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Abstract
We prove absolute continuity of the law of the solution, evaluated at fixed points in time
and space, to a parabolic dissipative stochastic PDE on L2(G), where G is an open bounded
domain in R

d with smooth boundary. The equation is driven by a multiplicative Wiener
noise and the nonlinear drift term is the superposition operator associated to a real function
that is assumed to be monotone, locally Lipschitz continuous, and growing not faster than
a polynomial. The proof, which uses arguments of the Malliavin calculus, crucially relies
on the well-posedness theory in the mild sense for stochastic evolution equations in Banach
spaces.
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1 Introduction

Let G be a bounded domain of Rd , d > 1, with smooth boundary. Consider a semilinear
stochastic equation of the type

du(t) + Au(t) dt = f (u(t)) dt + σ(u(t))B dW(t), u(0) = u0, (1)

where A is the negative generator of an analytic semigroup on Lq(G), q ≥ 2, f : R → R

is a locally Lipschitz continuous decreasing function with polynomial growth, σ : R → R

is a Lipschitz continuous function, B is a γ -Radonifying operator from L2(G) to Lq(G),
and W is a cylindrical Wiener process on L2(G) (precise assumptions on the data of the
problem are provided in Section 2 below). Then (1) admits a unique mild solution which is
continuous in space and time. Our aim is to prove that the law of the random variable u(t, x)
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is absolutely continuous with respect to Lebesgue measure for every fixed (t, x) ∈ R+ ×G.
It seems that, somewhat surprisingly, this natural question has not been addressed in the
literature. In fact, all results of which we are aware about existence (and regularity) of the
density of solutions to SPDEs with multiplicative noise deal with the case where G is the
whole space, −A is the Laplacian, and the drift coefficient f is (globally) Lipschitz contin-
uous (see, e.g., [13, 15, 16, 19] and references therein). Our results do not rely on any one of
these assumptions. In particular, we essentially just assume that the semigroup generated by
−A is self-adjoint and given by a family of kernel operators, so that, for instance, very large
classes of elliptic second-order operators are allowed, and the function f can be of polyno-
mial type. Another major difference with respect to the above-mentioned works is that we
rely almost exclusively on the interpretation of (1) as an equation for an Lq(G)-valued pro-
cess, and that we view the pointwise Malliavin derivative of its solution as a process taking
values in Lq(G;H), where H is a suitably chosen Hilbert space. This point of view, which
allows us to rely on powerful techniques of the functional-analytic approach to stochastic
evolution equations on UMD Banach spaces, is probably the most interesting aspect of this
work. The more common random field interpretation of (1), that seems the only one used in
previous work, at least in connection with techniques of the Malliavin calculus, is used here
very sparingly, essentially only to take the pointwise Malliavin derivative of the solution to
(1).

Existence and regularity of the density of solutions to semilinear heat equations with
additive noise, i.e. for the easier case where σ = 1 and −A is the Laplacian, were obtained
in [9]. Those results, however, depend heavily on the noise being additive, and cannot be
extended to the general setting considered here. In fact, if the noise is additive, then the
Malliavin derivative of the solution satisfies a deterministic equation with random coeffi-
cients, which yields quite strong estimates using pathwise arguments. On the other hand,
if the noise is multiplicative, then the Malliavin derivative is only expected to satisfy a fur-
ther stochastic evolution equation with quite singular initial condition, which is much more
difficult to handle than the deterministic PDE arising in the case of additive noise. As a con-
sequence, while in [9] we obtained existence as well as regularity of the density, here we
can only show existence. As it is natural to expect, regularity could be obtained also in the
case of multiplicative noise and Lipschitz continuous drift. However, we concentrate here
only on the existence issue, and we shall deal with the regularity problem somewhere else,
hopefully also in the general case where f is monotone and polynomially bounded.

Let us briefly describe the main content of the paper. We first show existence and unique-
ness of a unique mild solution u to (1) which is continuous in space and time. This follows
by relatively recent results on well-posedness in the mild sense for stochastic evolution
equations in Banach spaces (see Section 2). Assuming that the semigroup generated by −A

is a family of kernel operators, the mild solution can be interpreted also in the sense of
random fields. Considering first the case where f is Lipschitz continuous, so that the mild
solution is the unique fixed point of an operator , this reformulation allows to compute
the Malliavin derivative of applied to a class of sufficiently regular processes. Using esti-
mates for stochastic convolutions in Banach spaces, we show that the fixed-point operator

leaves invariant a subspace of Malliavin differentiable processes with finite moment. This
yields, by closability properties of the Malliavin derivative, that the unique mild solution
to (1) is pointwise Malliavin differentiable. As a second step, we provide sufficient condi-
tions ensuring that the Malliavin derivative is non-degenerate, adapting a method used in
[16, Theorem 5.2] for equations on R

d (see Section 3). This yields, as is well known, the
pointwise absolute continuity of the law of the solution. As mentioned above, the results
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should be interesting in their own right, as equations in domains (in dimension higher than
one) do not appear to have been considered in the literature. Finally, in the general case
of equations of reaction-diffusion type, the pointwise absolute continuity of the law of the
solution is treated by localization techniques, i.e. by means of the Bouleau-Hirsch criterion
(see Section 4), and by convergence results for stochastic evolution equations with locally
Lipschitz continuous coefficients in spaces of continuous functions.

2 Well-Posedness in the Space of Continuous Functions

We are going to establish well-posedness in the mild sense for the stochastic equation (1) in a
space of continuous functions, using general well-posedness results for stochastic evolution
equations in UMD Banach spaces (see [6, 21]). Assuming that the semigroup generated by
−A is a family of integral operators, we shall also show that the solution thus obtained can
be viewed as a solution in the sense of random field (cf. [3, 22]).

