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Abstract

The boundary of a regular tree can be viewed as a Cantor-type set. We equip our tree with
a weighted distance and a weighted measure via the Euclidean arc-length and consider the
associated first-order Sobolev spaces. We give characterizations for the existence of traces
and for the density of compactly supported functions.
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1 Introduction

Let G be a K -regular tree with a set of vertices V and a set of edges E for some K > 1. The
union of V and E will be denoted by X. We abuse the notation and call X a K -regular tree.
We introduce a metric structure on X by considering each edge of X to be an isometric copy
of the unit interval. Then the distance between two vertices is the number of edges needed
to connect them and there is a unique geodesic that minimizes this number. Let us denote
the root by 0. If x is a vertex, we define |x| to be the distance between 0 and x. Since each
edge is an isometric copy of the unit interval, we may extend this distance naturally to any
x belonging to an edge. We define d X as the collection of all infinite geodesics starting at
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the root 0. Then every £ € dX corresponds to an infinite geodesic [0, &) (in X) that is an
isometric copy of the interval [0, co). Hence x — £ along [0, £) has a canonical meaning.

Given a function f defined on X, we are interested in the collection of those £ € dX for
which the limit of f(x) exists when x — £ along [0, £). We begin by equipping dX with
the natural probability measure v so that v(/,) = K —J when x is a vertex with |x| = j and
I, ={& € 0X : x €0, &)}. Towards defining the classes of functions that are of interest to
us, we define a measure function and a new distance function on X. Write d|x| for the length
element on X and let u : [0, 0c0) — (0, co) be a Borel measurable and locally integrable
function. We abuse notation and refer also to the measure generated viadu(x) = w(|x|)d|x|
by w. Further, let A : [0, 00) — (0, co0) be Borel measurable and locally integrable, and
we define a distance d via ds(x) = A(|x|)d|x]| by setting d(z, y) = f[z’y] ds(x) whenever
z,y € X and [z, y] is the unique geodesic between z and y. For convenience, we assume
additionally that A7/ € L/?~" ([0, 00)) if p > 1 below and that A/u € L([0, 00)) if
p = 1. Then (X, d, i) is a metric measure space and we let NLP(X) := NVP(X,d, ),
1 < p < o0, be the associated Sobolev space based on upper gradients [10], as introduced
in [27]. See Section 2 for the precise definition. We show there that, actually, each u €
NLP(X)is absolutely continuous on each edge, with u’ € Lﬁ(X). As usual, Né’p(X) is the
completion of the family of functions with compact support in N7 (X).

In order to state our results, we need two more concepts. Given 1 < p < 0o we set

o . NN A(x) =
Rp:/ AP Tu@)-r K1-r dt = el [
0 nx)K™* L‘f’l(x)
and we define
_H A(t)
IO K" {| 100 10.00))

One should view R, as an isoperimetric profile (X, d, u) : in case of a Riemannian mani-
fold M, the natural version of R), is closely related to the parabolicity of the manifold [28];
R, = oo guarantees parabolicity (every compact set is of relative p-capacity zero). This
suggests that the existence of limits for Sobolev functions along geodesics might be some-
how related to finiteness of R, see Remark 3.8 for a discussion. Let us say that the trace of
a given function f, defined on X, exists if

Tr f(§) := [Osl)iaril_)sf(X) 1.D

exists for v-a.e. £ € 0X. We then denote by Tr f the trace function of f. For other possible
definitions of the trace and connections between them see [17].

Our first result gives a rather complete solution for the existence of traces in the case
w(X) < oo.

Theorem 1.1 Let X be a K -regular tree with distance d and measure ji. Assume p(X) <
0. For 1 < p < oo, the following are equivalent:

() R, <oc.
(i) Tr f exists forevery f € NYP(X) and Tr : NV"P(X) — L% (8X) is a bounded linear
operator.
(iii) Tr f exists for every f € NVP(X).
() NyP(X) S N'P(X).
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In [3, 18] the trace spaces of our Sobolev spaces were identified as suitable Besov-type
spaces for very specific choices of u, A.
For the case u(X) = oo, we define

p
—1

1
Ry = sup/ MO T TP KTrdr ifp > 1 and Ry = R, (1.2)
k>1J A
where {A;}72, = ([t t+1))7o, is the sequence of subintervals in [0, 00) with

-[Ak K'pu@)dt =1fork=1,2,...and0 =1 <t <... Then [0, 00) = |2 Ax.
Our second result deals with the case of infinite volume.

Theorem 1.2 Let 1 < p < oco. Let X be a K-regular tree with distance d and measure (.
Assume (X) = oo. Then the following hold:

(1) NyP(X) =NV (X).
(2) The following are equivalent:

(@ R, <oo.
(b) Tr f exists and Tr f = 0 for every f € NP (X).
(¢) Trf exists for every f € NVP(X).

In this case of infinite volume and 1 < p < oo, it is easy to see that R, < oo implies
R p < 00, but the inverse implication need not hold true. Moreover, the finiteness of R p
does not imply the finiteness of R, for some 1 < ¢ < oo, see Example 3.14, and Remark
3.15.

Our third result gives a complete answer in the case of homogeneous norms, see Section 2
for the relevant definitions. Here Nol’p (X) is the completion of the family of functions with
compact support in N7 (X).

Theorem 1.3 Let X be a K -regular tree with distance d and measure . For 1 < p < 00,
the following are equivalent:

(i R, < oo
(i) Tr f exists forevery f € Nl’P(X) and Tr : NI’P(X) — LY(8X) is a bounded linear
operator.
(iii) Tr f exists for every f € NLP(X).
() NyP(X) S N-P(x).

Let us close this introduction with some comments on Theorem 1.3. Even though the
condition R, = oo implies p-parabolicity, finiteness of this quantity does not, in general,
prevent p-parabolicity, see [7]. Hence Theorem 1.3 and the preceding theorems are some-
what surprising. In fact, it follows from our results that, in the setting of this paper, R, = 0o
precisely when (X, d, w) is p-parabolic. See [23] for more on this. Hence the reader famil-
iar with moduli of curve families might wish to view Theorem 1.3 as kind of a version of
the equivalence between modulus and capacity.

Partial motivation for this paper comes from boundary value problems for the p-Laplace
equation. For the case of manifolds see [12, 13] and for the setting of metric spaces see [2,
4, 15]. Classical trace results on the Euclidean spaces can be found in [1, 6, 9, 14, 16, 22,
25, 29, 30] and studies of parabolicity on infinite networks in [26, 32]. For trace results in
the metric setting see [3, 18-21, 33]. Our second motivation comes from the recent paper
[24] where a version of Theorem 1.3 was established on regular trees for the case p = 2.
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The paper is organized as follows. In Section 2, we introduce regular trees, boundaries
of trees and Newtonian spaces on our trees. We study the trace results in Section 3 and the
density results are given in Section 4. In Section 5, we give the proofs of Theorems 1.1-1.3.

2 Preliminaries

Throughout this paper, the letter C (sometimes with a subscript) will denote positive con-
stants that usually depend only on the space and may change at different occurrences; if C
depends on a, b, . .., we write C = C(a, b, ...). The notation A < B (A 2 B) means that
there is a constant C suchthat A < C - B (A > C - B). The notation A &~ B means that both
A < B and B < A hold. For any function f € LllOc (X) and any measurable subset A C X

with (A) > 0, we denote ﬁ [, fduby £, fdu.
2.1 Regular Trees and Their Boundaries

A graph G is a pair (V, E), where V is a set of vertices and FE is a set of edges. We call
a pair of vertices x, y € V neighbors if x is connected to y by an edge. The degree of a
vertex is the number of its neighbors. The graph structure gives rise to a natural connectivity
structure. A tree G is a connected graph without cycles.

