
https://doi.org/10.1007/s11118-021-09942-z

The Random Normal Matrix Model: Insertion of a Point
Charge

Yacin Ameur1 ·Nam-Gyu Kang2 · Seong-Mi Seo2

Received: 9 October 2019 / Accepted: 14 July 2021 /
© The Author(s) 2021

Abstract
In this article, we study microscopic properties of a two-dimensional Coulomb gas ensemble
near a conical singularity arising from insertion of a point charge in the bulk of the droplet.
In the determinantal case, we characterize all rotationally symmetric scaling limits (“Mittag-
Leffler fields”) and obtain universality of them when the underlying potential is algebraic.
Applications include a central limit theorem for log |pn(ζ )| where pn is the characteristic
polynomial of an n:th order random normal matrix.
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1 Introduction andMain Results

Insertion operations appear frequently in Coulomb gas theory, conformal field theory,
and allied topics. In this article we study planar Coulomb gas ensembles {ζj }n1 in the
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determinantal case, under the influence of an external confining potential Q and we inves-
tigate the effect of inserting a point charge at a point p in the bulk of the droplet created by
the external field. The inserted charge is assumed to be of the same order of magnitude as
the individual charges ζj .

From a field-theoretical point of view, this kind of insertion operation is quite natural,
for example it can be directly related with the statistics of the random logarithmic potential
Yn(p) = ∑n

1 log |p−ζj |. The investigation of random fields such as Yn and their asymptotic
properties as n → ∞ is currently an active area; see for instance [16, 17, 20, 21, 26–29,
31, 33–36, 38, 41, 42] for related works. Our main contribution in this direction is a central
limit theorem for Yn(p) which is valid for the class of algebraic potentials (of the form
Q(ζ) = τ0|ζ −p|2λ +P(ζ ) near the droplet, where τ0, λ > 0, P is a harmonic polynomial,
and (say) Q ≡ +∞ near ∞).

Our exposition depends on a knowledge of the microscopic scaling limit near the inserted
charge. Assuming that the potential is algebraic and using theory for rescaledWard identities
in the spirit of the papers [3, 5, 6, 9], we are in fact able to find an explicit microscopic
correlation kernel, depending on three parameters: τ0, λ, and the strength of the inserted
charge. This part of our work is connected with the theory of certain Fock-Sobolev spaces
of entire functions, and might be of some independent interest.

General Notation If g is a function, then ḡ(z) means the complex-conjugate of g(z). A
function h(ζ, η) is Hermitian if h(η, ζ ) = h̄(ζ, η) and Hermitian-analytic (entire) if it is
moreover analytic (entire) in ζ and η̄. A cocycle is a function c(ζ, η) = g(ζ )ḡ(η) where g

is a continuous unimodular function. C∗ = C \ {0} is the punctured plane, Ĉ = C ∪ {∞} is
the Riemann sphere, D(a; r) is the open disk with center a, radius r , and Pol(n) is the set of
analytic polynomials of degree at most n − 1. If K ⊂ C is compact then the “polynomially
convex hull” PcK is the complement of the unbounded component ofC\K . (Cf. e.g. [40, p.
53].)

We write � = ∂∂̄ = 1
4

(
∂2

∂x2
+ ∂2

∂y2

)
(usual Laplacian divided by 4) and dA = 1

π
dxdy

(area measure divided by π ). Also, we sometimes write μ(f ) for
∫

f dμ.

1.1 The RandomNormal Matrix Model

We now introduce our basic setup. In what follows, we will assume some basic familiarity
with reproducing kernels and Bergman spaces; see [18] and [10] for introductions to these
theories.

We start by fixing a suitable lower semicontinuous function (external potential)Q : C →
R ∪ {+∞} of sufficient increase near ∞,

lim inf
ζ→∞

Q(ζ)

log |ζ | > 2 (1.1)

For a Borel measure μ on C we associate the weighted logarithmic energy,

IQ[μ] =
∫∫

C2

log
1

|ζ − η| dμ(ζ )dμ(η) + μ(Q).

The minimizer σ = σ [Q] of this energy, among compactly supported Borel probability
measures μ, is the equilibrium measure in external potential Q. The support S = S[Q] :=
supp σ is called the droplet. Assuming some smoothness of Q in a neighbourhood of the
droplet we ensure that S is compact and σ is a probability measure taking the form dσ =
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�Q · 1S dA. In particular we have �Q ≥ 0 on S. (We refer to [40] as a source for these
results; see especially Theorem I.1.3, Theorem II.1.3. In our case Q will not be everywhere
smooth near the droplet, but merely satisfy a Hölder condition at the origin, so the remarks
about nonsmooth potentials on page 138 are also relevant.)

In the following, we will need some further regularity of the droplet. To guarantee this,
by means of Sakai’s theory, it suffices, besides the growth (1.1), to assume that Q be real-
analytic in some neighbourhood of the boundary ∂S. We refer to the discussion in [7, Sect.
1] for further details.

To simplify the discussion, we will assume that Q be real-analytic wherever Q < +∞,
except possibly at the origin, where we merely assume that the limit

λ − 1 := lim
ζ→0

log�Q(ζ)

2 log |ζ | (1.2)

exists and exceeds −1, i.e., we require that λ > 0. This implies that Q is Hölder continuous
at the origin; see Eq. 1.5 below.

Let us fix a ∈ Int S, say a = 0. Also fix a number c > −1, a positive integer n, and a
suitable, smooth, real-valued function u. Given this, we define an n-dependent potential

Vn(ζ ) = Q(ζ) + 2c

n
log 1

|ζ | − 1
n
u(ζ ). (1.3)

We refer to Q as the underlying potential - this is what determines the global properties
of the droplet. The logarithmic term in Eq. 1.3 has an effect on the microscopic distribution
of particles near 0 and near the boundary of the droplet. More precisely, it corresponds to
a point charge of strength c at the origin, and at the same time, a harmonic measure on the
boundary of the droplet with opposite sign. This effect can be understood as a balayage
operation, sweeping of a measure on a domain (here, a point mass in the droplet) to the
boundary. The extra freedom afforded by the term u/n is used to accommodate different
kinds of microscopic behaviour near the boundary.

We now define ensembles. Given Vn of the form Eq. 1.3, we consider a random system
{ζj }n1 ⊂ C of n identical point charges under the influence of the external field nVn. The
system is picked at random with respect to the Boltzmann-Gibbs probability law

dPn = 1
Zn

e−HndAn, Hn :=
∑

j 
=k

log 1
|ζj −ζk | + n

n∑

j=1

Vn(ζj ) (1.4)

whereZn = ∫
Cn e−Hn dAn is the partition function and dAn = dA⊗n is suitably normalized

Lebesgue measure on C
n.

(The system {ζj }n1 represents the eigenvalues of n×n random normal matrices equipped
with the probability measure proportional to e−ntrVn(M)dM . Here, tr is the trace and dM is
the measure on the space of normal matrices induced by the Euclidean metric on C

n2 . See
e.g. [14] and [19] for details.)

Recalling that 0 ∈ Int S we shall study the distribution of rescaled system

zj = r−1
n · ζj , rn := n−1/2λ,

where λ > 0 is given by Eq. 1.2. The number rn = n−1/2λ might be called a microscopic
scale. (This scale is chosen so that σ(D(0, rn)) = Cn−1 + · · · for some positive constant
C.)
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To analyze the large n behaviour of {zj }n1, we shall use the canonical decomposition of
Q about the origin, by which we mean

Q(ζ) = Q0(ζ ) + h(ζ ) + O(|ζ |2λ+ε), (ζ → 0), (1.5)

where Q0 is a non-negative, homogeneous function of degree 2λ, and where h is a harmonic
polynomial of degree at most 2λ and ε is a positive number. In this article, we assume that
the potential has the above canonical decomposition and that theO-term remains small after
taking Laplacians:

�Q = �Q0 + O(|ζ |2λ−2+ε), (ζ → 0).

If Q is real analytic at the origin, then we surely obtain the canonical decomposition by
Taylor series expansion. We also assume thatQ0 and�Q0 are positive definite, i.e.,Q0 > 0
and �Q0 > 0 when z 
= 0.

We refer to the homogeneous function Q0 as the dominant part of Q. Typically, we shall
find that the rescaled ensemble depends in a “universal” way on Q0 and c.

Remark Subtracting an n-dependent constant from Q does not change the problem, so we
can assume Q(0) = h(0) = 0. We can likewise assume that u(0) = 0. In the following,
except when otherwise is explicitly stated, we assume that these normalizations are made.

Definition We say that the point p = 0 is a regular point if c = 0 and λ = 1; otherwise it
is singular of type (λ, c). If c 
= 0 and λ = 1 we speak of a conical singularity. We have a
bulk singularity if c = 0 and λ 
= 1, and a combined singularity if c 
= 0 and λ 
= 1.

We now recall some terminology with respect to the system {ζj }n1 and its rescaled coun-
terpart {zj }n1. As a general rule, we designate non-rescaled objects by boldface symbols
R,K,L, etc., while rescaled objects are written in italics, R,K,L, etc.

For a subset D ⊂ C we consider the random variable ND = #{j : ζj ∈ D}, and we
define, for distinct η1, . . . , ηp ∈ C, the intensity p-point function

Rn,p(η1, · · · , ηp) = lim
ε→0

1
ε2p

· En

⎛

⎝
p∏

j=1

ND(ηj ;ε)

⎞

⎠ .

The most basic intensity function is the 1-point function Rn(ζ ) := Rn,1(ζ ).
As is well-known (see e.g. the computation in [40, Section IV.7.2]), the function Rn,p

can be expressed as a p × p determinant Rn,p(ζ1, · · · , ζp) = det
(
Kn(ζi, ζj )

)p
i,j=1 , where

Kn is a Hermitian function called a correlation kernel of the process. Indeed, we can take
Kn as

Kn(ζ, η) =
n−1∑

j=0

pn,j (ζ )p̄n,j (η)e−nVn(ζ )/2−nVn(η)/2,

where pn,j is the orthonormal polynomial of degree j with respect to the measure e−nVndA.
We shall always use the symbol Kn to denote this canonical correlation kernel.

The rescaled system {zj }n1 has p-point function Rn,p(z1, . . . , zp) = det(Kn(zi, zj ))

where the kernel Kn is given by

Kn(z,w) = r2n Kn(ζ, η), (z = r−1
n ζ, w = r−1

n η). (1.6)
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We now define function spaces. We will employ a function V0, which we call the
microscopic potential at 0, whose definition is

V0(z) = Q0(z) − 2c log |z|. (1.7)

Here, Q0 is the dominant part of Q in Eq. 1.5. We also define a corresponding measure μ0
by

dμ0 = e−V0 dA,

and write L2
a(μ0) for the Bergman space (“generalized Fock-Sobolev space”) of all entire

functions f of finite norm, ‖f ‖L2(μ0)
= (

∫
C

|f |2 dμ0)
1/2. The Bergman kernel of this

space will be denoted by L0(z, w).

Example (“Model Mittag-Leffler ensemble”) Fix three real parameters τ0, λ, c with τ0, λ >

0 and c > −1 and define

Q0(ζ ) = τ0 · |ζ |2λ and Vn(ζ ) = Q0(ζ ) − 2c
n
log |ζ | .

Rescaling via ζ = n−1/2λz, we obtain

Rn(z) = n−1/λ Rn(ζ ) = n−1/λ
n−1∑

j=0
|pn,j (ζ )|2e−nVn(ζ ).

A straightforward computation of the orthonormal polynomials pn,j shows that

Rn(z) = λτ
(1+c)/λ

0

n−1∑

j=0

(τ
1/λ
0 |z|2)j

�(
j+1+c

λ
)

e−τ0|z|2λ+2c log|z|,

whence Rn(z) converges to the limit

R(z) = λτ
(1+c)/λ

0 · E1/λ,(1+c)/λ(τ
1/λ
0 |z|2) · e−τ0|z|2λ+2c log|z|, (1.8)

where Ea,b is the Mittag-Leffler function (cf. [24])

Ea,b(z) =
∞∑

j=0

zj

�(aj + b)
. (1.9)

For example, when τ0 = λ = c = 1 we obtain the well-known one-point function R(z) =
1 − e−|z|2 , cf. [3, Section 7.6].

In the present case V0, the microscopic potential, is just V0(z) = τ0|z|2λ − 2c log |z|, and
μ0 = e−V0 dA. It is easy to compute the Bergman kernel L0 of the space L2

a(μ0). Indeed,
using that L0(z, w) = ∑∞

0 ej (z)ēj (w) where ej are the orthonormal polynomials with
respect to μ0, one finds

L0(z, w) = λ · τ
(1+c)/λ

0 · E1/λ,(1+c)/λ(τ
1/λ
0 zw̄). (1.10)

Comparing (1.8) and (1.10) we find the basic relation R(z) = L0(z, z)e
−V0(z) between

the microscopic density and the Bergman-kernel in Fock-Sobolev space. We shall see that
this relation remains true in a much more general situation.

1.2 Main Results

Wenow state our two principal results, which concern singular points with a certain
“rotational symmetry”, which holds up to a harmonic polynomial.
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More precisely, we shall suppose that Q and Vn are of the form

Q(ζ) = Qr(ζ ) + P(ζ ) and Vn(ζ ) = Q(ζ) + 2c

n
log 1

|ζ | (1.11)

where Qr is radially symmetric and P is a harmonic polynomial. Let λ = 1 +
limζ→0

� logQr(ζ )
2 log |ζ | as in Eq. 1.2.

The positive homogeneous part Q0 of degree 2λ in the canonical decomposition Q =
Q0 +h+ . . . is then radially symmetric, and is therefore given by Q0(z) = τ0|z|2λ for some
constant τ0 > 0.

Our first main result asserts that the kernel (1.10) appears universally at this kind of
singular point.