2.1 Preliminaries

Let us consider the following stochastic evolution equation, posed on a general Banach
space X:

du(t) + Au(t) dt = f (u(t)) dt + B(u(t)) dW(t), u(0) = u0, (2)

where W is a cylindrical Wiener process on a Hilbert space U , and all other coefficients
are specified below. The following well-posedness result is a slightly simplified version of
[6, Theorem 4.9]. The space of γ -Radonifying operators from a Hilbert space K to a Banach
space E will be denoted by γ (K,E).

Theorem 2.1 Let E be a UMD Banach space with type 2, such that X is densely and
continuously embedded in E, and A be a sectorial, accretive operator on E such that the
semigroup S on E generated by −A restricts to a C0-semigroup of contractions on X.
Assume that f : X → X is locally Lipschitz continuous and there exists m > 0 such that

f (x + y) − f (y), x∗ 1 + y m − x m,

f (y) 1 + y m

for all x, y ∈ X and x∗ ∈ ∂ x . Let p > 2 and assume that there exists a number η ∈ R+,
with

η <
1

2
− 1

p
,

such that Eη := D((I + A)η) is densely and continuously embedded in X. If B : X →
γ (U, E) is locally Lipschitz continuous with linear growth, and u0 ∈ Lp( ; X), then there
exists a unique X-valued mild solution to (2), which satisfies

E sup
t≤T

u(t)
p
X 1 + E u0

p
X .

Here ∂ x stands for the subdifferential at x, in the sense of convex analysis, of the
convex function · , that is, denoting the dual of X by X ,

∂ x = x∗ ∈ X : x∗ = 1, x∗, x = 1 .
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Moreover, the notation a b means that there exists a constant N such that a ≤ Nb. To
emphasize the dependence of N on parameters p1, . . . , pn, we shall write a p1,...,pn b.

Remark 2.2 In [6] the authors also require that

−Ax + f (x + y), x∗ 1 + y m + x

for every x ∈ D(A|X) and x, y ∈ X. Since we are assuming that A is accretive in X, it
follows that −Ax, x∗ ≤ 0. Moreover,

f (x + y), x∗ = f (x + y) − f (y), x∗ + f (y), x∗

1 + y m + | f (y), x∗ | 1 + y m,

hence their condition, under our assumptions, is automatically satisfied.

Remark 2.3 Further well-posedness results in Lq spaces for semilinear parabolic SPDEs of
accretive type, with more natural assumptions on the nonlinear drift term f , can be found
in [7, 8, 10–12]. See also [2] for related results in spaces of continuous functions.

We shall also need some basic facts on interpolation. The real and the complex interpola-
tion functors are denoted by (·, ·) and [·, ·], respectively. Moreover, we shall write X → Y

to mean that X is continuously embedded in Y .

Lemma 2.4 Let X and Y be two Banach spaces forming an interpolation pair, A a positive
operator on X, and θ, θ ∈ ]0, 1[, q, q ∈ [1, ∞] be constants. The following statements
hold true:

(a) if X ⊂ Y and θ < θ , then (X, Y )θ,q → (X, Y )θ ,q ;
(b) (X, Y )θ,1 → (X, Y )θ,∞;
(c) (X, Y )θ,1 → [X, Y ]θ → (X, Y )θ,∞;
(d) X, D(A)

θ,1 → D(Aθ ) → X, D(A)
θ,∞.

Proof All statements can be found in [20]. Specific references are provided for each result:
(a) and (b) are parts of Theorem 1.3.3, p. 25; (c) is a consequence of Theorem 1, p. 64,
taking into account Definition 1.10.1, p. 61; (d) is part of Theorem 1.15.2, p. 101.

2.2 Existence of a UniqueMild Solution

Let us now turn to equation (1), about which the following standing assumptions are
assumed from now on.

Hypothesis 1 (a) The operator A is the realization on Lq(G), q ≥ 2, of a second-order
strongly elliptic operator with C∞ coefficients, with Dirichlet boundary conditions. (b) The
function f : R → R is an odd polynomial of degree m > 0 with negative leading coeffi-
cient. (c) W is a cylindrical Wiener process on L2(G) defined on a filtered probability space
( ,F , (Ft )t∈[0,T ],P), with T ∈ R+, where (Ft )t∈[0,T ] is the completion of the filtration
generated by W .

It follows by (b) that |f (x)| 1 + |x|m for all x ∈ R.
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Proposition 2.5 Assume that
d

2q
<

1

2
− 1

p
,

σ : R → R is locally Lipschitz continuous with linear growth, and B ∈ γ (L2(G), Lq(G)).
If u0 ∈ Lp( ; C(G)), then (1) admits a uniqueC(G)-valued mild solution u, which satisfies
the estimate

E sup
t≤T

u(t)
p

C(G)
1 + E u0

p

C(G)
.

Here C(G) denotes the space of continuous functions on G, the closure of G.

Proof We are going to verify that the assumptions of Theorem 2.1 are satisfied. It follows
from Hypothesis 1 that, for any q ≥ 2, A is a sectorial, accretive operator on Lq(G), and
that the semigroup S generated by −A restricts to a C0-semigroup on C(G) (see, e.g., [17,
Theorem 3.5, pp. 213-214 and Theorem 3.7, p. 217]). Moreover, denoting the evaluation
operator on C(G) associated to f by the same symbol, it is not difficult to see that f

satisfies the assumptions of Theorem 2.1 (detail can be found in [6, Examples 4.2 and 4.5]).
Moreover, one easily verifies that u → σ(u)B is locally Lipschitz continuous and has linear
growth as a map from C(G) to γ (U, Lq(G)).

Let θ < θ be such that
d

2q
< θ < θ <

1

2
− 1

p
.