We call a tree G a rooted tree if it has a distinguished vertex called the root, which we
will denote by 0. The neighbors of a vertex x € V are of two types: the neighbors that are
closer to the root are called parents of x and all other neighbors are called children of x.
Each vertex has a unique parent, except for the root itself that has none.

We say that a tree G is K-regular if G is a rooted tree such that each vertex has exactly
K children for some K > 1. Then all vertices except the root of G have degree K + 1, and
the root has degree K.

Let G be a K -regular tree with a set of vertices V and a set of edges E for some K > 1.
For simplicity of notation, we let X = V' U E and call it a K-regular tree. A K -regular tree
X is made into a metric graph by considering each edge as a geodesic of length one. For
x € X, let |x| be the distance from the root O to x, that is, the length of the geodesic from 0
to x, where the length of every edge is 1 and we consider each edge to be an isometric copy
of the unit interval. The geodesic connecting x, y € V is denoted by [x, y], and its length
is denoted by |x — y|. If |x| < |y| and x lies on the geodesic connecting O to y, we write
x < y and call the vertex y a descendant of the vertex x. More generally, we write x < y if
the geodesic from 0 to y passes through x, and in this case |x — y| = |y| — |x].

On the K -regular tree X, for any n € N, let X" be a subset of X by setting

X":={xeX:|x| <n}.
On the K -regular tree X, we define a metric d via ds and measure du by setting
dp = p(lxDdlx], ds(x) = r(|x])d|x],

where A, 1 : [0, 00) — (0, 00) are Borel functions with A, u € L! ([0, c0)). Throughout

loc
this paper, we let 1| < p < oo and assume additionally that AP /u € Lllo/c(p_l)([o, 00))
if p > 1 and that A/ € L5.([0,00)) if p = 1. Here d |x| is the measure which gives
each edge Lebesgue measure 1, as we consider each edge to be an isometric copy of the
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unit interval and the vertices are the end points of this interval. Hence for any two points
Z,y € X, the distance between them is

d(z,y>=/ ds(x>=f A dix],
[z,y] [z,y]

where [z, y] is the unique geodesic from z to y in X.

We abuse the notation and let (x) and A(x) denote w(]x|) and A(|x|), respectively, for
any x € X, if there is no danger of confusion.

Next we construct the boundary of the K-regular tree. An element £ in 0X is identified
with an infinite geodesic in X starting at the root 0. Then we may denote £ = Oxjxo---,
where x; is a vertex in X with |x;| = i, and x; 4 is a child of x;. Given two points &, { € 0X,
there is an infinite geodesic [, ¢] connecting & and ¢.

To avoid confusion, points in X are denoted by Latin letters such as x, y and z, while for
points in 9 X we use Greek letters such as &, ¢ and w.

We equip 0X with the natural probability measure v as in Falconer [5] by distributing
the unit mass uniformly on 0X. For any x € X with |x| = j, if we denote by I, the set

{€ € 0X : the geodesic [0, &) passes through x},

then the measure of I, is K /. We refer to [3, Lemma 5.2] for a more information on our
boundary measure v.

2.2 Newtonian Spaces
Let X be a K -regular tree with metric and measure defined as in Section 2.1. Let .# denote
the family of all nonconstant rectifiable curves in X. We recall the definition of p-modulus

of curve families in .#, see [8, 11] for more detailed discussions.

Definition 2.1 For ' C ., let F(I') be the family of all Borel measurable functions
p : X — [0, oo] such that

[,ods > 1 forevery y € I'.
12
For 1 < p < oo, we define
Mod,(I") = inf / ol du.
peF) Jx

The number Mod,, (I") is called the p-modulus of the family I'.

Proposition 2.2 Let 1 < p < oco. Then the following are equivalent:

I aulrer?

loc

([0, 00)) where p’ is the Holder conjugate of p, that is % +4 =1
2. Mod,({y}) > 0 for every rectifiable curve y.

P

In particular, on our K -regular tree X with metric and measure defined as in Section 2.1,
the empty family is the only curve family with zero p-modulus for 1 < p < oo.
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Proof 1. = 2.: For every Borel measurable function p € F({y}), we have f y pds > 1.

By the monotone convergence theorem, we may assume that f pds > 1/2 for a subcurve,
still denoted y, that is contained in {x € X : |[x| < N} for some N € N. Notice that

ds(o) = 22 4,

w(x)
For p > 1, it follows from the Holder inequality that

)y /( |) (p=D/p
/pds = / p—dp < (fy pl’d,u) (fy ,);Z/(Z ) )
y y M
1/p
<N, po s K (f, 07 dn)

since it follows from A? /i € L7V (10, 00)) that

loc

1
AP/ (p=1) N /3P 71
</71du§KN/ (())1 dt < 00.
y uP/@=D o \n®

Hence we have that

p
/pdeZ/p”duzc(N,p,k,M,K) (/pdS) >C(N,p,x, u, K)/2>0.
X V4 Y

Q2.1
For the case p = 1, by a similar argument without using the Holder inequality, it follows
from A/ € L.([0, 00)) that

loc

deMZC(N,)»,M,K)>O. (2.2)
X

Thus
Mod,({y}) > O for every rectifiable curvey.

2.= 1.: We argue by contradiction. Assume that 1 & LIOC([O, 00)). Then it suffices
to find a rectlflable curve y with Mod, ({y}) = 0.

Since 1/,; ¢ Lloc([O, 00)), there exist two constants 0 < a < b < oo such that

= 00. 2.3)
L?'([a,b))

A
MI/P
Let x4, y» € X with |x4| = a, |y»| = b and x, < y,. Then we claim that the geodesic
[x4, yp] from x, to yp, denoted by y, satisfies Mod, ({y'}) = 0.

To prove the above claim, by [8, Theorem 5.5] or [11, Lemma 5.2.8], we only need to
find a Borel measurable function 0 < p € L?(X) such that

/ pds = oo. 2.4)
y

For p > 1, the condition Eq. 2.3 implies
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Since A, p are Borel measurable functions, there is a sequence of pairwise disjoint Borel
subsets {I; : Iy C [a, b]}72, such that

k _r_ L
2</Awm 5 (1)dt < oo.
I

We define a function p : X — R by setting

p(x) = h(lx ) xy (x) = h(1x]) Xrxg,yp1 (X)

where
oo

1 1
AT (ORTT (1)
h(t) =) - T XIi ()
k=1 [; AP (O (1)dt
Since A, u are Borel measurable functions and I is Borel for each k, the function p is
Borel measurable. Moreover, since the subsets {Ik},fi | are pairwise disjoint, we obtain the
LP-estimate

b
100 = [ DI diec) = [ by d
[xa.yp] a

1 1 P

0 AT >
3 [ (e )
b\ [y A7 T (@Ou™r

Finally, Eq. 2.4 follows from

/ pds = / h(e)(r) di = Z/ Ll l(t) Ay =3 1= oc.
IO (t)dt k=1
For p = 1, the condition Eq. 2.3 implies
)\' —
Hm L ([a,b]) -

Using a similar argument as for Theorem 3.5 for the case p = 1 below, there exists an
infinite sequence {Ey, }x,cN defined by

A
wu(t)

such that
|Ek,| > 0 foreachk, e N.