Theorem 1.1 Suppose that Q and Vn are of the form (1.11) and that Q0 is given by
Q0(z) = τ0|z|2λ.

If S is connected and if the outer boundary ∂ Pc S is everywhere regular, then the point-
processes {zj }n1 converge as n → ∞ to a unique determinantal point field with correlation
kernel K(z,w) = L0(z, w)e−V0(z)/2−V0(w)/2 where L0 is explicitly given as the Mittag-
Leffler kernel (1.10).

Remark The topological assumptions on S in Theorem 1.1 are made for convenience, in
order to apply the main result on orthogonal polynomials from [25].

Our next result is a central limit theorem for the normalized Coulomb potential gener-
ated by the eigenvalues of a random normal matrix ensemble with respect to an algebraic
underlying potential, namely a potential of the special form (near the droplet)

Q(ζ) = |ζ |2λ + P(ζ ) (1.12)

where P is a harmonic polynomial. Correspondingly we define the insertion potential

Vn(ζ ) = Q(ζ) + 2c

n
log 1

|ζ | . (1.13)

This definition requires some extra care, since it may well happen that the growth con-
dition (1.1) fails (if the degree of P is large). The standard way to circumvent this problem
is by considering local droplets as in e.g. the papers [19, 37], i.e., we redefine Q to be +∞
outside some large compact set.

To be precise, given any (non-polar) compact set  ⊂ C, we may redefine Q to be +∞
outside of . The redefined potential has a well-defined droplet S = SQ, . In the following
we shall fix a compact set  large enough that S ⊂ Int, and then redefine the potential Q
in Eq. 1.12 as +∞ outside of . (The particular choice of such a set  will be immaterial.)
We shall always adopt this convention about algebraic potentials in the sequel.

Denote by {ζj }n1 a random sample picked with respect to Eq. 1.4 with Q in Eq. 1.12 and
write �(ζ ) = log |ζ |. It is natural to define a random variable tracen � by

tracen � =
n∑

j=1

�(ζj ).

We shall study the fluctuation about the mean, fluctn � := tracen � − En tracen �. When 0
is a regular point, it is expected that fluctn � be in some sense a good approximation to the
Gaussian free field evaluated at 0 provided that n is large, see e.g. the concluding remarks
in [3] or [28, Appendix 6].

336 Y. Ameur et al.



A problem with making this rigorous is that the variance of the fluctuations grows log-
arithmically in n. There are various ways one could try to circumvent this difficulty; our
approach here is to consider the “normalized” fluctuations

Xn = 2√
log n

(tracen � − En tracen �).

Theorem 1.2 Suppose that Q is algebraic, of the form (1.12). Let {ζj } be picked randomly
with respect to Vn in Eq. 1.13. Suppose also that the conditions of Theorem 1.1 are satisfied.
Then Xn converges in distribution to the normal distribution with mean 0, variance 1/λ.

The special case of Theorem 1.2 when Vn(ζ ) = |ζ |2+2Re tζ −2(c/n) log |ζ |, (|t | < 1)
follows from the work of Webb and Wong in [42, Corollary 1.2].

We also note that the distribution of random variables

X̃n(f ) := tracen f − En tracen f√
Varn(tracen f )

, tracen f :=
n∑

1

f (ζi),

has been well-studied when f is, for example, a characteristic function. In fact, Soshnikov
in [41, Theorem 1] has shown that X̃n(f ) converges in distribution to the standard normal
for a large class of bounded test functions f such that the variance Varn(tracen f ) → ∞
as n → ∞. Theorem 1.2 gives a similar result for the random variables X̃n(f ) in the
case where f = � is unbounded. Indeed, our result immediately extends to a central limit
theorem for the random fields Yn(p) = tracen �p , �p(ζ ) = log |ζ − p| with p in the bulk.
This is consistent with the hypothesis that Yn comes close to a log-correlated Gaussian
field inside the droplet. We refer to [34] for a more thorough discussion of the relationship
between Yn, the Gaussian free field, and multiplicative chaos theory in the special case of
the Ginibre ensemble. Recently, the fluctuations when f is a characteristic function have
been studied in [22] for the Ginibre ensemble. Other relevant references in the context of
unitary invariant random matrix ensembles are [15, 20, 26, 35].

We remark also that cases of algebraic potentials have appeared in several works,
e.g. [12, 13, 32, 37], while [38, 42] investigate the insertion potential Vn = |ζ |2+2Re(tζ )+
2c
n
log 1

|ζ | , (|t | < 1, c > −1).

1.3 Outline of the Strategy; Further Results

In the following, we assume that the general conditions on the potentials Q and Vn in
Section 1.1 are satisfied.

Recall that a Hermitian function K is called a positive matrix if the quadratic form∑N
j,k=1 αj ᾱkK(zj , zk) is non-negative for all scalars αi ∈ C and points zi ∈ C.
Our starting point is the following structure theorem for limiting kernels.

Theorem 1.3 Let Kn be the rescaled canonical correlation kernel. There exists a sequence
of cocycles cn such that

cn(z,w)Kn(z,w) = Ln(z,w)e−V0(z)/2−V0(w)/2(1 + o(1)) (1.14)

where Ln(z,w) is Hermitian-entire, o(1) → 0 locally uniformly on C
2 as n → ∞.

The kernels {Ln} have the compactness property that each subsequence has a further
subsequence converging locally uniformly on C

2 to a Hermitian-entire function L which
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satisfies the mass-one inequality:
∫

|L(z,w)|2 dμ0(w) ≤ L(z, z). (1.15)

Moreover, L is a positive matrix and the inequality L ≤ L0 holds in the sense of positive
matrices, where L0 is the Bergman kernel of L2

a(μ0).

The kernel L in the theorem is called a limiting holomorphic kernel. We define the
corresponding limiting correlation kernel K by

K(z,w) = L(z,w)e−V0(z)/2−V0(w)/2.

We also write R(z) = K(z, z) and speak of a limiting 1-point function or microscopic
density.

We have the following “tightness theorem”.

Theorem 1.4 Each limiting kernel is nontrivial, in the sense that R does not vanish
identically. More precisely, there exists a constant α > 0 such that

R(z) = �Q0(z) · (1 + O(e−α|z|2λ)), (z → ∞) (1.16)

R(z) = O(|z|2c), (z → 0). (1.17)

The kernel K is the correlation kernel of a unique point field which is determined by the
collection of p-point functions Rp(z1, . . . , zp) = det(K(zi, zj ))

p

i,j=1. The point field is the
limit of the ensemble {zj }n1 in the sense of point processes as n → ∞.

Here “convergence in the sense of point processes” means convergence of all k-point
functions, cf. [7, Sect. 1.5] and the references therein.

Note the meaning of the asymptotic in Eq. 1.16: the first intensity quickly approaches the
classical equilibrium density �Q as one moves away from the singular point. See Fig. 1.

Example Consider the model Mittag-Leffler ensemble, Vn(ζ ) = |ζ |2λ + 2c
n
log 1

|ζ | .
It is interesting to compare the asymptotic in Eq. 1.16 with expansion formulas for

Mittag-Leffler functions in [24]. To this end, we note that if λ > 1/2 and if |z|2 > ε > 0
we have by [24, eq. (4.7.2)]

R(z) − �Q0(z) = λ2|z|2ce−|z|2λ · 1

2πi

∫

γ (ε,δ)

eζλ
ζ λ−1−c

ζ − |z|2 dζ, (1.18)

where δ is some number in the interval π/2λ < δ < π/λ and γ (ε, δ) is the con-
tour consisting of the two rays S±δ,ε = {arg ζ = ±δ, |ζ | ≥ ε} and the circular arc
Cδ,ε = {|ζ | = ε, | arg ζ | ≤ δ}.

The right hand side in Eq. 1.18 has the asymptotic expansion, as z → ∞:

−λ|z|2ce−|z|2λ ( 1
�(c/λ)

|z|−2 + 1
�((c−1)/λ)

|z|−4 + · · ·
)
.

(Cf. [24, eq. (4.7.4)].) By contrast, the asymptotic in [8, Theorem 4] holds for all λ > 0
(and for more general potentials) but gives less precise information when λ > 1/2.

If c is negative, the inserted charge is attractive and R = +∞ at the location of the
charge, while if c is positive, the inserted charge is repulsive and R = 0 there. (See Fig. 1
as well as Section 6).

We note that the special case of Mittag-Leffler ensembles where λ = k is an integer
and c = 0 was (except for the name) considered by Chau and Zaboronsky in [14, Section
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3]. The limit kernel is there expressed in terms of a Kummer function 1F1 rather than the
Mittag-Leffler function E1/k,1/k . The potential Q = |ζ |2λ also appears in [1] under the
name “Freud potential”.

To describe a limiting point field, we must determine the corresponding limiting kernel
L or, what amounts to the same thing, the correlation kernel K . Our next result, Ward’s
equation, gives some general information about these kernels. To formulate this result we
define (at points where R(z) 
= 0) the Berezin kernel

B(z,w) = |K(z,w)|2
R(z)

as well as the Cauchy transform

C(z) =
∫

C

B(z,w)

z − w
dA(w).

The Berezin kernel B(z, w) expresses the intensity of repulsion from a particle located at z.
More precisely, ifK is a correlation kernel of a point process� andR is its 1-point function,
then B(z,w) = R(w) − R̃z(w), where R̃z is the 1-point function for the conditional point
process �z given that a point of � is located at z. See [3, Section 7.6] for more detailed
discussion on the Berezin kernel.

We now have the ingredients to formulate Ward’s equation.

Theorem 1.5 Keep the assumptions from Section 1.1 except that the origin is not assumed
to necessarily be in the bulk of S. Then each limiting 1-point function R is either trivial
(R = 0 identically) or is strictly positive on C

∗ and

∂̄C = R − �V0 − � logR

pointwise on C∗ and in the sense of distributions on C.

Combining with Theorem 1.4 we see that if 0 is assumed to be in the bulk, then R in
Theorem 1.5 is non-trivial, that is, R > 0 at each point of C∗ and Ward’s equation is
satisfied.

We stress that C is uniquely determined by R, so Ward’s equation gives a feedback
relation for the sole unknown function R. Also it should be noted that Ward’s equation itself
typically has many solutions. To guarantee uniqueness we need to supply suitable apriori
conditions on the densityR, which depend on the nature of the zooming-point. For example,
the same Ward equation holds whether we zoom on a bulk point or a boundary point, and
yet the densities look very different.

0.5 1.0 1.5 2.0

5

10

15

0.5 1.0 1.5 2.0

5

10

15

0.5 1.0 1.5 2.0

5

10

15

Fig. 1 The graph of R restricted to the positive real axis for combined singularities of type (c, 2), with
c = −0.5, c = 0, and c = 0.5. For comparison, the graph of �Q0 is drawn with an orange dashed line
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Our next result concerns the case where the dominant part Q0 in the decomposition (1.5)
satisfies Q0(ζ ) = Q0(|ζ |). We can then find τ0 and λ such that Q0(z) = τ0|z|2λ.

In this case it is natural to expect that a limiting kernel L be symmetric in the sense that

L(z,w) = E(zw̄)

for some entire function E.

Theorem 1.6 If Q0(z) = τ0|z|2λ then each symmetric limiting holomorphic kernel L

equals to L0, where L0 is given by Eq. 1.10.

Fromanaive point of view it might seem obvious that each limiting kernel in Theorem 1.6
should be symmetric. The question is however quite subtle; it is connected to the vanishing
of a certain entire function G(z), as explained in Section 4. However, if the potential is
algebraic (and the droplet is connected), then we are in fact able to show that each limiting
kernel is symmetric. Hence Theorem 1.1 will follow as a consequence of Theorem 1.6.

1.4 Yet Further Results and Plan of the Paper

In Section 2, we use estimates from the companion paper [8] to prove Theorem 1.3.
In Section 3 we prove Theorem 1.4. We then introduce the distributional Ward equation

and prove Theorem 1.5.
In Section 4 we prove Theorem 1.6 and analyze Ward’s equation in the radially

symmetric case, thus extending the analysis from the papers [5, 9].
In Section 5 we complete the analysis of the case when the dominant part Q0 is radially

symmetric by proving apriori symmetry under the hypotheses in Theorem 1.1.
In Section 6 we study the effect of inserting a point charge, by comparing the 1-point

functions with and without insertion. It turns out that the difference gives rise to a balayage
operation, taking mass from the insertion and distributing it near the boundary, according to
a harmonic measure.

In Section 7 we prove Theorem 1.2, modulo an estimate of the 1-point function which is
postponed to Section 8.

In Section 8 we prove that, for algebraic underlying potentials, the asymptotics Rn(ζ ) ∼
nλ2|ζ |2λ−2 as n → ∞ holds to within a very small error, when ζ ∈ Int S is far enough away
from the singular point as well as from the boundary. This result can be regarded as a Tian-
Catlin-Zelditch type expansion for algebraic insertion potentials, which we were unable to
find in the existing literature. We will use the result to complete our proof of Theorem 1.2.

2 Limiting Kernels and their Basic Properties

In this section we prove Theorem 1.3 on the structure of limiting kernels.
We start with Theorem 1.3. The proof will follow easily from the estimates in [8], once

the proper notation has been introduced.
Write dμn = e−nVn dA, (see Eq. 1.3), and let Pn = Pol(n) equipped with the norm of

L2(μn). Writing kn for the reproducing kernel of Pn, we have

Rn(ζ ) = kn(ζ, ζ )e−nVn(ζ ).

(This follows by the classical Dyson determinant formula, which goes back to the early days
of random matrix theory, cf. [39].)
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Now rescale: let rn = n−1/2λ and put z = r−1
n ζ , w = r−1

n η. We define

kn(z,w) = r2+2c
n kn(ζ, η).