Setting E := Lq := Lq(G), let us show that Eθ → C(G) densely: recall that, by
Lemma 2.4,

Eθ → Lq, D(A)
θ,∞ → Lq, D(A)

θ ,1 → Lq, D(A)
θ

,

where, by the characterization of D(A) in [20, Theorem 4.9.1, p. 334],

D(A) = H 2
q,D(G) := φ ∈ H 2

q (G) : φ|∂G = 0 .

Moreover, thanks to [20, Theorem 3.3.4, p. 321], one has

Lq, H 2
q,D θ

= H 2θ
q,D

if 2θ = 1/q. Since d > 1 and 2θ > d by hypothesis, the latter condition is obviously
satisfied, hence Eθ → H 2θ

q,D ⊂ H 2θ
q . Finally, the Sobolev embedding theorem (cf. [20,

Theorem 4.6.1, p. 328]) yields H 2θ
q → C(G), assuming that 2θ > d/q, which is satisfied

by hypothesis. We have thus shown that all assumptions of Theorem 2.1 are met, hence the
claim is proved.

Note that p > 2 imply that, for q large enough, the hypothesis d/(2q) < 1/2 − 1/p is
always satisfied.

Remark 2.6 Instead of assuming that f is an odd polynomial with negative leading coeffi-
cient, one could also assume that f : R → R is locally Lipschitz continuous, polynomially
bounded, and quasi-monotone, i.e. that there exists λ > 0 such that x → λx − f (x)

is increasing. In fact, assume that there exists m > 0 such that |f (x)| 1 + |x|m. By
dissipativity of f − λI ,

f (x + y) − λ(x + y) − (f (y) − λy), x∗ ≤ 0,

hence
f (x + y) − f (y), x∗ ≤ λ x, x∗ ≤ λ,
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and
f (x + y), x∗ ≤ λ + | f (y)x∗ | λ + 1 + y m.

2.3 Mild Solution as Random Field

We assume from now on, in addition to Hypothesis 1, the following condition on the
semigroup S generated by −A.

Hypothesis 2 The semigroup S = (S(t))t≥0 is sub-Markovian (i.e. S(t) is positive and
contracting in L∞(G) for all t ≥ 0) and admits a kernel, in the sense that there exists a
function K : R+ × G2 → R+ such that

S(t)φ (x) =
G

Kt(x, y)φ(y) dy

for every φ ∈ Lq(G), q ≥ 1.

Let Q := BB∗, which is a symmetric and non-negative definite bounded operator. Recall
that a cylindrical Q-Wiener process on L2 := L2(G) is a Gaussian family of random vari-
ables W := {Wh(t), h ∈ L2, t ≥ 0} such that, for all s, t ≥ 0 and h, g ∈ L2, E(Wh(t)) = 0
and

E(Wh(t)Wg(s)) = (t ∧ s) Qh, g L2

(in spite of the slight abuse of notation, no confusion should arise with the cylindrical
Wiener process W ). Let L2

Q be the Hilbert space defined as the completion of L2 with
respect to the scalar product h, g L2

Q
:= Qh, g L2 . Note that, denoting the pseudoinverse

of Q1/2 by Q−1/2, if (ek)k∈N is a basis of L2, then (ēk) := (Q−1/2ek) is a basis of L2
Q .

One can define stochastic integrals with respect to W as follows (see, e.g., [4, Sec. 2]): let
{X(t, x) : (t, x) ∈ [0, T ] × G} be a predictable process in L2( × [0, T ];L2

Q). Then

T

0 G

X(t, x)W(dt, dx) :=
∞

k=1

T

0
X(t, ·), ēk

L2
Q

dWēk (t), (3)

and the isometry property reads

E

T

0 G

X(t, x)W(dt, dx)

2

= E

T

0
X(t, ·) 2

L2
Q

dt .

In order to prove that the Malliavin derivative of the solution u of (1) satisfies a stochastic
equation, we need to verify that u can be interpreted as a mild solution to (1) in the sense
of random fields (see, e.g., [3, 4, 22]). This is indeed the case (cf. the analogous result for
equations with additive noise in [9]).

Proposition 2.7 Let the assumptions of Proposition 2.5 be satisfied. For any (t, x) ∈
[0, T ] × G, set u(t, x) := [u(t)](x), where u is the unique C(G)-valued mild solution to
(1). Then, for any (t, x) ∈ ]0, T ] × G,

u(t, x) =
G

Kt(x, y)u0(y) dy +
t

0 G

Kt−s(x, y)f (u(s, y)) dy ds

+
t

0 G

Kt−s(x, y)σ (u(s, y))W(ds, dy). (4)
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Proof As in the proof of [9, Proposition 3.1], it suffices to show that, for every t ∈ ]0, T ]
and for almost every x ∈ G, the process

(s, y) → Kt−s(x, y)σ (u(s, y))

belongs to L2( × [0, T ];L2
Q) and that

t

0
S(t − s)σ (u(s))B dW(s) =

t

0 G

Kt−s(·, y)σ (u(s, y))W(ds, dy) (5)

as an equality in L2. Recalling that (ēk) = (Q−1/2ek), is a basis of the Hilbert space L2
Q,

one easily verifies that

Kt−s(x, ·)σ (u(s, ·)) 2
L2

Q

=
∞

k=1

[S(t − s)σ (u(s))](ẽk)(x)
2
,

where (ẽk) := (Q1/2ek) is a basis of Q1/2(L2). Note that

E

t

0

∞

k=1

[S(t − s)σ (u(s))](ẽk) 2
L2ds < ∞,

because the stochastic integral on the left-hand side of (5) is well defined. Thus, for almost
all x ∈ G,

E

t

0
Kt−s(x, ·)σ (u(s, ·)) 2

L2
Q

< ∞,

so the stochastic integral on the right-hand side of (5) is well defined. Using the standard
formal expansion of the cylindrical Wiener process W as

W(t) =
∞

k=1

ekwk(t),

where wk := Wēk , k ≥ 1, form a family of independent standard one-dimensional Wiener
processes, one has

t

0
S(t − s)σ (u(s))B dW(s) =

∞

k=1

t

0 G

Kt−s(·, y)[σ(u(s))Bek](y) dy dwk(s).