We define a function p : X — R by setting
p() = M) 1y (1) = A(1x]) X1xg.351(X)

where

h(t) —Z . m) g (B -
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108 P. Koskela et al.

Notice that the subsets {Ey, }x,en are Borel and pairwise disjoint. Hence the function p is
Borel measurable and

~ b..
el = /[‘ ]Ih(lxl)ldu(x) Z/ h(t)u(r) dt
XasYb

u(t)
£, g, M0

Je, 27F @) di
=) 27 < o0,
fE’\'n )\‘(t) dt kneN

kn,eN

2

k,eN

A

Moreover, Eq. 2.4 holds since

b
/ypds:/a RO df = Z T = L=

kneN
Finally, the last claim follows since A/ P € Lloc( [0, 0)). O
Letu € LIIOC(X). We say that a Borel function g : X — [0, oo] is an upper gradient of
u if
@ —ue) = [ gds @5
y

whenever z, y € X and y is the geodesic from z to y. In the setting of a tree any rectifiable
curve with end points z and y contains the geodesic connecting z and y, and therefore the
upper gradient defined above is equivalent to the definition which requires that inequality
Eq. 2.5 holds for all rectifiable curves with end points z and y. In [8, 11], the notion of p-
weak upper gradient is given. A Borel function g : X — [0, oo] is called a p-weak upper
gradient of u if Eq. 2.5 holds on p-a.e. curves y € ., i.e., Eq. 2.5 holds for all curves
y € # \ T, where Mod,(I') = 0. Notice that by Proposition 2.2, any p-weak upper
gradient is actually an upper gradient here. We refer to [8, 11] for more information about
p-weak upper gradients.

The notion of upper gradients is due to Heinonen and Koskela [10]; we refer interested
readers to [2, 8, 11, 27] for a more detailed discussion on upper gradients.

The Newtonian space N Lp (X),1 < p < 00, is defined as the collection of all functions
u for which the N'”-norm of u defined as

lullyrexy == lullLex) +i2f llgllLrx)y < oo,

where the infimum is taken over all upper gradients of u. If u € N7 (X), then it has a
minimal p-weak upper gradient, which is an upper gradient in our case (by Proposition 2.2).
We denote by g, the minimal upper gradient, which is unique up to measure zero and which
is minimal in the sense that if g € LP(X) is any upper gradient of u then g, < g a.e. We
refer to [8, Theorem 7.16] for proofs of the existence and uniqueness of such minimal upper
gradient. Throughout this paper, we denote by g, the (minimal) upper gradient of u.

By Proposition 2.2, it follows from [8, Definition 7.2 and Lemma 7.6] that any function
u e Llloc(X ) with an upper gradient 0 < g € LP”(X) is locally absolutely continuous,
for example, absolutely continuous on each edge. Moreover, the “classical” derivative u’
of this locally absolutely continuous function is a minimal upper gradient in the sense that
gu = [u'(x)|/A(x) when u is parameterized in the nature way.
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We define the homogeneous Newtonian spaces NLP(X), 1 < p < 00, the collection
of all continuous functions u that have an upper gradient 0 < g € L?(X), for which the
homogeneous N'-7-norm of u defined as

Il y1.p0x, 2= [0O)] +infliglLocxy

is finite. Here O is the root of the K-regular tree X and the infimum is taken over all upper
gradients of u.

3 Trace Results

In this section, if we do not specifically mention, we always assume that X is a K-regular
tree with measure and metric as in Section 2.1.

Lemma 3.1 Ler 1 < p < o0. Forevery f € LP(X), we have that
[ [ ek auwane ~ [ 7o duw.
ax J10,e) X
where j(x) is the largest integer such that j(x) < |x|+ 1.

Proof Let f € LP(X). Forany & € 0X, let x; = x;(§) be the ancestor of & with |x;| = j.
Then it follows from Fubini’s Theorem that

—+00

[ [ rwrkawoe = [ 3 [ F@IPKT dux) dv(e)

90X J[0,§) 0X o Y Ixj(€).xj11(5)]

Jj=

+00
— p K7
/X |f () /BXJX_(:)

Xxj ©),x ;01 @)1(X) dv(§) dp(x).

Note that x[x;(#),x;,1()1(x) is nonzero only if j < |x| < j + 1 and x < &. Thus the above
equality can be rewritten as

/ f | fCOIPKI™ dpu(x) dv(&) =/ |f P KT Ov(L) dp(x)
0X J[0,&) X
where I, = {£ € 90X : x < &}. Since v(I,) ~ K7™ we obtain that

/ / If(X)I”K-’(x)du(x)dV(é)A”«/If(X)I”du(x)-
X J[0,&) X D

Theorem 3.2 Let 1 < p < 00 and assume that R, < +o0. Then the trace Tr in Eq. 1.1
gives a bounded linear operator Tr : NLP(X) —> LY 3X).
Proof Let f € N'P(X). Our task is to show that

Tf®):=fE® = lim [0, 3.1

[0,6)5x—

exists for v-a.e. £ € 0X and that the trace Tr f satisfies the norm estimates.
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To show that the limit in Eq. 3.1 exists for v-a.e. £ € 90X, it suffices to show that the

function
PO =100+ [ grds
[0.8)

is in LY (3X), where [0, £) is the geodesic ray from O to £ and g 7 is the minimal upper
gradient of f. To be more precise, if f* e LY(9X), we have If*l < oo for v-ae. £ € 90X,
and hence the limit in Eq. 3.1 exists for v-a.e. § € 0X.

Since we have
_Ax)

ds =
m(x)

we obtain the estimate

@& =11 O+ floe &rds = 1f O + figz &7 265 du. (3.2)

For p > 1, it follows from the Holder inequality that

~ . P
TRGk SO + (flo.e) 87K 20 dp)

. p—1
i A p—1
< IFOI + fio g &rP K/ dpe (f[o,a (M(x),iﬁ)wp)' d“)
SO+ RyP™! foe) 8rP KT W dpe,

where j(x) is the largest integer such that j(x) < |x| + 1. Here the last inequality holds

since
p_

P
A -1 ® A()rT
[ G ) e [T 07—,
[0.6) \H(x)K/ 7P 0 ()P TKpT

Integrating over all £ € 0X, since v(0X) = 1, R, < +oo and g5 € L?(X), it follows
from Lemma 3.1 that

/3 . I @17 dv SIFONP + fox fo.6) 8O KIW dputx) dv (&)
SIFOP + [y gr ()P dux), p>1. (3.3)

For p = 1, integrating over all £ € d X with respect to estimate Eq. 3.2, since v(d X) = 1,
we obtain by means of Fubini’s theorem that

(x)

- A
/ @)y < LFO)] + / f 27106 - du dv(e)
X ax Jx n(x)

}»(x)/
d d
) 8X)([o,gr)(x) v(&)du(x)

= |f(0)|+/ gr )
X

— 1)+ /X g ORI (T du ().

Here in the above estimates, the notations / and j(x) are the same ones as those we used
in Lemma 3.1. Since v(I,) ~ K" and R; < 400, we further obtain that

/M IF*&ldv S 1£O)] +R1/ng(X)dM(X) S 1O +/ng(X)dM(X)- (3:4)
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Hence we obtain from estimates Eq. 3.3 and Eq. 3.4 that f* is in L} (3X) for 1 < p <
0o, which gives the existence of the limits in Eq. 3.1 for v-a.e. § € 9X. In particular, since
| f] < f*, we have the estimate

/ |fIPdv < |f(0)|"+/ grPdu,
X X

and hence the norm estimate

B 1/p
1l roxy SIFOI+( | grfdu) = 1Flgue-
! X
O

Since every f € NLP(X) is locally absolutely continuous, a direct computation gives
the estimate | f(0)| < | £l nlp(x)- Hence we obtain the following result from the above
theorem.

