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Abstract

A class of (possibly) degenerate integro-differential equations of parabolic type is con-
sidered, which includes the Kolmogorov equations for jump diffusions. Existence and
uniqueness of the solutions are established in Bessel potential spaces and in Sobolev-
Slobodeckij spaces. Generalisations to stochastic integro-differential equations, arising in
filtering theory of jump diffusions, will be given in a forthcoming paper.
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1 Introduction

We consider the equation
9
Eu(t, x) = Au(t, x) + f(t,x) (1.1

on Hr =[0,T] x RY for a given T > 0, with initial condition u (0, x) = ¥ (x) for x € R4,
where A is an integro-differential operator of the form 4 = £ 4+ M + N + R, with a
“zero-order” linear operator R, a second order differential operator

L(t) = a" (t,x)Dij + b' (1, x) Di + (1, x)

P4 Istvan Gyongy
i.gyongy @ed.ac.uk

Marta De Ledn-Contreras
marta.leon@uam.es

Sizhou Wu
Sizhou.Wu@ed.ac.uk

Departamento de Matematicas, Facultad de Ciencias, Universidad Auténoma de Madrid, Madrid,
Spain

2 School of Mathematics and Maxwell Institute, University of Edinburgh, Scotland, UK
3 School of Mathematics, University of Edinburgh, King’s Buildings, Edinburgh, EH9 3JZ, UK

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11118-020-09864-2&domain=pdf
http://orcid.org/0000-0002-2131-1313
mailto: i.gyongy@ed.ac.uk
mailto: marta.leon@uam.es
mailto: Sizhou.Wu@ed.ac.uk

444 M. De Ledn-Contreras et al.

and nonlocal linear operators M and A defined by

M(@D)p(x) = /Z(w(x + 11,2 (0) — () = 7 () Vo (x)) u(dz), 1.2)

Nex) = /Z(w(x +§1.:(x)) — 9(x)v(dz) (1.3)

for a suitable class of real-valued functions ¢(x) on R4, Here a'/, b' and ¢ are real-valued
bounded functions defined on Hr, i and v are o-finite measures on a measurable space
(Z, Z). The functions 1 and £ are R¢-valued mapping defined on Hy x Z. Under “zero-
order operators” we mean bounded linear operators R mapping the Sobolev spaces W1]§
into themselves for k = 0, 1, 2, .., n for some n. Examples include integral operators R (¢)
defined by

R()e(x) = /Z<P(x + &1,z (x)A(d2) (1.4)

with appropriate functions £ on Hr x Z and finite measures A on Z.

Our aim is to investigate the solvability of Eq. 1.1 in Bessel potential spaces H' and
Sobolev-Slobodeckij spaces W' for p > 2 and m € [1, 00).

Such kind of equations arise, for example, as Kolmogorov equations for Markov pro-
cesses given by stochastic differential equations, driven by Wiener processes and Poisson
random measures, see e.g., [1, 2, 12, 13] and [17]. They play important roles in studying
random phenomena modelled by Markov processes with jumps, in physics, biology, engi-
neering and finance, see e.g., [3, 8, 33, 38] and the references therein. There is a huge
literature on the solvability of these equations, but in most of the publications some kind of
non-degeneracy conditions on the equations, or specific assumptions on the measures © and
v are assumed. Results in this direction can be found, for example, in [12, 13, 17, 27, 29, 30,
32] and [39], and for nonlinear equations of the type (1.1), arising in the theory of stochas-
tic control of random processes with jumps, we refer to [13] and [40]. Extensions of the
L ,-theory of Krylov [18] to stochastic equations and systems of stochastic equations with
integral operators of the type M and N above are developed in [6, 7, 19, 20, 28] and [31].

Note that, since with a positive constant ¢y 4 the fractional Laplacian operator AY/2 =
—(—A)¥/? has the integral representation

2 =limead [ (ol+a) - g0 odz, ae .2
HES z|
for smooth functions ¢ with compact support on RY, we have A%? = N 4+ R — ¢qq
fora € (0,1) and A%? = M + R — ¢y4 for @ € [1,2), where M, N and R are
defined in Eqs. 1.2, 1.3 and 1.4, with 7, . (x) = & _.(x) = &..(x) = z € Z := R?\ {0},
1(dz) = v(dz) = cqalig<ilzl™dz, M(dz) = cqalig=11z|**dz and with

_ 1
Ca,d = COt,d/ dz
lol>1 2|9+

Thus examples for Eq. 1.1 include equations with A%/, o € (0, 2). There are many impor-
tant results in the literature about fractional operators and about equations containing them,
see e.g., [4, 5, 42] and the references therein.