Then (5) follows taking into account the definition (3) and that BB∗ = Q.

3 Equations with Lipschitz Continuous Coefficients

We assume throughout this section that the coefficients f and σ in equation (1) are Lipschitz
continuous. We are going to prove that, for any fixed (t, x) ∈ (0, T ] × G, the law of the
solution u(t, x) to (1) is absolutely continuous with respect to the Lebesgue measure. For
this, note that the Gaussian space where we will make use of the Malliavin calculus is
determined by the isonormal Gaussian process on the Hilbert space H := L2(0, T ; L2

Q) that
can be naturally associated to the cylindrical Q-Wiener process W defined in the previous
section (see [14]).

We will first deal with the Malliavin differentiability of the solution, and then we
shall provide sufficient conditions implying that the pointwise Malliavin derivative is
non-degenerate.

We need further assumptions, that will be assumed to hold from now on.

249Absolute Continuity of Solutions to Reaction-Diffusion...



Hypothesis 3 One has

d

2q
<

1

2
− 1

p
.

Moreover, B ∈ γ (L2, Lq) and u0 ∈ C(G).

Hypothesis 4 The semigroup S is self-adjoint and Markovian.

Recall also that we assume that Hypotheses 1 and 2 are in force throughout. By Propo-
sition 2.5, it follows that (1) admits a unique C(G)-valued mild solution u, and that (1) can
also be written as an equality of random fields.

3.1 Pointwise Malliavin Differentiability of the Solution

The main result of this section is the following.

Theorem 3.1 Let u ∈ Lp( ; C([0, T ];C(G))) be the unique mild solution to (1). Then

u ∈ L∞([0, T ] × G;D1,p)

and the family of Malliavin derivatives {Du(t, x)}(t,x)∈[0,T ]×G satisfies the following linear
equation in H :

Du(t, x) = v0(t, x) +
t

0 G

Kt−s(x, y)F (s, y)Du(s, y) dy ds

+
t

0 G

Kt−s(x, y) (s, y)Du(s, y)W(ds, dy) (6)

where

v0(t, x) := (τ, z) → Kt−τ (x, z)σ (u(τ, z)) 1[0,t](τ ),

and F , : × [0, T ] × G → R are adapted bounded random fields.

The stochastic integral in (6) must be interpreted as an H -valued integral with respect to
the cylindrical Q-Wiener process W (see, e.g., [16, Section 3]).

The following estimate plays an important role in the proof Theorem 3.1 as well as in
several further developments. We shall write E

q
η , for any q ≥ 1 and η > 0, to denote

(I + A)−ηLq .

Lemma 3.2 Let v ∈ Lp( ;C([0, T ];C(G))) be adapted and w : × [0, T ] × G → H

be the process defined as

w(t, x) := (τ, z) −→ Kt−τ (x, z)σ (v(τ, z)) 1[0,t](τ ).

For any η ∈ ]d/(2q), 1/2 − 1/p[ one has

sup
x∈G

w(t, x) 2
H

t

0
S(t − s)σ (v(s))B 2

γ (L2,E
q
η )

ds.
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Proof Since H = L2(0, T ; L2
Q) and Qh, h = B∗h 2

L2 for every h ∈ L2
Q, denoting a

complete orthonormal basis of L2 by (ek)k∈N, it follows by Plancherel’s theorem that

w(t, x) 2
H =

t

0
B∗Kt−τ (x, ·)σ (v(τ, ·)) 2

L2 dτ

=
t

0
k∈N

Kt−τ (x, ·)σ (v(τ, ·)), Bek 2 dτ

=
t

0
k∈N G

Kt−τ (x, z)σ (v(τ, z))[Bek](z) dz

2

dτ

=
t

0
k∈N

S(t − τ)σ (v(τ ))Bek (x)2 dτ,

where we have used the integral representation of the semigroup S in the last step. Let
(γk)k∈N be a sequence of independent standard Gaussian random variable on an auxiliary
probability space . Then

w(t, x) 2
H =

t

0
E

k∈N
γk S(t − τ)σ (v(τ ))Bek (x)

2

dτ,

hence also, by Minkowski’s inequality and the embedding E
q
η → L∞,

sup
x∈G

w(t, x) 2
H

t

0
E

k∈N
γk S(t − τ)σ (v(τ ))Bek

2

E
q
η

dτ

=
t

0
S(t − τ)σ (v(τ ))B 2

γ (L2,E
q
η )

dτ .

The proof of Theorem 3.1 uses a maximal inequality for stochastic convolutions that is
a special (simpler) case of [21, Proposition 4.2]. We shall use the notation R F to denote
the process

R F : t →
t

0
R(t − s)F (s) dW(s),

where R is an analytic semigroup of contractions on a UMD Banach space E and
F : ×R+ → L (L2, E) is an L2-strongly measurable and adapted process. Denoting the
generator of R by −C, we shall write Eη, for any η > 0, to denote D((I + C)η).

Proposition 3.3 Let α ∈ ]0, 1/2[, p > 2, θ ≥ 0 be such that

θ < α − 1

p
,

and T > 0. There exists ε > 0 such that

E R F
p

C([0,T ];Eη)
T pε

T

0
E s → (t − s)−αF (s)

p

γ (L2(0,t;L2),E)
.

