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Trace and Density Results on Regular Trees

Pekka Koskela1 ·Khanh Ngoc Nguyen1 ·ZhuangWang2

Abstract
The boundary of a regular tree can be viewed as a Cantor-type set. We equip our tree with
a weighted distance and a weighted measure via the Euclidean arc-length and consider the
associated first-order Sobolev spaces. We give characterizations for the existence of traces
and for the density of compactly supported functions.
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1 Introduction

Let G be a K-regular tree with a set of vertices V and a set of edges E for some K ≥ 1. The
union of V and E will be denoted by X. We abuse the notation and call X a K-regular tree.
We introduce a metric structure on X by considering each edge of X to be an isometric copy
of the unit interval. Then the distance between two vertices is the number of edges needed
to connect them and there is a unique geodesic that minimizes this number. Let us denote
the root by 0. If x is a vertex, we define |x| to be the distance between 0 and x. Since each
edge is an isometric copy of the unit interval, we may extend this distance naturally to any
x belonging to an edge. We define ∂X as the collection of all infinite geodesics starting at
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the root 0. Then every ξ ∈ ∂X corresponds to an infinite geodesic [0, ξ) (in X) that is an
isometric copy of the interval [0, ∞). Hence x → ξ along [0, ξ) has a canonical meaning.

Given a function f defined on X, we are interested in the collection of those ξ ∈ ∂X for
which the limit of f (x) exists when x → ξ along [0, ξ). We begin by equipping ∂X with
the natural probability measure ν so that ν(Ix) = K−j when x is a vertex with |x| = j and
Ix = {ξ ∈ ∂X : x ∈ [0, ξ)}. Towards defining the classes of functions that are of interest to
us, we define a measure function and a new distance function on X. Write d|x| for the length
element on X and let μ : [0, ∞) → (0, ∞) be a Borel measurable and locally integrable
function. We abuse notation and refer also to the measure generated via dμ(x) = μ(|x|)d|x|
by μ. Further, let λ : [0, ∞) → (0, ∞) be Borel measurable and locally integrable, and
we define a distance d via ds(x) = λ(|x|)d|x| by setting d(z, y) = ∫

[z,y] ds(x) whenever
z, y ∈ X and [z, y] is the unique geodesic between z and y. For convenience, we assume
additionally that λp/μ ∈ L

1/(p−1)

loc ([0, ∞)) if p > 1 below and that λ/μ ∈ L∞
loc([0, ∞)) if

p = 1. Then (X, d, μ) is a metric measure space and we let N1,p(X) := N1,p(X, d, μ),
1 ≤ p < ∞, be the associated Sobolev space based on upper gradients [10], as introduced
in [27]. See Section 2 for the precise definition. We show there that, actually, each u ∈
N1,p(X) is absolutely continuous on each edge, with u′ ∈ L

p
μ(X). As usual, N1,p

0 (X) is the
completion of the family of functions with compact support in N1,p(X).

In order to state our results, we need two more concepts. Given 1 < p < ∞ we set

Rp =
∫ ∞

0
λ(t)

p
p−1 μ(t)

1
1−p K

t
1−p dt =

∥
∥
∥
∥

λ(x)

μ(x)K |x|

∥
∥
∥
∥

p
p−1

L

p
p−1
μ (X)

and we define

R1 =
∥
∥
∥
∥

λ(t)

μ(t)Kt

∥
∥
∥
∥

L∞([0,∞))

.

One should view Rp as an isoperimetric profile (X, d, μ) : in case of a Riemannian mani-
fold M , the natural version of Rp is closely related to the parabolicity of the manifold [28];
Rp = ∞ guarantees parabolicity (every compact set is of relative p-capacity zero). This
suggests that the existence of limits for Sobolev functions along geodesics might be some-
how related to finiteness of Rp , see Remark 3.8 for a discussion. Let us say that the trace of
a given function f , defined on X, exists if

Tr f (ξ) := lim[0,ξ)�x→ξ
f (x) (1.1)

exists for ν-a.e. ξ ∈ ∂X. We then denote by Tr f the trace function of f . For other possible
definitions of the trace and connections between them see [17].

Our first result gives a rather complete solution for the existence of traces in the case
μ(X) < ∞.

Theorem 1.1 Let X be a K-regular tree with distance d and measure μ. Assume μ(X) <

∞. For 1 ≤ p < ∞, the following are equivalent:

(i) Rp < ∞.
(ii) Tr f exists for every f ∈ N1,p(X) and Tr : N1,p(X) → L

p
ν (∂X) is a bounded linear

operator.
(iii) Tr f exists for every f ∈ N1,p(X).
(iv) N

1,p

0 (X) � N1,p(X).
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In [3, 18] the trace spaces of our Sobolev spaces were identified as suitable Besov-type
spaces for very specific choices of μ, λ.

For the case μ(X) = ∞, we define

Rp = sup
k≥1

∫

Ak

λ(t)
p

p−1 μ(t)
1

1−p K
t

1−p dt ifp > 1 and R1 = R1 (1.2)

where {Ak}∞k=1 = {[tk, tk+1)}∞k=1 is the sequence of subintervals in [0, ∞) with∫
Ak

Ktμ(t)dt = 1 for k = 1, 2, . . . and 0 = t1 < t2 < . . . Then [0, ∞) = ⋃∞
k=1 Ak .

Our second result deals with the case of infinite volume.

Theorem 1.2 Let 1 ≤ p < ∞. Let X be a K-regular tree with distance d and measure μ.
Assume μ(X) = ∞. Then the following hold:

(1) N
1,p

0 (X) = N1,p(X).
(2) The following are equivalent:

(a) Rp < ∞.
(b) Tr f exists and Tr f ≡ 0 for every f ∈ N1,p(X).
(c) Tr f exists for every f ∈ N1,p(X).

In this case of infinite volume and 1 < p < ∞, it is easy to see that Rp < ∞ implies
Rp < ∞, but the inverse implication need not hold true. Moreover, the finiteness of Rp

does not imply the finiteness of Rq for some 1 ≤ q < ∞, see Example 3.14, and Remark
3.15.

Our third result gives a complete answer in the case of homogeneous norms, see Section 2
for the relevant definitions. Here Ṅ

1,p

0 (X) is the completion of the family of functions with
compact support in Ṅ1,p(X).

Theorem 1.3 Let X be a K-regular tree with distance d and measure μ. For 1 ≤ p < ∞,
the following are equivalent:

(i) Rp < ∞.
(ii) Tr f exists for every f ∈ Ṅ1,p(X) and Tr : Ṅ1,p(X) → L

p
ν (∂X) is a bounded linear

operator.
(iii) Tr f exists for every f ∈ Ṅ1,p(X).
(iv) Ṅ

1,p

0 (X) � Ṅ1,p(X).

Let us close this introduction with some comments on Theorem 1.3. Even though the
condition Rp = ∞ implies p-parabolicity, finiteness of this quantity does not, in general,
prevent p-parabolicity, see [7]. Hence Theorem 1.3 and the preceding theorems are some-
what surprising. In fact, it follows from our results that, in the setting of this paper, Rp = ∞
precisely when (X, d, μ) is p-parabolic. See [23] for more on this. Hence the reader famil-
iar with moduli of curve families might wish to view Theorem 1.3 as kind of a version of
the equivalence between modulus and capacity.

Partial motivation for this paper comes from boundary value problems for the p-Laplace
equation. For the case of manifolds see [12, 13] and for the setting of metric spaces see [2,
4, 15]. Classical trace results on the Euclidean spaces can be found in [1, 6, 9, 14, 16, 22,
25, 29, 30] and studies of parabolicity on infinite networks in [26, 32]. For trace results in
the metric setting see [3, 18–21, 33]. Our second motivation comes from the recent paper
[24] where a version of Theorem 1.3 was established on regular trees for the case p = 2.
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The paper is organized as follows. In Section 2, we introduce regular trees, boundaries
of trees and Newtonian spaces on our trees. We study the trace results in Section 3 and the
density results are given in Section 4. In Section 5, we give the proofs of Theorems 1.1–1.3.

2 Preliminaries

Throughout this paper, the letter C (sometimes with a subscript) will denote positive con-
stants that usually depend only on the space and may change at different occurrences; if C

depends on a, b, . . ., we write C = C(a, b, . . .). The notation A � B (A � B) means that
there is a constant C such that A ≤ C ·B (A ≥ C ·B). The notation A ≈ B means that both
A � B and B � A hold. For any function f ∈ L1

loc(X) and any measurable subset A ⊂ X

with μ(A) > 0, we denote 1
μ(A)

∫
A

f dμ by −
∫
A

f dμ.

2.1 Regular Trees and Their Boundaries

A graph G is a pair (V ,E), where V is a set of vertices and E is a set of edges. We call
a pair of vertices x, y ∈ V neighbors if x is connected to y by an edge. The degree of a
vertex is the number of its neighbors. The graph structure gives rise to a natural connectivity
structure. A tree G is a connected graph without cycles.

We call a tree G a rooted tree if it has a distinguished vertex called the root, which we
will denote by 0. The neighbors of a vertex x ∈ V are of two types: the neighbors that are
closer to the root are called parents of x and all other neighbors are called children of x.
Each vertex has a unique parent, except for the root itself that has none.

We say that a tree G is K-regular if G is a rooted tree such that each vertex has exactly
K children for some K ≥ 1. Then all vertices except the root of G have degree K + 1, and
the root has degree K .