In this paper we are interested in the solvability of Eq. 1.1 when it can degenerate, and
besides some integrability conditions, no specific conditions on the measures u and v are
assumed. An Lj-theory of degenerate linear elliptic and parabolic PDEs is developed in
[34-37]. The solvability in Ly-spaces of linear degenerate stochastic PDEs of parabolic type
were first studied in [23] (see also [41]). The first existence and uniqueness theorem on
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solvability of these equations in W spaces, for integers m > 1 and any p > 2, is presented
in [24]. A gap in the proof of a crucial L ,-estimate in [24] is filled in, and the existence
and uniqueness theorem is substantially improved in [15]. The solvability of degenerate
stochastic integro-differential equations, which include the type of Eq. 1.1, are studied in
[9, 25] and [26]. Existence and uniqueness theorems are obtained in Holder spaces in [25],
and in Ly-spaces in [9] and [26]. Our main result, Theorem 2.1 below, is an existence and
uniqueness theorem in L j,-spaces, which generalises the main result in [9] restricted to
equations without stochastic terms. To some extent Theorem 2.1 generalises also the main
result, Theorem 3.3, in [26], restricted to equations without stochastic terms. Our main
theorem, however, does not cover Theorem 3.3 in [26], especially that in [26] a weakly
coupled system of stochastic integro-differential equations (IDEs) is considered instead of
a single IDE. In this respect we note that the proof of our main result suggests that it is
possible to extend it to weakly coupled systems of IDEs, but that is not considered in the
present paper. Concerning solvability of Eq. 1.1 in Holder spaces it is worth mentioning
that applying our existence and uniqueness theorem in Sobolev spaces W]’f with sufficiently
large p, and using suitable Sobolev embedding it is possible to get existence and uniqueness
theorems in Holder spaces.

A generalisation of Theorem 2.1 to stochastic integro-differential equations will be
presented in a forthcoming paper.

In conclusion we introduce some notations used throughout the paper. For vectors v =
(v") and w = (w') in RY we use the notation vw = > viw' and |2 = > [vi]2.
For real-valued Lebesgue measurable functions f and g defined on R? the notation (£, g)
means the integral of the product fg over R¢ with respect to the Lebesgue measure on R¥.
A finite list ¢ = ojan, ..., @, of numbers «; € {1, 2, ...,d} is called a multi-number of
length || := n, and the notation

Dy := Dy, Dy, ...Dy,

is used for integers n > 1, where

ad
D; =—, forie{l,?2,..d}.
ax!

We use also the multi-number € of length 0, and agree that D, means the identity operator.
For an integer n > 0 and functions v on R?, whose partial derivatives up to order n are
functions, we use the notation D" v for the collection {D,v : |a| = n}, and define

ID"v[* = ) |Dgvl*.

|la|=n

For differentiable functions v = (v!,...,v9) : RY — R the notation Dv means the
Jacobian matrix whose j-th entry in the i-th row is D;v'.

For a separable Banach space V we use the notation L,([0, T'], V) for the space of
Borel functions f : [0,T] — V such that | f |"; has finite integral with respect to the
Lebesgue measure on [0, T']. The Borel o-algebra on V is denoted by B(V). The notations
C([0,T], V) and Cy ([0, T], V) mean the space of V-valued functions on [0, T'], which
are continuous with respect to the strong topology and with respect to the weak topology,
respectively, on V. For m € R and p € (1, 00) we use the notation H [’)" for the Bessel
potential space with exponent p and order m, defined as the space of generalised functions
¢ on R? such that

(1=8)"Ppel, and lpluy :=101—-8)""¢l, < oo,
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where A = Zid:1 Dl.z, and L, is the space of real-valued Borel functions f on R¢ such that

|f|fp = / | f () |Pdx < oo.
Rd

For p € [1, co) and integers m > 0 the notation W;," means the Sobolev space defined as
the completion of C§° = Cg° (R%), the space of smooth functions with compact support on
R4, in the norm
lplwn := Y |Daplr,.
lee]<m
For integers m > 0 the space W is the completion of C;*, the space of bounded functions
on R? with bounded smooth derivatives, in the norm

lolwz = ) esssup|Dagl.