We shall also need a deep result by Pisier (see [18, Theorem 1.2 and Remark 1.8] as well
as [23, p. 5730]) on vector-valued extensions of analytic semigroup, according to which
Hpothesis 4 implies that (S(t) ⊗ IH )t≥0, where IH denotes the identity of H , admits a
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(unique) extension from Lq ⊗H to Lq(H), denoted by SH , which is again analytic. Let AH

denote the negative generator of SH and (λ + AH )−1
λ>0 its resolvent. The Laplace transform

identity

(λ + AH )−1 =
∞

0
e−λtSH (t) dt

implies that (λ + AH )−1 coincides with the unique continuous linear extension of (λ +
A)−1 ⊗ IH to Lq(H). By Hypothesis 3 there exists η ∈ ]d/(2q), 1/2 − 1/p[ such that
D(Aη) → L∞, hence (I + A)−η ∈ L (Lq, L∞). Since (I + A)−η is positivity preserving
by Hypothesis 2, (I + A)−η admits a unique extension to a continuous linear operator
from Lq(H) := Lq(G;H) to L∞(H) := L∞(G;H), with the same norm (see, e.g., [5,
Theorem 12.2]). By the above, recalling well-known expressions for fractional powers of
closed operators (see, e.g., [17, §2.6]), this extension coincides with (I +AH )−η. Therefore,
setting E

q
η (H) := (I + A)−ηLq(H), we have E

q
η (H) → L∞(H).

Proof of Theorem 3.1 Let be the fixed-point operator associated to equation (1), i.e.

: v −→ S(t)u0 +
t

0
S(t − s)f (v(s)) ds +

t

0
S(t − s)σ (v(s))B dW(s).

It follows by the (the proof) of Theorem 2.1 that the operator , or a suitable power of it,
is a contractive endomorphism of Lp( ; C([0, T ];C(G))). We are going to show that, for
any p > 2, there exists T0 > 0, a positive constants c < 1 depending on T0, and a positive
constant N depending on the Lp( ; C([0, T ]; C(G))) norm of v, such that

D (v) L∞([0,T0]×G;Lp( ;H)) ≤ N + c Dv L∞(0,T0;Lp( ;L∞(G;H))). (7)

Let v ∈ Lp( ;C([0, T ];C(G))) be such that Dv ∈ L∞(0, T ; Lp( ; L∞(G;H))).
Writing

(v) (t, x) =
G

Kt(x, y)u0(y) dy +
t

0 G

Kt−s(x, y)f (v(s, y)) dy ds

+
t

0 G

Kt−s(x, y)σ (v(s, y))W(dy, ds),

well-known criteria of Malliavin calculus imply that the Malliavin derivatives of all terms
on the right-hand side exist, so that D (v) (t, x) can be written as the right-hand side of
(6) with u replaced by v. The proof of (7) will be split in several steps, where each term
appearing in the expression of D (v) is estimated.

STEP 1. Let us set, for every (t, x), (τ, z) ∈ [0, T ] × G,

w0(t, x) := (τ, z) → Kt−τ (x, z)σ (v(τ, z)) 1[0,t](τ ).

Let η ∈ ]d/(2q), 1/2 − 1/p[. Lemma 3.2 yields

w0(t, ·) 2
L∞(H)

t

0
S(t − τ)σ (v(τ ))B 2

γ (L2,E
q
η )

dτ,

where

S(t − τ)σ (v(τ ))B γ (L2,E
q
η ) (t − τ)−η σ (v) C([0,T ];C(G)) B γ (L2,Lq).
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This implies

E w0
p

L∞([0,T ]×G;H)
1 + E v

p

C([0,T ];C(G))
B

p

γ (L2,Lq)
sup
t≤T

t

0
(t − τ)−2η dτ

p/2

1 + E v
p

C([0,T ];C(G))
B

p

γ (L2,Lq)
T p(1−2η)/2,

where the last term on the right-hand side is finite by assumption.
STEP 2. Let α < 1/2 be such that η < α − 1/p. Recalling that E

q
η (H) → L∞(H),

Minkowski’s and Jensen’s inequalities yield

t

0
S(t − s)F (s)Dv(s) ds

2

L∞(H)
T

t

0
S(t − s)F (s)Dv(s) 2

E
q
η (H)

ds

t

0
(t − s)−2η Dv(s) 2

Lq(H) ds.

Since η < α − 1/p by assumption, we have −2η > −2α + 2/p, hence −2η = −2α +
2/p + ε, with ε > 0. Then

t

0
(t − s)−2η Dv(s) 2

Lq(H) ds =
t

0
(t − s)−2α(t − s)2/p+ε Dv(s) 2

Lq(H) ds

≤ t2/p+ε
t

0
(t − s)−2α Dv(s) 2

Lq(H) ds

T

t

0
s−2α Dv(t − s) 2

Lq(H) ds.

As the measure μ on [0, t] defined as

μ(ds) := 1 − 2α

t1−2α
s−2α ds

is a probability measure, it follows by Jensen’s inequality that

t

0
s−2α Dv(t − s) 2

Lq(H) ds

p/2

= t1−2α

1 − 2α

t

0
Dv(t − s) 2

Lq(H) μ(ds)

p/2

t (1−2α)p/2
t

0
Dv(t − s)

p

Lq(H) μ(ds)

t(1−2α)(p/2−1)
t

0
s−2α Dv(t − s)

p

Lq(H) ds

T

t

0
(t − s)−2α Dv(s)

p

Lq(H) ds.

