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Abstract
We prove that for α ∈ (d − 1, d), one has the trace inequality

ˆ
Rd

|IαF |dν ≤ C|F |(Rd)‖ν‖Md−α(Rd )

for all solenoidal vector measures F , i.e., F ∈ Mb(R
d ;Rd) and div F = 0. Here Iα denotes

the Riesz potential of order α and Md−α(Rd) the Morrey space of (d − α)-dimensional
measures on R

d .
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1 Introduction

A result of V. Maz’ya [24] (and later reproved by N. Meyers and W.P. Ziemer [25]) asserts
the existence of a constant C1 > 0 such that one has the inequalityˆ

Rd

|u| dν ≤ C1‖ν‖Md−1(Rd )|Du|(Rd) (1.1)

for every u ∈ BV(Rd) and every non-negative Radon measure ν satisfying the ball growth
condition ‖ν‖Md−1(Rd ) < +∞, where for β ∈ (0, d)

‖ν‖Mβ (Rd ) := sup
x∈Rd ,r>0

ν(B(x, r))

rβ

is the norm of ν in the Morrey space Mβ(Rd). Here and in the sequel, with an abuse of
notation, we use | · | to denote the total variation of vector-valued Radon measure (it also
denotes the absolute value of a scalar and Euclidean norm of a vector).

The inequality (1.1) is sometimes referred to as a trace inequality, as it gives an estimate
for functions on lower dimensional subspaces, e.g. hyperplanes. It is the analogue in the
regime p = 1 of Maz’ya’s capacitary inequalities1 [22, 23] and represents the state of the
art concerning Sobolev inequalities under the assumption that Du is a bounded measure.
Indeed, as discussed by A. Ponce and the second named author in [27], and recounted in [32,
Section 6], it implies the Sobolev inequality of E. Gagliardo [13] and L. Nirenberg [26], its
Lorentz improvement [8], and even Hardy’s inequality (the latter two are in fact equivalent
in this case, as a result of the Pólya-Szegö inequality and [12, Lemma 4.3 on p. 3424]).
Yet perhaps the most significant consequence of the inequality (1.1) are its implications
concerning the well-definedness for Hd−1 almost every x ∈ R

d of u ∈ W 1,1(Rd), the
deduction of which requires several additional ingredients found in the work of D.R. Adams
[1]. In particular, Adams shows firstly that the estimate for each such measure extends to an
estimate on the space of functions Choquet integrable with respect to the Hausdorff content
Hd−1∞ , L1(Hd−1∞ ), and secondly that the Hardy–Littlewood maximal function is bounded
on these spaces L1(Hβ∞), β ∈ (0, d). From this, by the approximation argument on p. 123
he obtains [1, Theorem 1]: There exists a constant C2 = C2(d) > 0 such thatˆ ∞

0
Hd−1∞ ({M(u) > t}) dt ≤ C2|Du|(Rd) (1.2)

for all u ∈ BV(Rd). Here the integral on the left-hand-side is the Choquet integral with
respect to the outer measure Hd−1∞ and M is the Hardy-Littlewood maximal function,
defined for f ∈ L1

loc(R
d) by

Mf (x) := sup
r>0

 
B(x,r)

|f (y)| dy.

In this paper we are interested in similar sharp trace inequalities for potentials acting on
constrained subspaces of the space of vectorial measures, where surprisingly there are only
two known results. The first is not explicitly written, though it follows easily from (1.1) and
the analysis in [1]: For α ∈ (1, d), there exists a constant C3 = C3(α, d) > 0 such thatˆ ∞

0
Hd−α∞ ({M(Iα F ) > t}) dt ≤ C3|F |(Rd) (1.3)

1These inequalities were later called strong capacitary inequalities by D.R. Adams [2].
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for all F ∈ Mb(R
d ;Rd) such that curl F = 0 (or, equivalently, F = Du for some Du ∈

Mb(R
d ;Rd)). Here, Mb(R

d ;Rd) denotes the space of R
d -valued measures (charges) of

bounded total variation and Iα denotes the Riesz potential of order α ∈ (0, d), defined for
F ∈ Mb(R

d ;Rd) by

Iα F (x) := 1

γ (α)