Corollary 3.3 Let 1 < p < oo and assume that R, < +00. Then the trace Tr in Eq. 1.1
gives a bounded linear operator Tr : NP (X) — LY (9 X).

Next, we study non-existence of the traces when R, = co. Before going to the main
theorems, we introduce the following lemma.

Lemma 3.4 ([31]) Let (2, d, nq) be a o-finite metric measure space. Then the following
conditions on (2, d, |Lq) are equivalent:

(i) LP(Q) c L1(2) forall p,q € (0, 00) with p > q;
(i) wu(R) < 4oo.
Theorem 3.5 Let 1 < p < 00 and assume that R, = +00. Then there exists a function
u € NYP(X) such that
u(x) 400, forall § € 0X. 3.5)
[0, 5)9

Proof To construct the function u € NP (X) satisfying Eq. 3.5, it suffices to find a
nonnegative measurable function g : [0, oo) — [0, co] such that

0, gty dt =
{ fo g(t)pM(I)tht < +00. (3.6)

Given such g, we may define the function u by setting u(0) = 0 and u(x) = lx‘ g®A(t)dt
for any x € X. Then it follows from the definition of upper gradient that g, : X — [0, o0]
defined by g, (x) = g(]x|) is an upper gradient of u. Moreover, we obtain that

+00
”g””il’(X) :/ gu”d,u %/0 g(t)”,u,(t)tht < 4o00.
X

Hence the condition Eq. 3.6 implies u € NP (X) and that Eq. 3.5 holds.

For p =1, Ry = H = o0, the set
or p since R| = u(z)K’ (0000 00, the sets
At) k
Ap =1 €0, 00): okl penN
n(K!
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form a nonincreasing sequence of subsets of [0, c0) and we have
|Ax| > O forany k € N.
Hence there exists an infinite sequence {k, }x,en such that | By, | > O for any k,, where
At
= 11 € [0, 00) : 2kl > 20 gml
(K’

otherwise, there will be N € N such that for any k > N, we have |Bx| = 0, and hence
|Ax| = 0 for any k > N, which is a contradiction. Since A € Llloc, we may also assume that
0</ 5, A1) dt < 400 by replacing By, with a suitable bounded subset if necessary. Then

By, = A, \ Ak

n+1

we define g by setting

kan At) dt

— _ VieB,, kel
gt) = )
s otherwise.

It follows that
/ T O dr 3 MOy, Si=+
g = —_— = = o0
0 S B kan r(@)dt et

and from the definition of By, that

—+00 tK[
/ cOUMK" di = _HOK
0 kn,eN Bkn ka )\(t) dt
B () »
=y dr=3 2" <o,
kneN By, ka Ar) dt kneN

Hence Eq. 3.6 is satisfied.
For p > 1,let (1) = A(t) 7T ju(¢)

[0 R
I=p K T-r . Then we know that

R, = fo NoE IM(Z)% =7 dt = /0 r(t)dt = oo. 3.7

Since AP /i € Ll/(p_l)([O 00)), we have r € L]

loc

([0, 00)). Define the function g by setting

loc

gt) = ?»(t)ﬁu(t)qlfqa(t) =r(®a(r)/Ar),

where « : [0, 00) — [0, oo] is be determined. Then to find a function g satisfying Eq. 3.6,
it suffices to show the existence of a function « satisfying

{ FgOr)dt = [° a(t)r(t)dt = +o0
I eP K dt = [ a(t)Pr(t)dt < +oo.

Consider the metric measure space ([0, 00), dE, wu,) with dg the Euclidean distance where
du, = r(t)dt. Since r € Llloc, we have that ([0, 00), dg, i,) is a o-finite metric measure
space. Then it follows from Eq. 3.7 that u, ([0, 00)) = +o00. Hence by Lemma 3.4, we know
that L” ([0, 00), ir) SZ L' ([0, 00), ), i.e., there exists a function « : [0, 00) — such that
a € LP([0, 00), u,) but o ¢ L([0, 00), r). Choosing this « ensures Eq. 3.8.

In conclusion, for 1 < p < oo, we can construct a function u € N 1’IJ(X) satisfying
Eq. 3.5. O

(3.8)

Remark 3.6 If additionally u(X) < oo, instead of constructing the above increasing func-
tion, we may easily modify the construction so as to obtain a piecewise monotone function
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u € NLP(X) with values in [0, 1] so that u(x) = 1 when |x| = tr;j and u(x) = 0 when
|x|] = t2j41, where #y — o0 as k — oo. Then this oscillatory function u belongs to
NP (X), but has no limit along any geodesic ray. Hence we obtain the following result.

Proposition 3.7 Let 1 < p < oo and assume that R, = +oo. If n(X) < oo, then there
exists a function u € NVP(X) such that limpo £)sx—¢ u(x) does not exist for any & € 9X.

Remark 3.8 Since our weights only depend on the distance to the root, Theorem 3.2 and
Theorem 3.5 boil down to embeddings on the positive real axis. One of the key properties
is that R, < oo if and only if

LP(RT, K'u(t)dr) ¢ LY(RT, A(r) dt) (3.9)

where A and p are defined on [0, co) as specified in the introduction. Consequently, if
m(X) < oo, then R, < oo implies R, < oo whenever 1 < p < g < oo. However
such an implication does not hold true if 1(X) = oo, but finiteness of R), is still subject to
interpolation, i.e. if R, < oo and R, < oo then R; < oo forevery g € [p,r].

The above results give the full answers to the trace results for the homogeneous New-
tonian space N 1*1"(X ) and also for the Newtonian space N 1’P(X ) when pu(X) < oo. We
continue towards the case u(X) = oo.

Proposition 3.9 Ler 1 < p < oo and assume pu(X)=o00. Then for every f € LP(X), we have

lim inf x)| =0, forae &€ 0X, 3.10
o mnf, [f ()l S 3 (3.10)

and hence Tr f = 0 if Tr f exists.

Proof Assume that Eq. 3.10 is false. Then there exist a function f € L?(X) and a set
E C 90X with v(E) > 0 such that

lim inf x)| >0, forallé € E.
Jiminf | £ o) ;

Hence for each £ € E, there exist a constant €(§) > 0 and an integer N(§) := N(€(§))
such that
|£(0)] > €(®) >0, forallx e[0,&) with |x| > N(&).

It follows from Lemma 3.1 that

A1y = f If(x)l”du%f / |F I KIS dpa(x) dv(§)
X 9x J[0,¢)

> / / FOIPKTD du(x) dv(e)
E J{x€[0,8):|x|>N (&)}

> / f €(&)PKID du(x) dv(€)
E J{x€[0,6):|x|=N (&)}

= / €)r / K7D p(r)drdv(®),
E N(&)

where j(¢) is the largest integer such that j () <t + 1. Since u(X) = ocoand u € LllOC (X),
for every integer N (£), we have

oo .
/ K/Dp@t)dt = oo.
N ()
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Since €(£) > O foreach & € E and v(E) > 0, we obtain that

||f||in(x) = +00,

which contradicts the fact that f € L?(X). Thus Eq. 3.10 holds.
If Tr f exists, then Tr | f] also exists. It follows from the definition of the trace Eq. 1.1
and Eq. 3.10 that Tr | f| = 0. Hence Tr f = 0. O

Proposition 3.10 Assume R| = +400. Then there exists a function u € N LX) such that
lim{g £)5x—¢ u(x) does not exist, for any § € 9X.