Let G be a K-regular tree with a set of vertices V and a set of edges E for some K ≥ 1.
For simplicity of notation, we let X = V ∪ E and call it a K-regular tree. A K-regular tree
X is made into a metric graph by considering each edge as a geodesic of length one. For
x ∈ X, let |x| be the distance from the root 0 to x, that is, the length of the geodesic from 0
to x, where the length of every edge is 1 and we consider each edge to be an isometric copy
of the unit interval. The geodesic connecting x, y ∈ V is denoted by [x, y], and its length
is denoted by |x − y|. If |x| < |y| and x lies on the geodesic connecting 0 to y, we write
x < y and call the vertex y a descendant of the vertex x. More generally, we write x ≤ y if
the geodesic from 0 to y passes through x, and in this case |x − y| = |y| − |x|.

On the K-regular tree X, for any n ∈ N, let Xn be a subset of X by setting

Xn := {x ∈ X : |x| < n}.
On the K-regular tree X, we define a metric d via ds and measure dμ by setting

dμ = μ(|x|) d|x|, ds(x) = λ(|x|) d|x|,
where λ, μ : [0, ∞) → (0,∞) are Borel functions with λ, μ ∈ L1

loc([0, ∞)). Throughout

this paper, we let 1 ≤ p < ∞ and assume additionally that λp/μ ∈ L
1/(p−1)

loc ([0, ∞))

if p > 1 and that λ/μ ∈ L∞
loc([0, ∞)) if p = 1. Here d |x| is the measure which gives

each edge Lebesgue measure 1, as we consider each edge to be an isometric copy of the
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unit interval and the vertices are the end points of this interval. Hence for any two points
z, y ∈ X, the distance between them is

d(z, y) =
∫

[z,y]
ds(x) =

∫

[z,y]
λ(|x|) d|x|,

where [z, y] is the unique geodesic from z to y in X.
We abuse the notation and let μ(x) and λ(x) denote μ(|x|) and λ(|x|), respectively, for

any x ∈ X, if there is no danger of confusion.
Next we construct the boundary of the K-regular tree. An element ξ in ∂X is identified

with an infinite geodesic in X starting at the root 0. Then we may denote ξ = 0x1x2 · · · ,
where xi is a vertex in X with |xi | = i, and xi+1 is a child of xi . Given two points ξ, ζ ∈ ∂X,
there is an infinite geodesic [ξ, ζ ] connecting ξ and ζ .

To avoid confusion, points in X are denoted by Latin letters such as x, y and z, while for
points in ∂X we use Greek letters such as ξ, ζ and ω.

We equip ∂X with the natural probability measure ν as in Falconer [5] by distributing
the unit mass uniformly on ∂X. For any x ∈ X with |x| = j , if we denote by Ix the set

{ξ ∈ ∂X : the geodesic [0, ξ) passes through x},
then the measure of Ix is K−j . We refer to [3, Lemma 5.2] for a more information on our
boundary measure ν.

2.2 Newtonian Spaces

Let X be a K-regular tree with metric and measure defined as in Section 2.1. Let M denote
the family of all nonconstant rectifiable curves in X. We recall the definition of p-modulus
of curve families in M , see [8, 11] for more detailed discussions.

Definition 2.1 For � ⊂ M , let F(�) be the family of all Borel measurable functions
ρ : X → [0, ∞] such that

∫

γ

ρ ds ≥ 1 for every γ ∈ �.

For 1 ≤ p < ∞, we define

Modp(�) = inf
ρ∈F(�)

∫

X

ρp dμ.

The number Modp(�) is called the p-modulus of the family �.

Proposition 2.2 Let 1 ≤ p < ∞. Then the following are equivalent:

1. λ/μ1/p ∈ L
p′
loc([0, ∞)) where p′ is the Hölder conjugate of p, that is 1

p
+ 1

p′ = 1.
2. Modp({γ }) > 0 for every rectifiable curve γ .

In particular, on our K-regular tree X with metric and measure defined as in Section 2.1,
the empty family is the only curve family with zero p-modulus for 1 ≤ p < ∞.
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Proof 1. ⇒ 2.: For every Borel measurable function ρ ∈ F({γ }), we have
∫
γ

ρ ds ≥ 1.

By the monotone convergence theorem, we may assume that
∫
γ

ρ ds ≥ 1/2 for a subcurve,
still denoted γ, that is contained in {x ∈ X : |x| ≤ N} for some N ∈ N. Notice that

ds(x) = λ(x)

μ(x)
dμ(x).

For p > 1, it follows from the Hölder inequality that
∫

γ

ρ ds =
∫

γ

ρ
λ

μ
dμ ≤

(∫
γ

ρp dμ
)1/p (∫

γ
λp/(p−1)

μp/(p−1) dμ
)(p−1)/p

≤ C(N, p, λ, μ,K)
(∫

γ
ρp dμ

)1/p

,

since it follows from λp/μ ∈ L
1/(p−1)

loc ( [0, ∞ )) that

0 <

∫

γ

λp/(p−1)

μp/(p−1)
dμ ≤ KN

∫ N

0

(
λ(t)p

μ(t)

) 1
p−1

dt < ∞.

Hence we have that
∫

X

ρp dμ ≥
∫

γ

ρp dμ ≥ C(N, p, λ, μ,K)

(∫

γ

ρ ds

)p

≥ C(N, p, λ, μ,K)/2 > 0.

(2.1)
For the case p = 1, by a similar argument without using the Hölder inequality, it follows
from λ/μ ∈ L∞

loc( [0, ∞ )) that
∫

X

ρ dμ ≥ C(N, λ, μ,K) > 0. (2.2)

Thus

Modp({γ }) > 0 for every rectifiable curveγ .

2.⇒ 1.: We argue by contradiction. Assume that λ

μ1/p /∈ L
p′
loc([0, ∞)). Then it suffices

to find a rectifiable curve γ with Modp({γ }) = 0.

Since λ

μ1/p /∈ L
p′
loc([0, ∞)), there exist two constants 0 ≤ a < b < ∞ such that

∥
∥
∥
∥

λ

μ1/p

∥
∥
∥
∥

Lp′
([a,b])

= ∞. (2.3)

Let xa, yb ∈ X with |xa | = a, |yb| = b and xa ≤ yb. Then we claim that the geodesic
[xa, yb] from xa to yb, denoted by γ , satisfies Modp({γ }) = 0.

To prove the above claim, by [8, Theorem 5.5] or [11, Lemma 5.2.8], we only need to
find a Borel measurable function 0 ≤ ρ ∈ Lp(X) such that

∫

γ

ρ ds = ∞. (2.4)

For p > 1, the condition Eq. 2.3 implies

∫ b

a

λ
p

p−1 (t)

μ
1

p−1 (t)

dt = ∞.
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Since λ, μ are Borel measurable functions, there is a sequence of pairwise disjoint Borel
subsets {Ik : Ik ⊂ [a, b]}∞k=1 such that

2k <

∫

Ik

λ
p

p−1 (t)μ
1

1−p (t)dt < ∞.

We define a function ρ : X → R by setting

ρ(x) = h(|x|)χγ (x) = h(|x|)χ[xa,yb](x)

where

h(t) :=
∞∑

k=1

λ
1

p−1 (t)μ
1

1−p (t)
∫
Ik

λ
p

p−1 (t)μ
1

1−p (t)dt

χIk(t).

Since λ, μ are Borel measurable functions and Ik is Borel for each k, the function ρ is
Borel measurable. Moreover, since the subsets {Ik}∞k=1 are pairwise disjoint, we obtain the
Lp-estimate

‖ρ‖p

Lp(X) =
∫

[xa,yb]
|h(|x|)|p dμ(x) =

∫ b

a

h(t)pμ(t) dt

=
∞∑

k=1

∫

Ik

⎛

⎝ λ
1

p−1 (t)μ
1

1−p (t)
∫
Ik

λ
p

p−1 (t)μ
1

1−p (t)dt

⎞

⎠

p

μ(t) dt

=
∞∑

k=1

1
(∫

Ik
λ

p
p−1 (t)μ

1
1−p (t)dt

)p−1
<

∞∑

k=1

1

2k(p−1)
< ∞.

Finally, Eq. 2.4 follows from

∫

γ

ρ ds =
∫ b

a

h(t)λ(t) dt =
∞∑

k=1

∫

Ik

λ
1

p−1 (t)μ
1

1−p (t)
∫
Ik

λ
p

p−1 (t)μ
1

1−p (t)dt

λ(t) dt =
∞∑

k=1

1 = ∞.

For p = 1, the condition Eq. 2.3 implies
∥
∥
∥
∥

λ

μ1/p

∥
∥
∥
∥

L∞([a,b])
= ∞.

Using a similar argument as for Theorem 3.5 for the case p = 1 below, there exists an
infinite sequence {Ekn}kn∈N defined by

Ekn =
{

t ∈ [a, b] : 2kn+1 ≥ λ(t)

μ(t)
> 2kn

}

such that

|Ekn | > 0 for each kn ∈ N.

We define a function ρ : X → R by setting

ρ(x) = h̃(|x|)χγ (x) = h̃(|x|)χ[xa,yb](x),

where

h̃(t) =
∞∑

k=1

1
∫
Ekn

λ(t)dt
χEkn

(t).
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Notice that the subsets {Ekn}kn∈N are Borel and pairwise disjoint. Hence the function ρ is
Borel measurable and

‖ρ‖L1(X) =
∫

[xa,yb]
|h̃(|x|)| dμ(x) =

∫ b

a

h̃(t)μ(t) dt

=
∑

kn∈N

∫

Ekn

μ(t)
∫
Ekn

λ(t)dt
dt

<
∑

kn∈N

∫
Ekn

2−knλ(t) dt
∫
Ekn

λ(t) dt
=

∑

kn∈N
2−kn < ∞.

