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Abstract
The general framework on the non-local Markovian symmetric forms on weighted lp (p ∈
[1, ∞]) spaces constructed by Albeverio et al. (Commn. Math. Phys. 388, 659–706, 2021)
by restricting the situation where p = 2, is applied to probability measure spaces describing
the space cut-off P(φ)2 Euclidean quantum field, the 2-dimensional Euclidean quantum
fields with exponential and trigonometric potentials, and the measure associated with the
field describing a system of an infinite number of classical particles. For each measure
space, the Markov process corresponding to the non-local type stochastic quantization is
constructed.
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1 Introduction and Preliminaries

In this paper we apply a general framework on the non-local Markovian symmetric forms
on weighted lp (p ∈ [1, ∞]) spaces constructed by [16], by restricting the situation where
p = 2, i.e., the weighted l2-space, to the stochastic quantizations of the space cut-off P(φ)2
Euclidean quantum field, the 2-dimensional Euclidean quantum fields with exponential and
trigonometric potentials, and a field of classical (infinite) particle systems. Then, for each
random field, the Markov process corresponding to the non-local type stochastic quanti-
zation is constructed. As far as we know, there exists no considerations on the non-local
type stochastic quantizations for such random fields through the arguments by the Dirich-
let forms, that are non-local (cf., [1–5, 11, 12, 18, 21–25, 32, 34, 41, 43, 44, 57], and also
for a historical aperçu on the stochastic quantizations of several random fields cf. [16] and
references therein).

Thus, the main concern of the present paper is to show the explicit results on (non-local
type) stochastic quantizations of the random fields, i.e., the probability spaces, on infinite
dimensional topological vector spaces. In order to explain in simple terms the mathematical
importance of this problem, before giving a description on the contents of this paper, we
recall the corresponding problem defined in the framework of Markov chains with finite
state spaces (also, cf. Remark 2.2 in Section 2). Let n ∈ N, suppose that we are given an n×n

Markovian matrixM ≡ (pij ), i, j = 1, . . . , n. Thus the state space S of the Markov process
in consideration is S = {1, . . . , n}. Then a probability distribution μ = (p1, . . . , pn), 0 ≤
pi ≤ 1,

∑n
i=1 pi = 1, that satisfies μ M = μ is an invariant measure of the Markov process

defined throughM , i.e.,μ is an eigenvector ofM with the eigenvalue 1. Conversely, suppose
that we are given a probability distribution μ = (p1, . . . , pn), 0 ≤ pi ≤ 1,

∑n
i=1 pi = 1,

and suppose that we are asked to find an n × n Markovian matrix M such that μ M = μ.
The latter problem is the stochastic quantization of the probability measure μ. It is the
interpretation of the stochastic quantization in the framework of the Markov process with
finite state space. Obvously, in general there exist many M that satisfy μ M = μ for a given
μ. Ergodicity of the associated Markov process is related to uniqueness of M .

Now, let us give the contents of the single sections of the present paper. In the rest of
this section we recall the general framework for non-local Dirichlet forms on weighted
lp spaces developed in [16], which will be applied to several examples in the subsequent
section. Then, in the same section in order to understand a standard procedure to construct
a concrete Markov process through the general theorems in [16], we give Example 0 on the
non-local stochastic quantization of the Euclidean free field, which has been discussed in
section 5 of [16]. Here, we given the corresponding results as Theorem 5 and Theorem 6.

In Section 2, by following the procedure introduced in Example 0, we consider the
non-local stochastic quantizations of the space cut-off exponential model of the Euclidean
quantum field theory in Example 1, concluded by Theorems 7 and 8. The space cut-off
P(φ)2 model and trigonometric model of the Euclidean quantum field theory constitute
Example 2, concluded by Theorems 9 and 10. Example 3 is a consideration on the stochastic
quantization of infinite particle systems, the corresponding resuts are given as Theorem 11.

At the end of Section 2, we give Remarks 2.1 and 2.2. Remark 2.1 includes a discussion
on the non-local stochastic quantization of the infinite particle systems, Remark 2.2 dis-
cusses the advantages of the non-local stochastic quantization with respect to the local ones
considered on infinite dimensional topolgical vector spaces. In Remark 2.2, we discuss how
the condition of the space cut-off of the potential terms put in Example 2 have been effec-
tively used (with a comparison of the corresponding results on �4

3 without cut-off given
in [16]), moreover an observation on the explicit representation of the non-local Markov
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process derived here by means of the related stochastic partial differential equations is
proposed (see also Remark 11 (Fukushima decomposition) and Remark 12 (Subordination
correspondences) in section 5 of [16]).

The final section is Appendix A, is where the proofs of lemmas which are given in
Section 2 to discuss the stochastic quantization of the infinite particle systems.

As has been announced above we first recall the abstract results on the non-local Dirich-
let forms defined on the Fréchet spaces provided in [16], and its application to the stochastic
quantization of the Euclidean free quantum field which also has been considered in [16].
By these preparations, in the next section we proceed to construct the solutions of stochas-
tic quantizations corresponding to the space cut-off P(φ)2 Euclidean quantum field, the
2-dimensional Euclidean fields with exponential and trigonometric potentials, and a field of
classical (infinite) particle systems.

Here, we limit ourselves to recalling the results in [16] that will be applied to the stochas-
tic quantizations mentioned above. Precisely, for the applications, we restrict our selves
to the formulations on the weighted l2 spaces and the non-local Dirichlet forms with the
index 0 < α ≤ 1, the index characterizing the order of the non-locality which has a
corresponcence to the index of the α stable processes.

The abstract state spaces S, on which we define the Markovian symmetric forms, are the
weighted l2 spaces, denoted by l2(βi )

, with a given weight (βi)i ∈ N, βi ≥ 0, i ∈ N, such that

S = l2(βi )
≡

{

x = (x1, x2, . . .) ∈ R
N : ‖x‖l2

(βi )
≡

( ∞∑

i=1

βi |xi |2
) 1

2

< ∞
}

. (1.1)

We denote by B(S) the Borel σ -field of S. Suppose that we are given a Borel probability
measure μ on (S,B(S)). For each i ∈ N, let σic be the sub σ -field of B(S) that is generated
by the Borel sets

B = {
x ∈ S

∣
∣ xj1 ∈ B1, . . . xjn ∈ Bn

}
, jk �= i, Bk ∈ B1, k = 1, . . . , n, n ∈ N,

(1.2)
where B1 denotes the Borel σ -field of R1. Thus, σic is the smallest σ -field that includes
every B given by Eq. 1.2. Namely, σic is the sub σ -field of B(S) generated by the variables
x \ xi , i.e., the variables except of the i-th variable xi . For each i ∈ N, let μ(· ∣∣ σic ) be
the conditional probability, a one-dimensional probability distribution (i.e., a probability
distribution for the i-th component xi) valued σic measurable function, that is characterized
by (cf. (2.4) of [24])

μ
({x : xi ∈ A} ∩ B

) =
∫

B

μ(A
∣
∣ σic ) μ(dx), ∀A ∈ B1, ∀B ∈ σic . (1.3)

Define

L2(S;μ) ≡
{

f

∣
∣
∣ f : S → R, measurable and ‖f ‖L2 =

(∫

S

|f (x)|2μ(dx)
) 1

2
< ∞

}

,

(1.4)
and

FC∞
0 =

{
f (x1, . . . , xn) ·

∏

i≥1

IR(xi)

∣
∣
∣ ∃f ∈ C∞

0 (Rn → R), n ∈ N

}
⊂ L2(S; μ), (1.5)

where C∞
0 (Rn → R) denotes the space of real valued infinitely differentiable functions on

R
n with compact supports, and IR(·) denotes the indicator function.
On L2(S; μ), for any 0 < α ≤ 1, let us define the Markovian symmetric form E(α) called

individually adapted Markovian symmetric form of index α to the measure μ, the definition
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of which is a natural analogue of the one for α-stable type (non local) Dirichlet form on
R

d , d < ∞ (cf. (5.3), (1.4) of [39], also cf. Remark 1.1 below for the corresponding local
Dirichlet forms on L2(Rn; μ) with finite n ∈ N).

For each 0 < α ≤ 1 and i ∈ N, and for the variables

yi, y′
i ∈R

1, yi �=y′
i, x=(x1, . . . ,xi−1, xi , xi+1, . . .)∈S and x\xi ≡(x1, . . . ,xi−1, xi+1, . . .),

let

�α(u, v; yi, y
′
i , x \ xi)

≡ 1

|yi − y′
i |α+1

× {
u(x1, . . . , xi−1, yi, xi+1, . . .) − u(x1, . . . , xi−1, y

′
i , xi+1, . . . )

}

×{
v(x1, . . . , xi−1, yi, xi+1, . . .) − v(x1, . . . , xi−1, y

′
i , xi+1, . . .)

}
, (1.6)

then define

E (i)
(α)(u, v) ≡

∫

S

{ ∫

R

I{y : y �=xi }(yi)�α(u, v; yi, xi, x \ xi) μ
(
dyi

∣
∣ σic

)}
μ(dx), (1.7)

for any u, v such that the right hand side of Eq. 1.7 is finite, where for a set A and a variable
y, IA(y) denotes the indicator function, and in the sequel, to simplify the notations, we
denote I{y : y �=xi }(yi) by, e.g., I{yi �=xi }(yi) or I{yi �=xi }.

ByDi , we denote the subset of the space of real valued B(S)-measurable functions such
that the right hand side of Eq. 1.7 is finite for any u, v ∈ Di . Let us call (E (i)

(α),Di ) this
form, Di being its domain. Then define

E(α)(u, v) ≡
∑

i∈N
E (i)

(α)(u, v), ∀u, v ∈
⋂

i∈N
Di . (1.8)

It is easy to see that for the Lipschiz continuous functions ũ ∈ C∞
0 (Rn → R) ⊂ FC∞

0
and ṽ ∈ C∞

0 (Rm → R) ⊂ FC∞
0 , n,m ∈ N, which are representatives of u ∈ FC∞

0 and

v ∈ FC∞
0 respectively, n,m ∈ N, E (i)

(α)(ũ, ṽ) and E(α)(ũ, ṽ) are finite. Actually, in [16] it is
proved that Eqs. 1.7 and 1.8 are well defined for FC∞

0 , and hence FC∞
0 ⊂ ∩i∈NDi , i.e., it

is shown that for any real valued B(S)-measurable function u on S, such that u = 0, μ-a.e,
it holds that E(α)(u, u) = 0; and for any u, v ∈ FC∞

0 , there corresponds only one value
E(α)(u, v) ∈ R. Moreover, in [16] it is shown that E(α) is a closable Markovian symmetric
form. Precisely, the following Theorem 1 holds, which is a restatement of a result given by
[16] and shall be applied to the subsequent discussions in the present paper (in [16], not
only for 0 < α ≤ 1 but also for 0 < α < 2, and for the state spaces S as weighted lp spaces,
1 ≤ p ≤ ∞, those theorems including the statements corresponding to Theorems 1, 2 and
3 introduced in this paper are provided):

Theorem 1 (The closability) For the symmetric non-local forms E(α), 0 < α ≤ 1 given by
Eq. 1.8 the following hold:

i) E(α) is well-defined on FC∞
0 ;

ii) (E(α),FC∞
0 ) is closable in L2(S;μ);

iii) (E(α),FC∞
0 ) is Markovian.

