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Abstract
For harmonic functions on the disc, it has been known for a long time that non-tangential
boundedness a.e.is equivalent to finiteness a.e. of the integral of the area function of (Lusin
area theorem). This result also hold for functions that are non-tangentially bounded only in
a measurable subset of the boundary, and has been extended to rank-one hyperbolic spaces,
and also to infinite trees (homogeneous or not). No equivalent of the Lusin area theorem is
known on higher rank symmetric spaces, with the exception of the degenerate higher rank
case given by the cartesian product of rank-one hyperbolic spaces. Indeed, for products of
two discs, an area theorem for jointly harmonic functions was proved by M.P. and P. Malli-
avin, who introduced a new area function; non-tangential boundedness a.e. is a sufficient
condition, but not necessary, for the finiteness of this area integral. Their result was later
extended to general products of rank-one hyperbolic spaces by Korányi and Putz. Here we
prove an area theorem for jointly harmonic functions on the product of a finite number of
infinite homogeneous trees; for the sake of simplicity, we give the proofs for the product of
two trees. This could be the first step to an area theorem for Bruhat–Tits affine buildings,
thereby shedding light on the higher rank continuous set-up.
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1 Introduction

The boundary behaviour of harmonic functions on the upper half plane or the unit disc is
well understood for admissible (that is, non-tangential) convergence. A function harmonic
on the disc or the half-space is non-tangentially bounded almost everywhere if and only
if its area function 2 (where is a Stoltz domain at the
boundary point and is Lebesgue measure) is finite for almost every . This is called
the Lusin area theorem ([4, 13]; see also [7, 15] and references therein).

This equivalence has been established for rank-one symmetric spacess in [9] and for
infinite homogeneous trees in [1, 6, 11] and, with a more probabilistic argument, in [14]. The
aim of this paper is to prove an area theorem for product of trees, of the type: existence of
admissible limits finiteness of the area function almost everywhere. Our approach adapts
to this discrete environment ideas developed in [10, 12] for the product of discs and of rank-
one symmetric spaces (see also [8]). The argument overcomes several complications arising
from the use of discrete difference equations instead of the classical identities for the Green
function and the Laplacian, and extends the results of [1] valid for one tree. The converse
implication, finiteness of this area function on a product existence of admissible limits
almost everywhere, cannot hold in full generality in a cartesian product (see Proposition
2.1; for hints on variants of the area theorem suitable to prove the converse implication see
Remark 2.2). Thereby we extend the Lusin area theorem proved in [1] for one tree to the
product of finitely many trees; for simplicity, we restrict attention to the product of two trees
of the same homogeneity. We consider jointly harmonic functions that are non-tangentially
bounded (almost) everywhere.

The product of two discs was studied in [12], where the Lusin area theorem was proved
for jointly harmonic functions non-tangentially bounded only locally, and then extended
to the product of finitely many rank-one symmetric spaces in [10]. The argument of [10, 12]
estimates the area integral via the Green formula, that holds on bi-discs of finite radius; then
a very complicated computation, that makes use of suitable mollifiers, is used to restrict
attention to the portion of the bi-discs contained in a truncated admissible domain where
is bounded. This local approach is extremely difficult in a discrete setting, where we cannot
use derivatives of the mollifiers; we shall consider the local version of our theorem in a
future paper.

The motivation of this work is the following. The area theorem has never been stated
for higher rank symmetric spaces except in the degenerate case of the product of rank-one
spaces like half-planes or discs. An appropriate expression of the area function for non-
degenerate higher rank is therefore unknown. It was observed by A. Korányi that it should
be easier to find this expression in the combinatorial setting of higher rank buildings of
Bruhat-Tits. The degenerate case of higher-rank buildings is the product of homogeneous
or semi-homogeneous trees, and the present work is the first step towards this goal; the next
step should be the environment of rank-2 affine buildings.