It is convenient to introduce a “rescaled potential” by

Ṽn(z) = nQ(rnz) − 2c log |z| − u(rnz).

Using this notation, the kernel Kn in Eq. 1.6 can be expressed as

Kn(z,w) = kn(z,w)e−Ṽn(z)/2−Ṽn(w)/2.

Next recall the canonical decomposition (1.5). We recognize that h is the real part of the
holomorphic polynomial H whose degree is a positive integer 2d ≤ 2λ. (Recall that we
have assumed that Q(0) = H(0) = u(0) = 0.)

Now consider the factorization

Kn(z,w) = Ln(z,w) · En(z,w) · |zw|c
where En and Ln are defined by

⎧
⎪⎨

⎪⎩

En(z,w) = en(H(rnz)+H̄ (rnw)−Q(rnz)−Q(rnw))/2+(u(rnz)+u(rnw))/2,

Ln(z, w) = kn(z,w) e−nH(rnz)/2−nH̄ (rnw)/2.

(2.1)

Note that Ln is Hermitian-entire while, by Taylor’s formula,

Rn(z) = Ln(z, z)En(z, z)|z|2c = Ln(z, z)e
−V0(z)(1+o(1))

where V0 is the microscopic potential in Eq. 1.7 and o(1) → 0 as n → ∞, uniformly on
compact subsets of C.

Lemma 2.1 Let fn(z, w) be a sequence of Hermitian-entire functions such that fn → 0
locally uniformly on C

∗2. Then fn → 0 locally uniformly on C
2.

Proof Use Cauchy’s formula fn(z, w) = 1
(2πi)2

∫∫
|u|=|v|=R

fn(u,v)
(u−z)(v̄−w̄)

dudv for large
enough R.

By [8, Corollary 4.7], each subsequence of {Ln} has a further subsequence (renamed as
Ln) such that Ln → L locally uniformly on C

∗2 where L is Hermitian-analytic and locally
bounded. It is easy to see that L extends to a Hermitian-entire function. Indeed, for fixed
w 
= 0 the function z �→ L(z, w) has a removable singularity at 0, by Riemann’s theorem
on removable singularities. Likewise for the functions w �→ L(z, w̄) with z 
= 0. Thus L

extends to C
2 \ {0}, and hence to C

2 by the Hartogs’ theorem (see [30, Theorem 2.10.1]).
In this way, we always regard L as a Hermitian-entire function in the sequel.

Lemma 2.2 We have that Ln → L locally uniformly on C
2.

Proof Apply Lemma 2.1 to the difference fn = Ln − L.

The mass-one inequality (1.15) now follows from the following argument. Let us write
the canonical decomposition (1.5) as

Q = Q0 + ReH + Q1,

where Q1 = O(|ζ |2λ+ε) as ζ → 0 for some ε > 0.
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Define a measure μ0,n by

dμ0,n(z) = e−V0(z)−nQ1(rnz)+u(rnz) dA(z),

and note that the kernel Ln has the following reproducing property,
∫

C

|Ln(z, w)|2 dμ0,n(w) = Ln(z, z).

The mass one inequality (1.15) follows from this and Fatou’s lemma, since μ0,n → μ0 in
the vague sense of measures where dμ0 = e−V0 dA. (By “vague convergence”, we mean
that μ0,n(f ) → μ0(f ) as n → ∞ for each continuous, compactly supported function f .)

We now recognize Ln(z, w) as the reproducing kernel for the Hilbert space Hn of entire
functions defined by

Hn = {f (z) = p(z) · e−nH(rnz)/2 ; p ∈ Pol(n)}
with the norm of L2(μ0,n).

Since Ln → L and since μ0,n → μ0 vaguely, it follows by the arguments in [9, Section
2.3] (or see [6, Section 3.7], [8]) that L is the Bergman kernel of some semi-normed Hilbert
space H∗ of entire functions, which sits contractively inside L2

a(μ0) (i.e., the natural inclu-
sion is a contraction). Hence L is a positive matrix. Moreover, by Aronszajn’s theorem on
differences of reproducing kernels in [10, Part I.7], the differenceL0−L is a positive matrix,
i.e., we have 0 ≤ L ≤ L0.

We now turn to the kernelsEn from Eq. 2.1. By Taylor’s formula (since we have assumed
u(0) = 0)

En(z,w) = e−Q0(z)/2−Q0(w)/2 · ei Im(nH(rnz)−nH(rnw))/2 · (1 + o(1)),

where the second factor in the right hand side is a cocycle. Letting cn(z,w) be the reciprocal
cocycle, we thus have the convergence

cn(z,w)Kn(z,w) = Ln(z,w)e−V0(z)/2−V0(w)/2(1 + o(1)),

where o(1) → 0 locally uniformly as n → ∞. By this, Theorem 1.3 is proved. q.e.d.

3 Zero-One Law andWard’s Equation

Ourmain goal with this section is to verify Theorem 1.5. We start however with Theorem 1.4.

Proof of Theorem 1.4 The estimate forR(z) as z → ∞ in Eq. 1.16 is proved in [8, Theorem 4].
To prove Eq. 1.17, we start by noting that the 1-point functions

Rn(z) = Kn(z, z) = Ln(z, z)e
−V0(z)(1 + o(1))

obey a uniform bound of the form Rn(z) ≤ M|z|2c when |z| ≤ 1. Indeed, this follows from
Theorem 1.3, via the relation (1.14), on noting that the functions Ln(z, z) which converge
uniformly to L(z, z) on the unit disc, remain uniformly bounded there.

The statement about convergence of point fields follows from the upper bound R(z) ≤
L0(z, z)e

−V0(z), since this guarantees that Rn → R in L1
loc (cf. [7, Lemma 1]).

3.1 A Distributional Ward Identity

We are first going to verify Ward’s identity (or loop equation) in the sense of distributions.
To this end, it is convenient to use the integration by parts approach from [11, Section 4.2].
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As usual, we write

Hn =
∑

j 
=k

log 1| ζj −ζk | + n

n∑

j=1

Vn(ζj ).

Let ψ be a test-function. Interpreting the ∂-derivative in the sense of distributions, we have
(for all j )

En[∂ψ(ζj )] = En[∂jHn(ζ1, . . . , ζn) · ψ(ζj )], (3.1)

where ∂j = ∂/∂ζj and where En is expectation with respect to the Boltzmann-Gibbs law in
Eq. 1.4.

Summing over j in Eq. 3.1 gives

1
n

n∑

j=1

En[∂ψ(ζj )] = En

∑n
j=1 ψ(ζj )

(
∂Vn(ζj ) − 1

n

∑
k 
=j

1
ζj −ζk

)

We have shown that

En[W+
n [ψ]] = 0 (3.2)

where

W+
n [ψ] =

∑
∂ψ(ζj ) − n

∑
[ψ∂Vn](ζj ) + 1

2

∑

j 
=k

ψ(ζj ) − ψ(ζk)

ζj − ζk

.

This is the distributional form of Ward’s identity that we need; the point is that ψ is
compactly supported in C, not just in C

∗.

3.2 Rescaling

(Cf. [6, 9].) Fix a test function ψ ∈ C∞
0 (C) and observe that

W+
n [ψ] = In[ψ] − IIn[ψ] + IIIn[ψ]

where

In[ψ] = 1
2

n∑

j 
=k

ψ(ζj )−ψ(ζk)

ζj −ζk
, IIn[ψ] = n

n∑

j=1

∂Vn(ζj ) · ψ(ζj ), and

IIIn[ψ] =
n∑

j=1

∂ψ(ζj ).

Rescaling via z = r−1
n ζ and w = r−1

n η, we define the Berezin kernel and its Cauchy
transform by

Bn(z,w) = Rn(z)Rn(w) − Rn,2(z, w)

Rn(z)
,

Cn(z) =
∫

C

Bn(z,w)

z − w
dA(w).

Lemma 3.1 We have

∂̄Cn(z) = Rn(z) − �V0(z) − � logRn(z) + o(1)

where o(1) → 0 in the sense of distributions on C and uniformly on each compact subset
of C∗ as n → ∞.
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Proof Let ψn(rnz) = ψ(z). By Eq. 3.2 we obtain

EnW
+
n [ψn] = EnIn[ψn] − EnIIn[ψn] + EnIIIn[ψn] = 0.

By changing variables, we calculate each expectation as follows:

EnIn[ψn] = r−1
n

∫

C

ψ(z)dA(z)

∫

C

Rn,2(z,w)

z−w
dA(w),

EnIIn[ψn] = n

∫

C

∂Vn(rnz)ψ(z)Rn(z)dA(z),

EnIIIn[ψn] = r−1
n

∫

C

∂ψ(z)Rn(z)dA(z) = −r−1
n

∫

C

ψ(z)∂Rn(z)dA(z).

From the above, we obtain that
∫

C

Rn,2(z,w)

z−w
dA(w) = nrn∂Vn(rnz)Rn(z) + ∂Rn(z)

in the sense of distributions on C. Since

Rn,2(z, w) = Rn(z)(Rn(w) − Bn(z,w)),

we have
∫

C

Bn(z,w)
z−w

dA(w) =
∫

C

Rn(w)
z−w

dA(w) − nrn∂Vn(rnz) − ∂ logRn(z).

This equation holds pointwise on C
∗ and in the sense of distributions on C. Differentiating

both sides in the sense of distributions with respect to z̄, we have

∂̄Cn(z) = Rn(z) − nr2n�Vn(rnz) − � logRn(z).

It remains to note that, in the sense of distributions,

nr2n�Vn(rnz) = cδ0(z) + �Q0(z) + O(rn) = �V0(z) + O(rn),

where the O-constant is also uniform on each compact subset of C∗.

3.3 Ward’s Equation

We now observe that the Berezin kernel Bn can be written as

Bn(z,w) = |Kn(z,w)|2
Rn(z)

= |Ln(z,w)·En(z,w)|2
Ln(z,z)·En(z,z)

|w|2c (3.3)

(See Eq. 2.1 for the definitions of the functions Ln, En.)
In order to prove Ward’s equation, it is convenient to use a formulation in terms of a

limiting holomorphic kernel L. We remind of the basic relation

R(z) = L(z, z)e−V0(z).

Lemma 3.2 Let L be a limiting holomorphic kernel and z0 ∈ C. If L(z0, z0) = 0, then
L(z, z) = |z − z0|2 L̃(z, z) for some Hermitian-entire function L̃. Moreover, if L(z, z) is
not identically zero, then each zero of L(z, z) is isolated.

Proof If L(z0, z0) = 0, then Eq. 1.15 gives that
∫ |L(z0, w)|2 dμ0(w) = 0, so L(z0, w) =

L(w, z0) = 0, and L(z,w) = (z − z0)(w̄ − z̄0)L̃(z, w) for some Hermitian-entire L̃.
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Now assume that L(z, z) is a nontrivial kernel which has a zero z0 which is not isolated,
i.e., that there exist distinct zeros zj such that zj → z0. Then L(zj , w) = 0 for all w and
all j . Noting that L(z, w) is entire in z, we obtain a contradiction.

Lemma 3.3 z �→ L(z, z) is logarithmically subharmonic on C. Moreover, if R(z0) = 0 for
some z0, and if we put

L(z, z) = |z − z0|2 g(z),

then g is logarithmically subharmonic some neighbourhood of z0.

Proof Recall first that R does not vanish identically by Theorem 1.4.
By Theorem 1.3, we know that L is the Bergman kernel of a contractively embedded,

semi-normed Hilbert space H∗ ⊂ L2
a(μ0). (This is because of the inequality L ≤ L0.)

That logL(z, z) is subharmonic now follows from general Bergman space theory, as in
[9, Lemma 3.4].

Next assume that L(z, z) = |z − z0|2 g(z) and choose a small neighborhood D of z0
which does not contain any zero of L(z, z) except z0. Since �z log g(z) = �z logL(z, z) −
δz0 , � log g ≥ 0 on D \ {z0}.

There are now two possibilities: if g(z0) > 0, then we extend log g analytically to z0 and
have � log g(z0) ≥ 0; if g(z0) = 0, then log g(z0) = −∞ and log g(z) again satisfies the
sub-mean value property in D.

We now set out to find suitable subsequential limits of the Berezin kernels Bn, defined in
Eq. 3.3. For this, we fix a subsequence Ln�

which converges locally uniformly to a limiting
holomorphic kernel L.

The main observation is that if L(z0, z0) > 0, then the convergence

Bn�
(z,w) · |w|−2c → B(z, w) · |w|−2c, (� → ∞)

is uniform for all (z, w) ∈ D × K where D is some neighbourhood of z0 and K is a given
compact subset of C. To see this, it suffices to note that

⎧
⎪⎪⎨

⎪⎪⎩

Bn(z, w) = |Ln(z,w)|2
Ln(z,z)

|w|2ce−Q0(w)+O(rn)

B(z,w) = |L(z,w)|2
L(z,z)

|w|2ce−Q0(w)

,

and that L(z, z) = limLn�
(z, z) ≥ const. > 0 in a neighbourhood of z0.

We need to check that the convergence Bn�
→ B implies a suitable convergence Cn�

→
C on the level of Cauchy transforms. For this purpose, we formulate the next lemma.

Lemma 3.4 Suppose that R(z) = L(z, z)e−V0(z) does not vanish identically. If Z is the set
of isolated zeros of L(z, z), then Cn�

→ C locally uniformly on C \ (Z ∪ {0}) as � → ∞.
Moreover, the function z �→ zC(z) is bounded on V \ Z for each compact subset V ⊂ C.