Therefore

E

t

0
S(t − s)F (s)Dv(s) ds

p

L∞(H)
T

t

0
(t − s)−2α

E Dv(s)
p

L∞(H) ds.
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STEP 3. Using again the continuous embedding E
q
η (H) → L∞(H), we have

E S ( DvB)
p

C([0,t];L∞(H))
E S ( DvB)

p

C([0,t];Eq
η (H))

T E

t

0
(τ − ·)−α Dv B

p

γ (L2(0,τ ;L2),Lq(H))
dτ

t

0
E (τ − ·)−α Dv B

p

L2(0,τ ;γ (L2,Lq(H)))
dτ,

where the third inequality follows by Proposition 3.3, as Lq(H) is a UMD Banach space
and η < α − 1/p, and the fourth estimate follows by Fubini’s theorem and the embedding

L2(0, τ ; γ (L2, Lq(H))) → γ (L2(0, τ ;L2), Lq(H)),

which holds because Lq(H) has type 2. Since Dv(s) ∈ L∞(H) by assumption and ∈
L∞([0, T ] × G) by the Lipschitz continuity of σ , it follows that

(τ − s)−α (s)Dv(s)B γ (L2,Lq(H))

≤ (τ − s)−α
L∞([0,T ]×G) Dv(s) L∞(H) B γ (L2,Lq),

hence

(τ − ·)−α Dv B 2
L2(0,τ ;γ (L2,Lq(H)))

≤ B 2
γ (L2,Lq)

2
L∞([0,T ]×G)

τ

0
(τ − s)−2α Dv(s) 2

L∞(H) ds.

Proceeding as in the previous step, we obtain

E (τ − ·)−α Dv B
p

L2(0,τ ;γ (L2,Lq(H))) T

τ

0
(τ − s)−2α

E Dv(s)
p

L∞(H) ds,

therefore, by Tonelli’s theorem,

E S ( DvB)
p

C([0,t];L∞(H)) T

t

0

τ

0
(τ − s)−2α

E Dv(s)
p

L∞(H) ds dτ

=
t

0
E Dv(s)

p

L∞(H)

t

s

(τ − s)−2α dτ ds,

where
t

s

(τ − s)−2α dτ =
t−s

0
τ−2α dτ = 1

1 − 2α
(t − s)1−2α,

hence

E S ( DvB)
p

C([0,t];L∞(H)) T

t

0
(t − s)−2α

E Dv(s)
p

L∞(H) ds.

STEP 4. Setting

φ(t) := E Dv(t)
p

L∞(H), ψ(t) := E D (v)(t)
p

L∞(H),

N := 1 + E v
p

C([0,T ];C(G))
,

the estimates in the previous steps can be written as

ψ(t) T N +
t

0
(t − s)−2αφ(s) ds,
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hence, using the notation h∗(s) := supr≤s |h(r)| for any function h : R → R for which it
makes sense,

ψ(t) T N + φ∗(t)
t

0
(t − s)−2α ds = N + 1

1 − 2α
t1−2αφ∗(t),

thus also

ψ∗(t) T N + 1

1 − 2α
t1−2αφ∗(t),

from which (7) follows.
Let u0 be identified with the process equal to u0 for all t ∈ [0, T ], which clearly belongs

to Lp( ;C([0, T ];C(G))) and is such that Du0 ∈ L∞(0, T ; Lp( ; L∞(G;H))), and
introduce the sequence of processes (un), un := (un−1). Then un converges to u in
Lp( ; C([0, T ]; C(G))), possibly along a subsequence of the type (kn), with constant k (if

is not a contraction, but k is). In particular, (un) is bounded in Lp( ; C([0, T ];C(G))).
This in turn implies, thanks to (7), that (Dun) is bounded in L∞([0, T0] × G;Lp( ; H)).
Let us show that this actually implies that (Dun) is bounded in L∞([0, T ]×G;Lp( ; H)).
In fact, setting

φn(s) := E Dun(s)
p

L∞(H), φ0 := 1 + sup
n∈N

E un
p

C([0,T ];C(G))
< ∞,

we have already shown that

φn+1(t) T φ0 +
t

0
(t − s)−2αφn(s) ds ∀t ∈ [0, T ],

and that (φ∗
n(T0))n is bounded. We now proceed by induction: assuming that (φ∗

n(jT0))n is
bounded, let us show that (φ∗

n((j + 1)T0))n is also bounded. Let jT0 < t ≤ (j + 1)T0. We
have

φn+1(t) T φ0 +
t

0
(t − s)−2αφn(s) ds

= φ0 +
jT0

0
(t − s)−2αφn(s) ds +

t

jT0

(t − s)−2αφn(s) ds,

where t > jT0 implies t − s > jT0 − s and (t − s)−2α < (jT0 − s)−2α , hence
jT0

0
(t − s)−2αφn(s) ds <

jT0

0
(jT0 − s)−2αφn(s) ds ≤ (jT0)

1−2α

1 − 2α
φ∗

n(T0),

so that

φn+1(t) T φ0 + (jT0)
1−2α

1 − 2α
φ∗

n(jT0) +
t

jT0

(t − s)−2αφn(s) ds

T φ0 + (jT0)
1−2α

1 − 2α
φ∗

n(jT0) + φ∗
n((j + 1)T0)

t

jT0

(t − s)−2α ds,

where
t

jT0

(t − s)−2α ds =
t−jT0

0
s−2α ds ≤

T0

0
s−2α ds = T 1−2α

0

1 − 2α
.

This in turn implies, taking the supremum over [0, (j + 1)T0],

φ∗
n+1((j + 1)T0) T φ0 + (jT0)

1−2α

1 − 2α
φ∗

n(jT0) + T 1−2α
0

1 − 2α
φ∗

n((j + 1)T0).
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Since φ∗
n(jT0) is bounded uniformly with respect to n by the inductive assumption, we

deduce that φ∗
n((j + 1)T0) is bounded uniformly over n as well, thus completing the induc-

tive argument. This implies, by a standard argument based on the closure of the Malliavin
derivative, that u ∈ L∞([0, T ] × G;D1,p).

Finally, the equation for Du follows immediately by differentiating equation (4), upon
applying the chain rule for theMalliavin derivative (see, e.g., [14, Proposition 1.2.4]).

3.2 Non-Degeneracy of theMalliavin Derivative

This section is devoted to study, for any fixed (t, x) ∈ ]0, T ]×G, the norm of the Malliavin
derivative of u(t, x). Together with the results of the previous section, we will deduce the
existence of the density for the law of the random variable u(t, x). Recall that throughout
the section we are assuming that f and σ are globally Lipschitz continuous functions.