2 Preliminaries on Harmonic Functions on Trees and Statement
of theMain Theorems

2.1 Homogeneous Trees

We adopt most of the terminology of [6]: here is a review. A tree is a connected, simply
connected, locally finite graph. With abuse of notation we shall also write for the set of
vertices of the tree. We suppose that is homogeneous, that is, every vertex of belongs
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exactly to 1 edges, where 2 is a constant, called the degree. For , we
write if , are neighbours. For any , there exist a unique and a
unique minimal finite sequence 0 of distinct vertices such that 0 ,
and 1 for all ; this sequence is called the geodesic path from to . The
integer is denoted by ; is a metric on . We fix a reference vertex ; this
induces a partial ordering in : if belongs to the geodesic path from to . Every

, , has exactly one neighbor closer to , called the predecessor of . For ,
the length is defined as . For any vertex and any integer , is the
vertex of length in the geodesic from to .

Definition 1 The nearest neighbor average operator on functions on the vertices of
is

1

1
1

.

The Laplace operator associated with is .

Definition 2 A function is harmonic if 0 for every . We shall
say that is harmonic at if 0 for the vertex . A function is harmonic on a
subset of f it is harmonic at every vertex therein.

2.2 Restricted Non-Tangential Convergence and the Area Function on a Tree

Let be the set of infinite (one-sided) geodesics starting at . In analogy with the previous
notation, for and , is the vertex of length in the geodesic . For
the arc generated by is the set . The sets ,

, form an open base at . Equipped with this topology is compact and totally
disconnected. Moreover, let . Then the sets
generate a compact topology on .

Denote by the set of all the oriented edges in (i.e., ordered pairs of neighbours).
For denote by the beginning vertex of and by the ending vertex:

. The choice of the reference vertex gives rise to a positive orientation on
edges: an edge is positively oriented if is the predecessor of with respect to .

The beginning and ending vertices induce two maps and defined
as above. These maps induce two different liftings to , and , of any .

We shall henceforth write .

Definition 3 For any function , the gradient is

.

For , let be the star of , and let

2 1

1
2. (2.1)

For and we consider the distance min .

Definition 4 Let 0 be an integer. The tube around the geodesic is

.
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Definition 5 The area function of on is the function on defined by

2

1
2

.

Definition 6 (admissible regions) Let be a measurable subset of and , or more
generally let be a measurable function on . For simplicity let us fix a reference
vertex . We define the admissible region (or Stoltz domain) ,
that is, the set of vertices whose distance from the geodesic ray from to some

is at most .
For every positive integer the family is a partition of into

1 1 open and closed sets. We define the -isotropic measure on the algebra of sets
generated by the sets , by

1
. (2.2)

The measure extends to a regular Borel probability measure on , called harmonic mea-
sure,. This is the hitting distribution of the random walk on starting at induced by
.

2.3 Product of Trees and Statement of the Area Theorem

Let now 1, 2 be homogeneous trees with reference vertices 1, 2 respectively,
1 2 1 2 measurable and let be a measurable function (we

shall see in Section 2.4 that, without loss of generality, may be assumed to be a constant
integer; for simplicity, it is convenient to regard as a constant throughout this paper). For
every , the tube (or bi-cone) of width is

1 2 .

The admissible region of width over a subset is

.

Definition 7 When applied to the first or second variable of functions defined on , the
Laplacian is denoted by , 1 2. A function on 1 2 is called bi-harmonic (or
jointly harmonic) if 1 2 0. Without loss of generality, we restrict attention to
real valued bi-harmonic functions.

By abuse of notation, we shall denote again by the product measure 1 2 on of
the harmonic measures in each tree.

Definition 8 We have defined the gradient on a tree (Definition 3), hence also the gra-
dients on each variable of the product of two trees, denoted by 1

2
1 2 and

2
2

1 2 . Now we extend the definition to the bi-gradient:

12
2

1 2
1

1 2
1 1 2 2

1 2 1 2
2.

When there is no danger of confusion we shall write 1, 2, 12 instead of 1 , 2 , 12 ,
respectively.
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Similarly, for every function 1 2 , we define

2
1 2

1

1 2
1 1 2 2

1 2
2.

Our goal is to extend to the context of the cartesian product of two trees the following
theorem, that is a particular case of the results of [1]: If is a bounded harmonic function
on , for every fixed 0, for almost every .
Our extension to , inspired by statements valid on products of disks or half-spaces [3,

8, 12] or of symmetric spaces [10], is the following:

Lusin Area Theorem for bi-harmonic functions Let a bi-harmonic function on that
is non-tangentially bounded almost everywhere, that is, for almost all there exists
such that

sup .