Moreover, Eq. 2.4 holds since
∫

γ

ρ ds =
∫ b

a

h̃(t)λ(t) dt =
∑

kn∈N

∫

Ekn

1
∫
Ekn

λ(t)dt
ds =

∑

kn∈N
1 = ∞.

Finally, the last claim follows since λ/μ
1
p ∈ L

p′
loc( [0, ∞ )).

Let u ∈ L1
loc(X). We say that a Borel function g : X → [0, ∞] is an upper gradient of

u if

|u(z) − u(y)| ≤
∫

γ

g ds (2.5)

whenever z, y ∈ X and γ is the geodesic from z to y. In the setting of a tree any rectifiable
curve with end points z and y contains the geodesic connecting z and y, and therefore the
upper gradient defined above is equivalent to the definition which requires that inequality
Eq. 2.5 holds for all rectifiable curves with end points z and y. In [8, 11], the notion of p-
weak upper gradient is given. A Borel function g : X → [0, ∞] is called a p-weak upper
gradient of u if Eq. 2.5 holds on p-a.e. curves γ ∈ M , i.e., Eq. 2.5 holds for all curves
γ ∈ M \ �, where Modp(�) = 0. Notice that by Proposition 2.2, any p-weak upper
gradient is actually an upper gradient here. We refer to [8, 11] for more information about
p-weak upper gradients.

The notion of upper gradients is due to Heinonen and Koskela [10]; we refer interested
readers to [2, 8, 11, 27] for a more detailed discussion on upper gradients.

The Newtonian space N1,p(X), 1 ≤ p < ∞, is defined as the collection of all functions
u for which the N1,p-norm of u defined as

‖u‖N1,p(X) := ‖u‖Lp(X) + inf
g

‖g‖Lp(X) < ∞,

where the infimum is taken over all upper gradients of u. If u ∈ N1,p(X), then it has a
minimal p-weak upper gradient, which is an upper gradient in our case (by Proposition 2.2).
We denote by gu the minimal upper gradient, which is unique up to measure zero and which
is minimal in the sense that if g ∈ Lp(X) is any upper gradient of u then gu ≤ g a.e. We
refer to [8, Theorem 7.16] for proofs of the existence and uniqueness of such minimal upper
gradient. Throughout this paper, we denote by gu the (minimal) upper gradient of u.

By Proposition 2.2, it follows from [8, Definition 7.2 and Lemma 7.6] that any function
u ∈ L1

loc(X) with an upper gradient 0 ≤ g ∈ Lp(X) is locally absolutely continuous,
for example, absolutely continuous on each edge. Moreover, the “classical” derivative u′
of this locally absolutely continuous function is a minimal upper gradient in the sense that
gu = |u′(x)|/λ(x) when u is parameterized in the nature way.
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We define the homogeneous Newtonian spaces Ṅ1,p(X), 1 ≤ p < ∞, the collection
of all continuous functions u that have an upper gradient 0 ≤ g ∈ Lp(X), for which the
homogeneous Ṅ1,p-norm of u defined as

‖u‖Ṅ1,p(X) := |u(0)| + inf
g

‖g‖Lp(X)

is finite. Here 0 is the root of the K-regular tree X and the infimum is taken over all upper
gradients of u.

3 Trace Results

In this section, if we do not specifically mention, we always assume that X is a K-regular
tree with measure and metric as in Section 2.1.

Lemma 3.1 Let 1 ≤ p < ∞. For every f ∈ Lp(X), we have that
∫

∂X

∫

[0,ξ)

|f (x)|pKj(x) dμ(x) dν(ξ) ≈
∫

X

|f (x)|p dμ(x),

where j (x) is the largest integer such that j (x) ≤ |x| + 1.

Proof Let f ∈ Lp(X). For any ξ ∈ ∂X, let xj = xj (ξ) be the ancestor of ξ with |xj | = j .
Then it follows from Fubini’s Theorem that
∫

∂X

∫

[0,ξ)

|f (x)|pKj(x) dμ(x) dν(ξ) =
∫

∂X

+∞∑

j=0

∫

[xj (ξ),xj+1(ξ)]
|f (x)|pKj dμ(x) dν(ξ)

=
∫

X

|f (x)|p
∫

∂X

+∞∑

j=0

Kj

χ[xj (ξ),xj+1(ξ)](x) dν(ξ) dμ(x).

Note that χ[xj (ξ),xj+1(ξ)](x) is nonzero only if j ≤ |x| ≤ j + 1 and x < ξ . Thus the above
equality can be rewritten as

∫

∂X

∫

[0,ξ)

|f (x)|pKj(x) dμ(x) dν(ξ) =
∫

X

|f (x)|pKj(x)ν(Ix) dμ(x)

where Ix = {ξ ∈ ∂X : x < ξ}. Since ν(Ix) ≈ K−j (x), we obtain that
∫

∂X

∫

[0,ξ)

|f (x)|pKj(x) dμ(x) dν(ξ) ≈
∫

X

|f (x)|p dμ(x).

Theorem 3.2 Let 1 ≤ p < ∞ and assume that Rp < +∞. Then the trace Tr in Eq. 1.1
gives a bounded linear operator Tr : Ṅ1,p(X) → L

p
ν (∂X).

Proof Let f ∈ Ṅ1,p(X). Our task is to show that

Tr f (ξ) := f̃ (ξ) = lim[0,ξ)�x→ξ
f (x), (3.1)

exists for ν-a.e. ξ ∈ ∂X and that the trace Tr f satisfies the norm estimates.
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To show that the limit in Eq. 3.1 exists for ν-a.e. ξ ∈ ∂X, it suffices to show that the
function

f̃ ∗(ξ) = |f (0)| +
∫

[0,ξ)

gf ds

is in L
p
ν (∂X), where [0, ξ) is the geodesic ray from 0 to ξ and gf is the minimal upper

gradient of f . To be more precise, if f̃ ∗ ∈ L
p
ν (∂X), we have |f̃ ∗| < ∞ for ν-a.e. ξ ∈ ∂X,

and hence the limit in Eq. 3.1 exists for ν-a.e. ξ ∈ ∂X.
Since we have

ds = λ(x)

μ(x)
dμ,

we obtain the estimate

f̃ ∗(ξ) = |f (0)| + ∫
[0,ξ)

gf ds = |f (0)| + ∫
[0,ξ)

gf
λ(x)
μ(x)

dμ. (3.2)

For p > 1, it follows from the Hölder inequality that

|f̃ ∗(ξ)|p � |f (0)|p +
(∫

[0,ξ)
gf Kj(x)/p λ(x)

μ(x)Kj(x)/p dμ
)p

≤ |f (0)|p + ∫
[0,ξ)

gf
pKj(x) dμ

(
∫
[0,ξ)

(
λ(x)

μ(x)Kj(x)/p

) p
p−1

dμ

)p−1

� |f (0)|p + Rp
p−1

∫
[0,ξ)

gf
pKj(x) dμ,

where j (x) is the largest integer such that j (x) ≤ |x| + 1. Here the last inequality holds
since

∫

[0,ξ)

(
λ(x)

μ(x)Kj(x)/p

) p
p−1

dμ ≈
∫ ∞

0

λ(t)
p

p−1

μ(t)
p

p−1 K
t

p−1
μ(t) dt = Rp .

Integrating over all ξ ∈ ∂X, since ν(∂X) = 1, Rp < +∞ and gf ∈ Lp(X), it follows
from Lemma 3.1 that

∫

∂X

|f̃ ∗(ξ)|p dν � |f (0)|p + ∫
∂X

∫
[0,ξ)

gf (x)pKj(x) dμ(x) dν(ξ)

� |f (0)|p + ∫
X

gf (x)p dμ(x), p > 1. (3.3)

For p = 1, integrating over all ξ ∈ ∂X with respect to estimate Eq. 3.2, since ν(∂X) = 1,
we obtain by means of Fubini’s theorem that

∫

∂X

|f̃ ∗(ξ)| dν ≤ |f (0)| +
∫

∂X

∫

X

gf (x)χ[0,ξ)(x)
λ(x)

μ(x)
dμ(x) dν(ξ)

= |f (0)| +
∫

X

gf (x)
λ(x)

μ(x)

∫

∂X

χ[0,ξ)(x) dν(ξ) dμ(x)

= |f (0)| +
∫

X

gf (x)λ(x)μ(x)−1ν(Ix) dμ(x).

Here in the above estimates, the notations Ix and j (x) are the same ones as those we used
in Lemma 3.1. Since ν(Ix) ≈ K−|x| and R1 < +∞, we further obtain that

∫

∂X

|f̃ ∗(ξ)| dν � |f (0)| + R1

∫

X

gf (x) dμ(x) � |f (0)| +
∫

X

gf (x) dμ(x). (3.4)
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Hence we obtain from estimates Eq. 3.3 and Eq. 3.4 that f̃ ∗ is in L
p
ν (∂X) for 1 ≤ p <

∞, which gives the existence of the limits in Eq. 3.1 for ν-a.e. ξ ∈ ∂X. In particular, since
|f̃ | ≤ f̃ ∗, we have the estimate

∫

∂X

|f̃ |p dν � |f (0)|p +
∫

X

gf
p dμ,

and hence the norm estimate

‖f̃ ‖L
p
ν (∂X) � |f (0)| +

(∫

X

gf
p dμ

)1/p

= ‖f ‖Ṅ1,p(X).

Since every f ∈ N1,p(X) is locally absolutely continuous, a direct computation gives
the estimate |f (0)| � ‖f ‖N1,p(X). Hence we obtain the following result from the above
theorem.

Corollary 3.3 Let 1 ≤ p < ∞ and assume that Rp < +∞. Then the trace Tr in Eq. 1.1
gives a bounded linear operator Tr : N1,p(X) → L

p
ν (∂X).

