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Abstract
We consider the torsion function for the Dirichlet Laplacian −�, and for the Schrödinger
operator −� + V on an open set � ⊂ R

m of finite Lebesgue measure 0 < |�| < ∞ with
a real-valued, non-negative, measurable potential V . We investigate the efficiency and the
phenomenon of localisation for the torsion function, and their interplay with the geometry
of the first Dirichlet eigenfunction.
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1 Introduction and Main Results

Let � be an open set in R
m, with finite Lebesgue measure, 0 < |�| < ∞, and boundary

∂�, and let

L = −� + V,

be the Schrödinger operator acting in L2(�) with the potential V : � → R
+, R+ = [0, ∞)

being measurable. The torsion function for � is the unique solution of

−�v = 1, v ∈ H 1
0 (�).
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It is denoted by v�, and is also referred to as the torsion function for the Dirichlet Laplacian.
The function v� is non-negative, pointwise increasing in �, and satisfies,

λ1(�)−1 < ‖v�‖∞ ≤ (4 + 3m log 2)λ1(�)−1, (1)

where

λ1(�) = inf
ϕ∈H 1

0 (�)\{0}
‖∇ϕ‖2

2

‖ϕ‖2
2

,

is the first eigenvalue of the Dirichlet Laplacian. Here, and throughout the paper, ‖ · ‖p

denotes the standard Lp norm, 1 ≤ p ≤ ∞. Since |�| < ∞ the first eigenvalue is bounded
away from 0 by the Faber-Krahn inequality. The m-dependent constant in the right-hand
side of Eq. 1 has subsequently been improved [17, 24]. We denote the sharp constant by

cm = sup{λ1(�)‖v�‖∞ : � open in R
m, 0 < |�| < ∞}. (2)

More generally, the equation Lv = 1 also has a unique solution v�,V ∈ H 1
0 (�), referred

to as the torsion function for L.
In this paper we study the efficiency of the torsion function of Schrödinger operators,

and study the phenomenon of localisation. The notion of efficiency, or mean to max ratio,
goes back to [21, 23], where it was introduced for the first Dirichlet eigenfunction. It can be
viewed as a (rough) measure of localisation. The mean to max ratio for the torsion function
for bounded, open, convex sets in Euclidean space was studied in [15] in the more general
context of the p-torsional rigidity. The phenomenon of localisation of eigenfunctions of
Schrödinger operators is a prominent and very active research area and has important appli-
cations in the applied sciences. The literature is extensive. See for example the review paper
[18]. It was discovered in [1, 2], and the references therein, that under appropriate condi-
tions, v−1

�,V can be used for approximating eigenvalues and eigenfunctions of L. It raises the
question as to whether under appropriate assumptions, the phenomenon of localisation can
also be observed for the torsion function of Schrödinger operators, and suggests to inves-
tigate the interplay between the localisation of the torsion function and the one of the first
Dirichlet eigenfunction.

The main results of this papers can be described in an informal way as follows. Theo-
rem 1 compares the efficiency of v�,V with the one of v� under a variety of hypotheses.
In addition it shows that for any given �, the efficiency for v�,V can be arbitrarily close
to 1. Theorem 2 asserts that the efficiency for the first eigenfunction of the Dirichlet
Laplacian can be arbitrarily close to 1. Among other results, Theorem 3 provides a quan-
titative estimate, showing that in case the efficiency for the first eigenfunction of the
Dirichlet Laplacian is close to one, the corresponding first eigenvalue is large. Finally, The-
orem 4 shows that localisation for the torsion function of the Dirichlet Laplacian implies
localisation for the first eigenfunction of this operator.

Definition 1 (i) Let � be an open set in R
m with 0 < |�| < ∞, and let f : � → [0, ∞),

with 0 < ‖f ‖∞ < ∞. The mean to max ratio of f is the real number ‖f ‖1|�|‖f ‖∞ .
(ii) If v�,V is the torsion function for L, then its efficiency is its mean to max ratio,

�(�,V ) = ‖v�,V ‖1

|�|‖v�,V ‖∞
.

If V = 0, then �(�, 0) is denoted by �(�), which coincides with the definition in [15].
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Our first result concerns the comparison of �(�,V ) and �(�). In [19] it was shown
that if m ≥ 2, then

inf{�(�) : � ⊂ R
m, � open, 0 < |�| < ∞} = 0,

and

sup{�(�) : � ⊂ R
m, � open, 0 < |�| < ∞} = 1. (3)

The analogous result for Schrödinger operators is stated under (ii) of the theorem below.

Theorem 1 (i) If � is an open set in R
m with 0 < |�| < ∞, and if V : � → R

+ is
measurable with 0 ≤ V ≤ c, c > 0, then

�(�,V ) ≤ 22(3m+4)c/λ1(�) 8c + λ1(�)

λ1(�)

(
8c + λ1(�)

8c

)8c/λ1(�)

�(�), (4)

and

�(�,V ) ≥ 2−2(3m+4)c/λ1(�) λ1(�)

8c + λ1(�)

(
8c

8c + λ1(�)

)8c/λ1(�)

�(�). (5)

Furthermore for fixed � the right-hand sides of Eqs. 4 and 5 converge to �(�) as
c ↓ 0.

(ii) Let (�n) be a sequence of open sets in R
m with 0 < |�n| < ∞, and let Vn :

�n → R
+ be a sequence of measurable functions. If there exists η < ∞ such that

supn∈N
‖Vn‖∞
λ1(�n)

≤ η, then limn→∞ �(�n, Vn) = 0 if and only if limn→∞ �(�n) = 0.
(iii) If � is a fixed open set in R

m with 0 < |�| < ∞, then

sup{�(�,V ) : (V : � → R
+, measurable)} = 1, (6)

and

inf{�(�,V ) : (V : � → R
+, measurable)} = �(�). (7)

In fact,

1 > �(�, c) ≥ 1 − 2(m+4)/2

|�|
∫

�

dx e−c1/2d�(x)/2, ∀c ≥ 0, (8)

where d� : � → R
+ is the distance to the boundary function,

d�(x) = min{|x − y| : y ∈ R
m \ �}.

We denote the spectrum of L with Dirichlet boundary conditions by

{λ1(�, V ) ≤ λ2(�, V ) ≤ · · · },
accumulating at infinity only, and choose a corresponding L2-orthonormal basis of eigen-
functions {ϕ1,�,V , ϕ2,�,V , · · · }. If the first Dirichlet eigenvalue λ1(�, V ) of L has mul-
tiplicity 1, then its corresponding eigenspace is one-dimensional, and ϕ1,�,V is uniquely
defined up to a sign. Since ϕ1,�,V does not change sign we may choose ϕ1,�,V > 0. In that
case we denote the efficiency, or mean to max ratio, of ϕ1,�,V by

E(�, V ) = ‖ϕ1,�,V ‖1

|�| ‖ϕ1,�,V ‖∞
.

If V = 0, then E(�, 0) is denoted by E(�), which coincides with the definition on p.92 in
[23]. See also [7]. We note that if � is connected, then λ1(�) is simple.
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By [8, Theorem 1.2] and [5, Theorem 1] it is possible for m ≥ 2 to construct, for any
ε ∈ (0, 1), an open connected set �ε ⊂ R

m with 0 < |�ε| < ∞ such that both

λ1(�ε)‖v�ε‖1

|�ε| > 1 − ε,

and

λ1(�ε)‖v�ε‖∞ < 1 + ε.

This implies that

�(�ε) ≥ 1 − ε

1 + ε
, ∀ε ∈ (0, 1),

which in turn implies (3). Given ε ∈ (0, 1), we were unable to construct a set �ε such that
E(�ε) > 1 − ε. Nevertheless we have the following:

Theorem 2 If m ≥ 2, then

sup{E(�) : � ⊂ R
m, � open and connected, 0 < |�| < ∞} = 1.

By examining the proof of Theorem 2 in Section 4 we see that for any m ≥ 2, and
ε ∈ (0, 1) there exists an open, bounded and connected set �ε ⊂ R

m such that (i) E(�ε) ≥
1 − ε, and (ii) λ1(�ε)|�ε|2/m is large for ε small. In Theorem 3 below we show that this
is a general phenomenon. That is if � is any open and connected set in R

m, m ≥ 2, with
0 < |�| < ∞ such E(�) is close to 1, then the eigenfunction is close to its maximum
on most of �, and λ1(�)|�|2/m is large. We have a similar phenomenon for the torsion
function. Throughout we denote by B(p; R) = {x ∈ R

m : |x − p| < R} the open ball
with centre p and radius R. We put BR = B(0;R), and ωm = |B1|. For � open with
0 < |�| < ∞, and u ∈ L1(�),

Theorem 3 Let m ≥ 2 and let � be a non-empty open set in R
m with finite Lebesgue

measure, |�| < ∞.

(i) If u ∈ H 1
0 (�) ∩ L∞(�), ‖u‖∞ > 0, and if

then

(9)

Equality occurs if and only if � is a ball, and u is a multiple of the torsion function.
(ii)

‖v�‖∞ ≤ (m + 2)2

4m2

( |�|
ωm

)2/m

(1 − �(�)), (10)

λ1(�) ≥ 4m2

(m + 2)2

(
ωm

|�|
)2/m

(1 − �(�))−1. (11)
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(iii) If � is connected, then

λ1(�) ≥ 4m2

(m + 2)2

(
ωm

|�|
)2/m

(1 − E(�))−1. (12)

The last result of this paper concerns the localisation of a sequence of torsion functions.
We make the following definition.