Proof Fix a small number ε > 0. We define a compact subset Kε of C2 by

Kε = {(z,w); |z| ≤ 1/ε, |w| ≤ 2/ε, dist(z,Z ) ≥ ε}.
The remarks preceding the lemma show that we can find N such that if � ≥ N then

∣
∣Bn�

(z,w) − B(z, w)
∣
∣ · |w|−2c < ε2+2|c|, (z, w) ∈ Kε . (3.4)
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Let us recall also that there is a constant M such that, if z 
∈ Z , then

Bn(z, w) ≤ M|w|2c, B(z,w) ≤ M|w|2c, (|w| ≤ 1) (3.5)

by Theorem 1.4. (This is because Bn(z,w) ≤ Rn(w) and B(z,w) ≤ R(w).)
For � ≥ N and z with dist(z,Z ∪ {0}) ≥ ε and |z| ≤ 1/ε, we now obtain

|Cn�
(z) − C(z)| ≤

∫

C

|Bn�
(z,w)−B(z,w)

z−w
|dA(w)

=
∫

|w|< ε
2 ,|z−w|< 1

ε

+
∫

|z−w|< 1
ε
,|w|> ε

2

+
∫

|z−w|> 1
ε

· · ·

≤ 2ε1+2|c|
∫

|w|< ε
2

|w|2c dA(w) + 22|c|ε2
∫

|z−w|< 1
ε

dA(w)
|z−w| + 2ε

≤ 22|c|−1(1 + c)−1ε3 + 22|c|+1ε + 2ε.

Here, we have applied the mass-one inequality (1.15) to estimate the integral over
{|z − w| > 1

ε
} and the inequality (3.4) has been used for the estimate of the integral over

{|z − w| < 1/ε}.
To show the local boundedness of the Cauchy transform C(z), we fix a compact subset

V of C and a number ε = εV such that V ⊂ {|z| < 1/ε}. Let us write c′ = −min{c, 0}.
Let δ be an arbitrary small number. Using the estimate (3.5), we see that for z ∈ V \

(Z ∪ {0}) with |z| ≥ δ,

∣
∣Cn�

(z)
∣
∣ ≤

(∫

|z−w|<δ/2
+
∫

|z−w|>δ/2

)
Bn�

(z,w)

|z−w| dA(w)

≤ (2/δ)2c
′
M

∫

|z−w|<δ/2

dA(w)
|z−w| + 2δ−1

≤ 22c
′
Mδ1−2c′ + 2δ−1.

This shows that |Cn�
(z)| ≤ M|z|−1 for all z ∈ V \ (Z ∪ {0}), where the constant M

depends only on V .

Finally, the following lemma concludes the proof of Theorem 1.5.

Lemma 3.5 If R does not vanish identically, then R > 0 everywhere on C
∗ and

∂̄C = R − �V0 − � logR (3.6)

in the sense of distributions on C and pointwise on C∗.

Proof By Lemma 3.1, we have

∂̄Cn(z) = Rn(z) − �V0(z) − � logRn(z) + o(1) (3.7)

where o(1) → 0 as a distribution on C and uniformly on each compact subset in C
∗. For a

compact subset V ofC, we moreover know that V ∩Z is a finite set and zCn�
(z) → zC(z)

boundedly and locally uniformly on V \(Z ∪{0}). For a test function φ and a small number
ε, we take V , Vε such that

V = suppφ, Vε = V \
⋃

z∈Z ∪{0}
D(z, ε).
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Here, Vε is compact and the (normalized) area of V \ Vε is less than Nε for some N > 0.
Moreover, since |Cn�

(z)| ≤ M|z|−1 for all z near 0 as in the proof of Lemma 3.4, we get
∫

D(0,ε)
|Cn�

− C| dA ≤
∫

D(0,ε)
2M|z|−1 dA(z) ≤ 4Mε.

Thus the integral
∫

V
(Cn�

− C) φ dA = ∫
Vε

(Cn�
− C) φ dA + ∫

V \Vε
(Cn�

− C) φ dA

can be made small since Cn�
→ C uniformly on Vε and zCn�

(z) is uniformly bounded on
V \(Z ∪{0}). Thus Cn�

→ C in the sense of distributions onC, which implies ∂̄Cn�
→ ∂̄C

in the same sense. In view of Eq. 3.7 and the convergence Rn�
→ R such that Rn�

(z) ≤
M|z|2c for |z| ≤ 1 and Rn�

(z) are uniformly bounded in each compact subset of C∗, we
conclude that the measures � logRn�

converge to � logR. Passing to the limit as � → ∞
we obtain Eq. 3.6 in the sense of distributions.

We now prove that R > 0 on C∗. For this, we suppose R(z0) = 0 for some z0 
= 0. Then
by Lemma 3.2,

R(z) = |z − z0|2 L1(z, z)e
−V0(z)

for some Hermitian-entire function L1. We fix a small disk D ⊂ C
∗ centered at z0 where

L1(z, z) is logarithmically subharmonic (cf. Lemma 3.3), and define two measures ν and ν1
by

dν(z) = 1D(z) · �z logL(z, z) dA(z),

dν1(z) = 1D(z) · �z logL1(z, z) dA(z).

By Lemma 3.3, these measures are both positive.
Now note that ν = ν1 + δz0 and consider the Cauchy transform

Cν(z) =
∫

dν(w)

z − w
.

Since ∂̄Cν = �Q0 + � logR on D, the Ward’s Eq. 3.6 gives ∂̄(C + Cν)(z) = R(z) on D,
whence

C(z) + Cν(z) = v(z)

for some smooth function v on D. Since C is bounded in D \ {z0} by Lemma 3.4, Cν(z)

remains bounded as z → z0. This implies that ν({z0}) = 0, which contradicts that ν1 is
positive. The contradiction shows that R(z0) > 0.

The positivity of R implies that logR is real-analytic on C
∗, so the right hand side

of Eq. 3.6 is smooth there. By Weyl’s lemma which asserts that every weak solution of
Laplace’s equation is smooth, C(z) is also smooth on C

∗ and hence Ward’s equation holds
pointwise on C

∗.

4 Symmetric Solutions in the Dominant Radial Case

We will now prove our first principal result, Theorem 1.6. Our proof elaborates on argu-
ments from the papers [5, 9]. We will initially allow for kernels L which are not necessarily
rotationally symmetric.

We start by noting that if R is a non-trivial limiting 1-point function in Theorem 1.5, then
Ward’s equation can be written in the form

∂̄C(z) = R(z) − �z logL(z, z),
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where L is the corresponding limiting 1-point function, R(z) = L(z, z)e−V0(z).
We here consider the dominant radial case

Q0(z) = Q0(|z|), V0(z) = Q0(z) − 2c log |z|,
and we write

dμ0 = e−V0 dA.

Since the kernel L is Hermitian-entire, we can represent it in the form

L(z, w) =
∞∑

j,k=0

ajkz
j w̄k, (ajk = ākj ).

We know also that L is nontrivial, i.e., L(z, z) > 0 for all z 
= 0 by Theorem 1.5.
Let L0 be the Bergman kernel for the space L2

a(μ0). Since Q0 is radially symmetric, we
have the formula

L0(z, w) =
∞∑

j=0

(zw̄)j

∥
∥zj

∥
∥2

L2(μ0)

. (4.1)

We want to prove that L = L0.
Let us rewrite Ward’s equation. Below we fix a complex number z 
= 0.
The Cauchy transform C(z) is computed as follows:

C(z) = 1

L(z, z)

∫

C

|L(z, w)|2
z − w

e−Q0(w)+2c log|w|dA(w)

= 1

L(z, z)

∑

j,k,l,m

ajkālmzj z̄l

∫

C

w̄kwm

z − w
e−Q0(w)+2c log|w|dA(w)

= 1

L(z, z)

∑

j,k,l,m

ajkamlz
j z̄l

∫ ∞

0
rk+me−Q0(r)+2c log rdr

∫ 2π

0

ei(m−k)θ

z/r − eiθ

dθ

π
.

From the fact that

1

2π

∫ 2π

0

ei(m−k)θ

z/r − eiθ
dθ =

⎧
⎪⎨

⎪⎩

− (z/r)m−k−1 if |z| < r, m − k ≥ 1,

(z/r)m−k−1 if |z| > r, m − k ≤ 0,

0 otherwise,

we obtain that (all sums are over all j, k, l,m unless otherwise is specified)

C(z) = 2

L(z, z)

∑

m≤k

ajkamlz
j z̄l

∫ |z|

0
rk+m

(z

r

)m−k−1
e−Q0(r)+2c log rdr,

− 2

L(z, z)

∑

m≥k+1

ajkamlz
j z̄l

∫ ∞

|z|
rk+m

(z

r

)m−k−1
e−Q0(r)+2c log rdr .

This can be rewritten C(z) = S1(z) − S2(z) where

S1(z) = 2

L(z, z)

∑

j,k,l,m

ajkamlz
j+m−k−1z̄l

∫ |z|

0
r2k+1e−Q0(r)+2c log r dr

=
∑

j,k

ajkz
j−k−1

∫ |z|2

0
tke−Q0(

√
t)+c log t dt .

348 Y. Ameur et al.



and

S2(z) = 1

L(z, z)

∑

m≥k+1

ajkamlz
j+m−k−1z̄l

∫ ∞

0
tke−Q0(

√
t)+c log t dt . (4.2)

It follows that

∂̄S1(z) = z
∑

j,k

ajkz
j−k−1|z|2ke−Q0(z)+c log |z|2

= L(z, z)e−V0(z) = R(z), (z 
= 0).

Hence Ward’s equation, which can be written in the form

∂̄S1(z) − ∂̄S2(z) = R(z) − �z logL(z, z)

is equivalent to just

∂̄(S2(z) − ∂ logL(z, z)) = 0.

Now,

∂ logL(z, z) = 1

L(z, z)

∑

m,l

mamlz
m−1z̄l ,

so by Eq. 4.2, the distributional Ward’s equation is equivalent to that the function

1

L(z, z)

∑

m,l

amlz
m−1z̄l

⎛

⎝
∞∑

j=0

m−1∑

k=0

ajkz
j−k‖zk‖2

L2(μ0)
− m

⎞

⎠ (4.3)

has ∂̄-derivative 0 in the sense of distributions on C. By Weyl’s lemma, this implies that
there exists some entire function G(z) such that

∑

m,l

amlz
m−1z̄l

⎛

⎝
∞∑

j=0

m−1∑

k=0

ajkz
j−k‖zk‖2

L2(μ0)
− m

⎞

⎠ = G(z)
∑

m,l

amlz
mz̄l .

The Taylor coefficients gj in G(z) = ∑
gj z

j depend on ajk in a complicated way.
Comparing coefficients of z̄l in Eq. 4.3, we deduce for each l ∈ Z+ the identity

∞∑

m=1

aml

⎛

⎝
∞∑

j=0

m−1∑

k=0

ajkz
j+m−1−k‖zk‖2

L2(μ0)
− mzm−1

⎞

⎠ = G(z)

∞∑

j=0

ajlz
j . (4.4)

Thus, for example, the constant term g0 = G(0) obeys infinitely many relations

g0a0l = a1l (a00‖1‖2L2(μ0)
− 1) +

∞∑

m=2

aml a0,m−1‖zm−1‖2
L2(μ0)

, l = 0, 1, 2, . . . .

Due to the formidable appearance of these relations, we now abandon the quest for the
most general limiting kernel L and restrict our attention to symmetric ones.

We thus assume that L(z, w) = ∑
ajkz

j w̄k is rotationally symmetric, i.e., we assume
that ajk = aj δjk for some numbers aj . In this case, the system (4.4) becomes: for all m ≥ 1

amzm−1

⎛

⎝
m−1∑

j=0

aj‖zj‖2
L2(μ0)

− m

⎞

⎠ = G(z)amzm.
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By considering the smallest m ≥ 1 such that am 
= 0 we conclude that G ≡ 0, i.e.,

am

⎛

⎝
m−1∑

j=0

aj‖zj‖2
L2(μ0)

− m

⎞

⎠ = 0, m = 1, 2, . . . . (4.5)

Before proving Theorem 5, recall that L satisfies the mass-one inequality (1.15). The
mass-one inequality can be written as

∞∑

j=0

a2j |z|2j‖zj‖2
L2(μ0)

≤
∞∑

j=0

aj |z|2j . (4.6)

Lemma 4.1 Let L be a nontrivial rotationally invariant limiting kernel. Then

aj = 1/‖zj‖2
L2(μ0)

, j = 0, 1, 2, . . . .

Proof We use Eqs. 4.5, 4.6, and induction on m ≥ 0.
Put Nm = inf{j ; j ≥ m, aj 
= 0} and note that, since L(z, z) ∼ �Q0(z)e

V0(z) as
z → ∞ (by Theorem 1.4), we have Nm < ∞ for each m.

Assume that N0 > 0. Then aj = 0 for all j ≥ 0 with j < N0. Since aN0 
= 0,
∑N0−1

j=0 aj‖zj‖2
L2(μ0)

= N0 by Eq. 4.5 which gives a contradiction. Thus N0 = 0, and

0 < a0 ≤ 1/‖1‖2
L2(μ0)

by Eq. 4.6.
Suppose next that N1 > 1. As above, aj = 0 when j ≥ 1 and j ≤ N1 − 1. Hence

∑N1−1
j=0 aj‖zj‖2

L2(μ0)
= a0‖1‖2L2(μ0)

≤ 1 < N1, which contradicts Eq. 4.5 with m = N1.

Hence N1 = 1 and a1 
= 0. By Eq. 4.5, a0 = 1/‖1‖2
L2(μ0)

and by Eq. 4.6, 0 < a1 ≤
1/‖z‖2

L2(μ0)
.

Similarly, for m ≥ 2 we have am−1 = 1/‖zm−1‖2
L2(μ0)

and 0 < am ≤ 1/‖zm‖L2(μ0)
,

finishing the induction step.

A comparison of the formula (4.1) for the kernel L0 with the above lemma shows that
L = L0, finishing our proof of Theorem 1.6. q.e.d.