Then, for every 0, there is a subset such that and for almost every
the area sum

12
2

1
2

2
2 (2.3)

is finite.
If is uniformly bounded, then the area sum is finite -almost everywhere.

Proposition 2.1 Let be a function on 1 2. If is constant on one of its two
variables and unbounded in the other, the area function vanishes identically, hence the
conclusion of the Main Theorem holds trivially, although is unbounded.

Remark 2.2 Despite of the previous Proposition, some form of an inverse Lusin area
theorem for the bi-disc is known, due to J. Brossard, who showed in [2] that for a bi-
harmonic function 1 2 , the finiteness over a bi-cone of the area integral introduced
by P. and M.P.Malliavin in [12] is actually equivalent to the existence of a finite limit when

1 2 tends to the boundary inside any smaller bi-cone of the function 1 2

1 2
0
1 2 1

0
2

0
1

0
2 , where 0

1
0
2 is any fixed point in . This

fact, and a stimulating presentation due to R.F. Gundy [8], suggest that, for a bounded bi-
harmonic function on a bi-tree, non-tangential convergence and finiteness of the area sum
should be almost everywhere equivalent provided that the area sum of [12] is replaced by a
suitably larger one. This will be the subject of a future paper.

2.4 Reduction to Uniformly Bounded Bi-Harmonic Functions

We claim that, for every bi-harmonic function on that is non-tangentially bounded
almost everywhere and every 0, there is a constant 0 and a subset with

such that is bounded in .
Indeed, observe that we are assuming that, for almost all ,

sup . (2.4)

This means that, up to a null set, is the union of subsets of the type

for all and for some .
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It follows that, given any non-negative integer , there exists a closed subset with
1 and constants , such that on . This proves the

claim.
If is uniformly bounded, then ; hence the last statement of the Theorem follows

from the first.

3 Potential Theory on a Homogeneous Tree

3.1 Green Kernel

Definition 9 Let us regard the nearest-neighbor isotropic transition operator of Defini-
tion 1 as a kernel: . Then its operator powers are given by

1 . The Green kernel is defined as

0

. (3.1)

The Green function singular at the vertex is defined as , and it is
easy to see [5, (4.49)] that

1
. (3.2)

The Green function on 1 2 is now 1 2 , that is 1 2
1

1
2

2 .
Observe that this Green function is still proportional to the product harmonic measure

1 2 except at 1 2 1 2 .

Remark 3.1 The Green function at a vertex in a homogeneous tree is a multiple of the
reciprocal of the number of vertices of length except for . Indeed, for ,

1
1 .

Remark 3.2 It follows immediately from Eq. 3.1 that the Green function singular at
introduced in (3.2) is harmonic outside of , and is the resolvent of :

. (3.3)

Moreover, it is clear that the sign of is negative if and only if is positively oriented,
and

1
if

1
1

if

(3.4)

The following is easy to prove (see [1, Lemma 4.4]):

Lemma 3.3 If is measurable, 0 on , is the Green function singular at
and , then for almost every

.
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Example 3.4 For a vertex in a tree and , the Poisson kernel normalized at
in a tree is the harmonic function defined as follows. Let be the
bifurcation index, that is the number of edges in common between the finite geodesic path

and the infinite geodesic starting at ; similarly, let be the number of
edges in common between the geodesics and . Then it is easy to see [5] that
lim exists for every and and

2 . (3.5)

It is clear that lim 0 for every . It follows from Eq. 3.5 that
2 is finite for , and the sum of the series diverges

(as 2 ) for : this confirms the one-dimensional Area Theorem of [1].
Now consider 1 2 and the joint harmonic function 1 2

1
1 1

2
2 2 . The reader can easily verify that 12 1

1
2

2 ,
and that, for 1 2 with , one has . Hence 12

2

1
1 2

2
2 2, and 1

2
2

2
1

1 2
2

2 2 2. Therefore
the area function becomes 1

1 2
2

2 2 1 2 . Now an easy computation
shows that, if is bounded, the area sum 1

1 2
2

2 2 1 2 is finite
at every 1 2 such that for 1 2, and for all , i.e., 1 1 or
2 2, then for 0 the restricted area sum

1 2

12
2

1
2

2
2

is finite. In particular, the (unrestricted) area sum is finite almost everywhere. It actually
follows from Eq. 3.5 that the assumption that be bounded is unnecessary; anyway it is not
restrictive for our results, in view of the uniformization procedure of Section 2.4.