Definition 2 Let (�n) be a sequence of open sets in R
m with 0 < |�n| < ∞, and let

A((�n)) =
{
(An) : (∀n ∈ N)(An ⊂ �n, An measurable), lim

n→∞
|An|
|�n| = 0

}
.

Let 1 ≤ p < ∞. For n ∈ N, fn ∈ Lp(�n), fn ≥ 0, and fn 
= 0, we define

κ = sup

{
lim sup
n→∞

‖fn1An‖p
p

‖fn‖p
p

: (An) ∈ A((�n))

}
. (13)

(i) We say that the sequence
(
fn

)
κ-localises in Lp if 0 < κ < 1.

(ii) We say that the sequence
(
fn

)
localises in Lp if κ = 1.

(iii) We say that the sequence
(
fn

)
does not localise in Lp if κ = 0.

Using Cantor’s diagonalisation we see the supremum in Eq. 13 is in fact a maximum.
That is we have a maximising sequence in A((�n)). To show that

(
fn

)
localises in Lp is

equivalent to showing the existence of a sequence of measurable sets An ⊂ �n, n ∈ N such
that

lim
n→∞

|An|
|�n| = 0, lim

n→∞
‖fn1An‖p

p

‖fn‖p
p

= 1. (14)

To show that (fn) does not localise in Lp is equivalent to showing that for any sequence
(An) of measurable sets An ⊂ �n, n ∈ N the following implication holds:

lim
n→∞

|An|
|�n| = 0 ⇒ lim

n→∞
‖fn1An‖p

‖fn‖p

= 0. (15)

If
(
fn

)
κ-localises in Lp then there is a sequence (An) ∈ A((�n)) which (asymptotically)

supports a fraction κ of ‖fn‖p
p . Given such a maximising sequence (An) it is possible to

construct a sequence (Ãn) ∈ A((�n)) which (asymptotically) supports a fraction κ̃ of ‖fn‖p
p

with 0 < κ̃ < κ . Hence the requirement of the supremum in the definition of κ in Eq. 13. In
Section 2 we analyse two examples in detail where localisation in L1 and κ-localisation in
L1 occur for a family of torsion functions for Schrödinger operators (Example 1), and for a
family of torsion functions for Dirichlet Laplacians (Example 2).

The theorem below asserts that localisation or κ-localisation for the torsion function in
L1 implies localisation for the corresponding first Dirichlet eigenfunction in L2.

Theorem 4 Let (�n) be a sequence of open sets in R
m with 0 < |�n| < ∞ and let

Vn : �n → R
+ be a sequence of measurable functions. If (v�n,Vn) either localises or κ-

localises in L1, and if λ1(�n, Vn) has multiplicity 1, then (ϕ1,�n,Vn) localises in L2, and
limn→∞ �(�n, Vn) = limn→∞ E(�n, Vn) = 0.
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It follows from Theorem 1.1 in [15] that, when restricting � to be open, bounded and
convex in R

m, m ≥ 1, one has

2

m(m + 2)
≤ inf{�(�) : � ⊂ R

m, � open, convex, 0 < |�| < ∞}. (16)

We see by Eq. 16 that for any sequence (�n) of elongating open, bounded and convex
sets in R

m, (v�n) has non-vanishing efficiency, and so by Theorem 4, (v�n) is not local-
ising or κ-localising in L1. This is in contrast with the results of [7], where localisation of
a sequence of first Dirichlet eigenfunctions was obtained for a wide class of elongating,
open, bounded and convex sets in R

m. Further examples demonstrating different behaviour
of the torsion function, and the first eigenfunction of the Dirichlet Laplacian around their
respective maxima for elongated convex planar domains have been constructed in [3].

This paper is organised as follows. Examples 1 and 2 will be analysed in Section 2. The
proofs of Theorems 1, 2, 3 and 4 will be given in Sections 3–6 respectively.

2 Examples

In Example 1 below we analyse localisation and κ-localisation in L1 for a family of
Schrödinger operators in one dimension, parametrised by three real numbers, ν > 1,
0 < α < 1, and c > 0.

Example 1 Let � = (−1, 1), ν > 1, and 0 < ε < 1. Denote by V (x) ≡ Vν,ε(x) the
potential

V (x) = ν21(−1,−ε)(x) + ν21(ε,1)(x) , x ∈ (−1, 1) ,

and by vν,ε(x) ≡ v(−1,1),Vν,ε
(x) the torsion function for −� + V on (−1, 1) with Dirichlet

boundary conditions. If εα(ν) = c
να with 0 < α < 1, c > 0, and ν > 1 sufficiently large so

that 0 < εα(ν) < 1, then the following holds:

(i) If 2
3 < α < 1, then (vn,εα(n)) does not localise in L1, κ = 0.

(ii) If 0 < α < 2
3 , then (vn,εα(n)) localises in L1, κ = 1.

(iii) If α = 2
3 , then (vn,εα(n)) κc-localises in L1 with

κc = c3/3

1 + c3/3
.

Proof Since the potential V is even, so is the torsion function v ≡ vν,ε and hence it suffices
to determine v on [0, 1]. On the interval [0, ε], the function v is of the form

v1(x) := −1

2
x2 + γ , 0 ≤ x ≤ ε , γ ≡ γν,ε,

whereas on the interval [ε, 1], we make the following Ansatz:

v2(x) := 1

ν2
− αeνx + βe−νx , ε ≤ x ≤ 1 , α ≡ αν,ε, β ≡ βν,ε . (17)

It is straightforward to verify that

(−� + V )v1 = −�v1 = 1, 0 ≤ x ≤ ε,

and

(−� + V )v2 = −ν2(v2 − 1

ν2
) + ν2v2 = 1, ε ≤ x ≤ 1.
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The constants γ, α, and β are determined by the boundary condition v2(1) = 0, and the
matching conditions

v1(ε) = v2(ε) , v′
1(ε) = v′

2(ε) ,

where ′ denotes the derivative with respect to the variable x. The boundary condition
v2(1) = 0 yields 1

ν2 − αeν + βe−ν = 0 or

β = αe2ν − 1

ν2
eν . (18)

The matching condition v′
1(ε) = v′

2(ε) reads ε = ναeνε + νβe−νε or, with Eq. 18,

α = ε + 1
ν
eν(1−ε)

ν(eνε + e2ν−νε)
= 1

ν2eν

1 + νεe−ν(1−ε)

1 + e−2ν(1−ε)
. (19)

The leading term of α is thus 1
ν2eν ,

α = 1

ν2eν
+ ε

νeν(2−ε)

1 − 1
νε

e−ν(1−ε)

1 + e−2ν(1−ε)
. (20)

Combining (18) and (20) we obtain the following formula for β,

β = εeνε

ν

1 − 1
νε

e−ν(1−ε)

1 + e−2ν(1−ε)
= εeνε

ν
− eνε

ν2

1

eν(1−ε)

1 + νεe−ν(1−ε)

1 + e−2ν(1−ε)
. (21)

Finally the matching condition v1(ε) = v2(ε) reads as

−1

2
ε2 + γ = 1

ν2
− αeνε + βe−νε ,

which, when combined with Eqs. 19 and 21, yields the following formula for γ

γ = 1

2
ε2 + ε

ν
+ 1

ν2
− 2

ν2eν(1−ε)

1 + νεe−ν(1−ε)

1 + e−2ν(1−ε)
. (22)

Now let us compute ∫ 1
ε

v∫ 1
0 v

=
∫ 1
ε

v2∫ ε

0 v1 + ∫ 1
ε

v2

.

We have
∫ ε

0 v1 = (− 1
6x3 + γ x)|ε0, yielding

∫ ε

0
v1 = ε3

3
+ ε2

ν
+ ε

ν2
− 2ε

ν2eν(1−ε)

1 + νεe−ν(1−ε)

1 + e−2ν(1−ε)
. (23)

Similarly, we compute∫ 1

ε

v2 = 1 − ε

ν2
− α

ν
(eν − eνε) − β

ν
(e−ν − e−νε),

which yields ∫ 1

ε

v2 = 1

ν2
− 1

ν3
− 2ε

ν2eν(1−ε)

1 − 1
νε

e−ν(1−ε)

1 + e−2ν(1−ε)
. (24)

Combining (23) and (24), one obtains in the case where ε = c
να ,

∫ ε

0
v1 +

∫ 1

ε

v2 = c3

3ν3α
+ 1

ν2
+ O

(
ν−1−2α

)
, ν → ∞, (25)
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and hence

lim
ν→∞

∫ 1
ε

v2∫ ε

0 v1 + ∫ 1
ε

v2

=

⎧⎪⎨
⎪⎩

1 if 2
3 < α < 1,

0 if 0 < α < 2
3 ,

1
1+c3/3

if α = 2
3 .

This implies that

lim
ν→∞

∫ ε

−ε
v∫ 1

−1 v
= 1 − lim

ν→∞

∫ 1
ε

v2∫ ε

0 v1 + ∫ 1
ε

v2

=

⎧⎪⎨
⎪⎩

0 if 2
3 < α < 1,

1 if 0 < α < 2
3 ,

c3/3
1+c3/3

if α = 2
3 .

(26)

To prove (i) we let An ⊂ (−1, 1), n ∈ N be an arbitrary sequence of measurable sets which
satisfy limn→∞ |An| = 0. Since vn ≡ vn,εα(n) is even, it follows that, with εn ≡ εα(n),∫

An

vn ≤ 2
∫ εn

0
vn + 2

∫ 2εn

εn

vn +
∫

An∩[2εn,1]
vn +

∫
An∩[−1,−2εn]

vn.