P It follows from R| = H A0 ’ = oo that the sequence of sets
oof P HOKT ] oo 0,00) a
At
Ej:= {1 €[0,00) : @) > 2k
n®K!

satisfies
|Ex] > 0 forany k € N.

Hence we may choose a sequence {t : tx € [0, 00)}xen With
ty > 0o as k — oo and |Ex N [tx—1, ]| > 0 forany k € N. (3.11)

Since u € Llloc([O, 00)), we have that for each k € N,

173

0< / w® K" dt =: My < oo.
tk—1

By the absolute continuity of integral with respect to measure, we may divide the interval

[tx—1, tr] into (2]‘ M, ] subintervals {/;}; whose interiors are pairwise disjoint such that

12k M
U I =114l and 0</ wt K dt < 27K, (3.12)

1

j=l1 J

Since |Ex N [tx—1, ]| > 0 from Eq. 3.11, we obtain there is at least one subinterval I} €
{1;}; such that | Ex N I;| > 0. Then we define a function g by setting

fEkﬂlk Anyde’
0

— 2 ifteE N, keN;
gt) = )
, otherwise.

Since A(¢) is always positive and A € Llloc([O, 0)), the above definition is well-defined.

Next we construct the function u. For any k € N, since we have

1
/k g(®A(t) dt :f %dt =2, (3.13)

Tg—1 ExNik fEmIk Mr)dt

we may apply the same idea of construction as in Remark 3.6 on {x € X : fx_1 < |x| <}
to obtain a piecewise monotone function # with upper gradient g, (x) = g(|x|) and with
values in [0, 1] so that u(x) = O when |x| = #x—1, tx and u(x) = 1 when |x| = t,i where
fk—1 < t;, < t. Then the function « has no limit along any geodesic ray.
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Thus it remains to show that u € N11(X). We first estimate the L'-norm of the upper
gradient g, of u. By the definitions of function g and of Ey, it follows from estimate Eq. 3.13

that
/ gudp < / gOuOK dr =7 / gOuK" di
X 0 keN ExNlIy
<y 2t / gnr)dr =) 2'F < oo,
keN ExNI keN

For the L'-norm estimate of u, notice that u(x) > 0 only if |x| € I} for some k € N. Since
lu(x)| < 1, we obtain from Eq. 3.12 that

/ udp = Z/ u(x)du(x) < Z/ pK'de <y 27* <
X {xeX:|x|el}

keN keN keN

We conclude that u € N'!(X) and that limpg ¢)sx—¢ u(x) does not exist, for any & €
0X. O

Lemma 3.11 Let 1 < p < oo. Assume u(X) = oo. The following are equivalent:
I. Rp<oo.

2. Tr f exists for every f € NVP(X) and Tr f(§) = 0 for a.e & € dX.

3. Tr f exists for every f € NLP(X).

Proof 1.= 2.:Let f € N'P(X). Lemma 3.1 gives that

/ | FIPK/¥dp < oo and / g?-Kj(x)du<oo
[0,6) [0,8)

forae. & € 9X. Let {Ag};2, be a sequence of subintervals in [0, 0o) with fAk K'u(t)dt =
1 as in the formula Eq. 1.2 of R ,. Then

oo
/ |FIPKI®dp = Zf | f(x(O)PK u(t)dt < oo forae.k.
[0.8) k=1 A
Given [0, &) satisfying the above inequality, we have
lim / | f(x(E)|PK w(t)dt = 0.
k=00 J A,
Since f is continuous and f Ar K'uu(t) dt = 1 for each k, there exists a #;, € Ay such that

Gl =/A GNP K w(t)dt — 0 ask — oo.
k

Hence we have

teAg

sup [f(x(1)] = |f(x(fk))|+/A grds
k

p—1

1/p =l
|f(x(tk))|+<f pKt,u(t)dt) (/ )»Ll()p,l P(t)K 1= Pdt)
Ak Ag

— 0 ask — oo,

IA
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since R, < oo. Since U,fil A = [0, 00), it then follows that

limsup f(x)
[0,£)5x,x—&
Then Tr f exists and Tr f(§) =0foraeé& € 0X.

2. = 3. This implication is trivial.
3. = 1. Fix p > 1, and suppose that R, = oo. Then, for the sequence of subintervals
{Ar)RS, with 2| A = [0, 00), we have

< klim sup [f(x(2))| =0 foraeé& € 0X.

— teAL

2 1
/ K'u(t)dt = 1 and sup/ AT (O (1)K TP dt = o,
Ak keN Ak

We pick a subsequence of {Ag}2, still denoted {A;}2 |, such that

4 1
/K’,u(t)dt:l and /,\ﬁ(z)uﬁ(z)Kﬁd»M.
Ak Ak

Now, we divide A into 2% intervals {Ik,l}lzk | with f L) K'u(t)dt = 27%. Hence there exists

at least one interval Iy in {l; ; : [ =1,2,..., 2"} such that
1
f K'ju(t)dt =27 and / AT (OuTF (K Trdr > 2k, (.14)
I I
We define

It follows that

° % -P -P
f S OK pndr = Y / P ORTTORTE ) gty
0 b\ [y AP T O (K TP dt

o0

> 1 1
= o 1 <> k- =X

t p—1
k=1 (f]k AT () t=r (t)KWdt) k=1

and

/ AT (R (KT
I t

_ : At =1
k f,k AP T ()7 (1)K -7 dt

/ g(OMD)dt =
I

for every I where k = 1,2, .... We use the procedure of Remark 3.6 by replacing the
finiteness of the total measure with ), u(Ix) < 00 so as to obtain a piecewise monotone
function u € NP (X) with upper gradient g, (x) = g(|x|), where g is from above, and so
that u has no limit along any geodesic ray. This contradicts 3. O

For p = 1, we have Ry = Rj. For p > 1, it is easy to check that R, < oo implies
R p < 00, while the inverse does not hold true. Furthermore, we will show that the finiteness
of R, will not imply the finiteness of R, forany 1 < g < oo.

For simplicity, we consider the special case where A and p are piecewise constant. More
precisely, assume that

At) =Aj, u(t) =pj, fort € [j, j+1), jeN,

@ Springer



Trace and Density Results on Regular Trees 117

where {A;}jen and {u}jen are two sequences of positive and finite real numbers. Then
ds=dxz)=xjd|z] and dpu(z) =p;dlz|, for j<|z|<j+1,jeN (3.15)
We begin with easily checkable conditions.

Lemma 3.12 Let 1 < p < oo. Let X be a K-regular tree with measure and metric as in

Eq. 3.15. Then the following hold:

i Rp<ooif

sup { max — — < +o00.
j Kipj Kl

(i) R,=o0if

(o 1
sup | min - , — = +00.
j Kipj Kp;

Proof (1) If

sl s s |
sup § max - s = < 400,
j Kpj K/ pj

there exists a constant M > 0 such that

1 )\jp
sup , <M and sup - <M.
i UK i UK

Let Ay be as in formula Eq. 1.2 for R . It is easy to see that

B MO \FT 1
Rp = s /A <K’M(t)> Ky~ O

)\]p p=1 1 1
< | sup — ~sup ——— -sup u(Ag) <M -Mr1T < o0
i KR i K

for p > 1, and
AD)
KT (t)

Aj
ij,j

= sup <M < .