Thus, for each 0 < α ≤ 1, the closed extension of (E(α),FC∞
0 ) denoted by (E(α),D(E(α)))

with the domain D(E(α)), is a non-local Dirichlet form on L2(S; μ).
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Remark 1.1 In [16], the symmetric form E (i)
(α) is considered for 0 < α < 2. Then, the

non-local symmetric form E (i)
(α) defined by Eqs. 1.6 and 1.7, by extending the definition

for 0 < α < 2, can be interpreted as non-local and local symmetric forms on the finite
dimensional linear space C∞

0 (Rd → R) (cf., e.g., Example 4 in section 1.2 of [38], and
section II-2 of [54]), the space of real valued smooth functions with compact supports on
R

d with some finite d ∈ N: For simplicity, let d = 1 and for the Borel probability measure
μ, suppose that there exists a smooth bounded probability density function ρ ∈ S(R → R),
an element of Schwartz space of rapidly decreasing functions, such that 0 < ρ(x) < ∞,
∀x ∈ R. Then E (i)

(α) is interpreted as follows:

∫

R2
\“diagonal set” (f (y)− f (x))(g(y)− g(x))

|y − x|1+α
ρ(y) ρ(x) dy dx, f, g ∈ C∞

0 (R → R).

Next, for each 0 < α < 2, let

M(α) ≡ (1 − 1

2
α)

1
2−α ,

then, for f, g ∈ C∞
0 (R → R), it holds that

lim
α↑2

∫

R

{
∫

[x−M(α), x+M(α)]
I{y:y �=x}(y′) (f (y′) − f (x))(g(y′) − g(x))

|y′ − x|1+α
ρ(y′) dy′} ρ(x) dx,

=
∫

R

f ′(x) g′(x) (ρ(x))2 dx.

Also, for each 0 < α < 2 and each x ∈ R, if we let

M(α; x) ≡ (
ρ(x)−1(1 − 1

2
α)

) 1
2−α ,

then, for f, g ∈ C∞
0 (R → R), it holds that

lim
α↑2

∫

R

{
∫

[x−M(α;x), x+M(α;x)]
I{y:y �=x}(y′) (f (y′) − f (x))(g(y′) − g(x))

|y′ − x|1+α
ρ(y′) dy′} ρ(x)dx,

=
∫

R

f ′(x) g′(x) ρ(x) dx.

Considerations for the infinite dimensional situation corresponding to the above finite
dimensional observation will be carried out in forthcoming work.

The following theorem is also a part of the main results provided by [16] on the suf-
ficient conditions (cf. Theorems 2 and 3 below) under which the Dirichlet forms (i.e. the
closed Markovian symmetric forms) defined above are strictly quasi-regular (cf., [22–24]
and section IV-3 of [54], as well as [1] for the meaning of “strict quasi regular”).

Denote (E(α),D(E(α))) the Dirichlet form on L2(S; μ), with the domain D(E(α)))

defined through Theorem 1, obtained as the closed extension of the closable Markovian
symmetric form E(α), understood as first defined on FC∞

0 . We shall use the same notation
E(α) for the closable form and the closed form.

For each i ∈ N, we denote by Xi the random variable (i.e., measurable function) on
(S,B(S), μ) , that represents the coordinate xi of x = (x1, x2, . . . ), precisely,

Xi : S � x �−→ xi ∈ R. (1.9)
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By making use of the random variable Xi , we have the following probabilistic expression:
∫

S

IB(xi) μ(dx) = μ(Xi ∈ B), for B ∈ B(S). (1.10)

Theorem 2 (The Strict Quasi-Regularity) Let S = l2(βi )
, for 0 < α ≤ 1, let (E(α),D(E(α)))

be the closed Markovian symmetric form on L2(S;μ) given by Theorem 1. If there exists

a positive sequence {γi}i ∈ N such that
∑∞

i=1γ
−1
i < ∞ (i.e., {γ − 1

2
i }i ∈ N is a positive l2

sequence), and an 0 < M0 < ∞, and both

∞∑

i=1

(βiγi)
1+α
2 · μ

(
β

1
2
i |Xi | > M0 · γ

− 1
2

i

)
< ∞, (1.11)

μ
( ⋃

M∈N
∈ N

{|Xi | ≤ M · β
− 1

2
i γ

− 1
2

i , ∀i ∈ N
}) = 1, (1.12)

hold, then (E(α),D(E(α))) is a strictly quasi-regular Dirichlet form.

Next, from [16], we quote a theorem corresponding to the Markov processes associated
to the non-local Dirichlet forms defined above.

Let (E(α),D(E(α))), 0 < α ≤ 1, be the family of strictly quasi-regular Dirichlet forms
on L2(S;μ) with the state space S defined by Theorems 1 and 2.

For the strictly quasi-regular Dirichlet form (E(α),D(E(α))) there exists a properly asso-
ciated S-valued Hunt process (seem Definitions IV-1.5, 1.8 and 1.13, Theorem V-2.13 and
Proposition V-2.15 of [54])

M ≡
(
	,F , (Xt )t≥0, (Px)x∈S�

)
. (1.13)

� is a point adjoined to S as an isolated point of S� ≡ S ∪ {�}. Let (Tt )t≥0 be the
strongly continuous contraction semigroup associated with (E(α),D(E(α))), and (pt )t≥0 be
the corresponding transition semigroup of kernels of the Hunt process (Xt )t≥0, then for any
u ∈ FC∞

0 ⊂ D(E(α)) the following holds:

d

dt

∫

S

(
ptu

)
(x) μ(dx) = d

dt

(
Ttu, 1)L2(S;μ) = E(α)(Ttu, 1) = 0. (1.14)

By this, we see that
∫

S

(
ptu

)
(x) μ(dx) =

∫

S

u(x) μ(dx), ∀t ≥ 0, ∀u ∈ FC∞
0 , (1.15)

and hence, by the density of FC∞
0 in L2(S; μ)

∫

S

Px(Xt ∈ B)μ(dx) = μ(B), ∀B ∈ B(S), ∀t ≥ 0. (1.16)

Thus, the following Theorem 3 holds.

Theorem 3 (Associated Markov process) Let 0 < α ≤ 1, and let (E(α),D(E(α))) be a
strictly quasi-regular Dirichlet form on L2(S; μ) that is defined through Theorem 2. Then
to (E(α),D(E(α))), there exists a properly associated S-valued Hunt process M defined by
Eq. 1.13, the invariant measure of which is μ (cf. Eq. 1.16).
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As the final preparations for the main discussions given in the next section, we recall
the formulation corresponding to the stochastic quantization of the Euclidean free quantum
field, discussed in the section 5 of [16].

Let us recall the Bochner-Minlos theorem stated in a general framework. Let E be a
nuclear space (cf., e.g., Chapters 47-51 of [68], and [8, 46]). Suppose in particular that E is
a countably Hilbert space,

characterized by a sequence of real Hilbert norms ‖ ‖n, n ∈ N ∪ {0} such that ‖ ‖0 <

‖ ‖1 < · · · < ‖ ‖n < · · · . Let En be the completion of E with respect to the norm ‖ ‖n,
then by definition E = ⋂

n≥0 En and E0 ⊃ E1 ⊃ · · · ⊃ En ⊃ · · · . Define
E∗

n ≡ the dual space of En, and assume the identification E∗
0 = E0 .

Then we have

E ⊂ · · · ⊂ En+1 ⊂ En ⊂ · · · ⊂ E0 = E∗
0 ⊂ · · · ⊂ E∗

n ⊂ E∗
n+1 ⊂ · · · ⊂ E∗.

Since by assumption E is a nuclear space, for any m ∈ N ∪ {0} there exists an n ∈ N ∪ {0},
n > m, such that the (canonical) injection T n

m : En → Em is a trace class (nuclear class)
positive operator. The Bochner-Minlos theorem (cf. [45]) is given as follows:

Theorem 4 (Bochner-Minlos Theorem) Let C(ϕ), ϕ ∈ E, be a complex valued function on
E such that

i) C(ϕ) is continuous with respect to the norm ‖ · ‖m for some m ∈ N ∪ {0};
ii) (positive definiteness) for any k ∈ N,

k∑

i,j=1

ᾱiαjC(ϕi − ϕj ) ≥ 0, ∀αi ∈ C, ∀ϕi ∈ E, i = 1, . . . , k;

(where ᾱ means complex conjugate of α).
iii) (normalization) C(0) = 1.

Then, there exists a unique Borel probability measure ν on E∗ such that

C(ϕ) =
∫

E∗
ei<φ,ϕ>ν(dφ), ϕ ∈ E.

Moreover, if the (canonical) injection T n
m : En → Em, for all n > m, is a Hilbert-

Schmidt operator, then the support of ν is in E∗
n , where < φ, ϕ >= E∗ < φ, ϕ >E is

the dualization between φ ∈ E∗ and ϕ ∈ E.

Remark 1.2 The assumption on the continuity of C(ϕ) on E given in i) of the above The-
orem 4 can be replaced by the continuity of C(ϕ) at the origin in E, which is equivalent to
i) under the assumption that C(ϕ) satisfies ii) and iii) in Theorem 4 (cf. e.g., [50]). Namely,
under the assumption of ii) and iii), the following is equivalent to i): For any ε > 0 there
exists a δ > 0 such that

|C(ϕ) − 1| < ε, ∀ϕ ∈ E with ‖ϕ‖m < δ.

This can be seen as follows: Assume that ii) and iii) hold. For ii), let k = 3, α1 = α,
α2 = −α, α3 = β, ϕ1 = 0, ϕ2 = ϕ and ϕ3 = ψ , then by the assumption ii), the positive
definiteness of C, we have

αα · (2C(0) − C(ϕ) − C(−ϕ))

+αβ · (C(−ψ−ϕ)−C(−ψ)) + αβ · (C(ψ+ϕ)−C(ψ))+ ββ · C(0)≥0.

Non-local Markovian Symmetric Forms on Infinite Dimensional Spaces 1947



By making use of the fact that C(−ϕ) = C(ϕ), which follows from ii), and the assumption
iii), from the above inequality we have

0 ≤ det

(
2 − C(ϕ) − C(ϕ) C(ψ + ϕ) − C(ψ)

C(ψ + ϕ) − C(ψ) 1

)

.

From this it follows that

|C(ψ + ϕ) − C(ψ)|2 ≤ 2 |C(ϕ) − 1|.

By making use of the support property of ν by means of the Hilbert-Schmidt operators
given by Theorem 4, we can present a framework by which Theorems 1, 2, 3 and 4 can be
applied to the stochastic quantization of Euclidean quantum fields.