First note that by Eq. 25∫ εn

0
vn +

∫ 1

εn

vn = 1

n2
+ O

(
n−3α

)
, ν → ∞. (27)

By Eq. 26 limn→∞
∫ εn

0 vn∫ 1
0 vn

= 0. Since for n sufficiently large, vn(x) is decreasing on [0, 1]
and by Eq. 22, vn(εn) = εn

n
+ O( 1

n2 ), it follows from Eq. 27 that

lim
n→∞

∫ 2εn

εn
vn∫ 1

0 vn

≤ lim
n→∞

εnvn(εn)∫ 1
0 vn

= 0.

Using once more that for n sufficiently large, vn(x) is decreasing on [0, 1], one has
vn(2εn) ≤ 1

n2 + O( 1
n1+α e−n(1−α)) (see Eqs. 17, 21), and then infers from Eq. 27 that

lim
n→∞

∫
An∩[2εn,1] vn∫ 1

0 vn

≤ lim
n→∞

vn(2εn)|An|∫ 1
0 vn

= 0.

Similarly, one has

lim
n→∞

∫
An∩[−1,−2εn] vn∫ 1

0 vn

= 0.

To prove (ii) we obtain a lower bound for the supremum in Eq. 13 by choosing the sequence
An = (−εn, εn), n ∈ N. By Eq. 26 one has κ = 1 in this case.

To prove (iii) we obtain a lower bound for the supremum in Eq. 13 by choosing the
sequence An = (−εn, εn), n ∈ N. Hence by Eq. 26 we then get

κ ≥ κc = c3/3

1 + c3/3
. (28)

To prove the reverse inequality we let An ⊂ (−1, 1), n ∈ N be an arbitrary sequence of
measurable sets which satisfy limn→∞ |An| = 0. In view of Eq. 28 we may assume without
loss of generality that An is symmetric, An = −An, and that [−εn, εn] ⊂ An for any n

(sufficiently large). It then suffices to show that

lim
n→∞

∫
An∩[εn,1] vn∫ 1

0 vn

= 0.
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By Eq. 25 ∫ εn

0
vn +

∫ 1

εn

vn = 1 + c3/3

n2
+ O(n−7/3).

As in the proof of item (i), we estimate∫
An∩[εn,1]

vn ≤
∫ 2εn

εn

vn +
∫

An∩[2εn,1]
vn,

and obtain

lim
n→∞

∫ 2εn

εn
vn∫ 1

0 vn

≤ lim
n→∞

εnvn(εn)∫ 1
0 vn

= 0.

and

lim
n→∞

∫
An∩[2εn,1] vn∫ 1

0 vn

≤ lim
n→∞

vn(2εn)|An|∫ 1
0 vn

= 0.

Altogether we proved that κ = κc and that the supremum κ is attained by the sequence (An)

with (−εn, εn).

In Example 2 below we analyse localisation and κ-localisation in L1 for a family of
sequences of open sets in R

m, parametrised by three real positive α, β and c.

Example 2 Let m ≥ 1, and let �n, n ∈ N, be the union of n + 1 open balls
B(p1; n−α), ..., B(pn; n−α), B(pn+1; ncn−β

) with centers p1, ..., pn+1 respectively. Let
c > 0, and let

|pi − pj | ≥ 2 + c, ∀(i, j) ∈ {{1, ..., n}2, i 
= j}, (29)

where

β > α − 1

m
≥ 0. (30)

(i) If β > α − 1
m+2 , then (v�n) does not localise in L1, κ = 0.

(ii) If β < α − 1
m+2 , then (v�n) localises in L1, κ = 1.

(iii) If β = α − 1
m+2 , then (v�n) κc-localises in L1 with

κc = cm+2

1 + cm+2
. (31)

An example of a sequence of open, bounded, simply connected planar sets with fixed
measure 1 for which the torsion function is κ-localising in L1 for some 0 < κ < 1 has been
given in Theorem 2 of [9].

Proof First observe that condition (29) guarantees that the n + 1 open balls do not intersect
pairwise. The first inequality in Eq. 30 guarantees that the measure of B(pn+1; cn−β) is
negligible compared with the measure of �n in the limit n → ∞. The second inequality in
Eq. 30 implies that |�n| remains bounded for large n. The torsion function for the open ball
B(p; R) is given by

vB(p;R)(x) = R2 − |x − p|2
2m

.

Hence
‖vB(p;R)‖1 = ρmRm+2,
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where ρm = ωm

m(m+2)
is the torsional rigidity for a ball in R

m with radius 1. Furthermore

‖vB(p;R)‖∞ = R2

2m
,

and

‖v�n‖1 = ρm

(
cm+2n−(m+2)β + n1−(m+2)α

)
. (32)

To prove (i) we let An ⊂ �n, n ∈ N be an arbitrary sequence of measurable sets which
satisfy limn→∞ |An|

|�n| = 0. We have

∫
An

v�n =
∫

An∩B(pn+1;cn−β )

v�n +
∫

An∩
(
∪n

i=1B(pi ;n−α)
) v�n

≤
∫

B(pn+1;cn−β )

v�n +
∫

An

‖vB(p1;n−α)‖∞

= ρmcm+2n−(m+2)β + 1

2m
|An|n−2α . (33)

By Eq. 32 we have∫
An

v�n

‖v�n‖1
≤ cm+2n(m+2)(α−β)−1 + ωm

2mρm

|An|
|�n|

n−2α
(
cmn−mβ + n1−mα

)
n1−(m+2)α

≤ cm+2n(m+2)(α−β)−1 + ωm

2mρm

(
cm + 1

) |An|
|�n| ,

where we have used Eq. 30 to bound the second term in the previous line. By the hypothesis
for β under (i) and the hypothesis on (An) above we conclude

lim
n→∞

∫
An

v�n

‖v�n‖1
= 0.

This proves the implication under Eq. 15, and concludes the proof of (i).
To prove (ii) let An = B(pn+1; cn−β), n ∈ N. This gives,

κ ≥ lim sup
n→∞

∫
B(pn+1;cn−β )

v�n

‖v�n‖1

= lim sup
n→∞

cm+2n−(m+2)β

cm+2n−(m+2)β + n1−(m+2)α
. (34)

By the hypothesis for β under (ii) we have

κ ≥ lim sup
n→∞

cm+2n−(m+2)β

cm+2n−(m+2)β + n1−(m+2)α
= 1.

Both requirements under Eq. 14 are satisfied. This concludes the proof of (ii).
To prove (iii) we obtain a lower bound for κc by choosing the sequence An =

B(pn+1; cn−β), n ∈ N. By Eq. 34 and the hypothesis for β under (iii) we get

κ ≥ cm+2

1 + cm+2
. (35)
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To prove the reverse inequality we let An ⊂ �n, n ∈ N be an arbitrary sequence of
measurable sets which satisfy limn→∞ |An|

|�n| = 0. By Eqs. 32, 33, and the hypothesis for β

under (iii), ∫
An

v�n

‖v�n‖1
≤ cm+2

1+cm+2 + ωm

2mρm

|An|
|�n|

(
cmn−2/(m+2) + 1

)
. (36)

By taking the lim supn→∞ in both sides of the inequality in Eq. 36,

lim sup
n→∞

∫
An

v�n

‖v�n‖1
≤ cm+2

1 + cm+2
. (37)

By taking the supremum over all sequences (An) ∈ A((�n)) we find by Eq. 37,

κ ≤ cm+2

1 + cm+2
. (38)

This proves by Eqs. 35 and 38 that (v�n) is κc-localising with κc given by Eq. 31. This
concludes the proof of (iii).

3 Proof of Theorem 1

To prove Theorem 1 we first need to establish some auxiliary results. It is well known that
the torsion function can be expressed in terms of the heat kernel of L. Let � ⊂ R

m be
open with 0 < |�| < ∞, and let V : � → R

+ be measurable. Denote by p�,V (x, y; t),
x ∈ �, y ∈ �, t > 0 the heat kernel of

∂u

∂t
= Lu, u ∈ H 1

0 (�).

The torsion function of L then satisfies

v�,V (x) =
∫

�

dy

∫
R+

dt p�,V (x, y; t), ∀x ∈ � . (39)

In case V = 0 we write p� for p�,V .
Recall the Feynman-Kac formula [22] for non-negative, measurable potentials V : � →

R
+,

p�,V (x, y; t) = pRm(x, y; t)

×E[e−∫ t
0 V (β(s))ds

(
�s∈[0,t]1�(β(s))

) : β(0) = x, β(t) = y],
where β is a Brownian bridge. Hence if V1 : � → R

+ and V2 : � → R
+ are measurable

functions with 0 ≤ V2 ≤ V1, then

0 ≤ p�,V1(x, y; t) ≤ p�,V2(x, y; t), ∀x ∈ �, ∀y ∈ �, ∀t > 0. (40)

Since V ≥ 0 we then conclude that

0 ≤ v�,V (x) ≤ v�(x) ≤ cmλ1(�)−1, ∀x ∈ �,

with cm given by Eq. 2.

Lemma 5 If 0 < |�| < ∞, and if V : � → R
+ is measurable, then

λ1(�, V )−1 ≤ ‖v�,V ‖∞ ≤ (4 + 3m log 2)λ1(�, V )−1. (41)
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Lemma 5 implies that

dm : = sup{λ1(�, V )‖v�,V ‖∞
: � open in R

m, 0 < |�| < ∞, V : � → R
+, measurable} < ∞. (42)

By choosing V = 0 in the expression under the supremum in the right-hand side of Eq. 42
we see that cm ≤ dm.