3.2 Gradient and Laplacian

For all functions , on the homogeneous tree let us introduce the bilinear form

1

1
. (3.6)

Therefore
2 (3.7)

If and are functions on the edges of , the bilinear form 1
1 , for

each fixed , is a (real) inner product that we denote by ; its associated norm satisfies

2 1

1
2. (3.8)

In particular, the norm in Eq. 2.1 is of this type. In what follows we shall consider this inner
product on two copies 1 and 2 of the tree : for clarity, we shall denote the bilinear forms
on each of the two copies by 1 and 2, respectively.

Definition 10 If is defined on the vertices of a tree , let

2
.
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Let us write and note that

2 2 . (3.9)

The following useful facts follow immediately from the definition of (Definition 1)
and of (Definition 3).

Corollary 3.5 For every ,

1

1

and, if is bounded, then 2 .

3.3 The Green Formula in One Tree

Definition 11 (Boundary) The boundary of a finite subset is
.

The Green formulas are well known in the continuous setup. In the discrete context of a
tree, the following interesting analogue has been observed in [6].

Proposition 3.6 (The Green formula) If and are functions on and is a finite subset
of , then

1

1
.

4 Difference Operators on T and Proof the Area Theorem

4.1 Identities for Discrete Difference Operators in One Variable

The following statement is easily verified. The last identity in its part follows from
Eq. 3.9.

Lemma 4.1 Let , be functions on the homogeneous tree . Put, as usual, and
let be as in Definition 3. Then:

(i)

.

(ii)

.

The following statements are immediate consequences of the definitions of gradient and
mean:

Corollary 4.2 2 2 .

As a consequence we have the Green identities already observed in [6]:
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Corollary 4.3 (i) If is harmonic,
2 2 .

(ii) If and are harmonic,
.

Corollary 4.4 Let and be functions on with harmonic. Then
2 2 2 2 .

Proof By Lemma 4.1 , 2 2 2 2 , and, by Corollary
4.3 , 2 2, hence the statement.

4.2 Identities for Discrete Difference Operators in Two Variables

Lemma 4.5 (i) Let be bi-harmonic on 1 2 and, as before, let us write 2

2 and 12 12. Then

1 2
2

12
2 .

(ii) If and are bi-harmonic, then

1 2 2 2 12 12 2 .

Proof Write 1 2 . By of Corollary 4.3 , 2
2

2
2 and by Definition 8

1 2
2 1

1 2
1 1 2 2

1 2 1 2
2

12
2

1 2 .

This yields .
Part follows from the same computation via Corollary 4.3 .

Corollary 4.6 Let be a bi-harmonic function on . Then

1
2 1 2

4
1

2
2

2 2
12

2
1

2
1 2

2
1

1
2 1 2

2 2 .

Proof By Corollary 4.3 ,

2
2

2
2 . (4.1)

By Corollary 4.3 ) and Lemma 4.1 , 2
4 2 2

2
2

2
2 2 . By applying

the Laplacian on the first variable on both sides, one has, again by Lemma 4.1 ,

1 2
4 2 1

2
2

2 2 2
1 2

2 2 1
2

1 2
2

1 1 2
2 2 .

In the first term at the right-hand side, 1
2

1
2 by Corollary 4.3 . In the second

term, 1 2
2

12
2 by Lemma 4.5. This proves the statement.

Remark 4.7 Since 1 and 2 operate on different variables (the components 1 and 2 of
), they commute. The same is true of 1 and 2, and for the same reason 1 commutes

with 2; indeed,

1 2 1 2
1
1 1 1 2 1 2 2 1 2 2 1 1 2 .
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Lemma 4.8 Denote by the mean operator of Definition 10 acting on the th variable.
Then

1 2
2

1 2 2 1 2 12 2 1 2 .

