and by summing over from to , we get

2 2 1
2

1 (4.14)

where and 2.
To prove Eq. 4.3 let us choose such that

supp 2 (4.15)

where 2 is a quasi-ball of with the radius 2 .
The following known inequality will be used in the proof.

Lemma 4.4 (Lemma 2.2, [16]) Let 1 and 1. Then exists a positive constant
depending and such that 1 ,

1 1
. (4.16)

Let us consider the following integral

1 1

1

1 1 1

1

1 1 1 1

.

On the other hand, a direct calculation gives

1 1

1

1 1 1 1

1

1 1

1

1 1
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1

1 1 1 1

1

1

1

1 1 1

1

1
2 1

1

1

1
2

1 1

1 1

1

1
2 1

2 2 1

2 2 1 2 1

22 2

22 1 2 2 1 1 . (4.17)

From Eq. 4.17 and Lemma 4.3, we obtain

1
1 1

2
1

1

1

. (4.18)

By using this fact, taking 1 we have

1 1

1 2
1

1

1

(4.19)

and by using Lemma 4.4 with , 2 , where 2
1 2

1, since
0, we have

2 2 1
1 1

1
1

.

By summing over from to and by using Eq. 4.15 we have

2 2 1
1

1

1
1

. (4.20)
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By using Eq. 4.20, we compute

1 2 2 1
1

2

1

1
1

. (4.21)

This yields

2
1

1
1

. (4.22)

From Eqs. 4.14 and 4.22, we have

2 2 1 1

1
1

.

(4.23)
Let 0 be such that 1. Then for any 0, we have

. (4.24)

By using this inequality in Eq. 4.23 with , 1 , 1 1 and ,
we obtain

2

1 . (4.25)

Inequality Eq. 4.3 is proved.
Let us prove Eq. 4.4. The strategy of the proof is similar to the previous case. Choose

such that
supp 2 . (4.26)

From Lemma 4.3 we have

1 2
1

1

1

.

By Lemma 4.4 and choosing 1 2
2 1, since 0, we have

2 1
1 2

1

1
1

and by summing over from to and by using Eq. 4.26 we obtain

2
1

1
1

1
1

. (4.27)

From Eqs. 4.14 and 4.27, we establish that

2 2 1

1

1
1

1
1

.

(4.28)
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Now by using Eq. 4.24 we get

2 1

1 . (4.29)

The proof of the case is complete.
Let us prove the case of . Without loss of generality, we assume that

1 (4.30)

where
1 1

.

We also assume that 1 0 1 2 and 1 2 0 with

1

2

2 1 2 (4.31)

and

if
1

0 then
1

1

1 1 1 1

if
1

0 then
1 1

1

1 1 1 1 . (4.32)

Taking 1 1 1 1 and 2 2 1 2 , we obtain

1

1

1
1

1
1 1

1
(4.33)

and
1

2

2
2

1
1 2

1
. (4.34)

Let 1 and 2 be such that

1 and 2 are small enough (4.35)

2 1 if
1 1

(4.36)

1 2 if
1 1

. (4.37)

By using Eqs. 4.35–4.37 in Eqs. 4.33, 4.34 and 4.1, we establish

1

1

1 1 1

2

2 0. (4.38)

From Eq. 4.32 in the case 1 0 with 0, and Eq. 4.35, we get

1 1

1
1

1 1
0 (4.39)

and
1 1

2
2

1 1
0. (4.40)

From Eqs. 4.32, 4.39 and 4.40, we have

1 2 .

Thus, using this, Eq. 4.35 and Hölder’s inequality, we obtain

1
1

1 (4.41)
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and

1
2

2 (4.42)

where 1 is the unit quasi-ball. By using the previous case, we establish

1
1

1 1 1 (4.43)

and
2

2
2 1 2 . (4.44)

The proof of Theorem 4.1 is complete.

Remark 4.5 By taking in Eq. 4.4 1, , 1 2 0, and , we get
an analogue of the fractional Hardy inequality on homogeneous Lie groups (Theorem 2.9,
[12]).

Remark 4.6 In the Abelian case with the standard Eucledian distance instead of
the quasi-norm and by taking in Eq. 4.4 1, , 1 2 0, and , we get
the fractional Hardy inequality (Theorem 1.1, [8]).

Now we consider the critical case 1 0.

Theorem 4.7 Assume that 2, 0 1 , 1, 1, 1, 0 1 ,
1 2 , 1 2 ,

1 1
1

1
. (4.45)

Assume in addition that, 0 with 1 .
If 1 0 and supp then, we have

ln 2
1 1 (4.46)

where is the quasi-ball and 0 .