Proof of Lemma 1 To prove the upper bound in Eq. 41 we note that Lemma 1 and its proof
in [6] hold with λ = λ1(�, V ), and Lemma 2 and its proof in [6] hold for the semigroup
associated with L. Finally Lemma 3 and Theorem 1 and their proofs in [6] hold with λ =
λ1(�, V ). This proves the upper bound in Eq. 41. It remains to prove the lower bound. Let
�R = �∩B(0; R). Then 0 < |�R| ≤ ωmRm. Let LR be the restriction of −�+V acting in
L2(�R) with Dirichlet boundary conditions on ∂�R . If we denote VR = 1B(p;R)V, then LR

is also the operator −�+VR acting in L2(�R) with Dirichlet boundary conditions on ∂�R .
Then LR is self-adjoint, and its spectrum is discrete. Since the first Dirichlet eigenfunction
ϕ1,�R,VR

is non-negative, and ‖ϕ1,�R,VR
‖2 = 1, one has, by the Cauchy-Schwarz inequality,

0 <

∫
�R

ϕ1,�R,VR
≤ |�R|1/2. (43)

By self-adjointness∫
�R

ϕ1,�R,VR
=

∫
�R

ϕ1,�R,VR
LRv�R,VR

=
∫

�R

(
LRϕ1,�R,VR

)
v�R,VR

= λ1(�R, VR)

∫
�R

ϕ1,�R,VR
v�R,VR

≤ λ1(�R, VR)‖v�R,VR
‖∞

∫
�R

ϕ1,�R,VR
. (44)

By Eqs. 43–44 we conclude that

λ1(�R, VR) ‖v�R,VR
‖∞ ≥ 1.

Since ‖v�R,VR
‖∞ ≤ ‖v�,V ‖∞ we have

λ1(�R, VR)‖v�,V ‖∞ ≥ 1.

The assertion follows since R �→ λ1(�R, VR) is decreasing to λ1(�, V ) as R → ∞.

Lemma 6 Let � ⊂ R
m be open with 0 < |�| < ∞. If V : � → R

+ is measurable with
0 ≤ c1 ≤ V (x) ≤ c2 < ∞, x ∈ �, then

v�,c2(x) ≤ v�,V (x) ≤ v�,c1(x) , (45)

and for any 0 < c < ∞, x ∈ �,

v�,c(x) ≥ 2−2(3m+4)c/λ1(�) λ1(�)

8c + λ1(�)

(
8c

8c + λ1(�)

)8c/λ1(�)

v�(x). (46)

Hence

‖v�,c‖1 ≥ 2−2(3m+4)c/λ1(�) λ1(�)

8c + λ1(�)

(
8c

8c + λ1(�)

)8c/λ1(�)

‖v�‖1, (47)

and

‖v�,c‖∞ ≥ 2−2(3m+4)c/λ1(�) λ1(�)

8c + λ1(�)

(
8c

8c + λ1(�)

)8c/λ1(�)

‖v�‖∞. (48)
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Furthermore the right-hand side of Eq. 46 converges to v�(x) as c ↓ 0.

Proof The two inequalities in Eq. 45 follow immediately from Eq. 40, and the hypothesis
0 ≤ c1 ≤ V ≤ c2. To prove inequality (46), note that for any T > 0, and any c ≥ 0,

v�,c(x) =
∫

�

dy

∫
R+

dt p�,c(x, y; t)

=
∫

�

dy

∫
R+

dt e−ctp�(x, y; t)

≥
∫

�

dy

∫ T

0
dt e−ctp�(x, y; t)

≥ e−cT

∫
�

dy

∫ T

0
dt p�(x, y; t)

= e−cT
(
v�(x) −

∫ ∞

T

dt

∫
�

dy p�(x, y; t)
)

. (49)

The double integral in the right-hand side of Eq. 49 is estimated using the heat semigroup
property and Tonelli’s Theorem,∫ ∞

T

dt

∫
�

dy p�(x, y; t) =
∫ ∞

T

dt

∫
�

dy

∫
�

dz p�(x, z; t/2)p�(z, y; t/2)

≤
∫ ∞

T

dt

∫
�

dz p�(x, z; t/2)

∫
�

dy p�(z, y; t/2). (50)

Lemma 3 in [6] asserts that

p�(z, y; t) ≤ (4πt)−m/22m/4e−tλ1(�)−|z−y|2/(8t). (51)

This gives ∫
�

dy p�(z, y; t) ≤ (4πt)−m/22m/4
∫
Rm

dy e−tλ1(�)/4−|z−y|2/(8t)

= 23m/4e−tλ1(�)/4. (52)

By Eqs. 50 and 52,∫ ∞

T

dt

∫
�

dy p�(x, y; t) ≤ 23m/4
∫ ∞

T

dt e−tλ1(�)/8
∫

�

dz p�(x, z; t/2)

≤ 23m/4e−T λ1(�)/8
∫
R+

dt

∫
�

dz p�(x, z; t/2)

= 2(4+3m)/4e−T λ1(�)/8v�(x). (53)

By combining Eqs. 49 and 53 we find

v�,c(x) ≥ e−cT
(
1 − 2(4+3m)/4e−T λ1(�)/8)v�(x). (54)

Choosing T as to maximise the right-hand side of Eq. 54 gives that

T = 8

λ1(�)
log

(
2(4+3m)/4

(
1 + λ1(�)

8c

))
. (55)

Inequality Eq. 46 then follows by Eqs. 54 and 55. The inequalities Eqs. 47 and 48 follow
immediately from Eq. 46.
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Proof of Theorem 1 (i) Since 0 ≤ V ≤ c we have by Eq. 45,

‖v�,V ‖1 ≤ ‖v�‖1, (56)

and
‖v�,V ‖∞ ≥ ‖v�,c‖∞. (57)

The upper bound Eq. 4 follows from Eqs. 56, 57, and 48.
Similarly, by Eq. 45, we have

‖v�,V ‖∞ ≤ ‖v�‖∞, (58)

and

‖v�,V ‖1 ≥ ‖v�,c‖1. (59)

The lower bound Eq. 5 follows from Eqs. 58, 59, and 47.
(ii) By using the inequality (

1 + θ−1)θ ≤ e, ∀θ > 0,

with θ = 8‖Vn‖∞/λ1(�n), we obtain by Eq. 4,

�(�n, Vn) ≤ e22(3m+4)η(1 + 8η)�(�n),

and by Eq. 5,
�(�n, Vn) ≥ e−12−2(3m+4)η(1 + 8η)−1�(�n).

(iii) To verify Eq. 8 we have by Lemma 4 in [10],∫
�

dy p�(x, y; t) ≥ 1 − 2(m+2)/2e−d�(x)2/(8t).

Hence we find by Eq. 39∫
�

dx

∫
�

dy p�(x, y; t) ≥ |�| − 2(m+2)/2
∫

�

dx e−d�(x)2/(8t). (60)

Multiplying both sides of Eq. 60 by e−ct and integrating with respect to t gives

‖v�,c‖1 ≥ |�|
c

− 2(m+2)/2
∫

�

dx

∫
R+

dt e−ct−d�(x)2/(8t)

≥ |�|
c

− 2(m+2)/2
∫

�

dx

∫
R+

dt e−ct/2 sup{e−ct/2−d�(x)2/(8t) : t > 0}

= |�|
c

− 2(m+4)/2

c

∫
�

dx e−c1/2d�(x)/2. (61)

On the other hand using Eq. 52,

‖v�,c‖∞ = sup
x∈�

∫
R+

dt e−ct

∫
�

dy p�(x, y; t)

≤ sup
x∈�

∫
R+

dt e−ct

∫
Rm

dy pRm(x, y; t)

= 1

c
. (62)

The second inequality in Eq. 8 follows from Eqs. 61 and 62. Finally, Eq. 6 follows
from Eq. 8, and Lebesgue’s dominated convergence theorem, while Eq. 7 follows
from Eq. 5 and (i).
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4 Proof of Theorem 2

Proof of Theorem 2. The proof follows a method from [19], which can be summarised
as follows: construct a measure μ so that the efficiency of the eigenfunction of the first
eigenvalue associated to −� + μ almost equals 1 and then approximate μ in the sense
of γ -convergence by a sequence of domains. We refer the reader to [14, Definition 4.8]
(see also [12, Chapter 4]) for the notions of γ -convergence, relaxed Dirichlet problems and
approximations by sequences of domains. Recall that a measure on a domain is said to be
capacitary if it is nonnegative, not necessarily finite and Borel, and which is in addition
absolutely continuous with respect to the capacity. One can then define a relaxed Dirichlet
problem (see [14, Definition 3.1], and [12, Sections 4.3 and 3.6]). The equations −�v +
μv = 1 and −�v + μv = λv can then be solved in the weak sense. The sequence of
sets �n ⊂ B1 is said to γ -convergence to the capacitary measure μ if the sequence of
weak solutions vn ∈ H 1

0 (�n) of −�vn = 1 converges strongly in L2(B1) to the weak
solution v ∈ H 1

0 (B1) ∩ L2(μ) of −�v + μv = 1. As a consequence of the γ -convergence,
the sequence of eigenvalues and corresponding eigenfunctions on the moving domain (�n)

converge in a suitable sense The γ -convergence is metrisable.
Let Br denote the closure of Br . For any 0 < ε < 1, we consider the Dirichlet-Neumann

eigenvalue problem on the annulus Aε = B1 \ B1−ε . Denote by λε the first eigenvalue and
by uε a corresponding eigenfunction,

⎧⎪⎨
⎪⎩

−�uε = λεuε, in Aε,

uε = 0, on ∂B1,
∂uε

∂ν
= 0, on ∂B1−ε,

where ν denotes the inward-pointing normal on the sphere ∂B1−ε . One can show that λε is
simple and strictly positive and that uε is radially symmetric and has a constant sign, say
positive. In particular, the restriction of uε to ∂B1−ε equals a positive constant, cε > 0. We
continuously extend uε inside B1−ε by cε and denote the resulting function, defined on B1,
by vε .