Now, we define an adequate countably Hilbert nuclear space H0 ⊃ S(Rd → R) ≡
S(Rd), for a given d ∈ N. Let

H0 ≡
{
f : ‖f ‖H0 = (

(f, f )H0

) 1
2 < ∞, f : Rd → R, measurable

}
⊃ S(Rd), (1.17)

where

(f, g)H0 ≡ (f, g)L2(Rd ) =
∫

Rd

f (x)g(x) dx. (1.18)

Let us consider the following pseudo differential operators on S(Rd → R) ≡ S(Rd)

H ≡ (|x|2 + 1)
d+1
2 (−� + 1)

d+1
2 (|x|2 + 1)

d+1
2 , (1.19)

H−1 ≡ (|x|2 + 1)−
d+1
2 (−� + 1)−

d+1
2 (|x|2 + 1)−

d+1
2 , (1.20)

with � the d-dimensional Laplace operator. For each n ∈ N, define

Hn ≡ the completion of S(Rd) with respect to the norm ‖f ‖n, f ∈ S(Rd), (1.21)

where ‖f ‖2n = (f, f )n (in the case where n = 1, to denote the H1 norm we use the exact
notation ‖ ‖H1 , in order to avoid a confusion between the notation of some L1 or l1 norms)
with the corresponding scalar product

(f, g)n = (Hnf,Hng)H0 , f, g ∈ S(Rd). (1.22)

Moreover we define, for n ∈ N:

H−n ≡ the completion of S(Rd) with respect to the norm‖f ‖−n, f ∈ S(Rd), (1.23)

where ‖f ‖2−n = (f, f )−n, with

(f, g)−n = ((H−1)nf, (H−1)ng)H0 , f, g ∈ S(Rd). (1.24)

Then obviously, for f ∈ S(Rd),

‖f ‖n ≤ ‖f ‖n+1, ‖f ‖−n−1 ≤ ‖f ‖−n, (1.25)

and by taking the inductive limit and setting H =
⋂

n∈NHn, we have the following
inclusions:

H ⊂ · · · ⊂ Hn+1 ⊂ Hn ⊂ · · · ⊂ H0 ⊂ · · · ⊂ H−n ⊂ H−n−1 ⊂ · · · ⊂ H∗. (1.26)

The (topological) dual space ofHn isH−n, n ∈ N.
By the operator H−1 given by Eq. 1.20 on S(Rd) we can define, on eachHn, n ∈ N, the

bounded symmetric (hence self-adjoint) operators

(H−1)k, k ∈ N ∪ {0} (1.27)

1948 S. Albeverio et al.



(we use the same notations for the operators on S(Rd) and onHn). Hence, for the canonical
injection

T n+k
n : Hn+k −→ Hn, k, n ∈ N ∪ {0}, (1.28)

it holds that
‖T n+k

n f ‖n = ‖(H−1)kf ‖H0 , ∀f ∈ Hn+k,

where by a simple calculation by means of the Fourier transform, and by Young’s inequality,
we see that for each n ∈ N ∪ {0}, H−1 on Hn is a Hilbert-Schmidt operator and hence
(H−1)2 onHn is a trace class operator.

Now, by applying to the strictly positive self-adjoint Hilbert-Schmidt (hence compact)
operator H−1, on H0 = L2(Rd → R) the Hilbert-Schmidt theorem (cf., e.g., Theorem VI
16, Theorem VI 22 of [63], and also [64]) we have that there exists an orthonormal base
(O.N.B.) {ϕi}i∈N ofH0 such that

H−1ϕi = λi ϕi, i ∈ N, (1.29)

where {λi}i∈N are the corresponding eigenvalues such that

0 < · · · < λ2 < λ1 ≤ 1, which satisfy
∑

i∈N
(λi)

2 < ∞, i.e., {λi}i∈N ∈ l2, (1.30)

and {ϕi}i∈N is indexed adequately corresponding to the finite multiplicity of each λi , i ∈ N.
By the definition (1.21), (1.22), (1.23) and (1.24) (cf. also Eq. 1.27), for each n ∈ N ∪ {0},

{(λi)
nϕi}i∈N is an O.N.B. of Hn (1.31)

and
{(λi)

−nϕi}i∈N is an O.N.B. of H−n (1.32)

Thus, by denoting Z the set of integers, by the Fourier series expansion of functions inHm,
m ∈ Z (cf. Eqs. 1.21–1.24), such that for f ∈ Hm, we have

f =
∑

i∈N
ai(λ

m
i ϕi), with ai ≡ (

f, (λm
i ϕi)

)
m
, i ∈ N. (1.33)

In particular for f ∈ S(Rd) ⊂ Hm, it holds that ai = λi
−m(f, ϕi)H0 . Moreover we have

∑

i∈N
a2i = ‖f ‖2m,

that yields an isometric isomorphism τm for each m ∈ Z such that

τm : Hm � f �−→ (λm
1 a1, λ

m
2 a2, . . .) ∈ l2

(λ−2m
i )

, (1.34)

where l2
(λ−2m

i )
is the weighted l2 space defined by Eq. 1.1 with p = 2, and βi = λ−2m

i .

Precisely, for f = ∑
i∈Nai(λ

m
i ϕi) ∈ Hm and g = ∑

i∈Nbi(λ
m
i ϕi) ∈ Hm, with ai ≡(

f, (λm
i ϕi)

)
m
, bi ≡ (

g, (λm
i ϕi)

)
m
, i ∈ N, by τm the following holds (cf. Eqs. 1.31 and

1.32):

(f, g)m =
∑

i∈N
ai · bi =

∑

i∈N
λ−m

i (λm
i ai) · λ−m

i (λm
i bi) = (

τmf, τmg
)
l2
(λ

−2m
i

)

.

By the map τm we can identify, in particular, the two systems of Hilbert spaces given by
Eqs. 1.35 and 1.36 through the following diagram:

. . . H2 ⊂ H1 ⊂ H0 = L2(Rd) ⊂ H−1 ⊂ H−2 . . . (1.35)
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‖ ‖ ‖ ‖ ‖
. . . l2

(λ−4
i )

⊂ l2
(λ−2

i )
⊂ l2 ⊂ l2

(λ2i )
⊂ l2

(λ4i )
. . . . (1.36)

Example 0. (The Euclidean Free Quantum Field) This fundamental example introduced
in [59], which the following has been considered in [16], shows how the abstract Theorems
1, 2 and 3, from which we can construct weighted l2-space valued non-local symmetric
Markov processes through the non-local Dirichlet forms, can be applied to construct sepa-
rable Hilbert space (cf. Eqs. 1.35 and 1.36) valued Markov processes, which is a stochastic
quantization of a given physical random field.

Let ν0 be the Euclidean free field probability measure on S ′ ≡ S ′(Rd). It is characterized
by the (generalized) characteristic function C(ϕ) in Theorem 4 of ν0 given by

C(ϕ) = exp(−1

2
(ϕ, (−� + m2

0)
−1ϕ)L2(Rd )). forϕ ∈ S(Rd → R), (1.37)

Equivalently, ν0 is the centered Gaussian probability measure on S ′, the covariance of which
is given by
∫ ′

S
< φ, ϕ1> ·<φ, ϕ1> ν0(dφ)=(

ϕ1,(−�+m2
0)

−1ϕ2
)
L2(Rd )

, ϕ1, ϕ2 ∈ S(Rd → R),

(1.38)
where � is the d-dimensional Laplace operator and m0 > 0 ( for d ≥ 3, we can also allow
for m0 = 0) is a given mass for this scalar field. φ(f ) =< φ, f >, f ∈ S(Rd → R) is the
coordinate process φ to ν0 (for the Euclidean free field cf. [58, 59, 62] and, e.g., [6, 26, 40,
66]). By Eq. 1.37, the functional C(ϕ) is continuous with respect to the norm of the space
H0 = L2(Rd), and the kernel of (−� + m2

0)
−1, which is the Fourier inverse transform

of (|ξ |2 + m2
0)

−1, ξ ∈ R
d , is explicitly given by Bessel functions (cf., e.g., section 2–5 of

[56]). Then, by Theorem 4 and Eq. 1.28 the support of ν0 can be taken to be in the separable
Hilbert spacesH−n, n ≥ 1 (cf. Eqs. 1.35 and 1.36).

Let us apply Theorems 1, 2 and 3 to this random field. We start the consideration from
the case where α = 1, a simplest situation. Then, we shall state the corresponding results
for the cases where 0 < α < 1.

Now, we take ν0 as a Borel probability measure onH−2. By Eqs. 1.34, 1.35 and 1.36, by
taking m = −2, τ−2 defines an isometric isomorphism such that

τ−2 : H−2 � f �−→ (a1, a2, . . . ) ∈ l2
(λ4i )

, with ai ≡ (f, λ−2
i ϕi)−2, i ∈ N. (1.39)

Define a probability measure μ on l2
(λ4i )

such that

μ(B) ≡ ν0 ◦ τ−1
−2 (B) for B ∈ B(l2

(λ4i )
).

We set S = l2
(λ4i )

in Theorems 1, 2 and 3, then it follows that the weight βi satisfies βi = λ4i .

We can take γi
− 1

2 = λi in Theorem 2, then, from Eq. 1.30 we have
∞∑

i=1

βiγi · μ
(
β

1
2
i |Xi | > M · γ

− 1
2

i

)
≤

∞∑

i=1

βiγi =
∞∑

i=1

(λi)
2 < ∞ (1.40)

Equation 1.40 shows that the condition (1.11) holds.
Also, as has been mentioned above, since ν0(H−n) = 1, for any n ≥ 1, we have

1 = ν0(H−1)=μ(l2
(λ2i )

)=μ
( ⋃

M∈N
{|Xi |≤Mβ

− 1
2

i γ
− 1

2
i , ∀i ∈N}), for βi = λ4i , γ

− 1
2

i = λi .
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This shows that the condition (1.12) is satisfied.
Thus, by Theorems 2 and 3, for α = 1, there exists an l2

(λ4i )
-valued Hunt process

M ≡ (
	,F , (Xt )t≥0, (Px)x∈S�

)
, (1.41)

associated to the non-local Dirichlet form (E(α),D(E(α))).
We can now define anH−2-valued process (Yt )t≥0 such that

(Yt )t≥0 ≡ (
τ−1
−2 (Xt )

)
t≥0. (1.42)

Equivalently, by Eq. 1.39 for Xt = (X1(t), X2(t), . . . ) ∈ l2
(λ4i )

, Px − a.e., by setting Ai(t)

such that Ai(t) ≡ λiXi(t) (cf. Eqs. 1.33 and 1.34), we see that Yt is also given by

Yt =
∑

i∈N
Ai(t)(λ

−2
i ϕi) =

∑

i∈N
Xi(t)ϕi ∈ H−2, ∀t ≥ 0, Px − a.e., for anyx ∈ S�.

(1.43)
Thus, by using Eqs. 1.16 and 1.39 we have proven the following:

Theorem 5 (The free field case for α = 1) Let us adopt the definitions given by Eqs. 1.17–
1.24, 1.29 and 1.30, for a given d ∈ N. Let ν0 be the Euclidean free field probability
measure on S ′(Rd → R) defined through Eq. 1.37. For α = 1, let (Yt )t≥0 be defined
by Eq. 1.42, more explicitly by Eq. 1.43, then Yt is an H−2-valued Hunt process that is
a stochastic quantization (according to the definition we gave to this term) with respect
to the non-local Dirichlet form (Ẽ(α),D(Ẽ(α))) on L2(H−2, ν0), that is defined through
(E(α),D(E(α))), by making use of τ−2. In particular (Yt )t≥0 is a non-local Markov process
with invariant measure ν0.