5 Universality at Radial Type Singularities

We now prove Theorem 1.1.
Suppose that the potential Vn is of the form

Vn(ζ ) = Q(ζ) − 2c

n
log |ζ |, Q = Qr + h

where Qr is radially symmetric and Qr(z) = |z|2λ + O(|z|2λ+ε) as z → 0 for some ε > 0
and where h is a harmonic polynomial with h(0) = 0. We assume that the degree of h is at
most d, where, without loss of generality, d ≥ 2λ.

We suppose in addition that 0 ∈ Int S, that S is connected, and that ∂ Pc S is an
everywhere regular Jordan curve.

Now write h = ReH where H is the holomorphic polynomial

H(ζ) = Q(0) + 2∂Q(0) · ζ + · · · + 2
d!∂

dQ(0) · ζ d .
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The crucial property that we shall need from Qr is that

ζ∂Qr(ζ ) ∈ R

for all ζ . This is satisfied since Qr is radially symmetric.
Let pn,j be the j :th orthonormal polynomial with respect to e−nVn and rescale about 0

by letting

qn,j (z) = r1+c
n pn,j (rnz), Ṽn(z) = nQ(rnz) − 2c log |z|.

With H̃n(z) = nH(rnz) we can then define a “rescaled holomorphic kernel” by

Ln(z,w) =
n−1∑

j=0

qn,j (z)q̄n,j (w)e−(H̃n(z)+ ¯̃
Hn(w))/2.

By a straightforward extension of normal families argument (see Section 2) we obtain easily
that each subsequence of Ln has a further subsequence converging locally uniformly to a
limiting holomorphic kernel L. (The terms in H̃n of degree > 2λ are negligible on compact
sets.)

We want to prove the asymptotic rotation invariance

∂θLn(z, z) → 0

as n → ∞ along any subsequence. To prove this we observe that

∂θLn(z, z) = iz∂zLn(z, z) + (−iz̄)∂̄zLn(z, z) = −2 Im(z∂zLn(z, z)).

Write h̃n = Re H̃n. Then

z∂zLn(z, z) = e−h̃n(z)

n−1∑

j=0

(z∂qn,j (z) − zqn,j (z)∂h̃n(z))q̄n,j (z). (5.1)

Since ∂h̃n is a holomorphic polynomial of degree at most d −1, zqn,j ∂h̃n is a polynomial of
degree at most j + d. Hence it can be expressed as a linear combination of the polynomials
qn,l :

zqn,j ∂h̃n(z) =
j+d∑

l=0

〈zqn,j ∂h̃n, qn,l〉 qn,l(z)

where 〈f, g〉 = ∫
f ḡe−Ṽn dA.

Now set Q̃r = nQr(rnz) = |z|2λ + · · · . An integration by parts gives

〈zqn,j ∂h̃n, qn,l〉 = −
∫

zqn,j (z)q̄n,l(z)∂(e−h̃n(z))e−Q̃r+2c log |z| dA(z)

= 〈qn,j , qn,l〉 + 〈z∂qn,j , qn,l〉
+
∫

zqn,j (z)q̄n,l(z)(−nrn∂Qr(rnz) + c

z
)e−Ṽn(z) dA(z).

Let us define

αj,l =
∫

qn,j (z)q̄n,l(z)nrnz∂Qr(rnz)e
−Ṽn(z) dA(z). (5.2)

We then have the identity

〈zqn,j ∂h̃n, qn,l〉 = (1 + c)〈qn,j , qn,l〉 + 〈z∂qn,j , qn,l〉 − αj,l
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and from Eq. 5.1,

z∂zLn(z, z) = e−h̃n(z)
n−1∑

j=0

q̄n,j (z)

⎛

⎝
j+d∑

l=0

〈z∂qn,j − zqn,j ∂h̃n, qn,l〉qn,l

⎞

⎠

= e−h̃n(z)

⎛

⎝−(1 + c)

n−1∑

j=0

|qn,j (z)|2 +
n−1∑

j=0

j+d∑

l=0

αj,lqn,l(z)q̄n,j (z)

⎞

⎠ .

Since z∂Qr(z) = λ|z|2λ + · · · is real-valued, we have αj,l = ᾱl,j and hence

αj,lqn,l(z)q̄n,j (z) + αl,j qn,j (z)q̄n,l(z) ∈ R

for all l, j, z. Therefore,

Im(z∂zLn(z, z)) = e−h̃n(z)
n−1∑

j=n−d

d+j∑

l=n

Im(αj,lqn,l(z)q̄n,j (z)). (5.3)

In order to estimate the sum in the right hand side of Eq. 5.3, we need a good control
of the polynomials qn,j with |j − n| ≤ d. For this purpose, we will employ recent results
on asymptotics for the orthonormal polynomials pn,j with respect to e−nVn , to obtain the
following result.

Lemma 5.1 LetK be any fixed compact subset of Int Pc S. Then for any given integer κ ≥ 0
and any j = j (n) with |j − n| ≤ d we have

∫

K

|pn,j |2e−nVn dA = O(n−κ−1), n → ∞.

Proof We will use one of the main results from the paper [25] 1, which implies that if Vn is
any potential of the type indicated above, then for any fixed κ ≥ 0 we have

∫

|pn,j − χF
(κ)
n,j |2e−nVn dA = O(n−κ−1), |j − n| ≤ d. (5.4)

Here χ is a smooth function which equals to 1 in a small tubular neighbourhood of the outer
boundary of S while χ = 0 in the complement of a slightly larger tubular neighbourhood,
which is still small enough that χ = 0 near all the logarithmic singularities occurring in the
potential.

Following [25] we write Q for (the analytic continuation of) the bounded holomorphic
function on C \ Pc S satisfying ReQ = Q on ∂ Pc S. (We fix Q uniquely by requiring that
the imaginary part vanishes at infinity.)

The function F
(κ)
n,j is of the form

F
(κ)
n,j (ζ ) = n1/4

√
φ′(ζ )φ(ζ )j enQ(ζ )/2

κ∑

p=0

n−pBp(ζ )

where φ is the analytic continuation of a univalent map Ĉ\Pc S → Ĉ\D and Bp are certain
holomorphic functions, bounded on the support of χ .

1In the special case when Q = |ζ |2 + Re tζ we can alternatively use the strong asymptotics proved in the
papers [38, 42]
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It is clear that the asymptotic in Eq. 5.4 implies the statement in the lemma.

Remark In [25] there is an assumption that the potential Q be everywhere C2-smooth in
the plane. It is however easy to see that the results hold under the assumptions in the present
paper. Indeed, the details of the potential in a given compact subset of Int S are completely
irrelevant in [25] (as long as it is admissible in the sense of [40]). Similarly, the details of
the potential in the exterior, away from the boundary, are not relevant. The only point where
any kind of higher regularity is used is in the form of real-analyticity near the boundary.

Lemma 5.2 The integral αj,l in Eq. 5.2 satisfies αj,l = O(n) when |j −n| ≤ d, |l−n| ≤ d,
and n → ∞.

Proof By a change of variables we have

αj,l = n

∫

z∂Qr(z)pn,j (z)p̄n,l(z) e−nVn(z) dA(z). (5.5)

Since the |pn,j |2e−nVn are negligible outside the support of χ (see remark below) we
can restrict to some small neighbourhood of the droplet. We can then bound the integral
in Eq. 5.5 by C

∫ |pn,j ||pn,l |e−nVn , so by the Cauchy-Schwarz inequality it follows that
|αj,l | ≤ Cn.

Remark To make the proof above precise, we here provide an exterior estimate of
|pn,j |2e−nVn on C \ (suppχ ∪ Pc S), i.e., outside of a neighborhood of Pc S. Indeed, a
modification of the pointwise asymptotics in Theorem 1.3.5 from [25] gives the asymptotics

|pn,j |2e−nVn = √
n|φ′||φ|2j e−n(Q−ReQ)|B0 + O(n−1)|2

which is uniform for z outside a neighborhood of S. Moreover, according to the terminology
in the paper [25], ReQ + log |φ|2 = Q̆, which gives a very fast decay of |pn,j |2e−nVn

outside an arbitrarily small neighborhood of Pc S.

Now let K be a given compact subset of C∗. We shall estimate the integral

Jn :=
∫

K

|∂θLn(z, z)| dA(z).

By Eq. 5.3 and the last lemma,

Jn ≤ Cn

n−1∑

j=n−d

d+j∑

l=n

∫

K

|qn,l ||qn,j |e−Ṽn dA.

Hence by Lemma 5.1, we have Jn = O(n−κ ) for any given κ > 0. (The compact set K

corresponds under the rescaling to the dilated set rnK which is surely bounded away from
the outer boundary when n is large enough.)

It follows that if L = limLnl
is a limiting holomorphic kernel, then for each compact set

K ⊂ C,
∫
K

|∂θL(z, z)| dA(z) = 0. This is only possible if ∂θL(z, z) = 0 identically, i.e., L
is rotationally invariant.

The proof of Theorem 1.1 is complete. q.e.d.
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6 Insertion as a Balayage Operation

In this section, we will discuss the effect of insertion of a point charge, by comparing the
first intensity of the process {ζj }n1 with respect to the inserted point charge c to the intensity
of the corresponding process with c = 0. Our discussion elaborates on the concluding
remarks from [3, Section 7.7].

We will now exploit the freedom of choosing the perturbation u in the potential

Vn = Q − 2c

n
� − 1

n
u,

where we write �(ζ ) = log |ζ |. Here, we take u to be smooth and harmonic. One natural
choice is to put u = 0, i.e., to set

Vn = Q − 2c

n
� (6.1)

We will call Eq. 6.1 the “pure log-normalization” of Vn. Another interesting choice, the
“Green’s form”, is to set

Vn = Q + 2c

n
G (6.2)

where G is the Green’s function for S with pole at 0,

G(ζ) = log 1
|ζ | − u(ζ ), (6.3)

u is harmonic in Int S and G = 0 on the boundary ∂S.
In order to apply the theory of [3, 4] we need to impose a few conditions on the geometry

and topology of the droplet S. First of all, we recall our assumption that Q be real-analytic
in a neighbourhood of S with exception at the origin. (See Eq. 1.2.) We will now also impose
the condition that �Q is strictly positive in a neighbourhood of the boundary ∂S. It is well-
known that this guarantees that S has finitely many components, and that ∂S is a finite
union of real-analytic curves, possibly having finitely many singular points of known types
(cusps or double points). (Cf. [7, 37] and references.) We shall assume that S is connected,
and that the boundary is everywhere smooth. In this case, the Green’s function G(ζ) can be
extended to a smooth function on C

∗ with G ≡ 0 near ∞. We fix such an extension and
insist on calling it G.

Let Rn and R̃n be the 1-point functions associated, respectively, with the external
potentials Q and Vn. We shall measure the effect of the insertion by studying the difference

ρn = R̃n − Rn,

where we use the convention that Rn is identified with the measure Rn dA (and likewise for
R̃n).

Note that the asymptotics of ρn(f ) can be nontrivial only if the support of f contains
either the point 0, or some portion of the boundary of S. Indeed, if we exclude neighbour-
hoods of 0 and of the boundary, then on the rest of the plane both Rn and R̃n are very close
to n�Q · 1S , in the sense that the difference is negligible, cf. [6, 8].

In order to simplify the following discussion, we assume now that the potential Q has a
dominant radial bulk singularity at 0 of Mittag-Leffler type, and that the coefficient τ0 = 1.
That is, we assume according to the canonical decomposition (1.5) that

Q0 = |z|2λ, V0 = |z|2λ − 2c log |z|.
In addition we will assume that each limiting kernel is rotationally symmetric, that is (by
Theorem 1.6) each limiting kernel is equal to L(z,w) = λ · E1/λ,(1+c)/λ(zw̄). Finally, we
assume that there are no other singular points in the bulk, except the one at 0.
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In the rest of this section, we assume that all of the above conditions are satisfied.
For a domain � bounded by a Jordan curve γ in C, the harmonic measure with respect

to � evaluated at a point z ∈ � is the hitting probability distribution on γ of a Brown-
ian motion starting at z. We refer to [23] for other equivalent definitions of the harmonic
measure.

Theorem 6.1 Let R̃n be the 1-point functions associated with the potential

(i) Vn = Q + 2(c/n)G. Then, in the weak sense of measures

ρn → c(ω0 − δ0),

Here δ0 is the Dirac measure at 0 and ω0 the harmonic measure with respect to S,
evaluated at 0.

(ii) Vn = Q − (2c/n)�. Then
ρn → c(ω∞ − δ0),

where ω∞ is the harmonic measure with respect to C \ S, evaluated at ∞.

The theorem shows that the insertion of a point mass, corresponding to different natural
boundary conditions, gives rise to different kinds of balayage operations, see Fig. 2, cf. [23,
40] for the basic facts about balayages.

Lemma 6.2 Suppose that the test-function f has compact support in the interior of S. Then

lim
n→∞ ρn(f ) = −cf (0).

In other words, ρn → −cδ0 in the interior of the droplet.

Proof Rescaling about 0 on the scale n−1/2λ, we obtain the 1-point intensities Rn and R̃n

which, by Theorem 1.6 have known locally uniform limits R and R̃. We shall show that the
total mass of the measure R − R̃ is

(R − R̃)(C) = c. (6.4)

Fig. 2 Some level curves of ρn with respect to Ginibre potential Vn = |ζ |2 − 2c log |ζ − a|/n when n = 40,
c = 1, a = 0.3 with pure-log normalization and Green’s normalization, respectively. (Blue means negative
and red means positive)
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In view of well-known bulk estimates of Rn and R̃n away from a microscopic neighbour-
hood of 0, this will prove the lemma. Before proceeding with the proof, we pause to recall
some details about the estimates that come into play here.