Proof of Theorem 4.7 The proof is similar to the proof of Theorem 4.1. In Eq. 4.13,
summing over from to and fixing 0, we have

2 ln1 2

1

1 1

1 . (4.47)

From Lemma 4.3, we have

1 2
1

1

1

.
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By using Lemma 4.4 with 1
1
2

we get

1
1

1
2

1 1
1

1
1

. (4.48)

For 0 and we have

1

1

1
3
2

1

1 1
. (4.49)

By using this fact, Eqs. 4.48, 4.49 and 1, we obtain

1 1

1
1

. (4.50)

From Eqs. 4.47 and 4.50, we establish

2 ln 2 1

1
1

. (4.51)

By using Eqs. 4.24 with 4.45 and 0 , where , 1 , we have
1 and we arrive at

2 ln 2
1 . (4.52)

Theorem 4.7 is proved.

5 Lyapunov-type Inequalities for the Fractional Operators on

In this section we prove the Lyapunov-type inequality for the Riesz potential and for the
fractional -sub-Laplacian system on homogeneous Lie groups. Note that the Lyapunov-
type inequality for the Riesz operator is new even in the Abelian case . Also,
we give applications of the Lyapunov-type inequality, more precisely, we give two side
estimates for the first eigenvalue of the Riesz potential of the fractional -sub-Laplacian
system.

Let us consider the Riesz potential on a Haar measurable set that can be defined
by the formula

R
2 1

0 2 . (5.1)

The (weighted) Riesz potential can be also defined by

R
2 1

0 2 . (5.2)

Theorem 5.1 Let be a Haar measurable set and let 2 2 0 and

let 1 2. Assume that 2 , 1
2 1

1 and 0
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1
2 1 1

. Let 1 , 0, satisfy

R
2 1

for a.e. . (5.3)

Then

2

1

0
. (5.4)

Proof of Theorem 5.1 In Eq. 5.3, by using Hölder’s inequality for 1 with 1 1

1 and 1 1 1, we have

2 1

1
1

2 1

1

1 1
1

2 1

1

1
2 1

1

. (5.5)

Let be such that and then 1
2 . Thus, we get

2 1

1
2 1

1

1

. (5.6)

From Eq. 5.6 we calculate

1 2 1

1
2 1

1

1

0
2 1

. (5.7)

Finally, since 0, this implies

2

1

0
. (5.8)

Theorem 5.1 is proved.

Let us consider the following spectral problem for the Riesz potential:

R
2 1

0 2 . (5.9)

We recall the Rayleigh quotient for the Riesz potential:

1 sup
0

2 1

2
2

(5.10)

where 1 is the first eigenvalue of the Riesz potential.
So, a direct consequence of Theorem 5.1 is
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Theorem 5.2 Let be a Haar measurable set and 2 2 0 and let

1 2. Assume that 1
2 1

1 . Then for the spectral problem

Eq. 5.9, we have

1 0
2

(5.11)

where 0
1

2 1 1
.

Proof of Theorem 5.2 By using Eq. 5.10, Theorem 5.1 and 1
1

, we obtain

1 0
2

. (5.12)

Theorem 5.2 is proved.

In the Abelian group we have the following consequences. To the best of our
knowledge, these results seem new (even in this Euclidean case).

Let us consider the Riesz potential on :

R
2

0 2 (5.13)

and the weighted Riesz potential

R
2

0 2 . (5.14)

Then we have following theorem:

Theorem 5.3 Let 2 be a measurable set with , 1 2

and let 2 2 0. Assume that 2 , 1
2

1 and let

1
2 1

. Assume that 1 , 0, satisfies

R .

Then

2

1
. (5.15)

Proof of Theorem 5.3 In Theorem 5.1 we set and take the standard Euclidean
distance instead of the quasi-norm.

Let us consider the spectral problem for Eq. 5.13:

R
2

0 2 (5.16)

Theorem 5.4 Let 2 be a set with , 1 2 and 2

2 0 and 1 2. Assume that 2 , 1
2

1 and

1
2 1

. Then for the spectral problem Eq. 5.16 we have,

1 1
2

(5.17)
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where is an open ball, 1 is the first eigenvalue of the spectral problem Eq. 5.16
with .

Proof of Theorem 5.4 The proof of 1
2

is the same as the proof of Theorem
5.2. From [17] we have

1 1 .

The proof of Theorem 5.4 is complete.