For the cases where 0 < α < 1, we can also apply Theorems 1, 2 and 3, and then have the
corresponding result to Eq. 1.43. For this purpose we have only to notice that for α ∈ (0, 1)
if we take ν0 as a Borel probability measure on H−3, and set S ≡ l2

(λ6i )
, βi ≡ λ6i , γi ≡ λi ,

and define
τ−3 : H−3 � f �−→ (λ−3

1 a1, λ
−3
1 a2, . . . ) ∈ l2

(λ6i )
, (1.44)

with ai ≡ (f, λ−3
i ϕi)−3, i ∈ N,

(cf. Eqs. 1.34, 1.35, 1.36 and 1.39), then
∞∑

i=1

(βiγi)
α+1
2 =

∞∑

i=1

(λi)
2(α+1) < ∞.

As a consequence, for α ∈ (0, 1), we then see that by the this setting (1.11) and (1.12) also
hold (cf. Eq. 1.40 together with the formula given below (1.40)).

Define a probability measure μ on l2
(λ6i )

such that

μ(B) ≡ ν0 ◦ τ−1
−3 (B) for B ∈ B(l2

(λ6i )
). (1.45)

Then we have an analogue of Eq. 1.43 as follows: By Theorems 2 and 3, for each 0 < α <

1, there exists an l2
(λ6i )

-valued Hunt process

M ≡ (
	,F , (Xt ))t≥0, (Px)x∈S�

)
, (1.46)

associated to the non-local Dirichlet form (E(α),D(E(α))). By making use of M we can
define an H−3-valued process (Yt )t≥0 such that (Yt )t≥0 ≡ (

τ−1
−2 (Xt )

)
t≥0, explicitly, by
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(1.44) for Xt = (X1(t), X2(t), . . . ) ∈ l2
(λ6i )

, Px − a.e. x ∈ S�, by setting Ai(t) such that

Xi(t) = λ−3
i Ai(t) (cf. Eqs. 1.33 and 1.34), then Yt is given by

Yt =
∑

i∈N
Ai(t)(λ

−3
i ϕi) =

∑

i∈N
Xi(t)ϕi ∈ H−3, ∀t ≥ 0, Px − a.e., x ∈ S�. (1.47)

Thus, by using Eqs. 1.16 and 1.44 we have proven the following:

Theorem 6 (The Free Field Case for 0 < α < 1) Let us adopt the definitions given by
Eqs. 1.17–1.24, 1.29 and 1.30, for a given d ∈ N. Let ν0 be the Euclidean free field proba-
bility measure on S ′(Rd → R) defined through Eq. 1.37. For each 0 < α < 1, let (Yt )t≥0
be defined by Eq. 1.47, then Yt is an H−3-valued Hunt process that is a stochastic quanti-
zation with respect to the non-local Dirichlet form

(
Ẽ(α),D

(
Ẽ(α)

))
on L2(H−3, ν0), that is

defined through
(
E(α),D

(
E(α)

))
(by making use of τ−3 via Eq. 1.45). In particular (Yt )t≥0

is a non-local Markov process with invariant measure ν0.

The diffusion case α = 2 was already discussed in [22, 24] (and references therein).

2 Other Applications; Quantum Field Models with Interactions, Infinite
Particle Systems

Following analogous arguments to the one used for Example 0 (see the previous section)
in the present section we shall treat the following problems, related and complementary to
those of [16]:

1. Non-local type stochastic quantization of the (truncated) Høegh-Krohn exponential
model with d = 2 (for the considerations on this random field, cf., e.g., [3, 4, 7–9, 15,
20, 26, 29, 37, 47–49, 52, 66].

2. Non-local type stochastic quantization of the (space cut-off) P(φ)2 and the Albeverio
Høegh-Krohn trigonometric model with d = 2 (for the considerations on this random
field, cf., e.g., [9, 13, 14, 26, 28–31, 36]).

3. Non-local type stochastic quantization of the random fields of classical infinite parti-
cle systems (for the considerations on this random field, and its local type stochastic
quantizations by means of local Dirichlet form arguments, cf., e.g., [17, 60, 65, 67, 69]).

Example 1. (The Space cut-off Høegh-Krohn Exponential Model With d = 2.) Let ν0 be
the Euclidean free field measure on S ′ ≡ S ′(R2), discussed in Example 0 with m0 > 0
(precisely, see Eqs. 1.37 and 1.38 with d = 2). Here, for simplicity we set the mass term
m0 = 1. Let a0 be a given real number and g a given positive valued function on R

2 such
that

|a0| <
√
4π, g ∈ L2(R2 → R) ∩ L1(R2 → R). (2.1)

a0 is called “charge” parameter, g (Euclidean) space cut-off . Define a measurable function
V (·) on the measure space (S′,B(S ′), ν0), as follows:

V (φ) ≡ Va0.g(φ) ≡
∞∑

n=0

(a0)
n

n! < g, : φn :>, (2.2)

(often written as : exp(a0 < g, φ >) : ), where < ·, · > denotes the dualization between
a test function and a distribution, and : φn : denotes the n-th Wick monomial of φ, the
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S′(R2 → R)-valued random variable of which probability distribution is the free field mea-
sure ν0 (cf. e.g., [66]). Then, it is shown (cf. e.g., [10], THEOREM V.24 and PROPOSITION

VIII.43 of [26, 66], the first work in this direction being for the “time zero” version [10])
that

V (φ) ∈ L2(S ′; ν0), V (φ) ≥ 0, ν0−a.e., e−V (φ) ∈ Lp(S ′; ν0), ∀p ≥ 1, (2.3)

also

V (φ) ∈ Lp(S ′; ν0) if p <
4π

a20

.

By Eq. 2.3, the positivity of V (φ), it holds that

0 ≤ e−V (φ) ≤ 1, ν0 − a.e.. (2.4)

Thus, by Eq. 2.4, it is possible to define a probability measure νexp on S ′ such that

νexp(dφ) ≡ 1

Z
e−V (φ) ν0(dφ), (2.5)

where Z is the normalizing constant such that

Z ≡ Za0,g ≡
∫

S ′
e−V (φ) ν0(dφ). (2.6)

Now, we shall look at the support property of the measure νexp through the Bochner-
Minlos theorem (see Theorem 4 in the previous section), and then apply Theorems 1, 2 and
3 in the previous section quoted from [16], to the random field (S ′,B(S ′), νexp). To this
end, we consider the characteristic function C(ϕ) of νexp:

C(ϕ) ≡
∫

S ′
ei<φ,ϕ> νexp(dφ), ϕ ∈ S(R2 → R). (2.7)

The existence (i.e., the well definedness) of C(ϕ) and its continuity property can be
guaranteed and shown as follows: We first have the following evaluation:

|
∫

S ′

∞∑

k=0

(i < φ, ϕ >)k

k! νexp(dφ) − 1|

= | 1
Z

∫

S ′

∞∑

k=1

(i < φ, ϕ >)k

k! e−V (φ) ν0(dφ)|

≤ | 1
Z

∞∑

k=1

ik

k!
∫

S′
< φ, ϕ >k e−V (φ) ν0(dφ)|

≤ 1

Z

∞∑

k=1

|ik|
k!

∫

S ′
| < φ, ϕ >k e−V (φ)| ν0(dφ)

≤ 1

Z

∞∑

k=1

1

k!
∫

S ′
| < φ, ϕ >k | ν0(dφ)

≤ 1

Z
{

∞∑

l=1

1

(2l)! Eν0 [< φ, ϕ >2l]

+
∞∑

l=1

1

(2l − 1)! Eν0 [| < φ, ϕ > |l · | < φ, ϕ > |l−1]},

(2.8)
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where, Eq. 2.5 is used for the first equality, and Fubini Theorem and Eq. 2.4 are applied for
the first inequality, and Eq. 2.4 is again used for the third inequality, and Eν0 [·] denotes the
expectation with respect to the probability measure ν0. Then, by denoting

‖|ϕ‖|2 ≡ ((−� + 1)−1ϕ, ϕ)L2(R2)

(from the definition of the Euclidean free field, cf., Eq. 1.38) for the first term of the right
hand side of the last inequality of Eq. 2.8, it holds that

Eν0 [< φ, ϕ >2l] = (2l − 1)!!‖|ϕ‖|2l ,
and for the second term (with l ≥ 2) of the right hand side of the last inequality of Eq. 2.8,
by the Cauchy-Schwarz inequality, it holds that

Eν0 [| < φ, ϕ > |l · | < φ, ϕ > |l−1] ≤ (Eν0 [< φ, ϕ >2l] · Eν0 [< φ, ϕ >2l−2]) 1
2

= ((2l − 1)!!‖|ϕ‖|2l · (2l − 3)!!‖|ϕ‖|2l−2)
1
2 ,

also, since,

(2l − 1)!!
(2l)! = 2−l

l! and
((2l − 1)!! · (2l − 3)!!) 1

2

(2l − 1)! ≤ 2−l+1

(l − 1)! ,
we then see the the right hand side of Eq. 2.8 is dominated by

1

Z

{ ∞∑

l=1

2−l

l! ‖|ϕ‖|2l + Eν0 [|<φ, ϕ> |] +
∞∑

l=2

2−l+1

(l − 1)! ‖|ϕ‖|2l−1

}

≤ 1

Z
(2(e

1
2 ‖|ϕ‖|2 − 1) + ‖|ϕ‖|). (2.9)

Equations 2.8 with 2.9 shows that C(ϕ) is continuous at the origin with respect to the norm

‖|ϕ‖|2 ≡ ((−� + 1)−1ϕ, ϕ)L2(R2) ≤ ‖ϕ‖2
L2(R2)

, ϕ ∈ S(R2 → R),

and hence, by Remark 1.2, C(ϕ) has the same continuity as the characteristic function of
the Euclidean free field measure given by Eqs. 1.37 and 1.38 (though, by the arguments of
the present evaluation, in Eq. 2.9, the sign of the exponent is positive). Then, by Theorem 4
(with Remark 1.2) and Eq. 1.28 the support of νexp can be taken to be in the Hilbert spaces
H−n, n ≥ 1 (cf. Eqs. 1.35 and 1.36).

Thus, by repeating the same arguments for the Euclidean free field (cf. Eqs. 1.39–1.43),
and by applying Theorems 1, 2 and 3 in Section 1, we have the analogous results on the
non-local stochastic quantization for the space cut-off Høegh-Krohn field νexp with d = 2
to those for the Euclidean free field with d = 2 (see Theorems 5 and 6) as follows:

Theorem 7 (The Space cut-off Høegh-Krohn Model With d = 2, α = 1) Let us adopt
the definitions given by Eqs. 1.17–1.24, 1.29 and 1.30, for d = 2. Let νexp be the Borel
probability measure on S ′(R2 → R) defined through Eq. 2.5. By Eq. 1.39 with d = 2,
define a Borel probabilty measure μexp on l2

(λ4i )
such that μexp(B) = νexp ◦ τ−1

−2 (B) for

B ∈ B(l2
(λ4i )

). Then, by Theorems 2 and 3, the following hold:

i) For α = 1, on L2(l2
(λ4i )

, μexp) the non-local Dirichlet form (Eα,D(E(α))) is

well defined and there exists an associated l2
(λ4i )

-valued Hunt process M ≡ (
	,F ,

(Xt )t≥0, (Px)x∈S�
)
.
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ii) For Xt= (X1(t), X2(t), . . .) ∈ l2
(λ4i )

, Px − a.e., define Yt = ∑
i∈NXi(t)ϕi (∀t ≥

0, Px − a.e., for any x ∈ S�, then Yt is an H−2-valued Hunt process that is a

stochastic quantization with respect to the non-local Dirichlet form (Ẽ(α),D(Ẽ(α)))

on L2(H−2, νexp), that is defined through (E(α),D(E(α)))), by making use of τ−2. In
particular (Yt )t≥0 is a non-local Markov process with invariant measure νexp .