ˆ
Rd

F (y)

|x − y|d−α
dy,

where

γ (α) := πd/22α�(α/2)

�
(

d
2 − α

2

) ,

is a normalization constant such that (Iα F )̂ = (2π | · |)−αF̂ , see [34, p. 117]. That
(1.3) can be deduced from (1.1) can be seen as follows. First, by the boundedness of the
Hardy-Littlewood maximal function with respect to L1(Hβ∞), the duality formula (see [1]
or Section 2.5 in [3])ˆ ∞

0
Hβ∞

({|g| > t}) dt � sup
({ˆ

Rd

g dν

∣
∣
∣ ‖ν‖Mβ (Rd ) ≤ 1

})
, (1.4)

and the approximation argument on p. 123 in [1], one finds that it suffices to prove the
inequality ˆ

Rd

| Iα Du| dν ≤ C′
3‖ν‖Md−α(Rd )|Du|(Rd)

for all Du ∈ Mb(R
d ;Rd). Next, one utilizes the inequality

| Iα Du| ≤ Cα Iα−1 |u|,
valid for α > 1, and Tonelli’s theorem, to obtain the boundˆ

Rd

| Iα Du| dν ≤ Cα

ˆ
Rd

|u| d Iα−1 ν.

Finally, the fact that Iα−1 ν ∈ Md−1(Rd) with

‖ Iα−1 ν‖Md−1(Rd ) ≤ C′
α‖ν‖Md−α(Rd )

enables one to apply the inequality (1.1), thereby completing the demonstration of (1.3).
That the restriction α > 1 is necessary in the inequality (1.3) can be seen by the
counterexample F = DχQ, see e.g. [33].

The second known result is [1, Proposition 5]: For α ∈ (0, d), there exists a constant
C4 = C4(α, d) > 0 such thatˆ ∞

0
Hd−α∞ ({M(Iα F ) > t}) dt ≤ C4‖F‖H 1(Rd ) (1.5)

for all F in the real Hardy space H 1(Rd). In particular, the inequalities (1.3) and (1.5)
prompt one to wonder whether similar inequalities hold for other various constrained sub-
spaces of measures, and if so, to determine the relationship between each subspace and the
minimal α in such an inequality. For curl free measures, it seems useful to express the valid-
ity of the inequality in terms of α > 1 = d − (d − 1), since d − 1 is the largest value of β

for which

Hβ(E) = 0 =⇒ |F |(E) = 0
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for all F ∈ Mb(R
d ;Rd) with curl F = 0. This heuristic agrees with what one understands

from the Hardy space inequality, where one has its validity for α > 0 = d − d, d being the
largest value of β for which

Hβ(E) = 0 =⇒ |F |(E) = 0

for all F ∈ H 1(Rd) (since any element of the Hardy space is absolutely continuous with
respect to the Lebesgue measure).

These two examples motivate the following: Given any closed translation and dilation
invariant subspace X ⊂ Mb(R

d ;Rk), one defines a number associated with the dimension
of the singular set of this subspace,

κ := inf
ν∈X

dimH ν,

where

dimH ν := sup
β>0

{
β : Hβ(E) = 0 =⇒ |ν|(E) = 0

}
.

Then one poses

Open Question 1.1 Let α ∈ (d − κ, d). Can one show the existence of a constant C =
C(α, d,X) > 0 such thatˆ ∞

0
Hd−α∞ ({M(Iα F ) > t}) dt ≤ C|F |(Rd)

for all F ∈ X?

Remark 1.2 The answer to the open question above is positive in a related martingale model,
see [7]. It is also possible that one needs to impose some additional conditions on X like
closedness in some weaker topology, as in [35].

The main result of this paper is to answer this question in the affirmative in the case
of divergence free measures. Note that for such measures, it follows from Smirnov’s
theorem [31] that κ = 1. In particular, we here establish

Theorem 1.3 Let α ∈ (d − 1, d). There exists a constant C5 = C5(α, d) > 0 such thatˆ ∞

0
Hd−α∞ ({M(Iα F ) > t}) dt ≤ C5|F |(Rd) (1.6)

for all F ∈ Mb(R
d ;Rd) such that div F = 0.