Since the normal derivatives of vε on both sides of ∂B1−ε vanish, �vε is an L2-function.
More precisely, one has

−�vε = λεuε1Aε , in D′(B1),

where D′(B1) denotes the space of distributions on B1. By adding on both sides the L2

function λεvε1B1−ε
we get

−�vε + λεvε1B1−ε
= λεvε, in D′(B1).

We view μ := λε1B1−ε
as a capacitary measure on B1. Then formally, we get

−�vε + μvε = λεvε, in D′(B1).

Combined with the fact that vε > 0, this means that λε is the first Dirichlet eigenvalue
of −� + μ. We assume from now on that vε is normalised by ‖vε‖L2(B1)

= 1. Since the
measure μ is finite with support in B1, the first eigenvalue λε is simple.

In view of the Dal Maso-Mosco density result [14, Theorem 4.16], there exists a sequence
�n ⊆ B1, n ≥ 1, such that �n γ -converges to μ. We can assume that the boundary ∂�n of
�n is smooth. Indeed, otherwise we can replace each �n by an inner approximation with
a smooth open set, which is close enough in the sense of the distance associated to the γ -
convergence. Furthermore, we can also assume that �n is connected. Indeed, since �n is
smooth, it has a finite number of smooth connected components, which are separated from
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each other by a positive distance. These components can be joined by a finite number of thin
tubes, connecting the set �n. As the width of the tubes vanishes, the sequence γ -converges
by Sverak’s theorem (see [12, Theorem 4.7.1]).

It is possible to explicitly construct such a sequence (�n) in the spirit of Cioranescu-
Murat [13], but such a construction is not needed for the rest of the proof. The only fact
we need to keep in mind is that �n ⊆ B1, so that |�n| ≤ |B1|. Denote by λ1(�n) the first
Dirichlet eigenvalue of −� on �n and by un the L2−normalised, positive eigenfunction
corresponding to λ1(�n). We extend un to B1 by setting it to 0 on B1 \ �n and by a slight
abuse of notation, denote this extension again by un. The γ -convergence of (�n), together
with the compact embedding of H 1

0 (B1) in L1(B1), imply that (i) λ1(�n) → λε , and (ii)
un ⇀ vε weakly in H 1

0 (B1) and strongly in L1(B1). Assuming that

lim
n→∞ ‖un‖∞ = ‖vε‖∞. (63)

we get

lim inf
n→+∞

∫
�n

un

‖un‖∞|�n| ≥
∫
B1

vε

‖vε‖∞|B1| .

Since the right-hand side is arbitrarily close to 1 when ε ↓ 0, the proof of Theorem 2 is then
completed by a diagonal selection procedure.

It remains to show Eq. 63. This kind of assertion is known to be true in a general setup.
In essence it is a consequence of the subharmonicity of the eigenfunctions un, n ≥ 1. (For a
similar result for the torsion function see [19, Theorem 2.2].) For the sake of completeness,
we give below a proof. It slightly differs from the one in [19, Theorem 2.2].

First note that since un → vε strongly in L1, it follows that

lim inf
n→+∞ ‖un‖∞ ≥ ‖vε‖∞.

To prove that lim supn→+∞ ‖un‖∞ ≤ ‖vε‖∞ we argue as follows. Being convergent, the
sequence (λ1(�n)) is bounded, and so is ‖un‖∞. Choose M > 0 so that for any n ∈ N

λ1(�n)un(x) ≤ M, ∀ x ∈ B1,

and therefore
−�un(x) ≤ M, ∀ x ∈ B1.

Let xn ∈ B1 be a maximum point for un. By taking, if necessary, a subsequence we may
assume that xn → x∗. Furthermore,

−�un ≤ M = M�
|x − xn|2

2m
, in D′(Rm),

or

−�
(
un + M

|x − xn|2
2m

)
≤ 0, in D′(Rm).

By the subharmonicity of the function x �→ un(x) + M
|x−xn|2

2m
around xn, it then follows

that for δ > 0 sufficiently small,

‖un‖∞ = un(xn) ≤
∫
B(xn;δ) dx

(
un(x) + M

|x−xn|2
2m

)
|B(xn; δ)| .

Taking the limit n → +∞ we obtain

lim sup
n→+∞

‖un‖∞ ≤
∫
B(x∗;δ) dx

(
vε(x) + M

|x−x∗|2
2m

)
|B(x∗; δ)| ,
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or

lim sup
n→+∞

‖un‖∞ ≤ ‖vε‖∞|B(x∗; δ)| + M δ2

2m
|B(x∗; δ)|

|B(x∗; δ)| = ‖vε‖∞ + M
δ2

2m
.

Letting δ ↓ 0, completes the proof. �

Remark 1 If � is an open connected subset of Rm with m ≥ 2 and 0 < |�| < ∞, then

(i)

�(�) ≥ E(�)

1 + kmλ1(�)m/4|�|1/2
(
1 − E(�)

)1/2
, m = 2, 3, (64)

(ii)

�(�) ≥ E(�)

1 + kmλ1(�)|�|2/m
(
1 − E(�)

)1/(m−1)
, m ≥ 4, (65)

where

km =
{

2(8π)−m/4�((4 − m)/4), m = 2, 3,

π−1(m − 2)−1m−1/(m−1)
(
�((m + 2)/2)

)2/m
, m ≥ 4.

(66)

Proof Putting V = 0 in Eq. 39 one obtains by using Eq. 51,

v�(x) ≥
∫

�

dy

∫
R+

dt p�(x, y; t)
ϕ1,�(y)

‖ϕ1,�‖∞

= λ1(�)−1 ϕ1,�(x)

‖ϕ1,�‖∞
. (67)

Integrating both sides of Eq. 67 yields,

‖v�‖1 ≥ λ1(�)−1 ‖ϕ1,�‖1

‖ϕ1,�‖∞
. (68)

To obtain the stated lower bound for �(�) it remains to find an upper bound for ‖v�‖∞.
First consider case (i). By Eq. 67, the Cauchy-Schwarz inequality, and the heat semigroup

property, one sees that

v�(x) − λ1(�)−1 ϕ1,�(x)

‖ϕ1,�‖∞
=

∫
�

dy

∫
R+

dt p�(x, y; t)

(
1 − ϕ1,�(y)

‖ϕ1,�‖∞

)

≤
∫
R+

dt

(∫
�

dy(p�(x, y; t))2
)1/2(∫

�

dy

(
1 − ϕ1,�(y)

‖ϕ1,�‖∞

))1/2

= |�|1/2
∫
R+

dt p�(x, x; 2t)1/2(1 − E(�)
)1/2. (69)

Choosing β = 1
2 in Lemma 1 of [6] gives by domain monotonicity of the Dirichlet heat

kernel, and Eq. 52
p�(x, x; 2t) ≤ e−tλ1(�)(4πt)−m/2. (70)

Substitution of Eq. 70 into the right-hand side of Eq. 69, evaluating the resulting integral
with respect to t , and taking the supremum over all x ∈ � gives

‖v�‖∞ − λ1(�)−1 ≤ 2(8π)−m/4|�|1/2�((4 − m)/4)λ1(�)−1+m/4(1 − E(�)
)1/2. (71)

Inequality Eq. 64 follows from Eqs. 68, Eq. 71 with the values for k2 and k3 given in Eq. 66.

587On Efficiency and Localisation for the Torsion Function



Next consider case (ii). By the first equality in Eq. 69 we have by domain monotonicity
of the Dirichlet heat kernel

v�(x) − λ1(�)−1 ϕ1,�(x)

‖ϕ1,�‖∞
≤

∫
�

dy

∫
R+

dt pRm(x, y; t)

(
1 − ϕ1,�(y)

‖ϕ1,�‖∞

)

= cm

∫
�

dy|x − y|2−m

(
1 − ϕ1,�(y)

‖ϕ1,�‖∞

)
,

where

cm = �((m − 2)/2)

4πm/2
.

By Hölder’s inequality with exponents p = m−1
m−2 and q = m − 1 we have

v�(x)λ1(�)−1 ϕ1,�(x)

‖ϕ1,�‖∞

≤ cm

(∫
�

dy

|x − y|m−1

)(m−2)/(m−1)( ∫
�

dy
(
1 − ϕ1,�(y)

‖ϕ1,�‖∞
)

)1/(m−1)

≤ cm

(∫
�∗

dy

|y|m−1

)(m−2)/(m−1)( ∫
�

dy
(
1 − ϕ1,�(y)

‖ϕ1,�‖∞
))1/(m−1)

= cm

(
mωmR∗)(m−2)/(m−1)|�|1/(m−1)

(
1 − E(�)

)1/(m−1)
,

where we have used Schwarz symmetrisation with �∗ = BR∗ , and ωm(R∗)m = |�|.
Taking the supremum over all x ∈ � and using the formulae for cm and R∗ gives,

‖v�‖∞ ≤ λ1(�)−1 + π−1(m − 2)−1m−1/(m−1)
(
�((m + 2)/2)

)2/m

×|�|2/m
(
1 − E(�)

)1/(m−1).

This, together with Eq. 68, implies the assertion for m ≥ 4.