Theorem 8 (The Space cut-off Høegh-Krohn Model With d = 2, 0 < α < 1) Let us adopt
the definitions given by Eqs. 1.17–1.24, 1.29 and 1.30, for d = 2. Let νexp be the Borel
probability measure on S ′(R2 → R) defined through Eq. 2.5. By Eq. 1.44 with d = 2,
define a Borel probabilty measure μexp on l2

(λ6i )
such that μexp(B) = νexp ◦ τ−1

−2 (B) for

B ∈ B(l2
(λ6i )

). Then, by Theorems 2 and 3, the following hold:

i) For each 0 < α < 1, on L2(l2
(λ6i )

, μexp) the non-local Dirichlet form (Eα,D(E(α)))

is well defined and there exists an associated l2
(λ6i )

-valued Hunt process M ≡
(
	,F , (Xt )t≥0, (Px)x∈S�

)
.

ii) For Xt = (X1(t), X2(t), . . .) ∈ l2
(λ6i )

, Px − a.e., define Yt = ∑
i∈NXi(t)ϕi (∀t ≥

0, Px − a.e., for any x ∈ S�, then Yt is an H−3-valued Hunt process that is a

stochastic quantization with respect to the non-local Dirichlet form (Ẽ(α),D(Ẽ(α)))

on L2(H−3, νexp), that is defined through (E(α),D(E(α)))), by making use of τ−3. In
particular (Yt )t≥0 is a non-local Markov process with invariant measure νexp.

Example 2. (The Space cut-off P(φ)2 and the Albeverio Høegh-Krohn trigonometric
Model With d = 2.) Let us consider once more the Euclidean free field measure ν0 on
S ′ ≡ S ′(R2 → R), discussed in Example 0 (precisely, see Eqs. 1.37 and 1.38 with d = 2).
As in Example 1, for simplicity we set the mass term m0 = 1.

Let νP(�), νsin and νcos be the probability measures on S ′ that are defined by (cf. Eq. 2.5)

νP(�)(dφ) ≡ 1

ZP(�)

e−VP(�)(φ)ν0(dφ), (2.10)

and

νsin(dφ) ≡ 1

Zsin
e−Vsin(φ)ν0(dφ), νcos(dφ) ≡ 1

Zcos
e−Vcos(φ)ν0(dφ), (2.11)

with
VP(�)(φ) ≡ λ < g, : φ2n :>,

for some given λ ≥ 0, n ∈ N,
g ∈ L2(R2 → R) ∩ L1(R2 → R) satisfying g ≥ 0, (2.12)

and

Vsin(φ)≡λ

∞∑

k=0

(−1)k(a0)2k+1

(2k+1)! <g, : φ2k+1 :>, Vcos(φ)≡λ

∞∑

k=0

(−1)k(a0)2k
(2k)! <g, : φ2k :>,

for some given λ ≥ 0, |a0| <
√
4π , g as in (2.12), (2.13)

respectively, where ZP(�), Zsin and Zcos are the corresponding normalizing constants such
that

ZP(�) ≡
∫

S ′
e−VP(φ) ν0(dφ), Zsin ≡

∫

S′
e−Vsin ν0(dφ), Zcos ≡

∫

S ′
e−Vcos ν0(dφ),

(2.14)
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respectively. Under the above settings, it is known that (for the polynomial potential case
cf., e.g., [35, 58, 40, 66], and for the trigonometric potential case cf. [9, 13, 26, 36, 37, 40]),
one has that W ∈

⋂

r≥1

Lr(S ′; ν0) for any

W = e−VP(�) , e−Vsin , e−Vcos . (2.15)

The bound (2.4), i.e., 0 ≤ e−V ≤ 1, which holds for Vexp in Example 1, does not hold for
these V ′s in the present example, but by Eq. 2.15, similar to the case of Vexp, we can show
that the characteristic functions (cf. Theorem 4) of these probability measures, νP(�), νsin
and νcos satisfy the comparable continuity as the characteristic function of the Euclidean free
field measure. Thus by Theorem 4 and Eq. 1.28 the support of νP(�), νsin and νcos can be
taken to be in the Hilbert spacesH−n, n ≥ 1 (cf. Eqs. 1.35 and 1.36). Then, for the present
random fields, we can repeat the arguments for the Euclidean free field (cf. Eqs. 1.39–1.41),
getting corresponding results as the the ones of Example 1.

The corresponding continuity of the characteristic functions of the probability measures
νP(�), νsin and νcos can be seen as follows.

Denote by F(φ), φ ∈ S ′(R2 → R), one of the positive random variablese−VP(�)/ZP(φ),
e−Vsin/Zsin and e−Vcos/Zcos on the probability space (S ′,B(S ′), ν0). Then by Eq. 2.15, by
applying the Hölder’s inequality (twice) (with p = 4

3 , q = 4), we have (cf. Eq. 2.8), for
ϕ ∈ S ≡ S(R2 → R),

|
∫

S ′

∞∑

k=0

(i < φ, ϕ >)k

k! F(φ) ν0(dφ) − 1|

≤
∞∑

k=1

1

k!
∫

S′

∣
∣ < φ, ϕ >k

∣
∣ F(φ) ν0(dφ)

≤
∞∑

k=1

{(
∫

S ′

∣
∣ < φ, ϕ >

∣
∣
4
3 k

ν0(dφ)
) 3
4
(
∫

S ′
(F (φ))4 ν0(dφ)

) 1
4 }

≤
∞∑

k=1

{(
∫

S ′

∣
∣ < φ, ϕ >

∣
∣4k ν0(dφ)

) 1
4
(
∫

S ′
(F (φ))4 ν0(dφ)

) 1
4 }.

(2.16)

Also, by denoting r ≡ ‖|ϕ|‖ ≡ ((−�+1)−1ϕ, ϕ), note that the following evaluations hold:

1

k! (
∫

S′
(< φ, ϕ >)4k ν0(dφ))

1
4 = 1

k! ((4k − 1)!! r2k) 1
4 ≤ 1

k! r
k
2 ((4k)!!) 1

4

≤ 1

k! r
k
2
(
((2k)!!)2) 1

4 = 1

(k!) 1
2

(4r)
k
2 , (2.17)

and

(k!)− 1
2 ≤ 2− k

2
1

(l − 1)! , for k = 2l, l ∈ N, (2.18)

(k!)− 1
2 ≤ 2− k

2
1

(l − 2)! , for k = 2l − 1, l ∈ N, l ≥ 2. (2.19)
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Then, by applying Eqs. 2.17, 2.18 and 2.19 to the right hand side of Eq. 2.16 we see that

|
∫

S ′

∞∑

k=0

(i < φ, ϕ >)k

k! F(φ) ν0(dφ) − 1|

≤
∞∑

k=1

1

(k!) 1
2

(4r)
k
2 · (

∫

S ′
(F (φ))4 ν0(dφ)

) 1
4

≤ {(4r) 1
2 +

∞∑

l=1

1

(l − 1)! 2
−l (4r)l

+
∞∑

l=2

1

(l − 2)!2
−l+ 1

2 (4r)l−
1
2 } · (

∫

S ′
(F (φ))4 ν0(dφ)

) 1
4

= 2r
1
2 {1 + e2r r

1
2
(
1 + 2

1
2 r

1
2
)} · (

∫

S ′
(F (φ))4 ν0(dφ)

) 1
4 .

(2.20)

Equations 2.14 and 2.15, 2.16 with Eq. 2.20 show that the characteristic functions of νP(φ),
νsin and νcos are continuous at the origin with respect to the norm r = ‖|ϕ|‖ ≡ (

(−� +
1)−1ϕ, ϕ

) 1
2 for ϕ ∈ S ′. Hence, by Remark 1.2, the the characteristic functions (cf. Theorem

4) of νP(�), νsin and νcos satisfy the comparable continuity as the characteristic function of
the Euclidean free field measure.

Thus we can apply Theorems 1, 2 and 3 to the non-local stochastic quantization of the
random fields νP(�), νsin and νcos, then for these random fields we also get the analogous
statements as the one for the Euclidean free field with d = 2 and the one for the space
cut-off Høegh-Krohn model in Example 1 as follows:

Theorem 9 (The Space cut-off P(φ)2 and the Albeverio Høegh-Krohn Trigonometric
Model With d = 2, α = 1) Let us adopt the definitions given by Eqs. 1.17–1.24, 1.29 and
1.30, for d = 2. Let ν be one of the Borel probability measures νP(�), νsin or νcos on
S ′(R2 → R) defined through Eqs. 2.10 and 2.11 respectively. By Eq. 1.39 with d = 2,
define a Borel probabilty measure μ on l2

(λ4i )
such that μ(B) = ν ◦ τ−1

−2 (B) for B ∈ B(l2
(λ4i )

).

Then, by Theorems 2 and 3, the following hold:

i) For α = 1, on L2(l2
(λ4i )

, μ) the non-local Dirichlet form (Eα,D(E(α))) is well defined

and there exists an associated l2
(λ4i )

-valued Hunt process M ≡ (
	,F , (Xt )t ≥

0, (Px)x∈S�
)
.

ii) For Xt = (X1(t), X2(t), . . . ) ∈ l2
(λ4i )

, Px − a.e., define Yt = ∑
i∈NXi(t)ϕi (∀t ≥

0, Px − a.e., for any x ∈ S�, then Yt is an H−2-valued Hunt process that is a

stochastic quantization with respect to the non-local Dirichlet form (Ẽ(α),D(Ẽ(α))))

on L2(H−2, ν), that is defined through (E(α),D(E(α))), by making use of τ−2. In
particular (Yt )t≥0 is a non-local Markov process with invariant measure ν.

Theorem 10 (The Space cut-off P(φ)2 and the Albeverio Høegh-Krohn Trigonometric
Model With d = 2, 0 < α < 1) Let us adopt the definitions given by Eqs. 1.17–1.24, 1.29
and 1.30, for d = 2. Let ν be one of the Borel probability measures νP(�), νsin or νcos on
S ′(R2 → R) defined through Eqs. 2.10 and 2.11 respectively. By Eq. 1.44 with d = 2,
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define a Borel probabilty measure μ on l2
(λ6i )

such that μ(B) = ν ◦ τ−1
−6 (B) for B ∈ B(l2

(λ6i )
).

Then, by Theorems 2 and 3, the following hold:

i) For each 0 < α < 1, on L2(l2
(λ6i )

, μ) the non-local Dirichlet form (Eα,D(E(α)))

is well defined and there exists an associated l2
(λ6i )

-valued Hunt process M ≡
(
	,F , (Xt )t≥0, (Px)x∈S�

)
.

ii) For Xt = (X1(t), X2(t), . . .) ∈ l2
(λ6i )

, Px − a.e., define Yt = ∑
i∈NXi(t)ϕi (∀t ≥

0, Px − a.e., for any x ∈ S�, then Yt is an H−3-valued Hunt process that is a

stochastic quantization with respect to the non-local Dirichlet form (Ẽ(α),D(Ẽ(α)))) on
L2(H−3, ν), that is defined through (E(α),D(E(α))), by making use of τ−3. In particular
(Yt )t≥0 is a non-local Markov process with invariant measure ν.