By the duality formula (1.4), the boundedness of the maximal function on L1(Hβ∞), and
an approximation argument similar to [1, p. 123], Theorem 1.3 is equivalent to the trace
inequality given in

Theorem 1.4 Let α ∈ (d − 1, d). There exists a constant C6 = C6(α, d) > 0 such thatˆ
Rd

| Iα F | dν ≤ C6‖ν‖Md−α(Rd )|F |(Rd) (1.7)

for all vector measures F ∈ Mb(R
d ;Rd) such that div F = 0.

2096 B. Raiţă et al.



Theorems 1.3 and 1.4 are sharp in the sense that they fail for α ∈ (0, d − 1]. Indeed, as
in D. R. Adams’ proof of [1, Proposition 5 on p. 121], the validity of the inequality for any
value in this range would imply the result for α = d − 1, which cannot hold as a result of
the following

Theorem 1.5 There exists F ∈ Mb(R
d ;Rd) with div F = 0 in the sense of distributions

and

sup
t>0

tH1∞ ({| Id−1 F | > t}) = +∞.

Inequalities analogous to (1.6) and (1.7) hold for broader classes of differential con-
straints. In particular, if one has a measure F and a first order cocancelling (see [18, 20,
37] for a definition, for example) differential constraint L for which L(D)F = 0, then one
can write

F = T †T F

where T , T † are maps on finite dimensional spaces and div T F = 0 row-wise. Therefore,
the estimate for divergence free fields extends to those which admit such annihilators. We
refer to [20] for the details, which is based upon an idea from [37] (see also [16, Equa-
tion (1.6) on p. 2136] for a related family of Lq(dν) trace inequalities where q > 1). We
make two further comments in this regard. First, for other choices of first order differen-
tial constraints the result may fail to be sharp with respect to the minimal admissible α. For
example, our result implies the curl free case, inequality (1.3), for α > d − 1, while the
result in fact holds for any α > 1. Second, the connection between the differential constraint
chosen and the admissible value of κ seems to be a difficult problem, see [4–6, 28, 36] for
further exploration of this question.

Concerning the endpoint case α = d − 1 (and more generally α = d − κ), the situation
remains unclear. In the curl free case, while the inequality (1.3) fails at the endpoint α = 1,
the inequality (1.2) is only a singular integral transformation away: If we denote by R∗ the
adjoint of the vector-valued Riesz transform, while the estimate fails for I1 ∇u, it holds for
R∗ ·I1 ∇u = u. This suggests that with an appropriate singular integral transformation (with
additional cancellation properties) it may be possible to obtain an estimate in the endpoint
α = d − 1 (and by extension, in endpoints for other various subspaces). In particular,
we let K1,K2, . . . , Kd be a collection of (sufficiently smooth) functions on R

d that are
homogeneous of order −1 and consider the operator

μ �→
d∑

j=1

Kj ∗ μj (1.8)

acting on R
d -valued charges. Let us call this operator K .

Conjecture 1.6 The inequalityˆ
Rd

|K[F ]| dν � |F |(Rd)‖ν‖M1(Rd ), div F = 0, (1.9)

holds true if and only if
d∑

j=1

(Kj (ξ) + Kj(−ξ))ξj = 0. (1.10)

for any ξ ∈ R
d .
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The “only if” may be obtained by testing the case where F and ν are concentrated on
one and the same segment.

We conclude the introduction with a few remarks concerning the case α = d. In this
limiting case, one intends by Id F the convolution of F with a constant multiple of ln | · |.
This agrees with what one obtains from a definition in terms of the Fourier transform,

(Id F )̂ := (2π | · |)−d F̂

for functions which satisfy F̂ (0) = ´
F = 0, and also the object which arises as the limit

of the sequence Iα F as α → d− for F such that
´

F = 0, see e.g. [21, p. 50] (see also
[14, 15] for logarithm-free representations of this object in terms of Riesz transforms of
bounded functions). Without further assumptions on F , one has that Id F is of bounded
mean oscillation. When one imposes that F is divergence free, or more generally, admits
a cocancelling annihilator L(D), this can be improved, and an estimate analogous to those
treated above in this paper reads

‖ Id F‖L∞(Rd ) ≤ C|F |(Rd).