Consider the annular regions

An : Mrn ≤ |ζ | ≤ rn(log n)
1
λ , Bn : rn(log n)

1
λ ≤ |ζ | ≤ d .

where M is large and d is some small constant so that Bn lies inside the droplet. We claim
that the total variation of ρn on An ∪Bn can be made less than any given ε > 0 by choosing
large M and small d. Indeed, for ζ ∈ An, the asymptotics from [8, Section 3] shows that
there exist some constants c, C such that

|R̃n(z) − �Q0(z)| ≤ C|z|2λ−2e−c|z|2λ, |Rn(z) − �Q0(z)| ≤ C|z|2λ−2e−c|z|2λ

for all large n. Thus
∫

M≤|z|≤(log n)
1
λ

|R̃n(z) − Rn(z)|dA(z) ≤ 2C
∫

M≤|z|≤(log n)
1
λ

|z|2λ−2e−c|z|2λdA(z),

where the right hand side can be made small by taking M large enough.
By a slight adaptation of the Hörmander estimate in [6, Section 5], we obtain the

following estimate.

Lemma 6.3 There exist some constants c, C > 0 such that for ζ ∈ Bn
⎧
⎪⎨

⎪⎩

|R̃n(ζ ) − n�Q(ζ)| ≤ C(1 + nmax(1, 1
λ
) · e−c(log n)2)

|Rn(ζ ) − n�Q(ζ)| ≤ C(1 + nmax(1, 1
λ
) · e−c(log n)2)

(6.5)

for all large n.

Proof Using the pointwise-L2 estimate in [6, Section 3], we obtain the elementary estimate
for ζ ∈ Bn

Rn(ζ ) ≤ Cn�Q(ζ) (6.6)

for some constant C > 0.
For a point ζ ∈ Bn and a small enough constant α, let εn(ζ ) = α log n/

√
n�Q(ζ).

Consider a smooth function χn such that χn = 1 on D(ζ, εn/2), χn = 0 outside of D(ζ, εn),
and ‖∂̄χn‖L2 ≤ C. With a suitable choice of α,D(ζ, εn) does not contain the origin. In order
to use the estimate in [6, Section 5], we write Q(η, ω) for the Hermitian-analytic extension
of Q satisfying Q(η, η) = Q(η) in a neighborhood of ζ and define the approximate kernel
K#

n by
K#

n(η, ω) = n∂η∂̄ωQ(η, ω) · enQ(η,ω)e−nQ(η)/2−nQ(ω)/2.

Writing Kn,η(ω) = Kn(ω, η), we define the operator �n by

�n[f ](η) =
∫

f (ζ ) K̄n(ζ ) dA(ζ ).

By adapting [6, Theorem 5.1], we readily obtain

|Kn(ζ, ζ ) − �n[χnK#
n,ζ ](ζ )| ≤ CMn(ζ )

√
Kn(ζ, ζ )

for some constant C where

Mn(ζ ) = 1√
n�Q(ζ)

+ 1

εn

e−c′n�Q(ζ)ε2n .

356 Y. Ameur et al.



It follows from Eq. 6.6 that

|Kn(ζ, ζ ) − �n[χnK#
n,ζ ](ζ )| ≤ C1 + C2 n�Q(ζ) e−c(log n)2 .

If λ < 1, then �Q(ζ) ≤ C (rn(log n)
1
λ )2λ−2 ≤ C n−1+ 1

λ . Otherwise, �Q(ζ) is bounded in
Bn. Thus we have

|Kn(ζ, ζ ) − �n[χnK#
n,ζ ](ζ )| ≤ C1 + C2 nmax( 1

λ
,1) e−c(log n)2 .

On the other hand, following the argument in [6, Section 5.2] leads to the estimate

|�n[χnK#
n,ζ ] − K#

n(ζ, ζ )| ≤ Cn�Q(ζ) e−c(log n)2 ≤ Cnmax( 1
λ
,1)e−c(log n)2 .

Combining the above estimates, we obtain the estimate we want.
For the potential Vn = Q − 2c

n
� − 2

n
u, we use a Hermitian-analytic extension in a small

neighborhood of ζ ∈ Bn

Vn(η, ω) = Q(η, ω) − c
n
(log η + logω) − 2

n
u(η, ω),

where u(η, ω) is a polarization of u, to define the approximate kernel K̃#
n by

K̃#
n(η, ω) = n∂η∂̄ωVn(η, ω) · en(Vn(η,ω)−Vn(η)/2−Vn(ω)/2).

Here, K̃#
n(ζ, ζ ) = n�Q(ζ) since u is harmonic. The argument using approximate Bergman

projection in [6, Section 5] considers a local behavior in the ball of radius εn away from the
origin, so that the same argument applies for R̃n.

The estimates in Eq. 6.5 show that for ζ ∈ Bn

|R̃n(ζ ) − Rn(ζ )| ≤ C
(
1 + nmax(1, 1

λ
)e−c(log n)2

)

is bounded, and the total variation of ρn over Bn can be made as small as we want by
choosing a small d. On the other hand, away from a small neighborhood of 0, the asymptotic
formula (cf. [3, 4])

R̃n = n�Q + 1
2� log�Q + O(n−1)

where O(n−1) is uniform on each compact subset in Int S \ {0} can be used. We have thus
reduced our problem to proving the identity in Eq. 6.4.

To show Eq. 6.4 we recall by Theorem 1.4 that both R(z) and R̃(z) approach �Q0(z)

quickly as z → ∞. In particular, the integrals
∫

C

(�Q0 − R̃) dA

∫

C

(�Q0 − R) dA

are convergent; if we can compute them, we can obtain Eq. 6.4 by a simple subtraction.
Hence it suffices to show that

∫

C

(�Q0 − R̃) dA = c + 1 − λ

2
. (6.7)

But �Q0 = λ2|z|2λ−2, and the limiting 1-point function R̃ equals to

R̃(z) = λE1/λ,(1+c)/λ(|z|2)e−V0(z) = λ

∞∑

j=0

|z|2j
�
(

j+1+c
λ

) |z|2ce−|z|2λ .
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Our problem is thus to evaluate the integral

Ic,λ = λ

∫

C

(λ|z|2λ−2 −
∞∑

j=0

|z|2j
�
(

j+1+c
λ

) |z|2ce−|z|2λ) dA(z),

which is the same as

Ic,λ =
∫ ∞

0

⎛

⎝λ − e−t
∞∑

j=0

t
j+c+1

λ
−1

�
(

j+1+c
λ

)

⎞

⎠ dt .

We first consider the case when λ is a rational number. The computation of the integral
can be reduced to the case λ = 1 by the following observation.

A rational number λ with λ > 0 is expressed as the fraction p/q of two integers p, q ≥
1. Letting j = mp + l for some integers m, l with 0 ≤ l ≤ p − 1, we have

Ic,λ =
p−1∑

l=0

∫ ∞

0

⎡

⎣ 1

q
− e−t

∞∑

m=0

t
mq+ q(l+c+1)

p
−1

�
(
mq + q(l+1+c)

p

)

⎤

⎦ dt .

Now we note that

E1,c(t) = Eq,c(t
q) + tEq,c+1(t

q) + · · · + tq−1Eq,c+q−1(t
q).

Writing
Fs(t) = e−t t c+sEq,c+1+s(t

q), 0 ≤ s ≤ q − 1,

we have
e−t t cE1,c+1(t) = F0(t) + · · · + Fq−1(t)

and Fs = Fs−1 − F ′
s for all 1 ≤ s ≤ q − 1. This implies that

e−t t cE1,c+1(t) = qF0(t) −
q−1∑

s=1

(q − s)F ′
s (t). (6.8)

Using the asymptotic formula (cf. [24, eq. (4.4.18)])

Eq,c(t
q) = 1

q

∑

|2πn|< 3πq
4

(te2πin/q)1−cete2πin/q + O(t−q), t → ∞,

we now obtain Fs(∞) = 1
q
for 0 ≤ s ≤ q−1. In view of Eq. 6.8, we thus obtain for c > −1

Ic,1 =
∫ ∞

0
[1 − e−t t cE1,c+1(t)] dt =

∫ ∞

0

[
1 − q e−t t cEq,c+1(t

q)
]
dt + q−1

2 .

If we temporarily accept that Ic,1 = c for c > −1, we now deduce that
∫ ∞

0

[
1

q
− e−t t cEq,c+1(t

q)

]

dt = 1

q

(

c − q − 1

2

)

and hence

Ic,λ = 1

q

p−1∑

l=0

(
q(l + c + 1)

p
− 1 − q − 1

2

)

= c + 1 − λ

2
.

The identity (6.7) now follows by the continuity in λ for all real numbers λ > 0, provided
that we can show it for λ = 1.
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It remains to verify that Ic,1 = c, where

Ic,1 =
∫ ∞

0
(1 − tce−tE1,c+1(t)) dt .

Our verification that Ic,1 = c is somewhat lengthy, and works in fact for complex c with
Re c > −1. An alternative short proof in the case when c is a positive integer is given in the
remark below.

We first assume that Re c > 0. To show that Ic,1 = c, it is convenient to call on the lower
and upper incomplete gamma functions

γ (c, t) =
∫ t

0
sc−1e−s ds, �(c, t) =

∫ ∞

t

sc−1e−s ds, (�(c) = γ (c, t) + �(c, t)).

We claim that (for Re c > 0 and t > 0)

tce−tE1,1+c(t) = γ (c, t)

�(c)
. (6.9)

To see this, we integrate the right hand side by parts,

1

�(c)

∫ t

0
sc−1e−s ds = 1

�(c + 1)
tce−t + 1

�(c + 1)

∫ t

0
sce−s ds. (6.10)

To repeat the integration, we similarly observe that for all ν = 0, 1, 2, . . .

1

�(c + ν)

∫ t

0
sc+ν−1e−s ds = 1

�(c + 1 + ν)
tc+νe−t + 1

�(c + 1 + ν)

∫ t

0
sc+νe−s ds,

(6.11)
and note that, for fixed t > 0,

γ (c + ν, t)

�(c + ν + 1)
→ 0, (ν → ∞). (6.12)

In view of Eqs. 6.10–6.12 we have

γ (c, t)

�(c)
= tce−t

∞∑

ν=0

tν

�(c + 1 + ν)
= tce−tE1,c+1(t),

and Eq. 6.9 is proved.
It follows from Eq. 6.9 that

Ic,1 =
∫ ∞

0

[

1 − γ (c, t)

�(c)

]

dt = 1

�(c)

∫ ∞

0
�(c, t) dt . (6.13)

To calculate this, we note that

d
dt

(�(c + 1, t) − t�(c, t)) = −�(c, t), (6.14)

which is immediate since d
dt

�(c, t) = −tc−1e−t . Moreover, it is easy to see that

lim
t→∞(�(c + 1, t) − t�(c, t)) = 0. (6.15)

Combining Eqs. 6.13–ki6.15 we find that

Ic,1 = �(c + 1, 0)

�(c)
= c.
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For the case when −1 < Re c < 0, we write

tce−tE1,1+c(t) = tce−t

⎛

⎝ 1

�(c + 1)
+

∞∑

j≥1

tj

�(j + c + 1)

⎞

⎠

= tce−t

�(c + 1)
+ tc+1e−tE1,c+2(t) = tce−t

�(c + 1)
+ γ (c + 1, t)

�(c + 1)
.

Thus, we have

Ic,1 =
∫ ∞

0

(

1 − γ (c + 1, t)

�(c + 1)
− tce−t

�(c + 1)

)

dt = (c + 1) − 1 = c,

finishing the proof of the lemma.

Remark When c is a positive integer, we can easily prove the identity Ic,1 = c as follows.
We have

∞∑

j=0

tj+c

�(j + 1 + c)
= et − Pc(t)

where

Pc(t) =
c−1∑

j=0

tj

j ! .

It follows that

Ic,1 =
∫ ∞

0
Pc(t)e

−t dt = c, c = 1, 2, . . . .

In order to see the effect of the insertion near the boundary, we will apply the boundary
fluctuation theorem in [4].

For a suitable function h, let Vn = Q − 2h/n be the perturbed potential and Rh
n be the

corresponding 1-point function. Write ρh
n for the difference Rh

n − Rn. We define for any
suitable function f , a new function f S in the following way: f S = f on S and f S equals
the harmonic extension of f |∂S to Ĉ \ S on that set.

Theorem 6.4 Suppose that f is a smooth test-function with compact support, which van-
ishes in a small, fixed neighborhood of 0 and h is C2-smooth outside the origin and has
compact support. Then there exists a small number α > 0 such that

ρh
n(f ) = 1

2

∫

∇f S · ∇hS + O(n−α), n → ∞. (6.16)

Proof The estimate Eq. 6.16 is given in [4, Theorem 2.3], except for the order of the error-
term O(n−α). To obtain this error-term, we just need to carefully examine the proof in [4].
In the following lines we will explain how this can be seen, temporarily borrowing notation
from [4]. (The reader who wishes to understand the following details should thus have a
copy of [4] at hand.)

Let v be a suitable test-function, smooth in a neighbourhood of the boundary ∂S,
satisfying conditions (3.4-i)–(3.4-iii) from [4].
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The main tool behind the convergence of fluctuations in [4] is the limit form of Ward’s
identity:

2
∫

C

Dh
n(v∂∂̄Q−∂̄v(∂Q̌−∂Q)) = −1

2
σ(∂v+4v∂h)+ε1n[v]+ε2n[v]+(σh

n −σ)(
∂v

2
+2v∂h),

where ε1n[v] and ε2n[v] are certain error-terms given in [4].
By Prop. 4.5 and Prop. 4.6 in [4], we have

ε1n[v] = O(n−1/2[log n]4) and ε2n[v] = O(n−β/2(‖v‖L∞ + ‖∇v‖L∞)),

for some small β > 0, and it is easy to show that the term (σh
n −σ)(∂v/2+2v∂h), is O(δn)

where δn = log2 n/
√

n. Hence it follows that

2
∫

C

Dh
n(v∂∂̄Q − ∂̄v(∂Q̌ − ∂Q)) = −1

2
σ(∂v) − 2σ(v∂h) + O(n−α) (6.17)

for some α > 0.
Now we assume that f is a suitable function supported near the boundary. Write f =

f+ + f0 and v = v+ + v0 where

v+ = ∂̄f+
�Q

1S, and v0 = ∂̄f0

�Q
1S + f0

∂(Q − Q̌)
1C\S

as in [4, Section 5]. Then Eq. 6.17 implies that,

2
∫

C

Dh
n · ∂̄f = −1

2
σ(∂v) − 2σ(v∂h) + O(n−α).