We see from the proof of Remark 1(ii) that the case m = 3 could also have been included.
However, that would have given λ1(�)|�|2/3 in the denominator. By Theorem 3 (iii) we
have, for m = 3, that λ1(�)|�|2/3 � 1 if E(�) is close to 1. Then λ1(�)3/4|�|1/2 �
λ1(�)|�|2/3, and so Eq. 64 gives a better bound in that case. However, bounds (64) and
(65) do not imply that if �(�) is close to 1 then E(�) is close to 1 since, by Theorem 3
(iii), λ1(�)|�|2/m becomes large.

5 Proof of Theorem 3

Proof of Theorem 3(i). Since ‖u‖∞ > 0 we can re-scale both u and �, such that ‖u‖∞ = 1,
and |�| = ωm. Inequality (9) then reads

(72)

with |�| = ωm, ‖u‖∞ = 1, and . Note that replacing u by its positive part u+

decreases the left-hand side of Eq. 72, and furthermore, 2
m+2 . So it suffices

to prove that for any m ≥ 2,

(1 − θ)F (θ) ≥ 4m2

(m + 2)2
ωm , ∀ θ ∈ [2/(m + 2), 1),
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where

We make some preliminary observations. By Schwarz rearrangement we may consider
the infimum in the definition of F over the collection H ∗1

0 (B1) of all radially symmetric,
decreasing functions u in H 1

0 (B1) since this rearrangement decreases the energy and leaves
the other constraints unchanged. So,

F(θ) ≥ F ∗(θ), 2/(m + 2) ≤ θ < 1,

where

(73)

First note that

admits a minimiser. By the Lagrange multiplier theorem, there exists a constant c such that

Since u is radially symmetric and decreasing, in the sequel, by a slight abuse of notation, we
write u(r) instead of u(x). By a straightforward computation one sees that for any 2/(m +
2) ≤ θ < 1

u(r) = 2−1(m + 2)θ(1 − r2). (74)

In particular, ‖u‖∞ = u(0) ≥ 1. Note that we could have written 0 ≤ u, ‖u‖∞ = 1 instead
of 0 ≤ u ≤ 1 in the right-hand side of Eq. 73.

For any 2/(m + 2) ≤ θ < 1, F ∗(θ) admits a minimiser. Since the Dirichlet energy is
strictly convex, it is unique, and we denote it by uθ . Let

f (θ) = (1 − θ)F ∗(θ).

Since F(θ) ≥ F ∗(θ), it suffices to show that

f (θ) ≥ 4m2

(m + 2)2
ωm , ∀θ ∈ [2/(m + 2), 1) . (75)

If θ = 2
m+2 , then by Eq. 74, u2/(m+2)(r) = 1 − r2. Hence

f (2/(m + 2)) =
(

1 − 2

m + 2

) ∫
B1

(−2r)2mrm−1ωmdr = 4m2

(m + 2)2
ωm. (76)

Hence (75) is satisfied for θ = 2
m+2 .
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The remaining part of the proof consists of four parts. In part (a) we show that Eq. 75
holds for any m ≥ 2 and θ ∈ [ 2

m+2 , θ∗
m] where

θ∗
m := m + (

m2 + 8m
)1/2

2(m + 2)
. (77)

We note that 2/(m + 2) < 2/3 < θ∗
m < 1 for any m ≥ 2. In part (b) we prove that Eq. 75

holds for any m ≥ 4 and θ ∈ [θ∗
m, 1). In part (c) we show that Eq. 75 holds for m = 2, 3,

using the Euler-Lagrange equation of a variational problem, related to an obstacle problem.
See Eq. 96 below. Finally, in part (d) we verify that equality in Eq. 9 holds if and only if �

is a ball and u is a multiple of the torsion function for that ball. This completes the proof of
Theorem 3 (i).

(a) Assume that 2
m+2 ≤ θ ≤ θ∗

m. In a first step we prove that θ �→ f (θ) is increasing

on [ 2
m+2 , 2

3 ] which by Eq. 76 implies that Eq. 75 holds for θ in the latter interval. Given
2

m+2 < θ < 1, choose any ε > 0 with the property

θ

1 + ε
>

2

m + 2
.

Let uθ be the minimiser of the obstacle problem

Then, by inclusion of the class of admissible test functions,∫
B1

|∇uθ |2 ≤
∫

B1

|∇uθ |2, (78)

where uθ is the minimiser of F ∗(θ). Furthermore (1 + ε)−1uθ is the minimizer uθ/(1+ε) for

F ∗(θ/(1 + ε)), since 0 ≤ (1 + ε)−1uθ ≤ 1, and . We wish to prove that

f (θ/(1 + ε)) =
(

1 − θ

1 + ε

) ∫
B1

|∇uθ |2
(1 + ε)2

≤ (1 − θ)

∫
B1

|∇uθ |2 = f (θ), (79)

By Eq. 78, inequality (79) holds if

1

(1 + ε)2

(
1 − θ

1 + ε

)
≤ (1 − θ),

or, after simplifying,
1 ≤ (3 + 3ε + ε2)(1 − θ). (80)

The latter inequality clearly holds for any ε ≥ 0 if 2
m+2 ≤ θ ≤ 2

3 . Thus we have proved that

f (θ) is increasing on the interval [ 2
m+2 , 2

3 ].
By the same argument we now prove that f (θ) ≥ f (2/(m + 2)) = 4m2

(m+2)2 ωm also for

θ ∈ ( 2
3 , θ∗

m]. (However, we do not prove that f is increasing on the interval ( 2
3 , θ∗

m].) Given
θ ∈ ( 2

3 , θ∗
m], we want to find ε > 0 so that

2

m + 2
≤ θ

1 + ε
≤ 2

3
, 1 ≤ (

3 + 3ε + ε2)(1 − θ). (81)

By Eqs. 79 and 80, one then infers that

f (θ) ≥ f (θ/(1 + ε)) ≥ f (2/(m + 2)).
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To find ε > 0 so that Eq. 81 holds, we solve

1 = 3(1 − θ) + 3ε(1 − θ) + ε2(1 − θ) (82)

for ε, and verify that for the given range of θ, one has 2
m+2 ≤ θ

1+ε
≤ 2

3 . The positive
solution of Eq. 82 is given by

ε = −3

2
+ 1

2

(
1 + 3θ

1 − θ

)1/2

> 0.

Since
θ ≤ θ∗

m

we have that the requirement 2
m+2 ≤ θ

1+ε
is fulfilled. Using θ ≥ 2

3 , one sees that θ
1+ε

≤ 2
3 .

(b) In this part we assume that m ≥ 4 and θ∗
m ≤ θ < 1. Let 0 ≤ r0 < 1 and let

u ∈ H ∗1
0 (B1) with 0 ≤ u ≤ 1 and . Since u is radially symmetric and decreasing,

ω−1
m

∫
B1\Br0

u ≤ ω−1
m u(r0) |B1 \ Br0 | = u(r0)(1 − rm

0 ).

Since, 0 ≤ u ≤ 1 and , we conclude that

rm
0 ≥ ω−1

m

∫
Br0

u = ω−1
m

∫
B1

u − ω−1
m

∫
B1\Br0

u ≥ θ − u(r0)(1 − rm
0 ).

It then follows that

u(r0) ≥ ηm(θ, r0) := θ − rm
0

1 − rm
0

≥ 0 , ∀ r0 ∈ [0, θ1/m]. (83)

By inclusion of the admissible test functions one has

f (θ) ≥ (1 − θ) inf
{ ∫

B1

|∇u|2 : u ∈ H ∗1
0 (B1), u(r0) ≥ ηm(θ, r0)

}
. (84)

The infimum in the right-hand side of Eq. 84 is attained and its minimiser u∗ is given by

u∗(r) =
⎧⎨
⎩

ηm(θ, r0), 0 ≤ r ≤ r0,

1−r2−m

1−r2−m
0

ηm(θ, r0), r0 ≤ r ≤ 1.

A straightforward calculation gives∫
B1

|∇u∗|2 = m(m − 2)ωm

η2
m(θ, r0)

r2−m
0 − 1

. (85)

We now choose
r0 = θc/m, (86)

where c ≥ 1 is to be determined later. This choice satisfies the constraint 0 ≤ r0 ≤ θ1/m in
Eq. 83. By Eqs. 85 and 86,

f (θ) ≥ m(m − 2)ωm

(
θ − θc

1 − θc

)2 1 − θ

θc(2−m)/m − 1
. (87)

By L’Hôpital’s rule,

lim inf
θ↑1

f (θ) ≥ m2ωm

(c − 1)2

c3
. (88)
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The right-hand side of Eq. 88 is maximised for c = 3. This choice yields,

lim inf
θ↑1

f (θ) ≥ 4m2

27
ωm.

Note that
4m2

27
ωm ≥ 4m2

(m + 2)2
ωm. (89)

if and only if m ≥ 4. This is why the proof of Eq. 75 for m = 2, 3 has been deferred to part
(c). By Eq. 87 we have for c = 3,

f (θ) ≥ m(m − 2)ωm

(
θ(1 + θ)

1 + θ + θ2

)2 1 − θ

θ3(2−m)/m − 1

≥ m(m − 2)ωm

(
θ(1 + θ)

1 + θ + θ2

)2 1 − θ

θ−3 − 1

= m(m − 2)ωm

θ5(1 + θ)2

(1 + θ + θ2)3
. (90)

To prove (75) for θ ∈ [θ∗
m, 1) and m ≥ 4, it suffices, by Eq. 90, to show that

θ5(1 + θ)2

(1 + θ + θ2)3
≥ 4m

(m − 2)(m + 2)2
, ∀ θ ∈ [θ∗

m, 1). (91)

First observe that the left-hand side of Eq. 91 is a product of non-negative increasing func-

tions, θ �→ θ(1+θ)

1+θ+θ2 and θ �→ θ3

1+θ+θ2 , and so is increasing. So if Eq. 91 holds for θ = θ∗
m

then it holds on the interval [θ∗
m, 1). Furthermore by Eq. 77,

θ∗
m = 1 − 8

(m + 2)(m + 4 + (m2 + 8m)1/2)
.