We will need an estimate for the norm of Du(t, x) in

H(a, b) := L2(a, b; L2
Q), 0 ≤ a < b ≤ T .

Proposition 3.4 Let 0 ≤ a < b ≤ T , p > 2, and η ∈ ]d/(2q), 1/2 − 1/p[. There exists a
positive constant N , independent of a and b, such that

sup
(t,x)∈[a,b]×G

E Du(t, x)
p

H(a,b) ≤ N(b − a)p(1/2−η).

Proof Repeating the proof of Theorem 3.1 with H replaced by H(a, b), we get

sup
(t,x)∈[0,T ]×G

E Du(t, x)
p

H(a,b) ≤ N sup
(t,x)∈[0,T ]×G

E v0(t, x)
p

H(a,b),

and, by Lemma 3.2,

sup
x∈G

v0(t, x) 2
H(a,b)

t∧b

a

S(t − s)σ (u(s))B 2
γ (L2,Eη)

ds,

where

S(t − s)σ (u(s))B γ (L2,Eη) (t − s)−η 1 + u C([0,T ×G) B γ (L2,Lq).

Therefore

sup
(t,x)∈[0,T ]×G

E Du(t, x)
p

H(a,b) 1 + u
p

Lp( ;C([0,T ×G))
sup
t≤b

t

a

(t − s)−2η ds

p/2

(b − a)(1−2η)p/2.

In the next result we establish sufficient conditions under which the norm of the
Malliavin derivative of u(t, x) does not vanish, almost surely.

Proposition 3.5 Assume that there exists a constant c > 0 such that |σ(z)| ≥ c for all
z ∈ R and that Q is positivity preserving. Let (t, x) ∈ ]0, T ] × G, α ∈ ]0, 1/2[, and
η ∈ ]d/(2q), α − 1/p[. If there exist β ∈ ]0, 1 − α − η] such that

lim
δ→0

δβ

K(x, ·) H(0,δ)

= 0, (8)

then Du(t, x) H > 0 almost surely.
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Proof We are going to estimate P( Du(t, x) H ≤ 1/n) for n ∈ N and pass to the limit as
n → ∞. Let δ ∈ ]0, 1[, and set, for compactness of notation, Hδ := H(t−δ, t). The obvious
inequality a + b ≥ a − b applied to the expression of Du given by Theorem 3.1
yields

Du(t, x) H ≥ v0(t, x) Hδ − S ∗ (FDu)(t, x) + S ( DuB)(t, x) Hδ .

Hence, simplifying the notation a bit and denoting the second term within the norm on the
right-hand side by Y ,

P Du(t, x) H ≤ 1/n ≤ P v0(t, x) Hδ − Y Hδ ≤ 1/n = P Y Hδ ≥ v0(t, x) Hδ − 1/n .

Since Q as well as the semigroup S is positivity preserving, hence K is positive, and σ :
R → R is continuous, we have

v0(t, x) 2
Hδ

=
t

t−δ

Kt−s(x, ·)σ (u(s, ·)) 2
L2

Q

ds

=
t

t−δ G

Kt−s(x, y)σ (u(s, y))Q[Kt−s(x, ·)σ (u(s, ·))](y) dy ds

=
t

t−δ G

Kt−s(x, y)|σ(u(s, y))| Q[Kt−s(x, ·)|σ(u(s, ·))|](y) dy ds

≥ c2
t

t−δ G

Kt−s(x, y)Q[Kt−s(x, ·)](y) dy ds

= c2
δ

0
Ks(x, ·) 2

L2
Q

ds = c2 K·(x, ·) 2
H(0,δ).

This implies that we can use Chebyshev’s inequality to write, for n sufficiently large,

P Du(t, x) H ≤ 1/n ≤ P Y Hδ ≥ c K·(x, ·) H(0,δ) − 1/n

≤ E Y
p
Hδ

c K·(x, ·) H(0,δ) − 1/n
p ,

where, thanks to Theorem 3.1 and Proposition 3.4,

E Y
p
Hδ

= E S ∗ (FDu)(t, x) + S ( DuB)(t, x)
p
Hδ

δp(1/2−α) Du
p

L∞([0,T ]×G;Lp( ;Hδ))

δp(1−α−η).

Taking the limit as n → ∞, we are left with

P Du(t, x) H = 0
δ1−α−η

K·(x, ·) H(0,δ)

p

Since this inequality holds for every δ ∈ ]0, 1[, and the limit of the right-hand side as δ → 0
is zero by assumption, it follows that P Du(t, x) H = 0 = 0.

As an immediate consequence of the above result and of Theorem 3.1 we obtain suffi-
cient conditions for the pointwise absolute continuity of the law of the mild solution to (1),
thanks to well-known criteria of the Malliavin calculus (see, e.g., [14, Theorem 2.1.3]).

Theorem 3.6 Let u ∈ Lp( ; C([0, T ];C(G))) be the unique mild solution to equation (1),
with f and σ Lipschitz continuous and u0 ∈ C(G). Assume that there exists c > 0 such that
|σ(z)| ≥ c > 0 for all z ∈ R and Q = BB∗ is positivity preserving. Let (t, x) ∈ ]0, T ]×G,
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α ∈ ]0, 1/2[, and η ∈ ]d/(2q), α − 1/p[. If there exist β ∈ ]0, 1 − α − η] such that (8) is
fulfilled, then the law of the random variable u(t, x) is absolutely continuous with respect
to Lebesgue measure.