Hence the fluctuation term νh
n (f ) obeys the asymptotic

νh
n (f ) = 1

4
σ(∂v) + σ(v∂h) + O(n−α),

and we obtain

ρh
n(f ) = νh

n (f ) − νn(f ) = σ(v∂h) + O(n−α)

= 2
∫

S

∂̄f · ∂h + O(n−α) = 1

2

∫

∇f s · ∇hs + O(n−α).

The general case f = f0 + f+ + f− is immediate from this, as in [4, Section 5].

To prove Theorem 6.1, we consider the cases when h = G and when h = �. The
function G is an extension of the Green’s function, which is smooth on C∗ and has compact
support. For the case of ”pure log-normalization”, the limit form of Ward’s identity in [4]
can be applied and Theorem 6.4 holds for � since the function � does not grow too fast and
∂�(z) ∼ z−1 near ∞.

Proof of Theorem 6.1 Assume that the external potential Vn has the Green’s form in Eq. 6.2.
We then have ρn = ρG

n .

Lemma 6.5 Suppose that f is a smooth test-function which vanishes in some small, fixed
neighbourhood of 0, and let ω0 be harmonic measure for S evaluated at 0. Then

lim
n→∞ ρn(f ) → cω0(f ).
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Proof The assumptions on f imply that we can apply the boundary fluctuation theorem 6.4.
Also let G be the Green’s function in Eq. 6.3, so GS = 0 in C \ S.

The asymptotic formula for the variance of fluctuations in Theorem 6.4 implies that, for
the test-functions f under consideration,

lim
n→∞ ρn(f ) = c

2

∫

S

∇f · (−∇G) dA

= − c

2π

∫

∂S

f
∂G

∂n
ds + 2c

∫

f �G dA

= − c

2π

∫

∂S

f
∂G

∂n
ds,

since f vanishes near 0. Here ∂/∂n is differentiation in the outwards normal direction. We
refer to the argument in [3, p. 76] for details about the calculation.

The lemma follows, since − 1
2π

∂G
∂n

ds is the harmonic measure ω0 (see [23]).
Combining Lemmas 6.5 and 6.2, we conclude the proof of part (i) of Theorem 6.1.
Now assume that the external potential Vn has the pure log-form, i.e.,

Vn = Q − (2c/n)�, �(ζ ) = log |ζ |.
In this case, we have ρn = ρ�

n. Let G∞ be the Green’s function of C \ S with pole at ∞
(so G∞(ζ ) ∼ log |ζ | as ζ → ∞). We consider G∞ as being extended to C in some smooth
way. Note that

�S(ζ ) = �(ζ ) − G∞(ζ ), ζ ∈ C \ S,

and that �S is harmonic on Ĉ \ S.
We now fix a function f ∈ C∞

0 which vanishes near 0 and apply the result of [4] as in
the proof of Lemma 6.5. The result is this time that

lim
n→∞(R̃n − Rn)(f ) = c

2

∫

S

∇f · ∇� + c

2

∫

Sc

∇f S · ∇�S

= c

2π

∫

∂S

f
∂G∞
∂n

ds = c

∫

∂S

f dω∞,

where ω∞ is harmonic measure of C \ S evaluated at ∞. Combining with Lemma 6.2, we
conclude the proof of part (ii) of Theorem 6.1.

7 A Central Limit Theorem

In this section we prove Theorem 1.2. Our strategy is to first give the proof in the simplified
model Mittag-Leffler case, and after that we will adapt the proof to a general algebraic
insertion potential.

Lemma 7.1 Suppose that V �
n is the model Mittag-Leffler potential

V �
n = |ζ |2λ − 2c

n
log |ζ |. (7.1)

Then the random variables

Xn = 2√
log n

(tracen � − En tracen �)

converge in distribution to the centered normal distribution with variance 1/λ.
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We remind the reader of the notation �(ζ ) = log |ζ |, tracen � = ∑
�(ζj ) where {ζj }n1 is

a random sample. En denotes the expectation with respect to the potential V
�
n , see Eq. 1.4.

We also recall that the rescaled one-point function of Eq. 7.1 equals to

R�
n(z) = λ

n−1∑

j=0

|z|2(j+c)

�
(

j+c+1
λ

) e−|z|2λ . (7.2)

(See the example in Section 1.)

Proof of the lemma. We shall apply the variational approach from [4] with the scale of
potentials

V
�
n,t = V �

n − 2cn,t

n
log |ζ |, cn,t = t

√
log n

.

Here t is a fixed real constant and n is large enough so that cn,t > −1.
The method uses the function

Fn(t) = logEn exp(tXn),

where En is expectation with respect to the potential V �
n .

As in [3, 4] we note that

F ′
n(t) = En[Xne

tXn ]
En[etXn ] =

∫
Xne

2cn,t

∑
�(ζj ) dPn

∫
e2cn,t

∑
�(ζj ) dPn

= En,t [Xn],

where En,t is expectation with respect to potential V �
n,t . Hence

F ′
n(t) = 1

√
log n

∫

C

� · (R�
n,t − R�

n) dA (7.3)

where R�
n,t and R

�
n are 1-point functions with respect to V

�
n,t and V

�
n , respectively.

Inserting explicit expressions (see Eq. 7.2) we obtain

F ′
n(t) = 2λ

√
log n

∫

C

�(zn−1/2λ)

n−1∑

j=0

⎛

⎝ (|z|2)j+c+cn,t

�
(

j+1+c+cn,t

λ

) − (|z|2)j+c

�
(

j+c+1
λ

)

⎞

⎠ e−|z|2λ dA(z)

= λ−1

√
log n

∫ ∞

0
(log s − log n)

n−1∑

j=0

⎛

⎝ s
j+1+c+cn,t

λ
−1

�
(

j+1+c+cn,t

λ

) − s
j+1+c

λ
−1

�
(

j+1+c
λ

)

⎞

⎠ e−s ds.

Let ψ be the polygamma function,

ψ(x) = �′(x)

�(x)
= 1

�(x)

∫ ∞

0
sx−1e−s log s ds.

The computations above show that

F ′
n(t) = λ−1

√
log n

n∑

j=1

(

ψ

(
j + c + cn,t

λ

)

− ψ

(
j + c

λ

))

.

We now use Taylor’s formula to write

ψ

(
j + c + cn,t

λ

)

− ψ

(
j + c

λ

)

= cn,t

λ
ψ ′

(
j + c

λ

)

+ 1

2

(cn,t

λ

)2
ψ ′′(ξj ),
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where ξj is some number between (j + c)/λ and (j + c + cn,t )/λ, and have

F ′
n(t) = t

λ2 log n

n∑

j=1

ψ ′
(

j + c

λ

)

+ t2

2(λ2 log n)3/2

n∑

j=1

ψ ′′(ξj ) + o(1). (7.4)

To proceed with this, we note the following lemma.

Lemma 7.2 ψ and ψ ′ have the series expansions

ψ(x + 1) = −γ +
∞∑

k=1

(
1

k
− 1

k + x

)

and ψ ′(x + 1) =
∞∑

k=1

1

(k + x)2
,

for x 
∈ {−1, −2, . . .}, where γ is the Euler constant.

The proof of the lemma is an immediate consequence of Weierstrass’ form of the Gamma
function,

�(x + 1) = e−γ x
∞∏

k=1

(
1 + x

k

)−1
ex/k .

Since ψ ′ is decreasing for x > 0, we obtain
∫ n+1

1
ψ ′

(
t + c

λ

)

dt ≤
n∑

j=1

ψ ′
(

j + c

λ

)

≤ ψ ′(1) +
∫ n

1
ψ ′

(
t + c

λ

)

dt . (7.5)

Lemma 7.2 shows that

ψ(x + 1) = log x + 1

2x
+ O(x−2) and ψ ′(x + 1) = 1

x
+ O(x−2) (7.6)

as x → ∞. Then it follows from Eqs. 7.5 and 7.6 that

t

λ2 log n

n∑

j=1

ψ ′
(

j + c

λ

)

= t

λ
+ o(1) as n → ∞.

We also have
t2

2(λ2 log n)3/2

n∑

j=1

ψ ′′(ξj ) → 0 as n → ∞

since ψ ′′(x) = −1/x2 + O(x−3) for large x. By Eq. 7.4 we now obtain that F ′
n(t) → t/λ

as n → ∞, and it is easy to see that our estimates give locally uniform convergence on R.
Since Fn(0) = 0, we conclude that Fn(t) = t2/2λ as n → ∞, i.e.,

Ene
tXn → et2/2λ.

It is well-known that this implies convergence in distribution to the normal distribution with
mean zero and variance 1/λ.

We now generalize to an arbitrary potential of the form

Vn(ζ ) = |ζ |2λ + h(ζ ) − 2c

n
log |ζ | (7.7)

where h is a harmonic polynomial (in some neighbourhood of the droplet). Let Rn and
Rn denote the 1-point function and the rescaled one with respect to Vn. We know that the
rescaled 1-point function Rn converges to

R(z) = λ · E 1
λ
, 1+c

λ
(|z|2)e−V0(z), (V0 = |z|2λ − 2c log |z|).
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However, in order to apply the argument in Lemma 7.1, it will be better to work with the
1-point function

R�
n(z) = λ

n−1∑

j=0

|z|2(j+c)

�
(

j+c+1
λ

)e−|z|2λ

with respect to V
�
n (ζ ) = |ζ |2λ − 2c

n
log |ζ |, which is the model Mittag-Leffler case consid-

ered in Lemma 7.1. Note also that Theorem 1.1 implies the convergence Rn − R
�
n → 0 in

the sense of distributions on C and locally uniformly on C
∗.

Now fix a suitable t ∈ R and put

cn,t = t
√
log n

.

We consider the perturbed potential

Vn,t = Vn − 2cn,t

n
log |ζ |

and we write En,t ,Rn,t for the corresponding expectation and 1-point function, respectively.
We also write Rn,t , R

�
n,t for the corresponding rescaled 1-point functions, i.e., Rn,t and R

�
n,t

are the rescaled 1-point functions associated with the potentials Vn,t and V
�
n,t , respectively.

As before, we introduce

Fn(t) = logEn exp(tXn)

where

Xn = 2√
log n

(tracen � − En tracen �), (�(ζ ) = log |ζ |).
We know that F ′

n(t) = En,t (Xn), so

F ′
n(t) = 1

√
log n

∫

C

2�(ζ ) · (Rn,t (ζ ) − Rn(ζ )). (7.8)

Consider the set Rn = {ζ ∈ Int S; |ζ | > rn(log n)
1
λ , dist(ζ, ∂S) > rn(log n)

1
λ }. We

shall use the uniform estimate

sup
ζ∈Rn

|Rn(ζ ) − n�Q0(ζ )| ≤ Ce−α log2 n (7.9)

with some constants C, α > 0. The detailed proof of Eq. 7.9 depends on an adaptation of
the technique of approximate Bergman projections, which is postponed to the next section
(see Theorem 8.1 below).

By the same token, the obvious counterpart to Eq. 7.9 is true also for the difference
Rn,t − n�Q0, so we obtain the result that

sup
ζ∈Rn

|Rn,t (ζ ) − Rn(ζ )| ≤ Ce−α log2 n. (7.10)

In the vicinity of the boundary ∂S, we do not have such a strong uniform control, but due
to our discussion of balayages in Section 6 we know that Rn,t −Rn ∼ cn,tω∞ there, where
ω∞ is harmonic measure of ∂S evaluated at ∞.

Outside a neighborhood of S, the one point function is controlled by the exterior estimate,
see e.g., [4, Section 4.1.1]. For any m > 0, there exists a constant Cm such that Rn,t (ζ ) ≤
Cmn−m(1 + |ζ |)−3 for all ζ outside a fixed neighborhood of S.
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Combining these asymptotic estimates, we find that
∫

|ζ |>rn(log n)
1
λ

|�(ζ )| · |Rn,t (ζ ) − Rn(ζ )| = O

(
1√
log n

)

. (7.11)

Here the O-constant is proportional to |t |. The convergence Rn,t − Rn → cn,t (ω∞ − δ0)

shown in Theorem 6.1 gives

2 log rn
√
log n

∫

|ζ |>rn(log n)
1
λ

(Rn,t − Rn) = cn,t

2 log rn
√
log n

+ o(1) = − t

λ
+ o(1). (7.12)

Here, the error bound o(1) is obtained by the error bound of the convergence in Theorem
6.4.

Let us denote

Jn,t = 2
√
log n

∫

|ζ |≤rn(log n)
1
λ

�(ζ ) · (Rn,t (ζ ) − Rn(ζ )).

By Eq. 7.11 we have that

|F ′
n(t) − Jn,t | ≤ C

log n
.

Let us introduce the function

�n(z) := 2 log |z|
√
log n

χD(0;(log n)1/λ)(z).

Changing variables in Eq. 7.8 by ζ = rnz and the asymptotic expansion Eq. 7.12 give

F ′
n(t) = 2

√
log n

∫

|z|≤(log n)
1
λ

log |rnz| · (Rn,t (z) − Rn(z)) + O(1/ log n)

= (Rn,t − Rn)(�n) + t

λ
+ o(1).