Proof By the definition of norm of the gradient in Eq. 3.7 and Corollary 4.2,

1 2
2

1 2
2

1
2 2

1 2 1 2 12 1 2

2 1 2 12 2 1 2 .

Lemma 4.9 Let be a bi-harmonic function on . Then

1 2
2 2 2 2

2
2 1

2
2 .

Proof By Eq. 3.7, Corollary 4.3 and Lemma 4.1 ,

1 2
2 2

1

1
2 2

1 2 2 2
2

1

1
2

2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1

4

1
2

2 2 2 1 2 2 1 2 2
2

(the last step follows from Eq. 3.7).
Since is harmonic with respect to its first component, 1 2 0 1 2 by Remark
4.7. Then, by Lemma 4.1 , the right-hand side becomes

4

1
2

2 2 2 1 2 12 1 1 2 2
2 .

Since 1 2 2 1, it follows from Lemma 4.8 with indices interchanged and
Corollary 4.2 that

1 2
2 2 4

1 2 2 2 2 1
2

1 2 2
2 .

Therefore

1 2
2 2 4

1
2 2

2 2 2 1
2

2

1
2

2
2

2 1
2 2 2

2
2 1

2
2

(the last two identities follow again from Corollary 4.3 and Eq. 3.6).
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The following inequality is a direct consequence of Corollary 4.6 and Lemma 4.9:

Corollary 4.10 Let be a bi-harmonic function on . Then

1

2
1 2

4
1

2
2

2
1

2
1 2

2
1 2

2
2 2

2
2 .

Lemma 4.11 Let be a function on bounded by a constant 0 at some bi-vertex
and on its set of bi-neighbors 1 2 1 1 2. Then

1
2

1 2
2

1 2
2

2 2
2

2

8 2 1 12
2

1
2

2
2 .

Proof Write, as usual, 1 2 1 2 . By symmetry, it is enough to show
that

1
2

1 2
2

1
1 2

1

1
1 1

1
2

1 2 1 2
2

1 2

4 2 1 12
2

1
2

2
2

1 2 .

By Corollary 4.3 , 1
2 2 1 1, and by Lemma 4.8

1 2
2 2

1
2 2

1 2 12

(both sides are functions of 1 2 ). Therefore

1

1
1

1
2

1 2
2 4

1 2
1 2

1 1 1 2 12 . (4.2)

On the other hand, 1 and 1 2 1 2 12 1 2 2 2 1 2 by Eq. 3.9.
So we estimate the last sum in Eq. 4.2 as follows.

1 2 1 2

1 1 1 2 12

1 2

1 12 2 2 12

(here the summands 1 and 1 are functions of 1 2 , 2 is a function of 1 2 and the
other factors in the sums are functions of 1 2 , but the sums in both sides are functions
of 1 2 ). The sum in the right-hand side is bounded by the sum of two parts that we now
estimate separately. The first,

1 2 1 12
2, is easily estimated by Definition 8 and the

obvious inequality 1 1 2 2 :

1 2 1 2

1 12
2 2 1 2

12
2
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Now let us estimate the second part,
1 2 1 2 2 12 , by Schwarz inequality:

1 2 1 2

1 1 2 2 2 2 1 12 1 2

2
1 1

1 1 2
2

2 2

2 1 2
2

1
2

1 2 1 2

12 1 2
2

1
2

2 1 2
1 2 12 1 2

12
2

1
2

2
2

because 1
2

2 2 for 0. The statement follows.

Corollary 4.12 Let be a bi-harmonic function on bounded by at some and its
bi-neighbors. Then, at ,

(i)
2 16 1

2
2

2
1 2

4 16 2 2
12

2 .

(ii)
2 16 1

2
2

2
12

2
1 2

4 32 2 2 1 2
2 .

Proof By Corollary 4.10 and Lemma 4.11 we have

1 2
4 2 1

2
2

2 32 2 16 12
2 16 1

2
2

2.

Hence

1 2
4 32 2 16 12

2 16 2 1
2

2
2.

This proves . Part follows from this and Lemma 4.5 .