Such an inequality is implicit in the work [11] (see also the proof of [29, Lemma 3.1] and
the related estimates in [30] for cancelling differential operators), though the question of
whether Id F is necessarily continuous is not yet settled. This is the case when the annihi-
lator L is assumed to have constant rank, a fact which can be seen by making an excursion
into the Lorentz spaces and utilizing the sharp embeddings on this scale obtained in [19,
35], though without this assumption we have neither a proof nor a counterexample.

2 Proofs

The notation A � B means there exists C > 0 such that A ≤ CB, where C may depend
on the dimension, α, but not on the functions or measures being estimates. For example, in
formula (2.1) it does not depend on the choice of μ. The following technical and elementary
proposition is interesting in itself.

Proposition 2.1 Let μ be a (signed or vector valued) measure onRd with compact support,
zero mean, and such that

‖μ‖M1(Rd ) � 1. (2.1)

Then, for any α ∈ (d − 1, d) the inequality
ˆ
Rd

| Iα μ| dν � diam(supp μ) · ‖ν‖Md−α(Rd ) (2.2)

holds true for any non-negative measure ν.

Proof Without loss of generality, by translation we may assume 0 ∈ supp μ. Define

R := max
x∈supp μ

|x|,

so that μ is supported in the ball B(0, R) with R ≤ diam(supp μ). We will estimate Iα μ at
the points x ∈ B(0, 2R) and x /∈ B(0, 2R) in two different ways.
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Let us start with the former case, where a telescoping dyadic argument and the location
of x in relation to the support of μ yields the inequality

∣
∣ Iα μ(x)

∣
∣ �

ˆ

Rd

d|μ|(y)

|x − y|d−α
�

∑

2k≤3R

2−(d−α−1)k‖μ‖M1(Rd ) � R−d+α+1.

Concerning the latter case, using that
´

dμ = 0 we have

| Iα μ(x)| = 1

γ (α)

∣
∣
∣
ˆ

Rd

dμ(y)

|x − y|d−α

∣
∣
∣ = 1

γ (α)

∣
∣
∣
ˆ

Rd

(
1

|x − y|d−α
− 1

|x|d−α

)
dμ(y)

∣
∣
∣.

In particular, an application of the mean value theorem gives the standard estimate
∣
∣
∣

1

|x − y|d−α
− 1

|x|d−α

∣
∣
∣ �

|y|
|x|d−α+1

, y ∈ B(0, R), x /∈ B(0, 2R),

so that in this regime

| Iα μ(x)| � |x|−d+α−1
ˆ

Rd

|y| d|μ|(y) � |x|−d+α−1R2.

Therefore, we have proved the estimate

∣∣
∣ Iα μ(x)

∣∣
∣ �

{
R−d+α+1, x ∈ B(0, 2R);
|x|−d+α−1R2, x /∈ B(0, 2R).

(2.3)

We integrate this estimate with respect to ν:ˆ

Rd

| Iα μ(x)| dν(x) �
ˆ

B(0,2R)

R−d+α+1 dν(x) + R2
ˆ

Rd\B(0,2R)

|x|−d+α−1 dν(x)

� R‖ν‖Md−α(Rd ) +
∑

2k≥R

2k(−d+α−1)2k(d−α)R2‖ν‖Md−α(Rd )

� R‖ν‖Md−α(Rd ).

We next give the

Proof of Theorem 1.4 As argued in [19] and [20], we claim that it suffices to prove the
estimate for F = μ� , where μ� is a measure induced by integration along an oriented
piecewise-C1 closed loop �:

ˆ
Rd

� · μ� :=
ˆ |�|

0
�(γ (t)) · γ̇ (t) dt, � ∈ Cc(R

d ,Rd),

and which satisfies

‖μ�‖M1(Rd ) � 1.

Here we use the notation γ : [0, |�|] → R
d to denote the parametrization of the closed loop

� by arclength.
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This reduction relies on the following theorem established in [19, Theorem 1.5].