Ri= i =|
L2°([0,00)) J

(i) If

(ol i |
sup | min - s - = 400,
j Kipj Kipj

there a subsequence {j, : j, € N} such that
AP
im : =o00 and lim ——— = o0.
Jn—o00 Knpuj, Jn—o00 Knpj,

Hence u([jn, jn +11) — O as j, — oo and so we can assume that [ j,, j, +1] C A},
for j, big enough where A j, belongs to {A;}72 | as in Eq. 1.2. Thus

1
Ry > sup/ AT (T (K Thd1
i Jlnnt1l

_1 P I
AP (1t p—1 A P
=sup/ ( z()) dt = sup — =00
gn Inon+11 NK () i \ K",
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for p > 1, and
At)
K'u(t)

Aj

Ri=R = H o7 =
L°([0,00)) J Hj O

Remark 3.13 The conditions in Lemma 3.12 to determine whether R, is finite or not are
only sufficient conditions but not necessary ones. Towards this:
For (i), pick uj = K /(1 + j)~!, (A;)?» =27/(1 + j)~'. Then R, < oo but

1 AP .
sup {max{ —, — }} > sup{l + j} = oo.
j Kipj K/ j

For (ii), pick u; = K‘j,Aj :2j.Then’Rp = oo but

sup {min { ———, — <1 < +4oo.
j Kipj Kluj

Example 3.14 Let1 < p <ooand 1 < g < oo. We give simple examples where R, < 0o
but R, = 0.

1) Letkj=1anduj=K‘j.Thean<ooforevery1<p<oo,whileRq=oofor
each 1 < g < oo. ‘

(i) Let1l <p<oo,kj:(1—1—j)*"‘andp¢j:I(*/(l—i—j)*"‘*1 witha > p/(p — 1).
Then

while Ry = sup;{j} = oo.

Remark 3.15 The above examples show that R, < oo does not guarantee that R, < oo
for some 1 < g < oo when w(X) = oo and p > 1. Hence the existence of the trace
Tr : NP — LP(3X) is not equivalent to the finiteness of R, for some 1 < g < oo.

4 Density

In this section, we focus on the density properties of compactly supported functions in
NLP(X)and in N-P(X), 1 < p < oo. The function 1 is defined by 1(x) = 1 for all x in
X and we abuse the notation by using Vu to denote g, if needed for convenience.

Our first result is an analog of the corresponding result for infinite networks [32], also
see [24].

Lemma 4.1 Let | < p < oo and assume that 1(X) < oo. Then we have that

Ny (X) = N'P(X) <= 1e Ny"(X).
Proof Since it follows from pu(X) < oo that 1 € NLP(X), we obtain that Ng’p(X) =
NLP(X) implies 1 € Ny (X).

Towards the other direction, the hypothesis 1 € Né "P(X) gives a family of compactly
supported functions {1, },en in N7 (X) such that 1, — 1 in N"?(X) as n — oo. Recall
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that X := {x € X : |x| < m} for any m € N. Without loss of generality we may assume
that 1,, is nonnegative for any n € N and that

1
11, — 1| 47/L(X1), foralln € N.

P

NLrx) S
We claim that for any n € N, there exists a point x,, with x, € X! such that |1 — 1,,(x,)| <
1/4. If not, then we have |1 — 1, (x)| > le forany x € X 1 Hence we obtain that

1
1= Tl = 1= Tl = 27X,

which is a contradiction. By the triangle inequality, we have 1 —1,(x,) < |1 —1,(x,)| < %,
and hence 1, (x,,) > %.

Next, we claim that we may assume 1, (x) > 1/2 for all x € X" by selecting a subse-
quence of {1, },¢cn if necessary. Assume that this claim is not true. Then there exists N € N
such that for any n € N, there exists a point y, € XV with 1,(y,) < 1/2. Hence for any
n € N, we have found two points x, € X" and y, € XV such that [1,(x,,) — 1,,(y,)| > 1/4.
Let y = [x,, yn] be the geodesic connecting x, and y,. Then

/ IV(1,)|ds > 1/4 forany n € N.
Y

By an argument similar to that for the estimate Eq. 2.1 and Eq. 2.2, we have that there exists
a constant C(N, p, A, u) > 0 such that

/ VA -1)|7du =/ IVA,)|Pdu > C(N, p, A, u) >0 forany n € N,
X X

which is a contradiction to 1, — 1 in N7 (X).
Thus, from the arguments above, we may assume that there exists a family of compactly
supported functions {1, },cn in NLP(X) such that
1, > 1in NMP(X) asn — oo,
1,(x) > % for any x € X".

We define 1, := min{2 - 1,, 1} for all n € N. Then the family (1,,),c satisfies

1, > 1in N'P(X)as n — oo,

1, =1in X", 4.1)
1,, is a function with compact support.

Given a function u in N7 (X), let us show that upl, — uin NLP(X) where u,(x) is a
—1/2

truncation of u with respect to a, := 11, — 1||N1‘,,(X), namely
u .
pidn il lu| > ay
Uy (x) = { Il ) .
u if u| < a,

From the basic properties of truncation (see for instance [11, Section 7.1]), we have that

u, = uin N"?(X) asn - oo,
lun (X)| < ap, 4.2)
[Vuy| < 3|Vul.

@ Springer



120 P. Koskela et al.

We first show that u, 1, — u in L?(X) as n — oo. By the triangle inequality, it follows
from Eq. 4.1 and Eq. 4.2 that

lu,1, — u”Ll’(X) < llunly — up ”LI’(X) + llun — u“LI’(X)

IA

anllly — Uypxy + lun — ullLrx)

1 1/2
TP U

+ lup —ullLr(xy = 0 as n — oo.
Recall that every function in N7 (X) is locally absolutely continuous, see Section 2.2. By
the product rule of locally absolutely continuous functions, we obtain that
IVnly = w)| = |V nly =ty + uy —u)]
lunllVAy = DI+ 1 — U Vun| + [V —u)l
an|V(1y = DI+ [Vul xx\xn + |V @un —u)l.

Hence we obtain from the triangle inequality and Eq. 4.2 that

A

IA

IV(unly —W)lrey < anllVy — Dllzex) + IVupllLrx\xmy + 1V (un —wllLex)

7 1/2
[ERES U

IA

+ 3 VullLrx\xny + IV, —wllLrx),

which tends to 0 as n — o0. Therefore, u,,i,, — uin N'P(X) as n — oo. Since the
support of u,1, is compact, it follows from the definition of N(;’p(X) that u € Né’p(X),

and hence N, (X) = N7 (X). 0

Notice that 1 € N'7(X) no matter if ;(X) is finite or not. By slightly modifying the
previous proof, we obtain the following result.
Corollary 4.2 Let 1 < p < oo. Then the following statements are equivalent

. 1, . . 1’
Ny (X) = N'"P(X) <= 1eN,"(X)
Applying Lemma 4.1, we obtain our first density result.

Proposition 4.3 Let 1 < p < oo and assume that 1 (X) < oo. Suppose additionally that
R), = oo. Then we have that

NgP(X) = NP (X).