Next, we study non-existence of the traces when Rp = ∞. Before going to the main
theorems, we introduce the following lemma.

Lemma 3.4 ([31]) Let (�, d, μ�) be a σ -finite metric measure space. Then the following
conditions on (�, d, μ�) are equivalent:

(i) Lp(�) ⊂ Lq(�) for all p, q ∈ (0, ∞) with p > q;
(ii) μ(�) < +∞.

Theorem 3.5 Let 1 ≤ p < ∞ and assume that Rp = +∞. Then there exists a function
u ∈ Ṅ1,p(X) such that

lim[0,ξ)�x→ξ
u(x) = +∞, for all ξ ∈ ∂X. (3.5)

Proof To construct the function u ∈ Ṅ1,p(X) satisfying Eq. 3.5, it suffices to find a
nonnegative measurable function g : [0, ∞) → [0, ∞] such that

{ ∫ +∞
0 g(t)λ(t) dt = +∞∫ +∞
0 g(t)pμ(t)Kt dt < +∞.

(3.6)

Given such g, we may define the function u by setting u(0) = 0 and u(x) = ∫ |x|
0 g(t)λ(t) dt

for any x ∈ X. Then it follows from the definition of upper gradient that gu : X → [0, ∞]
defined by gu(x) = g(|x|) is an upper gradient of u. Moreover, we obtain that

‖gu‖p

Lp(X) =
∫

X

gu
p dμ ≈

∫ +∞

0
g(t)pμ(t)Kt dt < +∞.

Hence the condition Eq. 3.6 implies u ∈ Ṅ1,p(X) and that Eq. 3.5 holds.

For p = 1, since R1 =
∥
∥
∥ λ(t)

μ(t)Kt

∥
∥
∥

L∞([0,∞))
= ∞, the sets

Ak :=
{

t ∈ [0, ∞) : λ(t)

μ(t)Kt
≥ 2k

}

, k ∈ N
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form a nonincreasing sequence of subsets of [0, ∞) and we have

|Ak| > 0 for any k ∈ N.

Hence there exists an infinite sequence {kn}kn∈N such that |Bkn | > 0 for any kn, where

Bkn = Akn \ Akn+1 =
{

t ∈ [0, ∞) : 2kn+1 ≥ λ(t)

μ(t)Kt
> 2kn

}

;
otherwise, there will be N ∈ N such that for any k ≥ N , we have |Bk| = 0, and hence
|Ak| = 0 for any k ≥ N , which is a contradiction. Since λ ∈ L1

loc, we may also assume that
0 <

∫
Bkn

λ(t) dt < +∞ by replacing Bkn with a suitable bounded subset if necessary. Then
we define g by setting

g(t) =
{ 1∫

Bkn
λ(t) dt

, ∀ t ∈ Bkn, kn ∈ N;
0, otherwise.

It follows that
∫ +∞

0
g(t)λ(t) dt =

∑

kn∈N

∫

Bkn

λ(t)
∫
Bkn

λ(t) dt
dt =

∑

kn∈N
1 = +∞

and from the definition of Bkn that
∫ +∞

0
g(t)μ(t)Kt dt =

∑

kn∈N

∫

Bkn

μ(t)Kt

∫
Bkn

λ(t) dt
dt

≤
∑

kn∈N
2−kn

∫

Bkn

λ(t)
∫
Bkn

λ(t) dt
dt =

∑

kn∈N
2−kn < ∞.

Hence Eq. 3.6 is satisfied.

For p > 1, let r(t) = λ(t)
p

p−1 μ(t)
1

1−p K
t

1−p . Then we know that

Rp =
∫ ∞

0
λ(t)

p
p−1 μ(t)

1
1−p K

t
1−p dt =

∫ ∞

0
r(t) dt = ∞. (3.7)

Since λp/μ ∈ L
1/(p−1)

loc ([0, ∞)), we have r ∈ L1
loc([0, ∞)). Define the function g by setting

g(t) = λ(t)
1

p−1 μ(t)
1

1−p K
t

1−p α(t) = r(t)α(t)/λ(t),

where α : [0, ∞) → [0, ∞] is be determined. Then to find a function g satisfying Eq. 3.6,
it suffices to show the existence of a function α satisfying

{ ∫ +∞
0 g(t)λ(t) dt = ∫ ∞

0 α(t)r(t) dt = +∞∫ +∞
0 g(t)pμ(t)Kt dt = ∫ ∞

0 α(t)pr(t) dt < +∞.
(3.8)

Consider the metric measure space ([0, ∞), dE, μr) with dE the Euclidean distance where
dμr = r(t) dt . Since r ∈ L1

loc, we have that ([0, ∞), dE, μr) is a σ -finite metric measure
space. Then it follows from Eq. 3.7 that μr([0, ∞)) = +∞. Hence by Lemma 3.4, we know
that Lp([0, ∞), μr) � L1([0, ∞), μr), i.e., there exists a function α : [0, ∞) → such that
α ∈ Lp([0, ∞), μr) but α /∈ L1([0, ∞), μr). Choosing this α ensures Eq. 3.8.

In conclusion, for 1 ≤ p < ∞, we can construct a function u ∈ Ṅ1,p(X) satisfying
Eq. 3.5.

Remark 3.6 If additionally μ(X) < ∞, instead of constructing the above increasing func-
tion, we may easily modify the construction so as to obtain a piecewise monotone function
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u ∈ N1,p(X) with values in [0, 1] so that u(x) = 1 when |x| = t2j and u(x) = 0 when
|x| = t2j+1, where tk → ∞ as k → ∞. Then this oscillatory function u belongs to
N1,p(X), but has no limit along any geodesic ray. Hence we obtain the following result.

Proposition 3.7 Let 1 ≤ p < ∞ and assume that Rp = +∞. If μ(X) < ∞, then there
exists a function u ∈ N1,p(X) such that lim[0,ξ)�x→ξ u(x) does not exist for any ξ ∈ ∂X.

Remark 3.8 Since our weights only depend on the distance to the root, Theorem 3.2 and
Theorem 3.5 boil down to embeddings on the positive real axis. One of the key properties
is that Rp < ∞ if and only if

Lp(R+,Ktμ(t) dt) ⊂ L1(R+, λ(t) dt) (3.9)

where λ and μ are defined on [0, ∞) as specified in the introduction. Consequently, if
μ(X) < ∞, then Rp < ∞ implies Rq < ∞ whenever 1 ≤ p < q < ∞. However
such an implication does not hold true if μ(X) = ∞, but finiteness of Rp is still subject to
interpolation, i.e. if Rp < ∞ and Rr < ∞ then Rq < ∞ for every q ∈ [p, r].

The above results give the full answers to the trace results for the homogeneous New-
tonian space Ṅ1,p(X) and also for the Newtonian space N1,p(X) when μ(X) < ∞. We
continue towards the case μ(X) = ∞.

Proposition 3.9 Let 1≤p<∞ and assume μ(X)=∞. Then for every f ∈Lp(X), we have

lim inf[0,ξ)�x→ξ
|f (x)| = 0, for a.e. ξ ∈ ∂X, (3.10)

and hence Tr f = 0 if Tr f exists.

Proof Assume that Eq. 3.10 is false. Then there exist a function f ∈ Lp(X) and a set
E ⊂ ∂X with ν(E) > 0 such that

lim inf[0,ξ)�x→ξ
|f (x)| > 0, for all ξ ∈ E.

Hence for each ξ ∈ E, there exist a constant ε(ξ) > 0 and an integer N(ξ) := N(ε(ξ))

such that
|f (x)| ≥ ε(ξ) > 0, for all x ∈ [0, ξ) with |x| ≥ N(ξ).

It follows from Lemma 3.1 that

‖f ‖p

Lp(X) =
∫

X

|f (x)|p dμ ≈
∫

∂X

∫

[0,ξ)

|f (x)|pKj(x) dμ(x) dν(ξ)

≥
∫

E

∫

{x∈[0,ξ):|x|≥N(ξ)}
|f (x)|pKj(x) dμ(x) dν(ξ)

≥
∫

E

∫

{x∈[0,ξ):|x|≥N(ξ)}
ε(ξ)pKj(x) dμ(x) dν(ξ)

=
∫

E

ε(ξ)p
∫ ∞

N(ξ)

Kj(t)μ(t) dt dν(ξ),

where j (t) is the largest integer such that j (t) ≤ t + 1. Since μ(X) = ∞ and μ ∈ L1
loc(X),

for every integer N(ξ), we have
∫ ∞

N(ξ)

Kj(t)μ(t) dt = ∞.
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Since ε(ξ) > 0 for each ξ ∈ E and ν(E) > 0, we obtain that

‖f ‖p

Lp(X) = +∞,

which contradicts the fact that f ∈ Lp(X). Thus Eq. 3.10 holds.
If Tr f exists, then Tr |f | also exists. It follows from the definition of the trace Eq. 1.1

and Eq. 3.10 that Tr |f | = 0. Hence Tr f = 0.

Proposition 3.10 Assume R1 = +∞. Then there exists a function u ∈ N1,1(X) such that
lim[0,ξ)�x→ξ u(x) does not exist, for any ξ ∈ ∂X.

Proof It follows from R1 =
∥
∥
∥ λ(t)

μ(t)Kt

∥
∥
∥

L∞([0,∞))
= ∞ that the sequence of sets

Ek :=
{

t ∈ [0, ∞) : λ(t)

μ(t)Kt
≥ 2k

}

satisfies

|Ek| > 0 for any k ∈ N.