Example 3. (Non-Local Stochastic Quantization for Classical Infinite Particle Sys-
tems.)

In this example we apply Theorems 1, 2 and 3 to the random fields of classical statistical
mechanics considered by [65].

On the local type stochastic quantizations for such random fields, the various consid-
erations have been already made through the arguments of local Dirichlet forms (for the
fundamental formulations cf. [17, 60, 67, 69], and for the corresponding extended consid-
erations cf. [33, 61] and references therein, also cf. [53] where a first consideration on the
stochastic quantization of such a random field through the arguments of an infinite system
of stochastic differential equations is presented). But, as far as we know, there exists no con-
siderations on the non-local type stochastic quantizations for such classical particle systems
through the arguments by non-local Dirichlet forms.

We first recall the configuration space for the classical infinite particle systems (for an
original formulation, cf. [65], and also cf. [69] for their interpretation as a subspace of
Radon measures, which will be used in the subsequent discussions of the present example
(the notations, e.g., Y , adopted here are diffent to the ones in [65] and [69])). Define

Y ≡ {Y |Y : Rd → Z+ such that
∑

y∈K
Y(y) < ∞ for any compactK ⊂ R

d},

σ [Y] ≡ the σ − field generated by {Y |
∑

y∈B
Y(y) = m},

B running over the bounded Borel set of Rd , m ∈ Z+, (2.21)

where d ∈ N is a given dimension, and Z+ is the set of non-negative integers, Z+ ≡ N∪{0}.
On the measurable space (Y, σ [Y]), suppose that we are given a probability measure ν

that satisfies (cf. Corollary 2.8, Prop. 5.2 of [65], and cf. also (2.19) of [69]):

ν
( ⋃

N∈N
UN

) = 1, (2.22)

and for some given γ > 0 and real δ,

ν
(
Uc

N

) ≤
∞∑

l=0

{
exp[−(γN2 − eδ)]}l+1

, (2.23)

where, for N ∈ N,

UN ≡ {
Y ∈ Y | ∀l ∈ Z+,

∑

r:|r|≤l

n(Y, r)2 ≤ N2(2l + 1)d
}

(2.24)
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with

n(Y, r) ≡
∑

y∈Qr

Y(y), (2.25)

Qr ≡{
y =(y1, · · · , yd)∈R

d | rj−1

2
≤yj <rj+1

2
, j =1, . . . , d

}
, r =(r1, . . . , rd) ∈ Z

d .

(2.26)
Define (cf. Eq. 2.22)

Y0 ≡
⋃

N∈N
UN ⊂ Y, (2.27)

and the corresponding σ -field

σ [Y0] ≡ {B ∩ Y0 | B ∈ σ [Y]}. (2.28)

By Eqs. 2.22 and 2.23, we restrict ν (originally defined on Y) to Y0 ⊂ Y , and denote the
restriction by the same notation ν. Then, we can define the probability space

(Y0, σ [Y0], ν). (2.29)

Subsequently, we shall interpret the probability measure ν on the configuration space Y0
to a probability measure on a subset of the space of Radon measures on R

d . We note that
each Y ∈ Y can be identified with z, an element of positive integer valued Radon measures
on Rd , such that (cf. [69])

z =
∞∑

i=1

miδyi
, yi ∈ R

d , i ∈ N, (2.30)

for given Y ∈ Y with {yi}i∈N ≡ {y ∈ R
d |Y(y) �= 0} and mi = Y(yi), where δyi

denotes
the Dirac measure at the point yi ∈ R

d . Define

Ỹ0 ≡ {
z | z corresponds with an Y ∈ Y0 by (2.30)

}
, (2.31)

σ [Ỹ0] ≡
{{

z | z corresponds with an Y ∈ B, by (2.30)
} ∣
∣
∣ B ∈ σ [Y0]

}
, (2.32)

and

ν̃(B̃) ≡ ν(B), for B̃ = {
z | z corresponds with an Y ∈ B, by (2.30)

} ∈ σ [Ỹ0]. (2.33)

Then, from Eq. 2.29, through Eqs. 2.30–2.33, we can define the probability space (on a
subset of the space of Radon measures (cf., e.g., [51], also as a general reference cf. [68])
such that

(Ỹ0, σ [Ỹ0], ν̃). (2.34)

Next, we embed Ỹ0 defined by Eq. 2.31 into a Hilbert space, and interpret the present
random field (Ỹ0, σ [Ỹ0], ν̃) to be the one on which we can apply Theorems 1, 2 and 3.
To this end, for the present consideration, we modify the Hilbert-Schmidt operator and the
corresponding nuclear space defined through Eqs. 1.19–1.32 as follows: Let

H0 ≡ L2(Rd → R; λ), with λ the Lebesgue measure on Rd , (2.35)

and

H̃ ≡ (|x|2 + 1)d+1(−� + 1)
d+1
2 (|x|2 + 1)d+1, (2.36)

H̃−1 ≡ (|x|2 + 1)−(d+1)(−� + 1)−
d+1
2 (|x|2 + 1)−(d+1), (2.37)
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H̃n and H̃−n be the completion of S ≡ S(Rd → R), the space of Schwartz’s rapidly
decreasing functions, equipped with the norms corresponding to the inner products (·, ·)n
and (·, ·)−n respectively such that

(f, g)n ≡ (H̃ nf, H̃ ng)H0 , f, g ∈ S, (2.38)

(f, g)−n ≡ ((H̃−1)nf, (H̃−1)ng)H0 , f, g ∈ S . (2.39)

Then, through arguments analogous to those performed in Section 1 and in the previ-
ous examples (with obvious adequate modifications of notations and notions) we have the
continuous inclusion

H̃3 ⊂ H̃2 ⊂ H̃1 ⊂ H0 = L2 ⊂ H̃−1 ⊂ H̃−2 ⊂ H̃−3, (2.40)

and by the self-adjoint extension of H−1 on S , for each domain H̃n, n ∈ Z (setting H̃0 =
H0), we also have the Hilbert-Schmidt operator H̃−1.

Let {ϕ̃i}i∈N be the orthonormal base of the Hilbert space H0 (cf. Eqs. 1.29–1.32) such
that

H̃−1ϕ̃i = λ̃i ϕ̃i , i ∈ N, (2.41)

where {λ̃i}i∈N is the family of the corresponding eigenvalues, that satisfies

0 < · · · < λ̃2 < λ̃1 ≤ 1, {λ̃i}i∈N ∈ l2. (2.42)

Through the preparations (2.35)–(2.42) above, we see that for any Y ∈ Y0 the
corresponding Radon measure z ∈ Ỹ0 defined by (2.30) satisfies

z ∈ H̃−1. (2.43)

Equivalently, we are able to show that the following Lemma 2.1 holds:

Lemma 2.1 For the subset of Radon measures Ỹ0 defined by Eq. 2.31, it holds that

Ỹ0 ⊂ H̃−1.

The proof of Lemma 2.1 is given in Appendix A.
Moreover, the following Lemma 2.2 holds.

Lemma 2.2 For the σ -field σ [Ỹ0] defined by Eq. 2.32 and the Borel field B(H̃−r ) of the
Hilbert space H̃−r , it holds that σ [Ỹ0] ⊃ (

B(H̃−r ) ∩ Ỹ0
)
, for r ≥ 1.

The proof of Lemma 2.2 is also given in the Appendix A.
By Lemmas 2.1 and 2.2, the probability measure of the classical infinite particle system

ν̃ on (Ỹ0, σ [Ỹ0]) (cf. Eq. 2.34) can be extended, for each r ≥ 1, to a Borel probability
measure νr on (H̃−r ,B(H̃−r ) as follows:

νr (B) = ν̃(B ∩ Ỹ0), B ∈ B(H̃−r ). (2.44)

For the subsequent discussion, we take r = 3, and consider the corresponding extended
random field (H̃−3,B(H̃−3), ν3) to (Ỹ0, σ [Ỹ0], ν̃) (cf. Eq. 2.34).

By making use of Lemma 2.2, we shall proceed to the application of Theorems 1, 2 and 3
to the random field (H̃−3,B(H̃−3), ν3). From Eq. 2.40, 2.41 and 2.42 (cf. Eqs. 1.29–1.34),
we see that for k = 0, 1, 2, 3 with H̃−0 = H̃0 = H,

{(λ̃i)
kϕ̃i}i∈N is an O.N.B. of H̃k, (2.45)

{(λ̃i)
−kϕ̃i}i∈N is an O.N.B. of H̃−k, , (2.46)
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and we can define an isometric isomorphism τ between H̃−3 and l2(λ̃6) such that

τ : H̃−3 � f �−→ (λ̃−3
1 a1, λ̃

−3
2 a2, . . .) ∈ l2(λ̃6), with ai ≡ (f, λ̃−3

i ϕ̃i )−3, i ∈ N,

(2.47)
where the inner product (·, ·)−3 is defined, not by Eq. 1.24, but by Eq. 2.39. Then, through
νp defined by Lemma 2.2 and the mapping τ , we can define a Borel probability measure μ

on l2(λ̃6) as follows:

μ(B) ≡ ν3 ◦ τ−1(B) forB ∈ B(l2(λ̃6)). (2.48)

Now, by setting S = l2(λ̃6) in Theorems 1, 2 and 3, for each α ∈ (0, 1], we have an l2(λ̃6)-
valued Hunt process M ≡ (	, F, (Xt )t≥0, (Px)x∈S�), associated to the non-local Dirichlet

form (E(α),D(E(α))) on L2(S, μ). We can then define an H̃−3-valued Hunt process (Yt )t≥0
(cf. Eqs. 1.42 and 1.43) such that

Yt =
{ ∑

i∈NXi(t)ϕ̃i , Xi(t) �= �

�′, Xi(t) = �,
(2.49)

where �′ is a point adjoint to H̃−3 (the cemetery).
Through the above discussion we have proven the following:

Theorem 11 Let d ∈ N be given. Let (Ỹ0, σ [Ỹ0], ν̃) be the probability space on the space
of non negative integer valued Radon measures defined by Eq. 2.34, which is a replesen-
tation of (Y0, σ [Y0], ν) defined by Eq. 2.29, the probabilty space of the infinite particle
system on the configuration space Y0 (see Eqs. 2.21 and 2.27).

Define the probability measure ν3 by Eq. 2.44, by setting r = 3, and let
(H̃−3,B(H̃−3), ν3) be the probability space on the Hilbert space H̃−3 ⊃ Ỹ0, defined
through Eqs. 2.35–2.40, which is an extension of (Ỹ0, σ [Ỹ0], ν̃).

Then by setting μ as the probabilty measure on the abstract sequence space l2(λ̃6)

such that μ(B) ≡ ν3 ◦ τ−1(B), for B ∈ B(l2(λ̃6)), with τ defined through
Eqs. 2.41 and 2.47, for each α ∈ (0, 1], the non-local Dirichlet form (E(α),D(E(α)))

on L2(l2(λ̃6), μ) is well defined, and there corresponds an l2(λ̃6)-valued Hunt process
M ≡ (	,F , (Xt )t≥0, (Px)x∈S�) with S = l2(λ̃6) exists.