Hence (θ∗
m)m is a strictly increasing sequence. Since the right-hand side of Eq. 91 is decreas-

ing in m we conclude that if Eq. 91 holds for m = m1 then it holds for all m ≥ m1. It is
straightforward to verify

θ∗
6 >

15

16
,

and that Eq. 91 holds for θ = 15
16 , and m = 6. Hence it follows that Eq. 91 holds for all

θ ∈ [θ∗
m, 1) with m ≥ 6.

To complete the proof of part (b) it remains to treat the cases m = 4 and m = 5. We first
consider the case m = 4. One computes

θ∗
4 = 1 + √

3

3
,

and by the first inequality in Eq. 90, one gets

f (θ) ≥ 8ω4

(
θ(1 + θ)

1 + θ + θ2

)2( 1 − θ

θ−3/2 − 1

)
. (92)

Since both θ �→ θ(1+θ)

1+θ+θ2 and θ �→ 1−θ

θ−3/2−1
are non-negative increasing functions on the

interval [0, 1) the right-hand side of Eq. 92 is increasing in θ . Note that the right-hand side
of Eq. 89 equals 16ω4/9. Hence by Eq. 92 it suffices to verify that(

θ∗
4 (1 + θ∗

4 )

1 + θ∗
4 + θ∗

4
2

)2( 1 − θ∗
4

θ∗
4
−3/2 − 1

)
≥ 2

9
. (93)
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Numerical evaluation of the left-hand side of Eq. 93 yields

(
θ∗

4 (1 + θ∗
4 )

1 + θ∗
4 + θ∗

4
2

)2( 1 − θ∗
4

θ∗
4
−3/2 − 1

)
≥ .238,

which implies (93).
Finally we consider the case m = 5. One computes that

θ∗
5 ≥ 13

14
, (94)

and by the first inequality in Eq. 90,

f (θ) ≥ 15ω5

(
θ(1 + θ)

1 + θ + θ2

)2 1 − θ

θ−9/5 − 1
.

Since both θ �→ θ(1+θ)

1+θ+θ2 and θ �→ 1−θ

θ−9/5−1
are non-negative increasing functions on the

interval [0, 1), so is the right-hand side of Eq. 92 and it remains, by Eq. 92, to verify that

(
θ∗

5 (1 + θ∗
5 )

1 + θ∗
5 + θ∗

5
2

)2( 1 − θ∗
5

θ∗
5
−9/5 − 1

)
≥ 20

147
. (95)

By Eq. 94, the left-hand side of Eq. 95 is bounded from below by .206 while the right hand
side of Eq. 95 is bounded from above by .137. This completes the proof of part (b).

(c) In this part we treat the cases m = 2 and m = 3. We begin with some preliminary
considerations. We note that the minimisation problem (73) is related to a volume constraint
obstacle problem in B1: we claim that there exist c > 0 and 0 ≤ l < 1, depending on θ , so
that uθ satisfies the following system of equations,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�u = c, in B1 \ Bl,

u = 1, on Bl,

u = 0, on ∂B1,
∂u
∂ν

= 0, on ∂Bl,

(96)

where ν denotes the inward pointing normal on the sphere ∂Bl . Indeed, since uθ is radially
symmetric, decreasing and since uθ (0) = 1 (see Eq. 73) and uθ (1) = 0, there exists a
maximal number 0 ≤ l ≡ l(θ) < 1 so that uθ (r) = 1 for 0 ≤ r ≤ l. By the Lagrange
multiplier theorem, there exists a constant c > 0 so that −�uθ = c on B1 \ Bl in the sense
of distributions. It then follows from [16, Theorem 2] that uθ is C1,α on B1 which implies
that ∂uθ

∂ν
= 0 on ∂Bl . These observations establish (96). Note that both c and l are uniquely

determined by θ .
We claim that the map

b : [ 2

m + 2
, 1) → [0, 1), θ �→ l(θ) ,

is an increasing bijection. To prove the latter assertion, we construct for any given 0 ≤
l < 1 a unique radially symmetric, decreasing solution u(·; l) of Eq. 96 and show that

, satisfies 2/(m + 2) ≤ θ < 1 with θ(0) = 2/(m + 2) and

liml→1 θ(l) = 1. First we note that c is uniquely determined by l since for any given
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0 ≤ l < 1, the solution of Eq. 96 is given by a formula. To obtain it, note that the general
radially symmetric solution of −�u = c on the annulus B1 \ Bl is of the form

u(r) =
{

−c r2

4 + a ln(r) + b if m = 2 ,

−c r2

2m
− a

(m−2)rm−2 + b if m ≥ 3

for some real constants a, b, c. The condition ∂u
∂ν

(l) = 0 implies that a = lmc
m

so that the
boundary condition u(1) = 0 leads to

u(r) =
{

c
4 (1 − r2) + l2c

2 ln(r) if m = 2,
c

2m
(1 − r2) + lmc

m(m−2)
(1 − 1

rm−2 ) if m ≥ 3.
(97)

The value of c is now obtained by the requirement u(l) = 1,

c =
{( 1−l2

4 + l2

2 ln(l)
)−1 if m = 2,( 1

2m
+ lm

m(m−2)
− l2

2(m−2)

)−1 if m ≥ 3.
(98)

One verifies in a straightforward way that the resulting function u ≡ u(·; l) is decreasing
for l ≤ r ≤ 1, that θ(0) = 2/(m + 2), and that l �→ c ≡ c(l) is a continuous, strictly
increasing function of 0 ≤ l < 1. We claim that l �→ θ(l) is also strictly increasing. To
verify that this is indeed the case, one could explicitly compute θ in terms of l, but the
formula is rather complicated. Instead we prove the claim by using the maximum principle.
By contradiction, suppose there exist 0 ≤ l2 < l1 < 1 with θ2 := θ(l2) > θ1 := θ(l1). By
the considerations above, c2 := c(l2) < c1 := c(l1). Hence −�(u1 − u2) = c1 − c2 > 0
on B1 \ Bl1 where uj := u(·, lj ) for j = 1, 2. Since θ1 < θ2, there exist l1 < r1 < r2 < 1
so that (u1 − u2)(r) < 0 for any r1 < r < r2, contradicting the maximum principle.

From the formula (97) of u(·; l) one infers that θ(l) is a continuous function of l

and that liml↑1 θ(l) = 1. Hence for any 0 ≤ l < 1, u(·; l) coincides with uθ where

. Altogether we have shown that b is a continuous, increasing bijection.
Define g : [0, 1) → R by

g(l) := f (θ(l)) = (1 − θ(l))

∫
B1

|∇uθ(l)|2 , θ(l) := b−1(l) . (99)

In view of Eq. 76 it then suffices to show that g is increasing on [0, 1).
We first consider the case m = 2. Integrating by parts, one obtains from Eq. 96∫

B1

|∇uθ(l)|2 = c(l)2π

∫ 1

l

uθ(l)(r)rdr,

and

θ(l) = l2 + 2
∫ 1

l

uθ(l)(r)rdr .

Using Eqs. 97 and 98, one infers from Eq. 99 that

g(l) = 2π
( 1

16 − l2

4 + 3l4

16 − l4 ln(l)
4 )( 1

8 − l4

8 + l2 ln(l)
2 )

( 1
4 − l2

4 + l2

2 ln(l))3
,

and a straightforward computation yields

g′(l) = π
l(l2 − 1)(−l2 + l2 ln(l) + ln(l) + 1)(−5l4 + 4l4 ln(l) + 4l2 + 8l2 ln(l) + 1)

(1 − l2 + 2l2 ln(l))4
.

By inspection one verifies that g′(l) > 0 on (0, 1).
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Without any additional effort we may consider the general case m ≥ 3, and follow the
line of arguments above. Integrating by parts, one has∫

B1

|∇uθ(l)|2 = c(l)mωm

∫ 1

l

uθ(l)(r)r
m−1dr

and one computes that

θ(l) = lm + m

∫ 1

l

uθ(l)(r)r
m−1dr .

Using formula (97) for m ≥ 3, one infers∫ 1

l

uθ(l)(r)r
m−1dr = c(l)

( lm(l2 − 1)

2m(m − 2)
+ lm+2 − 1

2m(m + 2)
+ lm(1 − lm)

m2(m − 2)
+ 1 − lm

2m2

)

so that by Eq. 99

g(l) = c(l)mωm

(
1 − lm − m

∫ 1

l

uθ(l)(r)r
m−1dr

)∫ 1

l

uθ(l)(r)r
m−1dr . (100)

In the case m = 3, one gets in this way

g(l) = 24π

25

(5(1 − l3) + 10l3(1 − l3) − 15l3(1 − l2) − 3(1 − l5))(1 − l5 + 5(l3 − l2))

(2l3 + 1 − 3l2)3
,

and a lengthy computation leads to the formula

g′(l) = 24π

25

2l(20l4 + 67l3 + 84l2 + 46l + 8)

(2l + 1)4
.