Hence we may choose a sequence {tk : tk ∈ [0, ∞)}k∈N with

tk → ∞ as k → ∞ and |Ek ∩ [tk−1, tk]| > 0 for any k ∈ N. (3.11)

Since μ ∈ L1
loc([0, ∞)), we have that for each k ∈ N,

0 <

∫ tk

tk−1

μ(t)Kt dt =: Mk < ∞.

By the absolute continuity of integral with respect to measure, we may divide the interval
[tk−1, tk] into �2kMk� subintervals {Ij }j whose interiors are pairwise disjoint such that

�2kMk�⋃

j=1

Ij = [tk−1, tk] and 0 <

∫

Ij

μ(t)Kt dt ≤ 2−k . (3.12)

Since |Ek ∩ [tk−1, tk]| > 0 from Eq. 3.11, we obtain there is at least one subinterval Ik ∈
{Ij }j such that |Ek ∩ Ik| > 0. Then we define a function g by setting

g(t) =
{

2∫
Ek∩Ik

λ(t) dt
, if t ∈ Ek ∩ Ik, k ∈ N;

0, otherwise.

Since λ(t) is always positive and λ ∈ L1
loc([0, ∞)), the above definition is well-defined.

Next we construct the function u. For any k ∈ N, since we have
∫ tk

tk−1

g(t)λ(t) dt =
∫

Ek∩Ik

2λ(t)
∫
Ek∩Ik

λ(t) dt
dt = 2, (3.13)

we may apply the same idea of construction as in Remark 3.6 on {x ∈ X : tk−1 ≤ |x| ≤ tk}
to obtain a piecewise monotone function u with upper gradient gu(x) = g(|x|) and with
values in [0, 1] so that u(x) = 0 when |x| = tk−1, tk and u(x) = 1 when |x| = t ′k where
tk−1 < t ′k < tk . Then the function u has no limit along any geodesic ray.

114 P. Koskela et al.



Thus it remains to show that u ∈ N1,1(X). We first estimate the L1-norm of the upper
gradient gu of u. By the definitions of function g and of Ek , it follows from estimate Eq. 3.13
that

∫

X

gu dμ �
∫ ∞

0
g(t)μ(t)Kt dt =

∑

k∈N

∫

Ek∩Ik

g(t)μ(t)Kt dt

≤
∑

k∈N
2−k

∫

Ek∩Ik

g(t)λ(t) dt =
∑

k∈N
21−k < ∞.

For the L1-norm estimate of u, notice that u(x) > 0 only if |x| ∈ Ik for some k ∈ N. Since
|u(x)| ≤ 1, we obtain from Eq. 3.12 that

∫

X

u dμ =
∑

k∈N

∫

{x∈X:|x|∈Ik}
u(x) dμ(x) �

∑

k∈N

∫

Ik

μ(t)Kt dt ≤
∑

k∈N
2−k < ∞.

We conclude that u ∈ N1,1(X) and that lim[0,ξ)�x→ξ u(x) does not exist, for any ξ ∈
∂X.

Lemma 3.11 Let 1 < p < ∞. Assume μ(X) = ∞. The following are equivalent:

1. Rp < ∞.
2. Tr f exists for every f ∈ N1,p(X) and Tr f (ξ) ≡ 0 for a.e ξ ∈ ∂X.
3. Tr f exists for every f ∈ N1,p(X).

Proof 1. ⇒ 2.: Let f ∈ N1,p(X). Lemma 3.1 gives that
∫

[0,ξ)

|f |pKj(x)dμ < ∞ and
∫

[0,ξ)

g
p
f Kj(x)dμ < ∞

for a.e. ξ ∈ ∂X. Let {Ak}∞k=1 be a sequence of subintervals in [0, ∞) with
∫
Ak

Ktμ(t) dt =
1 as in the formula Eq. 1.2 of Rp . Then

∫

[0,ξ)

|f |pKj(x)dμ =
∞∑

k=1

∫

Ak

|f (x(t))|pKtμ(t)dt < ∞ for a.e.ξ .

Given [0, ξ) satisfying the above inequality, we have

lim
k→∞

∫

Ak

|f (x(t))|pKtμ(t)dt = 0.

Since f is continuous and
∫
Ak

Ktμ(t) dt = 1 for each k, there exists a tk ∈ Ak such that

|f (xtk )|p =
∫

Ak

|f (x(t))|pKtμ(t)dt → 0 as k → ∞.

Hence we have

sup
t∈Ak

|f (x(t))| ≤ |f (x(tk))| +
∫

Ak

gf ds

≤ |f (x(tk))| +
(∫

Ak

g
p
f Ktμ(t)dt

)1/p (∫

Ak

λ
p

p−1 (t)μ
1

1−p (t)K
t

1−p dt

) p−1
p

→ 0 as k → ∞,
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since Rp < ∞. Since
⋃∞

k=1 Ak = [0, ∞), it then follows that
∣
∣
∣
∣
∣

lim sup
[0,ξ)�x,x→ξ

f (x)

∣
∣
∣
∣
∣
≤ lim

k→∞ sup
t∈Ak

|f (x(t))| = 0 for a.e ξ ∈ ∂X.

Then Tr f exists and Tr f (ξ) ≡ 0 for a.e ξ ∈ ∂X.
2. ⇒ 3. This implication is trivial.
3. ⇒ 1. Fix p > 1, and suppose that Rp = ∞. Then, for the sequence of subintervals

{Ak}∞k=1 with
⋃∞

k=1 Ak = [0, ∞), we have
∫

Ak

Ktμ(t)dt = 1 and sup
k∈N

∫

Ak

λ
p

p−1 (t)μ
1

1−p (t)K
t

1−p dt = ∞.

We pick a subsequence of {Ak}∞k=1, still denoted {Ak}∞k=1, such that
∫

Ak

Ktμ(t)dt = 1 and
∫

Ak

λ
p

p−1 (t)μ
1

1−p (t)K
t

1−p dt > 4k .

Now, we divide Ak into 2k intervals {Ik,l}2k

l=1 with
∫
Ik,l

Ktμ(t)dt ≡ 2−k . Hence there exists

at least one interval Ik in {Ik,l : l = 1, 2, . . . , 2k} such that
∫

Ik

Ktμ(t)dt = 2−k and
∫

Ik

λ
p

p−1 (t)μ
1

1−p (t)K
t

1−p dt > 2k . (3.14)

We define

g(t) =
∞∑

k=1

λ
1

p−1 (t)μ
1

1−p (t)K
t

1−p

∫
Ik

λ
p

p−1 (t)μ
1

1−p (t)K
t

1−p dt

χIk(t).

It follows that

∫ ∞

0
gp(t)Ktμ(t)dt =

∞∑

k=1

∫

Ik

⎛

⎝ λ
1

p−1 (t)μ
1

1−p (t)K
t

1−p

∫
Ik

λ
p

p−1 (t)μ
1

1−p (t)K
t

1−p dt

⎞

⎠

p

Ktμ(t)dt

=
∞∑

k=1

1
(∫

Ik
λ

p
p−1 (t)μ

1
1−p (t)K

t
1−p dt

)p−1
<

∞∑

k=1

1

2k(p−1)
< ∞

and
∫

Ik

g(t)λ(t)dt =
∫

Ik

λ
1

p−1 (t)μ
1

1−p (t)K
t

1−p

∫
Ik

λ
p

p−1 (t)μ
1

1−p (t)K
t

1−p dt

λ(t)dt = 1

for every Ik where k = 1, 2, . . .. We use the procedure of Remark 3.6 by replacing the
finiteness of the total measure with

∑
k μ(Ik) < ∞ so as to obtain a piecewise monotone

function u ∈ N1,p(X) with upper gradient gu(x) = g(|x|), where g is from above, and so
that u has no limit along any geodesic ray. This contradicts 3.

For p = 1, we have R1 = R1. For p > 1, it is easy to check that Rp < ∞ implies
Rp < ∞, while the inverse does not hold true. Furthermore, we will show that the finiteness
of Rp will not imply the finiteness of Rq for any 1 ≤ q < ∞.

For simplicity, we consider the special case where λ and μ are piecewise constant. More
precisely, assume that

λ(t) = λj , μ(t) = μj , for t ∈ [j, j + 1), j ∈ N,
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where {λj }j∈N and {μj }j∈N are two sequences of positive and finite real numbers. Then

ds = d λ(z) = λjd |z| and d μ(z) = μjd |z|, for j ≤ |z| < j + 1, j ∈ N. (3.15)

We begin with easily checkable conditions.

Lemma 3.12 Let 1 ≤ p < ∞. Let X be a K-regular tree with measure and metric as in
Eq. 3.15. Then the following hold:

(i) Rp < ∞ if

sup
j

{

max

{
1

Kjμj

,
λj

p

Kjμj

}}

< +∞.

(ii) Rp = ∞ if

sup
j

{

min

{
1

Kjμj

,
λj

p

Kjμj

}}

= +∞.

Proof (i) If

sup
j

{

max

{
1

Kjμj

,
λj

p

Kjμj

}}

< +∞,

there exists a constant M > 0 such that

sup
j

{
1

Kjμj

}

≤ M and sup
j

{
λj

p

Kjμj

}

≤ M .

Let Ak be as in formula Eq. 1.2 for Rp. It is easy to see that

Rp = sup
k

∫

Ak

(
λ(t)p

Ktμ(t)

) 1
p−1 1

Ktμ(t)
Ktμ(t)dt

�
(

sup
j

λ
p
j

Kjμj

) 1
p−1

· sup
j

1

Kjμj

· sup
k

μ(Ak) ≤ M · M
1

p−1 < ∞

for p > 1, and

R1 = R1 =
∥
∥
∥
∥

λ(t)

Ktμ(t)

∥
∥
∥
∥

L∞([0,∞))

= sup
j

λj

Kjμj

≤ M < ∞.