Moreover, by defining (Yt )t≥0 by Eq. 2.49, then Yt is an H̃−3-valued Hunt process that
is a stochastic quantization with respect to the non-local Dirichlet form (Ẽ(α),D(Ẽ(α))) on
L2(H̃−3, ν3), that is defined through (E(α),D(E(α))), by making use of τ . In particular
(Yt )t≥0 is a non-local Markov process with invariant measure ν3.

Remark 2.1 i) These considerations performed in Example 3 are adapted to all the cases
α ∈ (0, 1], but, if we restrict our discussions to the case where α = 1, then we are able to
take S = l2(λ̃4), and have an l2(λ̃4)-valued Hunt process M ≡ (	,F , (Xt )t≥0, (Px)x∈S�),
associated to the non-local Dirichlet form (E(α),D(E(α))) on L2(S, μ), and then we can
define an H̃−2-valued Hunt process (Yt )t≥0 (cf. Eq. 2.49) through the same discussion as in
Example 0.

ii) In order to consider other jump type Markov processes, which are natural analogues
of the diffusion process, with invariant measure ν̃ defined by Eqs. 2.33 and 2.34, constructed
through the local type Dirichlet form defined by [69], where the present ν̃ was denoted by
μ, we should define, analogous to [69], a corresponding non-local type Dirichlet forms by
making use of a system of density distributions (cf. Assumption 1 and Remark 1 of [69]).
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These would be different from the non-local type Dirichlet forms discussed in the present
paper, since they would involve the mentioned system of density distributions.

Remark 2.2 (On advantages of non-localDirichlet forms, on the related SPDE, on the space
cut-off)
i) Let us consider a toy model of 1-dimensional non-local stochastic quantiztaon as
follows: Let the state space S ≡ {− 1

2 ,
1
2 } ⊂ R

1. Suppose that we are given some
p ∈ [0, 1], and a probabilty measure μ on S such that μ({ 12 }) = p, μ({− 1

2 }) = 1 − p.
Take f, g ∈ S(R → R), and denote u1 = f ( 12 ), u2 = f (− 1

2 ), v1 = g( 12 ) and

v2 = g(− 1
2 ). Define an inner product (f, g)L2(μ) such that (f, g)L2(μ) ≡

∫

R

f (x) g(x)

μ(dx) = u1v1p + u2v2(1 − p).
Then, L2(μ) is the space of real valued bounded measurable functions on R. On L2(μ),

define a closable non-local Markovian symmetric form E(α), α ∈ (0, 2) such that

E(α)(f, g) ≡
∫

x �=y

(f (x) − f (y)) (g(x) − g(y))

|x − y|1+α
μ(dx) μ(dy)

= (u1 − u2)(v1 − v2)p(1 − p) + (u2 − u1)(v2 − v1)(1 − p)p

=
(

A

(
u1
u2

)

,

(
v1
v2

))

L2(μ)

=
((

u1
u2

)

, A

(
v1
v2

))

L2(μ)

,

where A = 2

(
1 − p p − 1
−p p

)

. The closed extension of E(α), denoted by the same notation,

is a Dirichlet form with domain D(E(α)) = L2(μ). Then, A is the generator of Markovian
semi group e−At , t ≥ 0 such that

e−At =
∞∑

n=0

(−1)ntn2n

n!
(
1 − p p − 1
−p p

)n

=
(

p 1 − p

p 1 − p

)

+ e−2t
(
1 − p p − 1
−p p

)

.

(2.50)
Denote the right hand side of Eq. 2.50, the matrix, by Mt , t ≥ 0, then it holds that

(p, 1 − p)Mt = (p, 1 − p).

Thus Mt , and hence e−At defines a continuous time conservative Markov process with
invariant measureμ, which is a non-local stochastic quantization ofμ. Obviously, forL2(μ)

it is impossible to formulate a corresponding local Dirichlet form. Roughly speaking, for
a given random field μ, in order to consider the stochastic quantizations through the argu-
ments by means of the local Dirichlet forms, we have to suppose a sufficient regularity
for μ.

By keeping the above description in mind, let us compare the main theorems given in
[16] and [24]. For this we use the same notations used in [16] and [24] without giving their
definitions. By making use of a directional derivative, to define a local Dirichlet form on
L2(E;μ), with E a locally convex Hausdorff topological vector space which is in addi-
tion Souslinean, and a Borel positive mesure μ, we have to firstly consider the so-called
μ-admissibility (see Definition 2.1 and Theorem 2.2 of [24]. By Theorem 2.2 of [24], it is
shown that for each k ∈ E \ {0}, the μ-admissibility corresonding to k is completly charac-
terized by means of ρk : Ek ×B(R) → [0, 1], a kernel function, and νk , the image measure
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of μ under the projection πk : E → Ek with E = Ek ⊕ kR, such that
∫

E

u(z)μ(dz)=
∫

Ek

∫

R

u(x+sk)ρ(x, ds)νk(dx), for all Borel function u :E→[0, ∞).

In [16] we inherit the concept of the deconposition of μ by meams of ρk and νk , as an
abstract way, and define the non-local Dirichlet forms on weighted lp spaces (see Eq. 1.7 in
the present paper). Roughly speaking, μ(dyi | σic ) in Eq. 1.7 corresponds to ρk (more pre-
cisely see Remark 2 of [16]). For the cases of local Dirichlet forms on infinite dimensional
topological vector spaces, to certify the conditions under which the μ-admissibility holds,
we need fine informations on the measure μ (see Theorems 2.2, 2.4 and Corollary 2.5 in
[24], also for the finite dimensional case cf. Section II-2-a) of [54], on the other hand for
the cases of non-local Dirichlet forms on weighted lp spaces, a sufficient conditions under
which we can define quasi-regular Dirichlet forms becomes simple (see Theorem 1, and
Eqs. 1.11 and 1.12 of Theorem 2 in the present paper, see [16] for more general situations).
(Naturally, even a finite dimensional model, the above model set in the remark does not
satisfy the conditions given in Section II-2-a) of [54]).

In [3, 4, 18, 41–43], the local stochastic quantizations corresponding to �4
3 Euclidean

field are considered by not passing through the arguments of the Dirichlet form. By using
the directional derivatives which were adopted in [22–24], because of a less regularity of
Euclidean �4

3 measure, it would be impossible to define a local Dirichlet form for the
Euclidean �4

3 field (for a related discussion, cf. [20], and cf. [30, 70, 71] where a local
Dirichlet form reduced from the solution of the SPDE given by [43] is discussed). On the
other hand, in [16] by making use of the non-local Dirichlet form, a non-local stochastic
quantization of �4

3 field is considered. In short, non-local stochastic quantizations could be
considered also for random fields possessing less regularities (see the above paragraph).
ii) Let M ≡ (

	,F , (Xt )t≥0, (Px)x∈S�
)
be the Hunt process defined through Theorem

3. By a direct application of Theorem VI-2.5 of [54] we see that for u ∈ D(E(α)), there
exists a unique martingale additive functional of finite energy (MAF) M [u] and a continuous
additive functional of zero energy (CAF’s zero energy) N [u] such that

A[u] = M [u] + N [u], (2.51)

where

A[u] ≡ (A
[u]
t )t≥0, A

[u]
t = ũ(Xt ) − ũ(X0),

with ũ an E(α)-quasi continuous μ-version of u ∈ D(E(α)). Since, Examples 0, 1, 2 and 3
are considered through Theorem 3, every Hunt process appearing in Theorems 5, 6, 7, 8, 9,
10 and 11 admits the decomposition formula (2.51) with Xt being substituted by Yt .

In order to consider the martingale problems (cf., e.g., [39] and [55]) corresponding to
the decomposition given by Eq. 2.51, and then to give the explicit expressions by means of
SPDEs to the Hunt process M, by setting some additional assumptions for the probability
measure μ (cf. Eq. 1.3), e.g., a uniform regularity of its density function, we have to pass
through the analogous discussions performed by, e.g., [39] and [5] for the finite dimensional
vector spaces. The considerations of this concern are postponed to future works.

Since the strictly quasi regular Dirichlet forms (E(α),D(E(α))) considered in this paper
satisfy 1 ∈ D(E(α)) (see the proofs of Theorem 2 and 3 of [16]), and the state spaces in
considerations are separable Hilbert spaces, the Hunt processM associates with the strictly
quasi regular Dirichlet forms discussed in Examples 0, 1, 2 and 3 are conservative, i.e.,
Eq. 2.51 are time gloval processes (see Proposition V.2.15 and the discriptions in pages 160,
161 of [54]).
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iii) In order to apply Theorem 2 on the strictly quasi regular Dirichlet forms
(E(α),D(E(α))) to each concrete Euclidean random field μ on a topological vector space,
we need the support property of μ. In Examples 1 and 2, by setting the assumptions of
the space cut-off to the potential terms (exponential, trigonometric and P(φ)2), by apply-
ing Theorem 4 (Bochner-Minlos Theorem), we can get clear support properties such that
support[μ] ⊂ H−n, n ≥ 1, and then we can apply Theorem 2 to these examples. In [16] the
non-local stochastic quantization of �4

3 has been considered, where for the random field μ

we are able to use the support property that is guaranteed by the lattice approximations of
μ provided by [31].

Appendix A

Proof of Lemma 2.1 From Eqs. 2.22 and 2.23, the assumption for the original measure ν,
Lemma 2.1 can be proven as follows: It suffices to show that Eq. 2.43 holds for any z that
corresponds with an Y ∈ UN ⊂ Y0 for some N ∈ N (see Eq. 2.27).

For Y ∈ UN ⊂ Y0 with N ∈ N, let z =
∑∞

i=1
miδyi

∈ Ỹ0, (A.1)

the Radon measure corresponding with Y through Eq. 2.30. Then, for any test function
ϕ ∈ S (denoting by< z, ϕ > the dualization between the distribution z and the test function
ϕ), we have

| < z, ϕ > | =
∣
∣
∣
∣
∣

∞∑

i=1

miϕ(yi)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∞∑

l=0

⎛

⎝
∑

yi∈Qr :|r|=l

miϕ (yi)

⎞

⎠

∣
∣
∣
∣
∣
∣

≤
∞∑

l=0

⎛

⎝
∑

|r|=l

n(Y, r)

(

sup
y∈Qr

|ϕ(y)|
)⎞

⎠≤
∞∑

l=0

⎛

⎝
∑

|r|=l

(n2(Y, r))

(

sup
y∈Qr

|ϕ(y)|
)⎞

⎠

≤
∞∑

l=0

⎛

⎝
∑

|r|=l

(n2(Y, r))( sup
y∈Qr

|(|y|2 + 1)d+1ϕ(y)|)
⎞

⎠

≤
∞∑

l=0

⎛

⎝
∑

|r|=l

(n2(Y, r))

(∫

Qr

((−� + 1)
d+1
2 (|y|2 + 1)d+1ϕ(y))2dy

) 1
2

⎞

⎠

≤
∞∑

l=0

(
∑

|r|=l

)(n2(Y, r))

(∫

Qr

((|y|2 + 1)−(d+1))2dy

) 1
2

×
(∫

Qr

(
(|y|2 + 1)d+1((−� + 1)

d+1
2 (|y|2 + 1)d+1ϕ(y)

)2
dy

) 1
2

)

,

≤
∞∑

l=0

⎛

⎝
∑

|r|=l

(n2(Y, r))

(∫

Qr

((|y|2 + 1)−(d+1))2dy

) 1
2

⎞

⎠ ‖ϕ‖H̃1
. (A.2)

In the above deductions, to get the third inequality we have applied the Sobolev’s embed-
ding theorem (cf., e.g., [56]) that gives for the Sobolev space Wm,2 with m = [ d

2 ] + 1, that
Wm,2 ⊂ Cb(R

d) (cf. the explanation given below (A.10), where Cb(R
d) denotes the space

of real valued bounded continuous functions on R
d . Since, for r ∈ Z

d by denoting |r| = l,
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for some C < ∞ it holds that
∫

Qr

(
(|y|2 + 1)−(d+1))2dt ≤ C(l2 + 1)−

3d+5
2 , (A.3)

by this together with Eq. A.1, we can evaluate the right hand side of Eq. A.2. We conse-
quently see that the following holds for some constants C1, C2, C3 < ∞ (only C3 depends
on N ):

| < z, ϕ > | = C1

{ ∞∑

l=1

n2(Y, r)(2l + 1)−d(l2 + 1)−
3d+5
4 + d

2 + N2

}

‖ϕ‖H̃1

≤ C2

{ ∞∑

l=1

N2(l + 1)−
d
2 − 5

2 + N2

}

‖ϕ‖H̃1
≤ C3‖ϕ‖H̃1

, ∀ϕ ∈ H̃1.