lee]<m

Moreover, we use W™ to denote the dual space of W}, where g is the conjugate exponent
of p,i.e. 1/p + 1/g = 1. One knows that HI’," and WI’)” are the same as vector spaces, and
their norms are equivalent for p € (1, oo0) and integers m > 0. When m > 0 is not an
integer, then W denotes space of functions f € ngmj such that

Dy, — Dy p
[Da f1],,, = /RI/RI| S SN edy < oo

or = y PO+

for every multi-index « of length |m ], where |m] is the largest integer smaller than m, and
{m} =m — [m]. When m > 0 is not an integer, then W;” with the norm

[Flwg =1y + D Daflmy.p

la|=Lm]

is a Banach space, called a Slobodeckij space. Derivatives are understood in the generalised
sense unless otherwise noted. The summation convention with respect to repeated indices is
used throughout the paper, where it is not indicated otherwise. For basic notions and results
on solvability of parabolic PDEs in Sobolev spaces we refer to [21].

The paper is organised as follows. The formulation of the problem and the main result,
Theorem 2.1, is in Section 2. Some technical tools and the crucial L, estimates are collected
in Sections 3 and 4, respectively. The proof of Theorem 2.1 is given in the last section,
Section 5.

2 Formulation of the Main Results

Let K be a fixed constant and let 7j and & be fixed nonnegative Z-measurable functions on
Z such that

K? :=fzﬁ2(z)u(dz) <oo, K; :=fZ§(z)u(dz) < oo.

We make the following assumptions, where p € [2, co) and m > 0 are fixed real numbers
and [m] denotes the smallest integer which is greater than or equal to m.

Assumption 2.1 The derivatives of ¢ in x € R? up to order [m], and the derivatives of

b in x up to order max{[m], 1} are Borel functions on Hr, bounded by K for all i =
1,2, .., d. The derivatives of a'/ in x up to order max{[m1, 2} are Borel functions on Hr for
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i,j =1,..,d, and are bounded by K. Moreover, a’ = ali foralli, j = 1,...,d and for
dt ® dx-almost all (¢, x) € Hr

777 >0 forall (7', ..., z%) e RY. 2.1)

Assumption 2.2 The function n = (') is an R¢-valued B(Hr) ® Z-measurable mapping
on Hr x Z, its derivatives in x € R4 up to order max{[m7, 3} exist and are continuous in
x, such that

Il <7, |D*nl<iAK, k=1,2,..,max([m],3) =:m,
forall (¢, x,z) € Hr x Z, and
K~! < |det(I+6Dn, ,(x))|

forall (¢, x, z,0) € Hr x Z x [0, 1], where [ is the d x d identity matrix and recall that Dn
denotes the Jacobian matrix of 7.

Remark 2.1 By Taylor’s formula we have

1
v(x +1(x)) —v(x) = n(x)Vo(x) = /0 0" (0) (e (x + 07(x)) — v (x))db

1 1
= fo 1* () D (v(x + On(x)) — v(x))dO — /0 O (x)nk (x)v (x + 0n(x))d6

for every v € CJ°, where to ease notation we do not write the arguments ¢ and z and write
v instead of Dy v for functions v. Due to Assumption 2.2 these equations extend to v € Wll,
for p > 2 as well. Hence after changing the order of integrals, by integration by parts we
obtain

Mu, 9) = —(T*v, Do) + (T, 9)
for ¢ € C3°, with

1
T ®vx) :/0 Lnk(v(rgn(x))—v(x))p,(dz)dﬁ, k=1,2,..4d, 2.2)

1
w0 = = [ [ (500 = 00 + 01 w16, 2.3
k

where for the sake of short notation the arguments 7, z of 1 and n; have been omitted, and