(ii) If

sup
j

{

min

{
1

Kjμj

,
λj

p

Kjμj

}}

= +∞,

there a subsequence {jn : jn ∈ N} such that

lim
jn→∞

1

Kjnμjn

= ∞ and lim
jn→∞

λjn
p

Kjnμjn

= ∞.

Hence μ([jn, jn + 1]) → 0 as jn → ∞ and so we can assume that [jn, jn + 1] ⊂ Ajn

for jn big enough where Ajn belongs to {Ak}∞k=1 as in Eq. 1.2. Thus

Rp ≥ sup
jn

∫

[jn,jn+1]
λ

p
p−1 (t)μ

1
1−p (t)K

t
1−p dt

= sup
jn

∫

[jn,jn+1]

(
λp(t)

Ktμ(t)

) 1
p−1

dt = sup
jn

(
λ

p
jn

Kjnμjn

) 1
p−1

= ∞
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for p > 1, and

R1 = R1 =
∥
∥
∥
∥

λ(t)

Ktμ(t)

∥
∥
∥
∥

L∞([0,∞))

= sup
j

λj

Kjμj

= ∞.

Remark 3.13 The conditions in Lemma 3.12 to determine whether Rp is finite or not are
only sufficient conditions but not necessary ones. Towards this:
For (i), pick μj = K−j (1 + j)−1, (λj )

p = 2−j (1 + j)−1. Then Rp < ∞ but

sup
j

{

max

{
1

Kjμj

,
λj

p

Kjμj

}}

≥ sup
j

{1 + j} = ∞.

For (ii), pick μj = K−j , λj = 2j . Then Rp = ∞ but

sup
j

{

min

{
1

Kjμj

,
λj

p

Kjμj

}}

≤ 1 < +∞.

Example 3.14 Let 1 < p < ∞ and 1 ≤ q < ∞. We give simple examples where Rp < ∞
but Rq = ∞.

(i) Let λj = 1 and μj = K−j . Then Rp < ∞ for every 1 < p < ∞, while Rq = ∞ for
each 1 < q < ∞.

(ii) Let 1 < p < ∞, λj = (1 + j)−α and μj = K−j (1 + j)−α−1 with α > p/(p − 1).
Then

Rp ≤ Rp ≤
∞∑

j=1

j
α+1−αp

p−1 < ∞,

while R1 = supj {j} = ∞.

Remark 3.15 The above examples show that Rp < ∞ does not guarantee that Rq < ∞
for some 1 ≤ q < ∞ when μ(X) = ∞ and p > 1. Hence the existence of the trace
Tr : N1,p → L

p
ν (∂X) is not equivalent to the finiteness of Rq for some 1 ≤ q < ∞.

4 Density

In this section, we focus on the density properties of compactly supported functions in
N1,p(X) and in Ṅ1,p(X), 1 ≤ p < ∞. The function 1 is defined by 1(x) = 1 for all x in
X and we abuse the notation by using ∇u to denote gu if needed for convenience.

Our first result is an analog of the corresponding result for infinite networks [32], also
see [24].

Lemma 4.1 Let 1 ≤ p < ∞ and assume that μ(X) < ∞. Then we have that

N
1,p

0 (X) = N1,p(X) ⇐⇒ 1 ∈ N
1,p

0 (X).

Proof Since it follows from μ(X) < ∞ that 1 ∈ N1,p(X), we obtain that N
1,p

0 (X) =
N1,p(X) implies 1 ∈ N

1,p

0 (X).

Towards the other direction, the hypothesis 1 ∈ N
1,p

0 (X) gives a family of compactly
supported functions {1n}n∈N in N1,p(X) such that 1n → 1 in N1,p(X) as n → ∞. Recall
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that Xm := {x ∈ X : |x| < m} for any m ∈ N. Without loss of generality we may assume
that 1n is nonnegative for any n ∈ N and that

‖1n − 1‖p

N1,p(X)
<

1

4p
μ(X1), for all n ∈ N.

We claim that for any n ∈ N, there exists a point xn with xn ∈ X1 such that |1 − 1n(xn)| <

1/4. If not, then we have |1 − 1n(x)| ≥ 1
4 for any x ∈ X1. Hence we obtain that

‖1 − 1n‖p

N1,p(X)
≥ ‖1 − 1n‖p

N1,p(X1)
≥ 1

4p
μ(X1),

which is a contradiction. By the triangle inequality, we have 1−1n(xn) ≤ |1−1n(xn)| < 1
4 ,

and hence 1n(xn) > 3
4 .

Next, we claim that we may assume 1n(x) > 1/2 for all x ∈ Xn by selecting a subse-
quence of {1n}n∈N if necessary. Assume that this claim is not true. Then there exists N ∈ N

such that for any n ∈ N, there exists a point yn ∈ XN with 1n(yn) ≤ 1/2. Hence for any
n ∈ N, we have found two points xn ∈ X1 and yn ∈ XN such that |1n(xn)− 1n(yn)| ≥ 1/4.
Let γ = [xn, yn] be the geodesic connecting xn and yn. Then

∫

γ

|∇(1n)| ds ≥ 1/4 for any n ∈ N.

By an argument similar to that for the estimate Eq. 2.1 and Eq. 2.2, we have that there exists
a constant C(N, p, λ, μ) > 0 such that

∫

X

|∇(1 − 1n)|p dμ =
∫

X

|∇(1n)|p dμ ≥ C(N, p, λ, μ) > 0 for any n ∈ N,

which is a contradiction to 1n → 1 in N1,p(X).
Thus, from the arguments above, we may assume that there exists a family of compactly

supported functions {1n}n∈N in N1,p(X) such that
{
1n → 1 in N1,p(X) as n → ∞,

1n(x) ≥ 1
2 for any x ∈ Xn.

We define 1̄n := min{2 · 1n, 1} for all n ∈ N. Then the family (1̄n)n∈N satisfies
⎧
⎪⎨

⎪⎩

1̄n → 1 in N1,p(X) as n → ∞,

1̄n ≡ 1 in Xn,

1̄n is a function with compact support.

(4.1)

Given a function u in N1,p(X), let us show that un1̄n → u in N1,p(X) where un(x) is a
truncation of u with respect to an := ‖1̄n − 1‖−1/2

N1,p(X)
, namely

un(x) =
{

u
|u|an if |u| ≥ an

u if |u| ≤ an

.

From the basic properties of truncation (see for instance [11, Section 7.1]), we have that
⎧
⎪⎨

⎪⎩

un → u in N1,p(X) as n → ∞,

|un(x)| ≤ an,

|∇un| ≤ 3|∇u|.
(4.2)
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We first show that un1̄n → u in Lp(X) as n → ∞. By the triangle inequality, it follows
from Eq. 4.1 and Eq. 4.2 that

‖un1̄n − u‖Lp(X) ≤ ‖un1̄n − un‖Lp(X) + ‖un − u‖Lp(X)

≤ an‖1̄n − 1‖N1,p(X) + ‖un − u‖Lp(X)

= ‖1̄n − 1‖1/2
N1,p(X)

+ ‖un − u‖Lp(X) → 0 as n → ∞.

Recall that every function in N1,p(X) is locally absolutely continuous, see Section 2.2. By
the product rule of locally absolutely continuous functions, we obtain that

|∇(un1̄n − u)| = |∇(un1̄n − un + un − u)|
≤ |un||∇(1̄n − 1)| + |1̄n − 1||∇un| + |∇(un − u)|
≤ an|∇(1̄n − 1)| + |∇un|χX\Xn + |∇(un − u)|.

Hence we obtain from the triangle inequality and Eq. 4.2 that

‖∇(un1̄n − u)‖Lp(X) ≤ an‖∇(1̄n − 1)‖Lp(X) + ‖∇un‖Lp(X\Xn) + ‖∇(un − u)‖Lp(X)

≤ ‖1̄n − 1‖1/2
N1,p(X)

+ 3‖∇u‖Lp(X\Xn) + ‖∇(un − u)‖Lp(X),

which tends to 0 as n → ∞. Therefore, un1̄n → u in N1,p(X) as n → ∞. Since the
support of un1̄n is compact, it follows from the definition of N

1,p

0 (X) that u ∈ N
1,p

0 (X),

and hence N
1,p

0 (X) = N1,p(X).

Notice that 1 ∈ Ṅ1,p(X) no matter if μ(X) is finite or not. By slightly modifying the
previous proof, we obtain the following result.

Corollary 4.2 Let 1 ≤ p < ∞. Then the following statements are equivalent

Ṅ
1,p

0 (X) = Ṅ1,p(X) ⇐⇒ 1 ∈ Ṅ
1,p

0 (X)

Applying Lemma 4.1, we obtain our first density result.

Proposition 4.3 Let 1 ≤ p < ∞ and assume that μ(X) < ∞. Suppose additionally that
Rp = ∞. Then we have that

N
1,p

0 (X) = N1,p(X).

Proof It follows from Lemma 4.1 that it suffices to construct a sequence of compactly
supported N1,p-functions which converges to 1 in N1,p(X).

For p > 1 and

Rp =
∫ ∞

0
λ

p
p−1 (t)μ

1
1−p (t)K

t
1−p dt = ∞,

we define the family of functions {ϕn}n∈N as follows. For each n ∈ N, let rn > n be an
integer such that ∫ rn

n

λ
p

p−1 (t)μ
1

1−p (t)K
t

1−p dt ≥ 2n. (4.3)

We set ϕn(x) = 1 for all x ∈ Xn, ϕn(x) = 0 for all x ∈ X \ Xrn and

ϕn(x) = 1 −
∫ |x|
n

λ
p

p−1 (t)μ
1

1−p (t)K
t

1−p dt
∫ rn
n

λ
p

p−1 (t)μ
1

1−p (t)K
t

1−p dt

120 P. Koskela et al.



for all x ∈ Xrn \ Xn. Since λp/μ ∈ L
1/(p−1)

loc ([0, ∞)) and λ, 1/μ > 0, then ϕn is well-
defined. It is easy to check that ϕn is compactly supported.