Proof Tt follows from Lemma 4.1 that it suffices to construct a sequence of compactly
supported N '-P-functions which converges to 1 in N7 (X).
For p > 1 and

x©  p 1 e
sz AP (T (K T di = oo,
0

we define the family of functions {¢,},cn as follows. For each n € N, let r, > n be an
integer such that

Tn 1
/ AT (T (K T de > 2", (4.3)
n
We set ¢, (x) = 1 forall x € X", ¢, (x) = O forall x € X \ X" and

0 35T (YW TP () K TF
LA (P (1)K TP dt

on(x) =1— — - —
LT (T (1)K rdt
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forall x € X" \ X". Since AP /u € Ll/(p Y (10, 00)) and 2, 1/ > 0, then ¢, is well-
defined. It is easy to check that ¢, is compactly supported.
By the construction of ¢;, an easy computation shows that

Vign(x) —1) =0 4.4)
forall x € (X™) U (X \ X") and that
1
V(gn(x)—D| = —

K
TR T (T (0K TR [ AT (T (1)K Trdr

n
forall x € X'\ X".
Thanks to Eq. 4.4 and Eq. 4.5, we obtain the estimate

/IV(wn—l)lpdu =/ IV (gn — DI7du
X Xrn\ X"

=

L
—T

" f’"xﬁo *(r)K! Pdi

n

o p e o \'7P
= (f ArT(ypt-r (1)K *Pdt> .

Since p > 1 and Eq. 4.3 holds, we obtain that

n I-p
(/ )wl(t)u (t)KIPdt> — O0asn — oo.

Hence we have that || V(¢, —1)||.r(x) — 0asn — oo. Moreover, since |@, — 1| < 2xx\x,
it follows from w(X) < oo that

lgn () — Lllzrcxy < 26(X \ X") — O asn — oo.

Therefore, ¢, — 1in NP(X) as n — oo.

At)

For p = 1,since A/ € L.([0, 00)) implies that H TOKT

A)
n) K’

< ooforanyn € N,
L ([0,n))

= oo that the sequence of sets
L°°([0,00))

it follows from R} =

A@)
n@OK" —
is a nonincreasing sequence of subset of [0, co) and that we have

|Ex| > 0 forany k € N.

Ek:={ze[k, 00) : 2’<},keN

We have E; = lim, . Ex N[k, n] and |Ey| = lim,— o |Ex N [k, n]|. Hence there exist

a k, > k such that
At) k
Er =1t e[k, k,]: >2
b {6[ ok = }

satisfies 0 < | Ey, | < oo.
We define a sequence {¢y} of functions by setting

1 x|
oe)=1—1p | xm, (Odi

for all |x| € [k, k,] and ¢ (x) = 0 on X \ X*, ¢p(x) = 1 on X¥.
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It follows directly from the definition of ¢y that each ¢; has compact support and that

XEy, (X)
lor — 11 < 200, IV (@) (x) = 1] < S
XX A(X)|Eg, |

Hence, thanks to 1 (X) < oo and the definition of Ey, , we obtain that

lex — 1||1v111(x) = llgx — 1||L1(X) + IV(ex — l)||L1(X)

XE, (1)
< ||2XX\X"||L1(X)+/;( mdﬂ(ﬂ
1 kn () K?
S 2u(X\X’“)+—|Ek| e XE, (1) d1

IA

1
2M(X\X’<)+27 — 0ask — o0.
Hence ¢y — 1in NLY(X) as k — oo. (I

By using the same construction of the sequence of compactly supported N!-7-functions
as the one in the above proof, we obtain the following corollary immediately from Corollary 4.2.

Corollary 4.4 Let 1 < p < 0o. Assume R, = 0o. Then we obtain that
Ny (X) = NP (X).

Proposition 4.5 Let 1 < p < oo and assume that 1(X) < o0o. Suppose additionally that
R, < 0o. Then we have

1,
NyP(X) € NMP(X).

Proof Suppose Né’p(X) = NLP(X). Since 1 € NP (X), it follows that for every € > 0,
there exists a function u € N7 (X) with compact support such that

Il —ullyrrx) <é. 4.6)

Let & € 0X be arbitrary, and x; := x;(§) be the ancestor of & with |x;| = j and xo = 0.
1/p

LY([0,1D°
4.1 with the change that we replace u(X')/4” and X! by €” and [0, x1(§)], respectively,

we obtain the existence of xz € [0, x1(§)] for which the function u in Eq. 4.6 satisfies

[T —u(xe)| < % By the triangle inequality, we have 1 — |u(xg)| < [1 — u(xg)| < %, and

Let0 <€ < %Hu Il By repeating the argument in the beginning of Proof of Lemma

hence |u(xg)| > 3.
Notice that u# has compact support. Then for any & € d X, we have lim,,_, oo u(x,(£)) =0
and that
A(x)
8u d
& ux)

! < lim [u(xe) —u(x,(§))| E/ guds =/ 4.7
2 oo [0,8) [0
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For p = 1, integrating over all £ € 90X, since v(dX) = 1, we obtain by Fubini’s theorem
that

f / 20 () X106 (X) (())dw)dv(s)

/ Qu(x )M(( 1 ([ X[o,s)(X)dV(E)> dp(x)

_ /X 2 COAERE) V(1) d(x),

where I, = {£ € 0X : x < &}. Since v(I,) ~ KW, we obtain from R; < oo that
1
E / gu(x)dl’l/(x) < ”] - u”Nl I(X) < €.

By choosing € small enough, the above estimate yields a contradiction, and hence
Nyt (X) # NVL(X).
For p > 1, by Eq. 4.7 and the Holder inequality, we have that

p
1 / QKW 2D
22~ \Jp.e w(x)Ki™/p

v p—1
; A(x) p-1
[0,8) [0,6) \n(x)K/ 7P

Rpp—l / guij(x) dpu,
[0,8)

A

IA

N

where j(x) is the largest integer such that j(x) < |x| 4+ 1. Here the last inequality holds

since
P

P
[ o) = [0 wwa-
[0,6) \H() KD 0 u()FTKT

Integrating over all £ € 0X, since v(0X) = I and R, < +00, we obtain by Fubini’s
theorem that

T / f 8u(0)? X10.6) (KT dpu(x) dv(§)

= / gu(x)P K™ ( / X[o,s)(x)dv(§)> dp(x)
X 0X

= / gu()PKI (L) dp(x),
X

where the notations 7, and j(x) are the same ones as those we used before. Since v(Ily) ~
K ~7®_ we obtain the estimate

1 1/p
73 / gu®)Pdux) ) =1 —ullyirx) <e
X

By choosing € small enough, the above estimate gives a contradiction, and hence
NyP(X) #£ NYP(X) for p > 1.

Since Né’p(X) C N'P(X) by definition, we obtain Né’p(X) C NLP(X) forall p >
1. O
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Corollary 4.6 Let p > 1 and assume that R, < co. Then we have

NyP(X) € NP (X).

Proof Suppose Né’p(X) = NLP(X). Since 1 € NP (X), it follows that for every € > 0,
there exists a function u € N7 (X) with compact support such that

1= ull g <€

Then by the definition of our N1-P_norm, we have |[u(0) — 1] < € and hence [u(0)] > 1 —e.
Then using a similar argument to the one in the Proof of Proposition 4.5 (replace u(x¢)
with #(0)), we obtain a contradiction. The claim follows. O

The above results give a full picture for the density properties for homogeneous Newto-
nian spaces N1-P(X) and for Newtonian spaces NLP(X) when u(X) < oo. When the total
measure is infinite, the density results for the Newtonian space N7 (X) are quite different.

Lemma 4.7 Let K = 1, i.e., X be a I-regular tree and assume that u(X) = oo. Then for
any f € N“P(X), there exists a sequence of compactly supported N'-P-functions { f,}nen
such that f, — f in NL-P(X).

Proof Notice that we may compose any f € N'P(X)as f = ft — f~ where f+ =
S xir=0y = 0and f~ = —f - x(r<0; = 0. Hence we may assume that f/ > 0.