The following result is a straightforward extension to the cartesian product of Lemma
3.3.

Lemma 4.13 If is a non-negative function on and , then
for all 0 and for almost every .

For 1 2 let us denote by the discs and let
1 2 . Let the Green function singular at on (Definition 3.2). It follows

immediately from Remark 3.1) that

Lemma 4.14 For 1 2 the sums

are uniformly bounded with respect to .

Lemma 4.15 For any function on and any 0,

sup (4.3)
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and

1 2
1 2 sup 1 2 12 (4.4)

for some constant independent of and .

Proof By symmetry, it is enough to look at 2. Let us fix 1 1 and set 1 2

1 2 . By Eq. 3.2 and the fact that 2 is 2-harmonic in 2 2 ,

2

2
2 2 1 2

2
2 2 1 2

0 2

2
2 2 1 2

1
2 1 2

0 2

2
2 2 1 2 1 2 2

2
2 .

By the Green formula (Proposition 3.6) the last term in the right-hand side is equal to

1

1
2 2 2

2
2 2 1 2 1 2 2

2
2 .

The boundary of the finite region 2 2 splits into its outward part 2 and its inward
part 2 2 2 . Let us now apply Eq. 3.2 and Eq. 3.4 and Corollary 3.5 with sign
changed (because the edge 2 have the reversed orientation, pointing toward 2 instead of
away from it). The last expression becomes

1

1
2

2
2 2 1 2 1 2 2

2
2

1

1
2 1 2

1

1
2 1

1 2 .

Therefore

2 2

2
2 2 1 2

2 1 2
1

1
2 1

1 2

1

1
2 2

2
2 2 1 2 1 2 2

2
2

1 2
1

1
2 2

2
2 2 1 2 1 2 2

2
2 . (4.5)

This formula together with Lemma 4.14 proves Eq. 4.3.
Now Eq. 4.4 follows from Fubini’s theorem and two applications of Eq. 4.3.
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Lemma 4.16 Let be a bounded bi-harmonic function, 2 or 4, and
as in Section 2.4. Then

1 2
1

1
2

2

is uniformly bounded with respect to .

Proof Let and 1 2 1 2
1

1
2

2 . Since is
bounded by some 0 near , is bounded by max 2 4 , hence
also all its gradients are bounded by 4 ; therefore the statement follows from Eq. 4.4.

4.3 Proof of the Area Theorem

It is immediately seen that, if the statement holds for , then it holds for with .
Then, as is bounded in the set , we may assume 1 8 there, hence the constants
at the left-hand side of the inequalities of Corollary 4.12 are strictly positive.

By Lemma 4.13, the statement means that 12
2

1
2

2
2 , or

equivalently that 12
2

1
2

2
2 is uniformly bounded over .

We know by Lemma 4.16 that 1 2
2 1

1
2

2 is uni-

formly bounded with respect to . Since 1 2
2

12
2 by Lemma 4.5 , we see

that 12
2 is uniformly bounded. It remains the uniform boundedness of

1
2

2
2 . This follows from Corollary 4.12 if we show the uniform

boundedness of 1 2
4 and 12

2 . We have already proved
the latter, and the former follows from Lemma 4.16.
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3. Brossard, J.: Densité de l’intégrale d’aire dans 1 et limites non tangentielles. Invent. Math. 93, 297–
308 (1988)

4. Calderon, A.P.: On a theorem of Marcinkiewicz and Zygmund. Trans. Amer. Math. Soc. 68, 47–54
(1950)

5. Cartier, P.: Fonctions harmoniques sur un arbre. Symp. Math. 9, 203–270 (1972)
6. Di Biase, F., Picardello, M.A.: The Green formula and Spaces on trees. Math. Zeit. 218, 253–272

(1995)

406 L. Atanasi, M.A. Picardello

http://creativecommons.org/licenses/by/4.0/


7. Garcia-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics North-
Holland Mathematics Studies, vol. 116. Elsevier, Amsterdam (1985)

8. Gundy, R.F.: Inegalites pour martingales at un et deux indices: l’espace . In: Springer Lecture Notes
in Mathematics, vol. 774, pp. 251–334. Springer, Berlin (1979)
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