Example 3.7 Assume that A has compact resolvent in L2. Since A is accretive and self-
adjoint, there exist an orthonormal basis (ek)k∈N of L2 and a sequence (λk)k∈N ≥ 0 such
that ek ∈ D(A), Aek = λke

k and limk→∞ λk = +∞. Moreover, let B = (I + A)−m, with
m ∈ N, and fix (t, x) ∈ ]0, T ] × G. Since Q = (I + A)−2m, one has, for any δ ∈ ]0, 1[,

K·(x, ·) 2
H(0,δ) =

δ

0 G

Ks(x, y)[QKs(x, ·)](y) dy ds

=
δ

0
k≥0

(1 + λk)
−2m Ks(x, ·), ek 2

L2 ds

=
δ

0
k≥1

(1 + λk)
−2m e−2sλk |ek(x)|2 ds

= 1

2
k≥1

(1 + λk)
−2m λ−1

k (1 − e−2δλk )|ek(x)|2.

Moreover, we have that

1 − e−2δλk ≥ 2δλk

1 + 2δλk

≥ 2δλk

1 + 2λk

.

Hence

K·(x, ·) 2
H(0,δ) ≥ δ

k≥1

(1 + λk)
−2m (1 + 2λk)

−1 |ek(x)|2.

Assuming that x ∈ G is such that there exists k ∈ N for which ek(x) = 0, the quantity

Cx :=
k≥1

(1 + λk)
−2m (1 + 2λk)

−1 |ek(x)|2

is strictly positive. Therefore we have K·(x, ·) 2
H(0,δ) ≥ Cxδ, i.e.

δ1/2

K·(x, ·) H(0,δ)

≤ C
−1/2
x ,

which implies that condition (8), hence also the assumptions of Theorem 3.6, are satisfied
if we can find α and η such that 1 − α − η > 1/2. This is possible if m is sufficiently large,
so that B ∈ γ (L2, Lq) with q large and d/(2q) is smaller than, say, 1/4.

4 Reaction-Diffusion Equations

Let us now consider equation (1) in the general case, i.e. assuming that f : R → R is an odd
polynomial with negative leading coefficient. As already observed, we could also assume
that x → f (x) − λx is decreasing for some λ ≥ 0, locally Lipschitz continuous, and with
polynomial growth.
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Let u0 ∈ C(G), and u ∈ Lp( ; C([0, T ];C(G))) be the unique mild solution to equa-
tion (1), the existence of which is guaranteed by Proposition 2.5. For every n ∈ N, consider
the function fn : R → R defined as

fn(x) = f (x), |x| ≤ n,

f (nx/|x|), |x| > n.

Then fn is Lipschitz continuous, and the equation

dun(t) + Aun(t) dt = fn(un(t)) dt + σ(un(t))B dW(t), u(0) = u0,

admits a unique mild solution un ∈ Lp( ; C([0, T ];C(G))). Moreover, by construction of
u (see [6]), un coincides with u on the stochastic interval [[0, Tn]], where the stopping time
Tn is defined as

Tn := inf t ≥ 0 : un(t) C(G) ≥ n ∧ T ,

and limn→∞ Tn = T almost surely. In particular, un → u in Lr( ; C([0, T ]; C(G))) for
all r ∈ [1, p[. Let t ∈ ]0, T ] be arbitrary but fixed and set, for every n ∈ N,

n := ω ∈ : t ≤ Tn(ω) .

Since (Tn) is a sequence of stopping times monotonically increasing to T as n → ∞, ( n)

is a sequence in F monotonically increasing to as n → ∞. Clearly {t} × n ⊂ [[0, Tn]],
hence u(t) = un(t) on n, as an identity in C(G). This implies that u(t, x) = un(t, x)

on n for every x ∈ G. Moreover, as fn is Lipschitz continuous, Theorem 3.1 implies
that un(t, x) ∈ D

1,p for every x ∈ G, for all p ≥ 1. We have thus shown that u(t, x) ∈
D

1,p

loc , with localizing sequence ( n, un(t, x)) (cf. [1, §III] or [14, §1.3.5]). This implies
that u(t, x) is Malliavin differentiable, i.e. that there exists a random variable Du(t, x),
independent of the chosen localizing sequence, such that Du(t, x) = Dun(t, x) on n.

We are now in the position to state and prove the main result of the paper.

Theorem 4.1 Let u ∈ Lp( ;C([0, T ];C(G))) be the unique mild solution to (1) with
initial datum u0 ∈ C(G). Assume that Q = BB∗ is positivity preserving and that there
exists c > 0 such that |σ(z)| ≥ c > 0 for all z ∈ R. Let (t, x) ∈ ]0, T ] × G, α ∈ ]0, 1/2[,
and η ∈ ]d/(2q), α − 1/p[. If there exist β ∈ ]0, 1 − α − η] such that

lim
δ→0

δβ

K(x, ·) H(0,δ)

= 0,

then the law of the random variable u(t, x) is absolutely continuous with respect to the
Lebesgue measure on R.

Proof Let (t, x) ∈ GT be arbitrary but fixed. Then, by the Bouleau-Hirsch criterion (see
[1, Proposition 7.1.4]), it suffices to prove that Du(t, x) H > 0 almost surely. Since fn

is Lipschitz continuous for all n ∈ N, Du(t, x) H > 0 on n for all n ∈ N. This readily
implies that Du(t, x) H > 0 almost surely: assume by contradiction that there exists ⊂

with strictly positive probability such that Du(t, x) H = 0 on . Since n increases
monotonically to , there exists n0 ∈ N such that P > 0, where := n0 ∩ . In
particular, by definition of n0 , one has Du(t, x) H > 0 on because ⊂ n0 . This
is clearly a contradiction, because ⊂ . The claim is thus proved.

Remark 4.2 Very minor adjustments allow to consider the case where σ : R → R is locally
Lipschitz continuous with linear growth. In fact, the construction of a unique global solution
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is obtained again by récollement of local solutions (see [6]), and the above reasoning can be
repeated almost verbatim.

Remark 4.3 The setting of Example 3.7 obviously satisfies the assumptions of Theorem 4.1.
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