Theorem (Atomic Decomposition) Suppose F ∈ Mb(R
d ;Rd) satisfies div F = 0

in the sense of distributions. Then there exist oriented piecewise-C1 closed curves
{�i,l,j }{1,...,nl}×N×{1,...,ki } for which

F = lim
l→∞

|F |(Rd)

nl · l

nl∑

i=1

ki∑

j=1

μ�i,l,j

weakly-star as measures,

lim
l→∞

1

nl · l

nl∑

i=1

ki∑

j=1

|μ�i,l,j
|(Rd) ≤ 10,

and

‖μ�i,l,j
‖M1(Rd ) := sup

x∈Rd ,r>0

|μ�i,l,j
|(B(x, r))

r
≤ 1000.

As this result is a recent development in the literature and the main technical tool in the
proof, let us comment further on its proof for the convenience of the reader. In particular, the
deduction of [19, Theorem 1.5] relies on three ingredients. First, one appeals to Smirnov’s
integral decomposition of divergence free measures [31] to obtain an integral representation
for such objects in terms of curves. Second, one samples Smirnov’s result and makes use of
the properties of the distribution of the endpoints of the curves to obtain an approximation by
a sequence of convex combinations of oriented C1 loops (see [9, 10] for an assertion to this
effect and [17] for the details of such an argument). Finally, one applies the surgery lemma
[19, Lemma 4.1] to further decompose the loops obtained in the sampling into piecewise
C1 loops which possess the desired properties.

If one takes for granted the atomic decomposition and the estimate for atoms, the general
result follows easily from convexity:

ˆ
Rd

| Iα F | dν ≤ lim inf
l→∞

|F |(Rd)

nl · l

nl∑

i=1

ki∑

j=1

ˆ
Rd

| Iα μ�i,l,j
| dν

≤ lim inf
l→∞ C

|F |(Rd)

nl · l

nl∑

i=1

ki∑

j=1

|μ�i,l,j
|(Rd)

≤ 10C|F |(Rd).

We therefore can finally proceed to argue the result for such curves. Note, however, that for
any such curve we have that the diameter of the curve can be controlled by its total variation,
diam(supp �) ≤ |μ�|(Rd), and therefore Proposition 2.1 completes the demonstration of
the theorem.

Proof of Theorem 1.5 Define the curve � to be the boundary of the square (0, 1)2 embedded
in R

2 ×R
d−2 (which in the sequel we denote by (x1, x2, x

′)). For such a choice of �, we let
γ : [0, 4] → R

d be its parametrization by arclength, oriented counterclockwise. Then the
desired solenoidal measure is F = γ̇H1|� (Fig. 1). Indeed, one has that F ∈ Mb(R

d ;Rd)

and is divergence free, the latter following from the fact that it is closed (one can see this by
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Fig. 1 Illustration to the proof of Theorem 1.5.

an application of the fundamental theorem of calculus and using that the endpoints are the
same). Meanwhile, Id−1 applied to F is given by:

Id−1(γ̇H1|�)(x) = 1

γ (d − 1)

ˆ
�

γ̇ (y)dH1(y)

|x − y| for x ∈ R
d .

For our purposes it will suffice to make estimates for the first component,

[Id−1(γ̇H1|�)(x)]1 = 1

γ (d − 1)

(ˆ
�∩{y2=0}

+
ˆ

�∩{y2=1}

)
γ̇1(y)dH1(y)

|x − y| (2.4)

= 1

γ (d − 1)

ˆ 1

0

dy1

(|x1 − y1|2 + |x2|2 + |x′|2)1/2
(2.5)

− 1

γ (d − 1)

ˆ 1

0

dy1

(|x1 − y1|2 + |x2 − 1|2 + |x′|2)1/2
. (2.6)

In particular, to prove the failure of the weak-type estimate with respect to the content it
suffices to show that the estimate blows up for the first component,

sup
t>0

tH1∞
(
{| Id−1(γ̇1H1|�)| > t}

)
= ∞.
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By the functional equivalence given in (1.4), this blow up, in turn, will be demonstrated if
we can show that for any t > 0 sufficiently large, one can find a measure μs , s = s(t), with
‖μs‖M1(Rd ) ≤ 1 and

μs

(
{| Id−1(γ̇1H1|�)| > t}

)
≥ 1. (2.7)

Returning to our choice of �, in the halfspace given by x2 ≤ 0, the second integral in (2.4)
is bounded from above by 1, so

| Id−1(γ̇1H1|�)(x)| ≥ 1
γ (d−1)

(´ 1
0

dy1

(|x1 − y1|2 + |x2|2 + |x′|2)1/2
− 1

)
.