Since K = 1, 9 X contains only one point & and there is a unique geodesic ray. It follows
from Proposition 3.9 that

lim inf x) =0. 4.8
[0,60)>x—&o Fe “8)

Denote by x,, the vertex of X with |x,| = n when n € N. Then it follows from Eq. 4.8 that
f(xn)—/ grds <0, Ynel. (4.9)
[xn.80)

We define functions f;, by setting

fx), if x| <mn;

fn(x) = {max{(), FOn) =2 [y, 8rds) if x| >n.

Then it is easy to check that f, € N'P(X), since 0 < f, < f and gf, < 2gy. Next, we
check that f, is compactly supported. Assume not. Since f;, is non-increasing for |x| > n
by definition, we have that f,(x) > 0 for any |x| > n and hence that

lim f(¥) = £ o) — 2 f ¢y ds = 0.
x=6o [n.80)

Combining this with Eq. 4.9, we conclude that

/ grds =0.
[xn,60)

Then gy = 0 for x| > n and it follows from Eq. 4.8 that f and f, has to be identically 0
for |x| > n, which is a contradiction. Hence f;, is compactly supported.
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At last, we estimate the N'-”-norm of fn— f.Bythefactthat0 < f, < fand g7, <
2g ¢, we obtain the estimate

Il fn = Flintex

I fn = FlINtexngx>nh

IA

I fullvtr xogixi=ap + 1 Inte xagxi=nh
B3I ntrxngxzap — 0 as n— 0,

IA

since f € N'P(X). Thus {f,}nen is a sequence of compactly supported N L. _functions
with f, — f in NP (X), which finishes the proof. O

If fooo A(t) dt = oo, then X is complete and unbounded with respect to distance d and it

follows by using suitable cutoff functions that N& P (X) = NP(X). Our next result shows
that this is also the case when X is bounded and not complete if we assume p(X) = oo.

Theorem 4.8 Let 1 < p < oo and assume that u(X) = oo. Then we have that

NyP(X) = NP (x).

Proof If K = 1, the result follows directly from Lemma 4.7. Hence we assume K > 2 in
the ensuing proof.

For any f € N'7(X), by the same argument as in Lemma 4.7, we may assume that
f = 0. It suffices to construct a sequence { f, },en of compactly supported N!'-7-functions
such that f;, — f in NP (X).

For each n € N, we denote by {xn,j}f-(; the vertices of n-level, i.e., |x,, ;| = n for all
Jj =1,---, K" Forany x, ;, we study the subtree wa. which is a subset of X with root
Xp, j.- More precisely,

r

Since every vertex has exactly K children, we may divide I'y, ; into K subsets, where each
subset contains a subtree whose root is a child of x,, ; and an edge connecting this child
with x,, ;. We denote by {ijn,j}iK= | these K subsets.
Fix f € N“P(X). We first study the function u := f|r, r If [ fliyvrq, ) > 0, we
n,, Xn,j
first modify the function u to a function v with v(x) = v(|x|) for any x € | . i.e., for any
x,y€ly,; with |x| = |y[, then v(x) = v(y). The modification procedure is as follows:

Xpj = (x e X:x,; <x}

Step 1 Since I'y, ; = Ulel I‘in i without loss of generality, we may assume

||u||N1p(F\[ ) = mln{”M”NI,p(Fi ) = 1, 2, ey K} (4.10)
“n, j n,j

Then we define a function u! by identically copying the minimal N1-?-energy subtree of
u (hereis u|r1 ), to the other k — 1 subtrees I', I i =2,--- K. More precisely,
Xn,j n,

! (x) = {u(u T e el
u|rxlw_ (y) with y € Fxn‘j, Iyl = x|, ifxe l"jcn_j.
It follows from Eq. 4.10 that
latlwioer, ) = lellviee,, )
Then for any x,y € T'y,, N{x € X : n < |x| < n+ 1} with x| = |y|, we have

ul(x) = ul(y).
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Step2  Denote by {x,, 11} th | the K children of x,, ;. We repeat the Step 1 by replacing the

function u and Ty, ; with u'and Ty, ., ,, respectively. Here we repeat the Step 1 for all K
xni1so § = 1,---, K. Hence we obtain a function u? on FXM. by additionally
letting wr(x) =u'(x)ifx € [y, ; withn < [x| < n + 1. Moreover, it is easy to check
that

subtrees I"

2 1
flu ”N"p(rxn_j) < llu ”Nl'[)(l—‘xn{j) = HMHNLP(FMJ)

N{x e X :n<|x| <n+2}with x| = |y|.

and that u%(x) = uz(y) forany x,y € I

Continuing this procedure, we obtain a sequence of functions {uF}ren. We define v =
limg— o #*. Then we know from induction that

||U||vap(rxnyj) = ”u”Nl'[’(Fxn‘j) = ”f”N'*”(l"xn_j) (4.11)
and that v(x) = v(y) forany x, y € Ly, ; with |x| = |y|.

The value of function v(x) only depends on the distance d (x,, ;, x). We may regard v as a

function on a 1-regular tree with root x,, ; and infinite measure, since j(I'y, ;) = o0o. Hence,

from the Proof of Lemma 4.7, we are able to choose a compactly supported N'-7-function
Sn,j on Ly, with

I fn,j — U”NI'P(FX,,, ) = 3“u”N1"’(Fxn DT 3||f”N'vP(FX”j)- 4.12)
Then it follows from Eq. 4.11 and Eq. 4.12 that

Ifng = Flinvewy, y = Mg = vlineew, 5+ 1v=Flyeee, )

IA

I fn.j — U“le(rx".i) + ”U“N"f"(rx,, p) + ”f”N"”(Fx,,.,)
5||f||N1.p(rX”j)' (4.13)

IA

If ”f”vaP([‘x N = 0, then f =0onTI
n,j
At last, we define a function f; by setting

v, and we just define f,, . = f|l"x,,,j-

VACIR if [x| < n;
Jn(x) == .
Sn,j(x), ifxe€ Ly, i
Then it is easy to check that f,, € N'»(X) and that f, is compactly supported, since f;. j
are compactly supported for any j = 1, ---, K". It follows from estimate Eq. 4.13 that
KYI
Ifa = Flintrcg = 1= Flintoxnguzan = 20 M = Fliviee,, )
j=1
K" K"
== i — p < 5 s
Zl 1 foj = Flwtor, ) < Zl It ;)
j= Jj=

= 5||f||Nl~p(Xﬂ{|x\zn}) — O, asn — 0,

since f € N L.p(X). Thus we have found a sequence { f, },en of compactly supported N Lp_
functions with f, — f in N7 (X), which finishes the proof. O
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5 Proofs of Theorems

Proof of Theorem 1.1 (i) = (ii) is given by Corollary 3.3; (ii) = (iii) is trivial and
(iii) = (i) is given by Proposition 3.7.
(i) = (iv) is given by Proposition 4.5 and (iv) = (i) is given by Corollary 4.3. O

Proof of Theorem 1.2 Part (1) is given by Theorem 4.8.
Part (2): For p > 1, the claim is given by Lemma 3.11. For p = 1, the claim follows by
Corollary 3.3 and Proposition 3.10. (]

Proof of Theorem 1.3 (i) = (ii) is given by Theorem 3.2; (ii) = (iii) is trivial and
(iii) = (i) is given by Theorem 3.5.
(i) = (iv) is given by Corollary 4.6 and (iv) = (i) is given by Corollary 4.4. O
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