Clearly, g′(l) > 0 on (0, 1) for m = 3.1

(d) In this last part we prove that equality in Eq. 9 holds if and only if � is a ball and u

is a multiple of the torsion function for that ball. Clearly, if � is a ball and u is a multiple
of the torsion function for that ball, then Eq. 9 holds (see Eq. 76). Conversely, assume that
equality holds in Eq. 9. We re-scale the measure of � and L∞-norm of u as in the proof of
Theorem 3(i). Equality in Eq. 9 implies that u has the same Dirichlet integral as its Schwarz
rearrangement u∗, ∫

�

|∇u|2 =
∫

B1

|∇u∗|2 , (101)

and its Schwarz rearrangement is the solution of the obstacle problem on the ball B1 – see
Eq. 96. In view of the strict monotonicity of f on [ 2

m+2 , 2
3 ) (see part (a)) and the (strict)

inequalities obtained above 2
3 (see parts (a)-(c)), this implies that θ = 2

m+2 , which corre-
sponds to l = 0 and to c = 2m (see Eqs. 76, 98). It means that u∗ is a multiple of the torsion
function on B1 (see Eq. 96).

In order to justify that u has to be equal to u∗, recall that Eq. 101 holds and that u∗,
being a multiple of the torsion function on B1, has a critical set of zero measure. Equality

1For general m ≥ 4, the formula for g′ can be computed to be a quotient of two polynomials with degrees
depending on m. We believe that g′(l) is strictly positive for every l on (0, 1), but a direct proof, covering all
dimensions m ≥ 5, based on the formula of g′ seems out of reach. For m = 4 the quotient of the polynomials

simplifies, and gives g(l) = ω4

(
16
3 l2 + 16

9

)
. We see that for m = 4, g(1) = 64ω4

9 agrees with the value f (1)

given in Remark 1. We also have that g(0) = 16ω4
3 agrees with the value f (1/3) from Theorem 3(i). Indeed

for m = 4 and θ = 1
3 we have equality in Eq. 9. Note that for m = 4, g(l) is increasing on (0, 1).
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between u and u∗, up to a translation, comes from the classical result of Brothers and Ziemer
[11, Theorem 1.1].

Proof of Theorem 3(ii). The key ingredient into the proof is inequality (9). First note that
since for any t > 0, 1

t2 v�(tx) is the torsion function of 1
t
�. Choosing t = (|�|/ωm)1/m,

one infers that it suffices to prove estimate (10) in the case |�| = ωm.
We apply (i) to

u(x) = v�(x)

‖v�‖∞
, x ∈ �.

Observe that . First we consider the case where . Then by Eq. 72

1

‖v�‖2∞

(
1 − �(�)

) ∫
�

|∇v�|2 ≥ 4m2

(m + 2)2
ωm .

Since −�v� = 1,

1

ωm‖v�‖∞

∫
�

|∇v�|2 = 1

ωm‖v�‖∞

∫
�

v� = �(�).

Since �(�) ≤ 1, we find that

‖v�‖∞ ≤ (m + 2)2

4m2
�(�)

(
1 − �(�)

)

≤ (m + 2)2

4m2

(
1 − �(�)

)
,

which gives Eq. 10. Next consider the case . Since by the de Saint-Venant’s
principle ‖v�‖∞ ≤ ‖vB1‖∞ and since ‖vB1‖∞ = 1/2m we find that

1 − �(�) ≥ m

m + 2
= 2m2

m + 2
.

1

2m

≥ 2m2

m + 2
‖v�‖∞.

Note that 2m2

m+2 ≥ 4m2

(m+2)2 and hence the estimate (10) also holds in this case.
Inequality (11) follows from Eqs. 1 and 10.

Proof of Theorem 3(iii). The key ingredient in the proof is inequality (9). Since � is con-
nected, λ1(�) has multiplicity 1 and hence both, ϕ1,� and E(�), are well defined. First note
that since for any t > 0, tm/2ϕ1,�(tx) is the positive L2-normalised Dirichlet eigenfunction
of 1

t
�, choosing t = (|�|/ωm)1/m, one infers that it suffices to prove estimate (12) in the

case |�| = ωm. By (26) in [4], one has

‖ϕ1,�‖∞ ≤
(

e

2πm

)m/4

λ1(�)m/4.

Hence ϕ1,� ∈ L∞(�). We apply (9) to

u(x) = ϕ1,�(x)

‖ϕ1,�‖∞
, x ∈ �.
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First we consider the case where . Then by Eq. 72

Since
∫
�

|∇u|2 = λ1(�)
∫
�

u2 ≤ λ1(�)ωm, and we obtain,

λ1(�) ≥ 4m2

(m + 2)2

(
1 − E(�)

)−1. (102)

Now let us consider the case where . Then 1 − E(�) ≥ m
m+2 , and hence by

Faber-Krahn,

λ1(�) ≥ λ1(B1)
m

m + 2

(
1 − E(�)

)−1. (103)

Combining (102) and (103) gives

λ1(�) ≥ min

{
4m2

(m + 2)2
,

m

m + 2
λ1(B1)

}(
1 − E(�)

)−1. (104)

To finish the proof we recall that

λ1(B1) = j2
(m−2)/2. (105)

By the results of [20], we have that

j2
(m−2)/2 ≥ m(m + 8)

4
. (106)

Hence by Eqs. 104, 105, 106,

λ1(�) ≥ 4m2

(m + 2)2

(
1 − E(�)

)−1
,

which is inequality (12) in the case |�| = ωm.

Remark 2 By an elementary computation, using the expression for g in terms of l from
Eq. 100, one can show that limθ↑1 f (θ) = 4

9m2ωm, m ≥ 2.

Below we show that λ1(�) cannot be bounded from above in terms of (1 −
E(�))−1|�|−2/m nor of (1 − �(�))−1|�|−2/m.

Remark 3 We have

sup{λ1(�)(1 − E(�))|�|2/m : � open, convex, 0 < |�| < ∞} = ∞, (107)

and

sup{λ1(�)(1 − �(�))|�|2/m : � open, convex, 0 < |�| < ∞} = ∞. (108)

Proof To prove (107) we let �n = (0, 1)m−1 × (0, n). Then λ1(�n) ≥ (m − 1)π2. A
straightforward calculation shows that for an interval of length L, L > 0, E((0, L)) = 2

π
.

By separation of variables E(�n) = 2m

πm . We conclude that the supremum in Eq. 107 is

bounded from below by (m − 1)
(
1 − 2m

πm

)
π2n2/m. Letting n → ∞ concludes the proof.

To prove (108) we use [15, Theorem 1.1 (i)] for p = q = 2 to see that �(�n) ≤ 2
3 . We

conclude that the supremum in Eq. 108 is bounded from below by 1
3 (m−1)π2n2/m. Letting

n → ∞ concludes the proof.
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6 Proof of Theorem 4

We start with the following observation.

Lemma 7 Let (�n) be a sequence of open sets in R
m with 0 < |�n| < ∞, n ∈ N,

1 ≤ p < ∞, and let fn ∈ Lp(�n), n ∈ N be a sequence of non-negative functions with
0 < ‖fn‖∞ < ∞. If (fn) either localises in Lp or κ-localises in Lp then (fn) has vanishing
mean to max ratio.

Proof Let ε ∈ (0, 1) be arbitrary. By hypothesis there exists a sequence (An) satisfying
(14). Then for all n sufficiently large |An|/|�n| < ε, and ‖fn‖p

p ≤ κ−1(1 − ε)−1
∫
An

f
p
n .

Then for all such n,

‖fn‖p
p ≤ (1 − ε)−1

∫
An

f
p
n ≤ (1 − ε)−1‖fn‖p∞|An| ≤ εκ−1

1 − ε
‖fn‖p∞|�n|. (109)

By Hölder’s inequality, ( ∫
�n

fn

)p

≤ ‖fn‖p
p|�n|p−1. (110)

By Eqs. 109 and 110 we have for all n sufficiently large,

‖fn‖1

|�n|‖fn‖∞
≤

(
εκ−1

1 − ε

)1/p

.

Since ε ∈ (0, 1) was arbitrary, (fn) has vanishing mean to max ratio.

Proof of Theorem 4 We obtain by Eqs. 39 and 51

v�,V (x) =
∞∑

j=1

λj (�, V )−1
(∫

�

ϕj,�,V

)
ϕj,�,V (x).

Integrating with respect to x over � gives
∫

�

v�,V =
∞∑

j=1

λj (�, V )−1
(∫

�

ϕj,�,V

)2

≥ λ1(�, V )−1
(∫

�

ϕ1,�,V

)2

.

Multiplying both sides with λ1(�, V ), and using the definition of dm in Eq. 42 gives

dm

‖v�,V ‖1

‖v�,V ‖∞
≥

(∫
�

ϕ1,�,V

)2

.

This implies that

dm�(�, V ) ≥ 1

|�|
(∫

�

ϕ1,�,V

)2

. (111)

Suppose (v�n,Vn) either localises or κ- localises in L1. By Lemma 7 for p = 1,

limn→∞ �(�n, Vn) = 0. By Eq. 111, limn→∞ 1
|�n|

( ∫
�n

ϕ1,�n,Vn

)2 = 0. This implies local-

isation of (ϕ1,�n,Vn) in L2 by Lemma 3 in [7], and vanishing efficiency by Lemma 7 for
p = 2.
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Theorem 4 implies that if (�n, Vn) satisfies the η condition of Theorem 1(ii), and if
either (v�n) or (v�n,Vn) have non-vanishing efficiencies then both (v�n) and (v�n,Vn) are
not localising.
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