We split the last expression as

(Rn,t − Rn)(�n) = (Rn,t − R
�
n,t )(�n) − (Rn − R�

n)(�n) + (R
�
n,t − R�

n)(�n)

= An,t − Bn + Cn,t .

We prove by Lemma 7.1 that

Cn,t = o(1) as n → ∞.

Indeed, by the approximations above applied to suitable model Mittag-Leffler ensembles,
we obtain

2
√
log n

∫

C

log |rnz| · (R
�
n,t (z) − R�

n(z)) = Cn,t + t

λ
+ o(1)

and the integral converges to t/λ by Lemma 7.1.
We now want to show that An,t , Bn → 0 as n → ∞. For this, we recall the following

estimates, which are proved in [8].
First of all, note that Rn − R

�
n → 0 and Rn,t − R

�
n,t → 0 locally uniformly on C∗ and in

the sense of distribution on C. (See Theorem 1.6 and Theorem 1.1.) Also note that Theorem
1.3 implies that these 1-point functions are dominated near the origin (Rn(z) ≤ C|z|2c,
|z| ≤ 1). Thus, there is no problem to estimate the integral of �n · (Rn − R

�
n) over a large

compact disk |z| ≤ M .

Suppose now that M ≤ |z| ≤ (log n)
1
λ . There are then, again by [8, Theorem 4], con-

stants C, α > 0 such that (i) |Rn(z)−�Q0(z)| ≤ C|z|2λ−2e−α|z|2λ , (ii) |R�
n(z)−�Q0(z)| ≤

C|z|2λ−2e−α|z|2λ , (iii) |R(z) − �Q0(z)| ≤ C|z|2λ−2e−α|z|2λ .
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All in all, using that |�n(z)| = O(log log n/
√
log n) when M ≤ |z| ≤ (log n)

1
λ , we

obtain the estimate

|Bn| = o(1) + o(1)
∫

M≤|z|≤(log n)
1
λ

|z|2λe−α|z|2λ ,

i.e. Bn → 0 as n → ∞. Similarly, An,t → 0 as n → ∞.

8 Asymptotics for the 1-Point Function

In this section, we will be dealing with the class of generalized Hele-Shaw potentials, by
which we mean potentials of the form

Vn(ζ ) = |ζ |2λ − 2c

n
log |ζ | + 2ReH(ζ) (8.1)

where c > −1 and where H is holomorphic in a neighbourhood of the droplet. We assume,
as always, that 0 is an interior point of the droplet.

Below we will denote by rn = n−1/2λ. We define for each n a setRn ⊂ Int S of “regular
bulk points” by

Rn = {ζ ∈ Int S; |ζ | > rn(log n)
1
λ , dist(ζ, ∂S) > rn(log n)

1
λ }.

We have the following theorem, which generalizes a result from the “ordinary” Hele-
Shaw case Q = |ζ |2 + 2ReH(ζ) (see [2, Theorem 2.2]).

Theorem 8.1 If ζ ∈ Rn then there are numbers C, α > 0 such that

|Rn(ζ ) − nλ2|ζ |2λ−2| ≤ Ce−α log2 n.

Note that Theorem 8.1 in particular completes our argument for the CLT in Section 7
(i.e., we obtain the missing estimate (7.9)).

Before discussing the proof, it is instructive to compare the result with other kinds of
approximations.

Using a recursive scheme, reproduced in [2] in the present setting, it is not hard to see that
for ζ ∈ Int S \ {0}, the coefficients bj in the formal (Tian-Catlin-Zelditch type) expansion

Rn(ζ ) = nb0(ζ ) + b1(ζ ) + n−1b2(ζ ) + · · · (8.2)

are just b0(ζ ) = �|ζ |2λ = λ2|ζ |2λ−2, b1 = 1
2� log b0 = 0, and and bj = 0 for j ≥ 2.

It could thus be surmised that the approximation Rn ∼ nb0 should hold to a very good
accuracy in the domainRn. We shall prove that this is indeed the case, by adapting a method
from [2, Section 6].

To prepare the ground, we fix a sequence ζn with ζn ∈ Rn, and we put

δn := cλn
−1/2|ζn|1−λ log n

for a small enough constant cλ less than 1/max{λ, 10}. If λ = 1, the distance δn =
O(n−1/2 log n) is chosen so as to be “sufficiently large” compared with the typical inter-
particle distance n−1/2. In general, our choice of δn is used to deduce the inequality (8.3),
which will be seen to imply the exponential decay in Theorem 8.1.

We can easily see that

δn/|ζn| = cλn
−1/2|ζn|−λ log n ≤ cλ, ζn ∈ Rn.
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We also fix a sequence of cut-off functions χn with χn = 1 on D(ζn; 2δn), χn = 0 outside
D(ζn; 3δn) and ‖∂̄χn‖L2 ≤ C (independent of n).

Finally, when φ : C → R+ is a suitable weight function, we denote the scalar product in
the space L2(e−φ) = L2(e−φ, dA) by

〈f, g〉φ =
∫

C

f ḡe−φ dA.

Polarizing in the formula for Vn, we define for ζ, η ∈ D(ζn, 3δn)

Vn(ζ, η) = ζ λη̄λ + H(ζ) + H̄ (η) − c
n
(log ζ + log η),

where log is some determination of the logarithm in the disk D(ζn; 3δn). The main fact to
remember below is that

2 ReVn(ζ, η) − Vn(ζ ) − Vn(η) = −|ζ λ − ηλ|2.
Following the idea in [2, Section 6] we note that we can write

Vn(ζ, η) − Vn(η, η) = (ζ λ − ηλ)η̄λ + holomorphic in η.

Next note that for each fixed ζ 
= 0, we have in the sense of distributions on D(ζn, 3δn)

∂̄η

(
1

ζ λ−ηλ

)
= − 1

λζλ−1 δζ (η).

(For if ζ, η ∈ D(ζn, 3δn), then ζ λ − ηλ = 0 ⇐⇒ ζ = η.)
Now assume ζ ∈ D(ζn; δn). By Cauchy’s formula, and the above, we have for each

function u holomorphic and bounded in D(ζn; 3δn),

u(ζ ) = λζλ−1
∫

∂̄(u(η)χn(η)en(Vn(ζ,η)−Vn(η,η)))

ζ λ − ηλ
dA(η)

= n

∫

u(η)χn(η)λ2(ζ η̄)λ−1en(Vn(ζ,η)−Vn(η,η)) dA(η)

+λζλ−1
∫

u(η)∂̄χn(η)

ζ λ − ηλ
en(Vn(ζ,η)−Vn(η,η)) dA(η)

= : I∗nu(ζ ) + II∗nu(ζ ).

We now come to an important observation. Since |ζ − η| ≥ δn when |ζ − ζn| ≤ δn and
∂̄χn(η) 
= 0, we have by choosing cλ small enough and by Taylor’s formula

n|ζ λ − ηλ|2 ≥ const. n|ζn|2λ−2δ2n ≥ 2α log2 n (8.3)

for some constant α > 0.
Using this, we now estimate the term II∗nu(ζ ) as follows

|II∗nu(ζ )| ≤ C

∫

|u(η)∂̄χn(η)

ζ − η
|e−n|ζ λ−ηλ|2/2−nVn(η)/2+nVn(ζ )/2 dA(η)

≤ CenVn(ζ )/2δ−1
n e−α log2 n

∫

|η−ζ |≥δn

|u(η)|e−nVn(η)/2|∂̄χn(η)| dA(η)

≤ δ−1
n e−α log2 n‖∂̄χn‖L2e

nVn(ζ )/2‖u‖nVn,

where we used the Cauchy-Schwarz inequality. We summarize our findings in the following
lemma.
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Lemma 8.2 There are constants C, α > 0 such that if ζ ∈ D(ζn, δn), then

|u(ζ ) − I∗nu(ζ )| ≤ Cδ−1
n e−α log2 n‖u‖nVne

nVn(ζ )/2.

We now define (for suitable points ζ, η near ζn) the approximate kernel L∗
n by

L∗
n,ζ (η) = L∗

n(η, ζ ) = nχn(η)λ2(ηζ̄ )λ−1enVn(η,ζ ).

Then the operator I∗nu(ζ ) defined above is just

I∗nu(ζ ) = 〈u,L∗
n,ζ 〉nVn .

Let Ln(z,w) be the reproducing kernel for the space Pol(n) with norm of L2(e−nVn). By
Lemma 8.2, we have the estimate

|Ln,η(ζ ) − I∗nLn,η(ζ )| ≤ Cδ−1
n e−α log2 n‖Ln,η‖nVne

nVn(ζ )/2.

The following simple lemma is an adaptation of e.g. [6, Lemma 3.1].

Lemma 8.3 Let η ∈ D(ζn, δn). Suppose that u is analytic in D := D(η, tn−1/2|η|1−λ)

and let f = ue−nVn/2. Then there is a constant C depending only on t such that |f (η)|2 ≤
Cn|η|2λ−2

∫
D

|f |2.

Proof Let a > 0 be a constant and form the function

Fn(z) = f (η + zn−1/2|η|1−λ) · ea|z|2/2.
Then � log |Fn(z)|2 ≥ −λ2|η|2−2λ · |η + zn−1/2|η|1−λ|2λ−2 +a > 0 for |z| ≤ t if a is large
enough. This implies that |Fn|2 is (logarithmically) subharmonic in D(0, t). The following
submean-value property

|Fn(0)|2 ≤ C′
∫

D(0,t)
|Fn(z)|2dA(z)

implies the inequality

|f (η)|2 ≤ C′
∫

D(0,t)
|f (η + zn−1/2|η|1−λ)|2ea|z|2dA(z)

≤ C n|η|2λ−2
∫

D

|f (ζ )|2dA(ζ ),

where C′ and C are some constants depending on t .

If η ∈ D(ζn, δn), then recalling that

Ln(η, η) = sup{|u(η)|2; u ∈ Pol(n), ‖u‖nVn ≤ 1},
we get by Lemma 8.3 that

‖Ln,η‖2nVn
= Ln(η, η) ≤ Cn|η|2λ−2enVn(η).

More precisely, Lemma 8.3 implies that for all u ∈ Pol(n) with ‖u‖nVn ≤ 1,

|u(η)|2 ≤ Cn|η|2λ−2enVn(η)

∫

D

|u|2e−nVndA ≤ Cn|η|2λ−2enVn(η),

which gives the bound of Ln(η, η). We conclude that

|Ln(ζ, η) − I∗nLn,η(ζ )| ≤ C
√

nδ−1
n |η|λ−1e−α log2 nen(Vn(ζ )+Vn(η))/2. (8.4)
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We now note that
I∗nLn,ζ (η) = PnL∗

n,η(ζ ),

where Pn is the polynomial Bergman projection,

Pnf (ζ ) = 〈f,Ln,ζ 〉nVn =
∫

f (η)Ln(ζ, η)e−nVn(η) dA(η).

Applying Eq. 8.4 now gives.

Lemma 8.4 For ζ, η ∈ D(ζn, δn) we have

|Ln(ζ, η) − PnL∗
n,η(ζ )| ≤ Cn|ζn|2λ−2e−α log2 nen(Vn(ζ )+Vn(η))/2.

Now fix η ∈ D(ζn, δn) and introduce the function

un,η(ζ ) = L∗
n,η(ζ ) − PnL∗

n,η(ζ ).

Observe that un,η is the L2(e−nVn)-minimal solution to the problem ∂̄u = ∂̄L∗
n,η and u −

L∗
n,η ∈ Pol(n). In view of a standard Hörmander estimate in [2, Lemma 5.2], we infer that

there is a constant C such that

‖un,η‖nVn ≤ Cn−1/2|η|1−λ‖∂̄L∗
n,η‖nVn . (8.5)

Lemma 8.5 Let ζ, η ∈ D(ζn, δn). Then

|un,η(ζ )| ≤ Cn|ζn|2λ−2e−α log2 nen(Vn(ζ )+Vn(η))/2.

Proof First we fix η ∈ D(ζn, δn) but let ζ be unrestricted. We have that

∂̄un,η(ζ ) = ∂̄L∗
n,η(ζ ) = ∂̄χn(ζ )nλ2(ζ η̄)λ−1enVn(ζ,η).

This implies that

|∂̄un,η(ζ )|2e−nVn(ζ ) = |∂̄χn(ζ )|2λ4n2|ζη|2λ−2e−n|ζ λ−ηλ|2enVn(η).

Since n|ζ λ − ηλ|2 ≥ 2α log2 n when ∂̄χn(ζ ) 
= 0, we obtain

|∂̄un,η(ζ )|2e−nVn(ζ ) ≤ Cn2|∂̄χn(ζ )|2|ζη|2λ−2e−2α log2 nenVn(η),

whence by Eq. 8.5

‖un,η‖nVn ≤ Cn1/2|ζn|λ−1e−α log2 nenVn(η)/2.

Applying the pointwise-L2 estimate in Lemma 8.3 (or see [2, Lemma 4.1])

|un,η(ζ )|e−nVn(ζ )/2 ≤ Cn1/2|ζ |λ−1‖un,η‖nVn

we conclude the proof of the lemma.

Proof of Theorem 8.1 Using the above lemmas, we have for ζ ∈ Rn

|Ln(ζ, ζ ) − L∗
n(ζ, ζ )| ≤ |Ln(ζ, ζ ) − PnL∗

n,ζ (ζ )| + |un,ζ (ζ )|
≤ Cn|ζn|2λ−2e−α log2 n · enVn(ζ ).

By choosing α > 0 slightly smaller, we obtain that

|Rn(ζ ) − nλ2|ζ |2λ−2| ≤ Ce−α log2 n.

The proof is complete.
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