Thus, if x1 ∈ (0, 1), x2 = −s < 0 for some s ∈ (0, 1) and x′ = 0, since max{1 − x1, x1} ≥
1/2, we have

| Id−1(γ̇1H1|�)(x)| ≥ 1

γ (d − 1)

(ˆ 1−x1
s

−x1
s

dz

(z2 + 12)1/2
− 1

)

≥ 1

γ (d − 1)

(ˆ 1/2s

0

dz

(z2 + 1)1/2
− 1

)

= 1

γ (d − 1)

(
ln

(√
1 + 1/4s2 + 1/2s

)
− 1

)

≥ 1

γ (d − 1)
(ln 1/s − 1) .

In particular, for every s ∈ (0, 1) we define the measures μs by μs = H1|Is where Is =
{(x1,−s, 0) : x1 ∈ (0, 1)} (Fig. 1). Then ‖μs‖M1(Rd )l ≤ 1 and for x ∈ supp μs one has

| Id−1(γ̇1H1|�)(x)| ≥ 1
γ (d−1)

(ln 1/s − 1) .

Therefore

μs

(
{| Id−1(γ̇1H1|�)| > t}

)
≥ |{x1 ∈ (0, 1) : ln 1/s > γ (d − 1)t + 1}| .

However, the condition on the right hand side is uniform over x1 ∈ (0, 1), and for every
t > 0 sufficiently large, any choice of s < exp(−γ (d − 1)t − 1) yields

μs

(
{| Id−1(γ̇1H1|�)| > t}

)
≥ 1,

which completes the proof of the claimed inequality (2.7) and therefore the Theorem.
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Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adams, D.R.: A note on Choquet integrals with respect to Hausdorff capacity, Function spaces and
applications (Lund, 1986), Lecture Notes in Math, vol. 1302, pp. 115–124. Springer, Berlin (1988)

2. Adams, D.R.: On the existence of capacitary strong type estimates in Rn. Ark. Mat. 14(1), 125–140
(1976). https://doi.org/10.1007/BF02385830

3. Adams, D.R., Hedberg, L.I.: Function spaces and potential theory, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314. Springer, Berlin (1996)

4. Arroyo-Rabasa, A.: An elementary approach to the dimension of measures satisfying a first-order linear
PDE constraint. Proc. Amer. Math. Soc. 148(1), 273–282 (2020)

5. Arroyo-Rabasa, A., De Philippis, G., Hirsch, J., Rindler, F.: Dimensional estimates and rectifia-
bility for measures satisfying linear PDE constraints. Geom. Funct. Anal. 29(3), 639–658 (2019).
https://doi.org/10.1007/s00039-019-00497-1

6. Ayoush, R.: On finite configurations in the spectra of singular measures. arXiv:2108.12036 (2021)
7. Ayoush, R., Stolyarov, D., Wojciechowski, M.: Sobolev martingales. Rev. Mat. Iberoam. 37(4), 1225–

1246 (2021)
8. Alvino, A.: Sulla diseguaglianza di Sobolev in spazi di Lorentz. Boll. Un. Mat. Ital. A (5) 14(1), 148–156

(1977)
9. Bourgain, J., Brezis, H.: New estimates for the Laplacian, the div-curl, and related Hodge systems. C. R.

Math. Acad. Sci. Paris 338(7), 539–543 (2004)
10. Bourgain, J., Brezis, H.: New estimates for elliptic equations and Hodge type systems. J. Eur. Math. Soc.

(JEMS) 9(2), 277–315 (2007)
11. Bousquet, P., Van Schaftingen, J.: Hardy-Sobolev inequalities for vector fields and canceling linear

differential operators. Indiana University Mathematics Journal, pp. 1419–1445 (2014)
12. Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct.

Anal. 255(12), 3407–3430 (2008). https://doi.org/10.1016/j.jfa.2008.05.015
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https://doi.org/10.1016/j.na.2019.111685
https://doi.org/10.4171/pm/2031
http://arxiv.org/abs/2010.14961

	A Trace Inequality for Solenoidal Charges
	Abstract
	Introduction
	Proofs
	References