(A.4)

Equation A.4 shows that

z ∈ H̃∗
1 = H̃−1, (A.5)

for any z that corresponds with anY ∈ UN ⊂ Y0 for some N ∈ N. Since N ∈ N is arbitrary,
the proof of Eq. 2.43 is completed.

Proof of Lemma 2.2 Let r ≥ 1. We shall show that

σ [Ỹ0] ⊃ (
B(H̃−r ) ∩ Ỹ0

)
. (A.6)

Since H̃−r is a separable Hilbert space, and hence, it is a Souslin space, and also since the
dual space of H̃−r is H̃r (see Eq. 2.40), it holds that (cf. e.g., [27])

B(H̃−r ) = σ [H̃r ] ≡ the σ − field generated by {z | z ∈ H̃−r , ϕ(z) < t}, t ∈ R, ϕ ∈ H̃r ,

(A.7)
where ϕ(z) =< z, ϕ > denotes the dualization between the distribution z ∈ H̃−r and the
test function ϕ ∈ H̃r (cf. Eq. A.2). To see that Eq. A.6 holds, by Eq. A.7 it suffices to show
that

({z | z ∈ H̃−r , ϕ(z) < t} ∩ Ỹ0
) ∈ σ [Ỹ0], for any ϕ ∈ H̃r and ∀t ∈ R. (A.8)

By Lemma 2.1, since H̃−r ⊃ Ỹ0, and it holds that
({z | z ∈ H̃−r , ϕ(z) < t} ∩ Ỹ0

) = {z | z ∈ H̃−r ∩ Ỹ0, ϕ(z) < t} = {z | z ∈ Ỹ0, ϕ(z) < t},
we see that Eq. A.8 is equivalent to the following:

{z | z ∈ Ỹ0, ϕ(z) < t} ∈ σ [Ỹ0], for any ϕ ∈ H̃r and ∀t ∈ R. (A.9)

On the other hand, by Eq. 2.38, from the Sobolev’s embedding theorem (cf., e.g., Th.
3.15 in [56]),since Cb(R

d → R) ⊂ Wr(d+1),2(Rd), it holds that

C̃ ≡ {(|x|2 + 1)−r(d+1)ψ | ψ ∈ Cb(R
d → R)} ⊃ H̃r , (A.10)

where Cb denotes the space of real valued bounded continuous functions, and Wr(d+1),2

denotes the Sobolev space defined., e.g., by Def. 2.9 of [56], where the notation such that
E r(d+1)

L2 = Wr(d+1),2 is adopted. Thus, by Eq. A.10, in order to prove Eq. A.9, that is
equivalent to Eq. A.8, it suffices to show that

{z | z ∈ Ỹ0, ϕ(z) < t} ∈ σ [Ỹ0], ∀ϕ ∈ C̃, ∀t ∈ R. (A.11)
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For Eq. A.11, we used the fact that C̃ can be taken as the dual space of Ỹ0, which is included
in the proof of Lemma 2.1 (cf. Eq. A.2), but is easily seen as follows: By Eq. A.10, for
ϕ = (|x|2 + 1)−r(d+1)ψ ∈ C̃ with ψ ∈ Cb and any z ∈ Ỹ0, it holds that

|ϕ(z)|= |
∞∑

i=1

miϕ(yi)| = |
∞∑

l=0

(
∑

yi∈Qt :|t |=l

miϕ(yi))|

≤
∞∑

l=0

(
∑

|t |=l

n(Y, t)( sup
y∈Qt

|ϕ(y)|))≤‖ψ‖L∞
∞∑

l=0

∑

|t |=l

(n2(Y, t))( sup
y∈Qt

(|y|2+1)−r(d+1))

≤ ‖ψ‖L∞
∞∑

l=1

⎛

⎝
∑

|t |=l

(n2(Y, t))

(

t2 − 1

2

)−r(d+1)
⎞

⎠ + n2(Y, 0) < ∞, (A.12)

where the last equality follows from Eqs. 2.24 and 2.27.
In addition, note that for ϕ ∈ C̃, by the decomposition such that ϕ = ϕ+ − ϕ−, where

ϕ+(x) ≡ max{ϕ(x), 0} and ϕ−(x) ≡ max{−ϕ(x), 0}, it holds that
ϕ+, ϕ− ∈ C̃. (A.13)

Also, note that the following holds:

{z | z ∈ Ỹ0, ϕ(z) < t} = {z | z ∈ Ỹ0, ϕ+(z) − ϕ−(z) < t}
=

⋃

s∈Q

({f ∣
∣ z ∈ Ỹ0, ϕ+(z) < t + s} ∩ {z ∣

∣ z ∈ Ỹ0, ϕ−(z) > s}),

(A.14)

where Q denotes the field of rational numbers. Thus, since the right hand side of Eq. A.14
is a countable operation, from Eqs. A.13 and A.14, to prove Eq. A.11 it suffices to show
that the following holds:

{z | z ∈ Ỹ0, ϕ(z) < t} ∈ σ [Ỹ0], for any ϕ ∈ C̃ such that ϕ(x) ≥ 0, x ∈ R
d , and ∀t ∈ R.

(A.15)
To this end for ϕ ∈ C̃ with ϕ(x) ≥ 0, ∀x ∈ R

d , define ϕn ∈ C̃, n ∈ N, that satisfy the
following:

0 ≤ ϕn(x) ≤ ϕn+1(x) ≤ ϕ(x), ∀x ∈ R
d , ∀n ∈ N, (A.16)

supp [ϕn] ⊂ {x | x ∈ R
d , |x| ≤ n}, (A.17)

lim
n→∞ ‖ϕn − ϕ‖L∞ = 0, (A.18)

then, since z ∈ Ỹ0 is a non-negative (integer)-valued Radon measure on R
d (cf. Eq. 2.30),

we can use an argument of a monotonicity, we have

{z | z ∈ Ỹ0, ϕ(z) < t} =
⋃

n∈N
{z | z ∈ Ỹ0, ϕn(z) < t}. (A.19)

For each ϕn ∈ C0(R
d → R+), there exists a sequence of simple functions {ϕn,k}k∈N on

B(Rd), the Borel σ -field of Rd , such that

0 ≤ ϕn,k(x) ≤ ϕn,k+1(x) ≤ ϕn(x), ∀x ∈ R
d , k ∈ N, (A.20)

lim
k→∞‖ϕn,k − ϕn‖L∞ = 0, (A.21)
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where C0(R
d → R+) denotes the space of non-negative continuous functions on R

d with
compact supports. Then, by Eqs. A.20, A.21 and again by the monotonicity of the sequence
of sets, that follows from the positivity of z ∈ Ỹ0, it holds that

{z | z ∈ Ỹ0, ϕn(z) < t} =
⋃

k∈N
{z | z ∈ Ỹ0, ϕn,k(z) < t}. (A.22)

By the definition of the σ -field σ [Ỹ0], provided through Eqs. 2.21, 2.28 and 2.32, since

{z | z ∈ Ỹ0, ϕn,k(z) < t} ∈ σ [Ỹ0], ∀n ∈ N, ∀k ∈ N,

from Eq. A.22 we have

{z | z ∈ Ỹ0, ϕn(z) < t} ∈ σ [Ỹ0], ∀n ∈ N,

and thus, from Eq. A.19, we see that Eq. A.15 holds. This complete the proof of Eq. A.6.
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to prof. Michael Röckner for several fruitful discussions on the corresponding researches.

The datasets generated during and/or analysed during the current study are available from the correspond-
ing author on reasonable request.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Albeverio, S.: Theory of Dirichlet forms and applications. In: Lectures on probability theory and statistics
(Saint-Flour:2000), Lecture Notes in Math, vol. 1816, pp. 1–106. Springer, Berlin (2003)

2. Albeverio, S.: Along paths inspired by Ludwig Streit: stochastic equations for quantum fields and related
systems. Stochastic and infinite dimensional analysis:1–17, Trends Math., Birkhäuser/Springer, Cham
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22. Albeverio, S., Röckner, M.: Classical Dirichlet forms on topological vector spaces- the construction of

the associated diffusion processes. Probab. Theory Related Fields 83, 405–434 (1989)
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27. Badrikian, A.: Séminarie Sur Les Fonctions Aléatoires Linéaires Et Les Mesures Cylindriques Lecture

Notes in Math, vol. 139. Springer, Berlin (1970)
28. Barashkov, N.: A stochastic control approach to Sine Gordon EQFT. arXiv:2203.06626 (2022)
29. Barashkov, N., De Vecchi, F.C.: Elliptic stochastic quantization of Sinh-Gordon QFT. arXiv:2108.12664

(2021)
30. Barashkov, N., Gubinelli, M.: On the variational method for Euclidean quantum fields in infinite volume.

Duke Math. J. 169, 3339–3415 (2020)
31. Brydges, D., Fröhlich, J., Sokal, A.: A new proof of the existence and non triviality of the continuum ϕ4

2
and ϕ4

3 quantum field theories. Commn Math. Phys. 91, 141–186 (1983)
32. Catellier, R., Chouk, K.: Paracontrolled distributions and the 3-dimensional stochastic quantization

equation. Ann. Probab. 46, 2621–2679 (2018)

1968 S. Albeverio et al.

http://arxiv.org/abs/2004.12383
http://arxiv.org/abs/2102.08040v3
http://arxiv.org/abs/2203.06626
http://arxiv.org/abs/2108.12664


33. Conache, D., Daletskii, A., Kondratiev, Y., Pasurek, T.: Gibbs states of continuum particle systems with
unbounded spins: existence and uniqueness. J. Math. Phys. 59(1), 013507–013525 (2018)

34. Da Prato, G., Debussche, A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31,
1900–1916 (2003)
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