By the construction of ϕn, an easy computation shows that

∇(ϕn(x) − 1) = 0 (4.4)

for all x ∈ (Xn) ∪ (X \ Xrn) and that

|∇(ϕn(x)−1)| ≤ 1

λ(x)

λ
p

p−1 (x)μ
1

1−p (x)K
|x|

1−p

∫ rn
n

λ
p

p−1 (t)μ
1

1−p (t)K
t

1−p dt

= λ
1

p−1 (x)μ
1

1−p (x)K
|x|

1−p

∫ rn
n

λ
p

p−1 (t)μ
1

1−p (t)K
t

1−p dt

(4.5)

for all x ∈ Xrn \ Xn.
Thanks to Eq. 4.4 and Eq. 4.5, we obtain the estimate

∫

X

|∇(ϕn − 1)|pdμ =
∫

Xrn\Xn

|∇(ϕn − 1)|pdμ

≈
∫ rn

n

Ktμ(t)

⎛

⎝ λ
1

p−1 (t)μ
1

1−p (t)K
t

1−p

∫ rn
n

λ
p

p−1 (t)μ
1

1−p (t)K
t

1−p dt

⎞

⎠

p

dt

=
(∫ rn

n

λ
p

p−1 (t)μ
1

1−p (t)K
t

1−p dt

)1−p

.

Since p > 1 and Eq. 4.3 holds, we obtain that
(∫ rn

n

λ
p

p−1 (t)μ
1

1−p (t)K
1

1−p dt

)1−p

→ 0 as n → ∞.

Hence we have that ‖∇(ϕn−1)‖Lp(X) → 0 as n → ∞. Moreover, since |ϕn−1| ≤ 2χX\Xn ,
it follows from μ(X) < ∞ that

‖ϕn(x) − 1‖Lp(X) ≤ 2μ(X \ Xn) → 0 as n → ∞.

Therefore, ϕn → 1 in N1,p(X) as n → ∞.

For p = 1, since λ/μ ∈ L∞
loc([0, ∞)) implies that

∥
∥
∥ λ(t)

μ(t)Kt

∥
∥
∥

L∞([0,n))
< ∞ for any n ∈ N,

it follows from R1 =
∥
∥
∥ λ(t)

μ(t)Kt

∥
∥
∥

L∞([0,∞))
= ∞ that the sequence of sets

Ek :=
{

t ∈ [k,∞) : λ(t)

μ(t)Kt
≥ 2k

}

, k ∈ N

is a nonincreasing sequence of subset of [0, ∞) and that we have

|Ek| > 0 for any k ∈ N.

We have Ek = limn→∞ Ek ∩ [k, n] and |Ek| = limn→∞ |Ek ∩ [k, n]|. Hence there exist
a kn > k such that

Ekn :=
{

t ∈ [k, kn] : λ(t)

μ(t)Kt
≥ 2k

}

satisfies 0 < |Ekn | < ∞.
We define a sequence {ϕk} of functions by setting

ϕk(x) = 1 − 1

|Ekn |
∫ |x|

k

χEkn
(t)dt

for all |x| ∈ [k, kn] and ϕk(x) = 0 on X \ Xkn , ϕk(x) = 1 on Xk .
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It follows directly from the definition of ϕk that each ϕk has compact support and that

|ϕk − 1| ≤ 2χX\Xk , |∇(ϕk)(x) − 1)| ≤ χEkn
(x)

λ(x)|Ekn |
.

Hence, thanks to μ(X) < ∞ and the definition of Ekn , we obtain that

‖ϕk − 1‖N1,1(X) = ‖ϕk − 1‖L1(X) + ‖∇(ϕk − 1)‖L1(X)

≤ ‖2χX\Xk‖L1(X) +
∫

X

χEkn
(t)

λ(t)|Ekn |
dμ(t)

� 2μ(X \ Xk) + 1

|Ekn |
∫ kn

k

μ(t)Kt

λ(t)
χEkn

(t) dt

≤ 2μ(X \ Xk) + 1

2k
→ 0 as k → ∞.

Hence ϕk → 1 in N1,1(X) as k → ∞.

By using the same construction of the sequence of compactly supported N1,p-functions
as the one in the above proof, we obtain the following corollary immediately from Corollary 4.2.

Corollary 4.4 Let 1 ≤ p < ∞. Assume Rp = ∞. Then we obtain that

Ṅ
1,p

0 (X) = Ṅ1,p(X).

Proposition 4.5 Let 1 ≤ p < ∞ and assume that μ(X) < ∞. Suppose additionally that
Rp < ∞. Then we have

N
1,p

0 (X) � N1,p(X).

Proof Suppose N
1,p

0 (X) = N1,p(X). Since 1 ∈ N1,p(X), it follows that for every ε > 0,
there exists a function u ∈ N1,p(X) with compact support such that

‖1 − u‖N1,p(X) < ε. (4.6)

Let ξ ∈ ∂X be arbitrary, and xj := xj (ξ) be the ancestor of ξ with |xj | = j and x0 = 0.

Let 0 < ε < 1
2‖μ‖1/p

L1([0,1]). By repeating the argument in the beginning of Proof of Lemma

4.1 with the change that we replace μ(X1)/4p and X1 by εp and [0, x1(ξ)], respectively,
we obtain the existence of xξ ∈ [0, x1(ξ)] for which the function u in Eq. 4.6 satisfies
|1 − u(xξ )| < 1

2 . By the triangle inequality, we have 1 − |u(xξ )| ≤ |1 − u(xξ )| < 1
2 , and

hence |u(xξ )| > 1
2 .

Notice that u has compact support. Then for any ξ ∈ ∂X, we have limn→∞ u(xn(ξ)) = 0
and that

1

2
< lim

n→∞ |u(xξ ) − u(xn(ξ))| ≤
∫

[0,ξ)

gu ds =
∫

[0,ξ)

gu

λ(x)

μ(x)
dμ. (4.7)
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For p = 1, integrating over all ξ ∈ ∂X, since ν(∂X) = 1, we obtain by Fubini’s theorem
that

1

2
≤

∫

∂X

∫

X

gu(x)χ[0,ξ)(x)
λ(x)

μ(x)
dμ(x) dν(ξ)

=
∫

X

gu(x)
λ(x)

μ(x)

(∫

∂X

χ[0,ξ)(x) dν(ξ)

)

dμ(x)

=
∫

X

gu(x)λ(x)μ(x)−1ν(Ix) dμ(x),

where Ix = {ξ ∈ ∂X : x < ξ}. Since ν(Ix) ≈ K−|x|, we obtain from R1 < ∞ that

1

2
� R1

∫

X

gu(x) dμ(x) � ‖1 − u‖N1,1(X) < ε.

By choosing ε small enough, the above estimate yields a contradiction, and hence
N

1,1
0 (X) �= N1,1(X).
For p > 1, by Eq. 4.7 and the Hölder inequality, we have that

1

2p
≤

(∫

[0,ξ)

guK
j(x)/p λ(x)

μ(x)Kj(x)/p
dμ

)p

≤
∫

[0,ξ)

gu
pKj(x) dμ

(∫

[0,ξ)

(
λ(x)

μ(x)Kj(x)/p

) p
p−1

dμ

)p−1

� Rp
p−1

∫

[0,ξ)

gu
pKj(x) dμ,

where j (x) is the largest integer such that j (x) ≤ |x| + 1. Here the last inequality holds
since

∫

[0,ξ)

(
λ(x)

μ(x)Kj(x)/p

) p
p−1

dμ ≈
∫ ∞

0

λ(t)
p

p−1

μ(t)
p

p−1 K
t

p−1
μ(t) dt = Rp .

Integrating over all ξ ∈ ∂X, since ν(∂X) = 1 and Rp < +∞, we obtain by Fubini’s
theorem that

1

2p
�

∫

∂X

∫

X

gu(x)pχ[0,ξ)(x)Kj(x) dμ(x) dν(ξ)

=
∫

X

gu(x)pKj(x)

(∫

∂X

χ[0,ξ)(x) dν(ξ)

)

dμ(x)

=
∫

X

gu(x)pKj(x)ν(Ix) dμ(x),

where the notations Ix and j (x) are the same ones as those we used before. Since ν(Ix) ≈
K−j (x), we obtain the estimate

1

2
�

(∫

X

gu(x)p dμ(x)

)1/p

≤ ‖1 − u‖N1,p(X) < ε.

By choosing ε small enough, the above estimate gives a contradiction, and hence
N

1,p

0 (X) �= N1,p(X) for p > 1.

Since N
1,p

0 (X) ⊂ N1,p(X) by definition, we obtain N
1,p

0 (X) � N1,p(X) for all p ≥
1.
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Corollary 4.6 Let p ≥ 1 and assume that Rp < ∞. Then we have

Ṅ
1,p

0 (X) � Ṅ1,p(X).

Proof Suppose Ṅ
1,p

0 (X) = Ṅ1,p(X). Since 1 ∈ Ṅ1,p(X), it follows that for every ε > 0,
there exists a function u ∈ Ṅ1,p(X) with compact support such that

‖1 − u‖Ṅ1,p(X) < ε.

Then by the definition of our Ṅ1,p-norm, we have |u(0)− 1| < ε and hence |u(0)| > 1 − ε.
Then using a similar argument to the one in the Proof of Proposition 4.5 (replace u(xξ )

with u(0)), we obtain a contradiction. The claim follows.