In [12] the authors proved a Lyapunov-type inequality for the fractional -sub-Laplacian
with the homogeneous Dirichlet condition. Here we establish Lyapunov-type inequality for
the fractional -sub-Laplacian system for the homogeneous Dirichlet problem. Namely, let
us consider the fractional -sub-Laplacian system:

1
1 1 1 1 1 2

1 2 2

2
2 2 2 1 1 2 2 2

2

1 1 2 2 2

(5.18)

with homogeneous Dirichlet conditions

0 1 (5.19)

where is a Haar measurable set, 1 , 0, 0 1 , 1 and
is the fractional -sub-Laplacian on defined by

2 lim
0

2

1

1 . (5.20)

Here is a quasi-ball with respect to , with radius centred at and are
positive parameters such that

1

1. (5.21)

To prove a Lyapunov-type inequality for the system we need some preliminary results from
[12], the so-called fractional Hardy inequality on the homogeneous Lie groups.

Theorem 5.5 ([12], Fractional Hardy inequality) For all we have

(5.22)

where 1 0 1 and is a positive constant.

We denote by the inner quasi-radius of , that is,

max . (5.23)
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Definition 5.6 We say that 1 1 0 is a weak solution of Eqs. 5.18–
5.19 if for all 1 1 0 , we have

2

1

1

1 1

2 (5.24)

for every 1 .

Now we present the following analogue of the Lyapunov-type inequality for the
fractional -sub-Laplacian system on .

Theorem 5.7 Let 0 1 and 1 be such that for all 1 .
Let be a non-negative weight and assume that

1 max
1 ...

.

If Eqs. 5.18–5.19 admits a nontrivial weak solution, then

1

1 (5.25)

where 0 is a positive constant.

Remark 5.8 In Theorem 5.7, by taking 1 and 1 , we establish the Lyapunov-type
inequality for the fractional -sub-Laplacian on (see, e.g. [12, Theorem 3.1]).

Proof of Theorem 5.7 For all 1 let us define

1 (5.26)

and

1
(5.27)

where is the Sobolev conjugate exponent as in Theorem 3.1. Notice that for

all 1 we have 0 1 and , where 1 . Then for every
1 we get

and by using Hölder’s inequality with the following exponents 1 and 1 1 1 we
get

1

1

. (5.28)
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On the other hand, from Theorem 3.1, we obtain
1

1

and from Theorem 5.5, we have

.

Thus, from Eq. 5.28 and by taking in Eq. 5.24, we get

1 1

for every 1 . Therefore, by using Hölder’s inequality with exponents and , we
obtain

1

1

.

By using Hölder’s inequality and Eq. 5.21, we get

1 1

.

This implies that

1

1

.

So we establish

1

1

.

Thus, for every 0 we have

1

1

1

so that
1

1
1
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1

1

1

1

.

This yields

1

1
1

1

1

1

(5.29)

where is a positive constant. Then, we choose 1 such that

1
0 1 .

Consequently, from Eq. 5.21 we have the solution of this system

1 . (5.30)

From Eqs. 5.29, 5.27 and 5.30 we arrive at

1

1 . (5.31)

Theorem 5.7 is proved.

Now, let us discuss an application of the Lyapunov-type inequality for the fractional
-sub-Laplacian system on . In order to do it we consider the spectral problem for the

fractional -sub-Laplacian system in the following form:

1
1 1 1 1 1 1 2

1 2 2

2
2 2 2 2 1 1 2 2 2

2

1 1 2 2 2

(5.32)
with

0 1 (5.33)

where is a Haar measurable set, 1 , 0 and 0 1 ,
1 1 .

Definition 5.9 We say that 1 is an eigenvalue if the problem Eqs. 5.32–5.33
admits at least one nontrivial weak solution 1 1 0 .

Theorem 5.10 Let 0 1 and 1 be such that for all 1
and

1 max
1

.

Let with 0. Then, we have

1

1

1

1
1

(5.34)

1992 A. Kassymov et al.



where is a positive constant and 1 .

Proof of Theorem 5.10 In Theorem 5.7 by taking 1 , we have

1 1

1 .

Thus, using Eq. 5.21 we obtain

1

1 .

This implies

1
1

1 .

Finally, we get that

1

1

1

1
1

1 . (5.35)

Theorem 5.10 is proved.
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9. Gagliardo, E.: Ulteriori proprietà di alcune classi di funzioni in più variabili. Ricerche Mat. 8, 24–51
(1959)

10. Jleli, M., Kirane, M., Samet, B.: Lyapunov-type inequalities for fractional partial differential equations.
Appl. Math Lett. 66, 30–39 (2017)

11. Jleli, M., Kirane, M., Samet, B.: Lyapunov-type inequalities for a fractional p-Laplacian system. Fract.
Calc. Appl. Anal. 20(6), 1485–1506 (2017)

12. Kassymov, A., Suragan, D.: Lyapunov-type inequalities for the fractional p-sub-Laplacian. Adv. Oper
Theory 5(2), 435–452 (2020)

13. Lyapunov, A.M.: Problème gènèral de la stabilitè du mouvement. Ann. Fac. Sci. Univ. Toulouse 2,
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