The above results give a full picture for the density properties for homogeneous Newto-
nian spaces Ṅ1,p(X) and for Newtonian spaces N1,p(X) when μ(X) < ∞. When the total
measure is infinite, the density results for the Newtonian space N1,p(X) are quite different.

Lemma 4.7 Let K = 1, i.e., X be a 1-regular tree and assume that μ(X) = ∞. Then for
any f ∈ N1,p(X), there exists a sequence of compactly supported N1,p-functions {fn}n∈N
such that fn → f in N1,p(X).

Proof Notice that we may compose any f ∈ N1,p(X) as f = f + − f − where f + =
f · χ{f ≥0} ≥ 0 and f − = −f · χ{f ≤0} ≥ 0. Hence we may assume that f ≥ 0.

Since K = 1, ∂X contains only one point ξ0 and there is a unique geodesic ray. It follows
from Proposition 3.9 that

lim inf[0,ξ0)�x→ξ0
f (x) = 0. (4.8)

Denote by xn the vertex of X with |xn| = n when n ∈ N. Then it follows from Eq. 4.8 that

f (xn) −
∫

[xn,ξ0)

gf ds ≤ 0, ∀ n ∈ N. (4.9)

We define functions fn by setting

fn(x) :=
{

f (x), if |x| ≤ n;
max{0, f (xn) − 2

∫
[xn,x] gf ds}, if |x| > n.

Then it is easy to check that fn ∈ N1,p(X), since 0 ≤ fn ≤ f and gfn ≤ 2gf . Next, we
check that fn is compactly supported. Assume not. Since fn is non-increasing for |x| > n

by definition, we have that fn(x) > 0 for any |x| > n and hence that

lim
x→ξ0

fn(x) = f (xn) − 2
∫

[xn,ξ0)

gf ds ≥ 0.

Combining this with Eq. 4.9, we conclude that
∫

[xn,ξ0)

gf ds = 0.

Then gf = 0 for |x| > n and it follows from Eq. 4.8 that f and fn has to be identically 0
for |x| ≥ n, which is a contradiction. Hence fn is compactly supported.
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At last, we estimate the N1,p-norm of fn − f . By the fact that 0 ≤ fn ≤ f and gfn ≤
2gf , we obtain the estimate

‖fn − f ‖N1,p(X) = ‖fn − f ‖N1,p(X∩{|x|≥n})
≤ ‖fn‖N1,p(X∩{|x|≥n}) + ‖f ‖N1,p(X∩{|x|≥n})
≤ 3‖f ‖N1,p(X∩{|x|≥n}) → 0 as n → 0,

since f ∈ N1,p(X). Thus {fn}n∈N is a sequence of compactly supported N1,p-functions
with fn → f in N1,p(X), which finishes the proof.

If
∫ ∞

0 λ(t) dt = ∞, then X is complete and unbounded with respect to distance d and it

follows by using suitable cutoff functions that N
1,p

0 (X) = N1,p(X). Our next result shows
that this is also the case when X is bounded and not complete if we assume μ(X) = ∞.

Theorem 4.8 Let 1 ≤ p < ∞ and assume that μ(X) = ∞. Then we have that

N
1,p

0 (X) = N1,p(X).

Proof If K = 1, the result follows directly from Lemma 4.7. Hence we assume K ≥ 2 in
the ensuing proof.

For any f ∈ N1,p(X), by the same argument as in Lemma 4.7, we may assume that
f ≥ 0. It suffices to construct a sequence {fn}n∈N of compactly supported N1,p-functions
such that fn → f in N1,p(X).

For each n ∈ N, we denote by {xn,j }Kn

j=1 the vertices of n-level, i.e., |xn,j | = n for all
j = 1, · · · , Kn. For any xn,j , we study the subtree �xn,j

which is a subset of X with root
xn,j . More precisely,

�xn,j
:= {x ∈ X : xn,j < x}.

Since every vertex has exactly K children, we may divide �xn,j
into K subsets, where each

subset contains a subtree whose root is a child of xn,j and an edge connecting this child
with xn,j . We denote by {�i

xn,j
}Ki=1 these K subsets.

Fix f ∈ N1,p(X). We first study the function u := f |�xn,j
. If ‖f ‖N1,p(�xn,j

) > 0, we

first modify the function u to a function v with v(x) = v(|x|) for any x ∈ �xn,j
, i.e., for any

x, y ∈ �xn,j
with |x| = |y|, then v(x) = v(y). The modification procedure is as follows:

Step 1 Since �xn,j
= ⋃K

i=1 �i
xn,j

, without loss of generality, we may assume

‖u‖N1,p(�1
xn,j

) = min{‖u‖N1,p(�i
xn,j

) : i = 1, 2, . . . , K}. (4.10)

Then we define a function u1 by identically copying the minimal N1,p-energy subtree of
u (here is u|�1

xn,j
), to the other k − 1 subtrees �i

xn,j
, i = 2, · · ·K . More precisely,

u1(x) :=
{

u(x), if x ∈ �1
xn,j

;
u|�1

xn,j
(y) with y ∈ �1

xn,j
, |y| = |x|, if x ∈ �i

xn,j
.

It follows from Eq. 4.10 that

‖u1‖N1,p(�xn,j
) ≤ ‖u‖N1,p(�xn,j

).

Then for any x, y ∈ �xn,j
∩ {x ∈ X : n ≤ |x| ≤ n + 1} with |x| = |y|, we have

u1(x) = u1(y).

125Trace and Density Results on Regular Trees



Step 2 Denote by {xn+1,t }Kt=1 the K children of xn,j . We repeat the Step 1 by replacing the
function u and �xn,j

with u1 and �xn+1,t
, respectively. Here we repeat the Step 1 for all K

subtrees �xn+1,t
, t = 1, · · · ,K . Hence we obtain a function u2 on �xn,j

by additionally
letting u2(x) = u1(x) if x ∈ �xn,j

with n ≤ |x| ≤ n + 1. Moreover, it is easy to check
that

‖u2‖N1,p(�xn,j
) ≤ ‖u1‖N1,p(�xn,j

) ≤ ‖u‖N1,p(�xn,j
)

and that u2(x) = u2(y) for any x, y ∈ �xn,j
∩ {x ∈ X : n ≤ |x| ≤ n + 2} with |x| = |y|.

Continuing this procedure, we obtain a sequence of functions {uk}k∈N. We define v =
limk→∞ uk . Then we know from induction that

‖v‖N1,p(�xn,j
) ≤ ‖u‖N1,p(�xn,j

) = ‖f ‖N1,p(�xn,j
) (4.11)

and that v(x) = v(y) for any x, y ∈ �xn,j
with |x| = |y|.

The value of function v(x) only depends on the distance d(xn,j , x). We may regard v as a
function on a 1-regular tree with root xn,j and infinite measure, since μ(�xn,j

) = ∞. Hence,
from the Proof of Lemma 4.7, we are able to choose a compactly supported N1,p-function
fn,j on �xn,j

with

‖fn,j − v‖N1,p(�xn,j
) ≤ 3‖u‖N1,p(�xn,j

) = 3‖f ‖N1,p(�xn,j
). (4.12)

Then it follows from Eq. 4.11 and Eq. 4.12 that

‖fn,j − f ‖N1,p(�xn,j
) ≤ ‖fn,j − v‖N1,p(�xn,j

) + ‖v − f ‖N1,p(�xn,j
)

≤ ‖fn,j − v‖N1,p(�xn,j
) + ‖v‖N1,p(�xn,j

) + ‖f ‖N1,p(�xn,j
)

≤ 5‖f ‖N1,p(�xn,j
). (4.13)

If ‖f ‖N1,p(�xn,j
) = 0, then f = 0 on �xn,j

and we just define fxn,j
= f |�xn,j

.

At last, we define a function fn by setting

fn(x) :=
{

f (x), if |x| ≤ n;
fn,j (x), if x ∈ �xn,j

.

Then it is easy to check that fn ∈ N1,p(X) and that fn is compactly supported, since fn,j

are compactly supported for any j = 1, · · · , Kn. It follows from estimate Eq. 4.13 that

‖fn − f ‖N1,p(X) = ‖fn − f ‖N1,p(X∩{|x|≥n}) =
Kn
∑

j=1

‖fn − f ‖N1,p(�xn,j
)

=
Kn
∑

j=1

‖fn,j − f ‖N1,p(�xn,j
) ≤ 5

Kn
∑

j=1

‖f ‖N1,p(�xn,j
)

= 5‖f ‖N1,p(X∩{|x|≥n}) → 0, as n → 0,

since f ∈ N1,p(X). Thus we have found a sequence {fn}n∈N of compactly supported N1,p-
functions with fn → f in N1,p(X), which finishes the proof.
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5 Proofs of Theorems

Proof of Theorem 1.1 (i) ⇒ (ii) is given by Corollary 3.3; (ii) ⇒ (iii) is trivial and
(iii) ⇒ (i) is given by Proposition 3.7.

(i) ⇒ (iv) is given by Proposition 4.5 and (iv) ⇒ (i) is given by Corollary 4.3.

Proof of Theorem 1.2 Part (1) is given by Theorem 4.8.
Part (2): For p > 1, the claim is given by Lemma 3.11. For p = 1, the claim follows by

Corollary 3.3 and Proposition 3.10.

Proof of Theorem 1.3 (i) ⇒ (ii) is given by Theorem 3.2; (ii) ⇒ (iii) is trivial and
(iii) ⇒ (i) is given by Theorem 3.5.

(i) ⇒ (iv) is given by Corollary 4.6 and (iv) ⇒ (i) is given by Corollary 4.4.
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