Ty (x) == x +60n,,(x) forx e R, 1€[0,T],z€ Zand6 € [0, 1]. (2.4)
Assumption 2.3 The function £ = (£%) is an R?-valued B(Hr) ® Z-measurable mapping
on Hr x Z, its derivatives in x € R? up to order max{[m7, 2} exist and are continuous in x
such that ) B

| <& |D'e|<EAK, k=1,2,.. max([m],2) =:mg
forall (t, x,z) € Hr x Z, and
K~ < |det(l + 6 D& . (x))]

forall (¢, x,z,0) € Hr x Z x [0, 1].
Assumption 2.4 The operator R (t) is a linear mapping from L ,(R¢) into L, (R?) for every
t € [0, T], such that for every ¢ € C§° the function R(¢)¢ is Borel measurable in ¢ and

|R(t)<p|wfp¢ = Klolws for integers n = 0, 1, ..., [m].
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448 M. De Ledn-Contreras et al.

Remark 2.2 Clearly, there are many important examples of linear operators satisfying this
condition. By Lemma 3.2 below it is not difficult to show that the operator R defined in
Eq. 1.4 satisfies Assumption 2.4 if ¢ = (¢') is an R%-valued B(Hr) ® Z-measurable
mapping on Hy x Z and it is a C1-diffeomorphism of R? for every (¢, z) € [0, T] x Z
such that

ID*¢| <K, k=1,2,..,[m], K~ '<|det(l+ D& . (x))|
forall (t,x,z) € Hr x Z.

In the next assumption, and correspondingly in the main result below, V; denotes either
H; or WIS, for every s > 0.

Assumption 2.5 We have ¢ € V,;" and f € L,([0,T], VI’,").
Using Remark 2.1 we define the notion of generalised solutions to Eq. 1.1 as follows.

Definition 2.1 An L, (R%)-valued continuous function u = u(t), ¢ € [0, T]is a generalised
solution to Eq. 1.1 with initial condition u(0) = , if u(t) € W; (R?) for dt-almost every

t €[0. Tl u € Lp([0. T], W}), and

t
(u(®), ) = (., ¢) +/0 (Au(s), @) + (f (), 9)ds (2.5)

for every ¢ € Cg° (R?) and ¢ € [0, T], where

(Au, ¢) := —(@V Dju, Dip) + (b' Diu + cu, ¢) — (J'u, Dig) + (Tu, ¢)
+WNu, ) + (Ru, )
with b’ = b’ — D;a'l.

Observe that, if Assumptions 2.2 and 2.3 hold, then there is a constant N such that
|7 ®vler < Nlvlwy, 1T Gvler < Njvlyy,  IN6)vlze < Nivly),

forall v € W; and s € [0, T] (see Proposition 3.10 below). Thus (Au, ¢) is well-defined
when Assumptions 2.1 through 2.4 are satisfied.

Theorem 2.1 Let Assumptions 2.1 through 2.5 hold with m > 1. Then Eq. 1.1 with initial
condition u(0) =  has a generalised solution u, which is a weakly continuous V;"-valued
function, and it is strongly continuous as a V[;‘—valued function of t € [0, T] for any s < m.

Moreover, there is a constant N = N(K,d,m, p, T, Kg, K35) such that

T
sup [u(t)] s < N ("”'pﬁ +/O |f(t)|”l.§dt> fors €10, m]. (2.6)

t<T

If Assumptions 2.1 through 2.5 hold with m = O, then there is at most one generalised
solution.

3 preliminaries

First we present some lemmas which may well be known from textbooks in analysis. Recall
that we use multi-numbers ¢ = @ ...a,, where a; € {1, ..., d}, to denote higher order
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derivatives. For a multi-number o = «;....a¢ of length k and a subset k of k:=1{1,2,..k)
we use the notation a (k) for the multi-number oy, ...y, , where [y, ..., [, are the elements

of «, listed in increasing order. For short we use the notation v, := Dyv for functions v
of x € RY. We write k] U --- Uk, = k for the partition of {1, 2, .., k} into n nonempty
disjoint sets 1, ..., k,. Two partitions are considered different if one of the sets in one of

the partitions is different from each set in the other partition. Using the above notation the
chain rule for (u(p))e := Dq(u(p)) for functions u : R — Rand p : R? — R can be
formulated as follows.

Lemma 3.1 Assume that the derivatives of u and p = L, ..p% up to order k > 1 exist
and are continuous functions. Then for any multi-number o = ojoz...op of length | €
{1, 2, ..., k} we have

l
WPENa =Y D i in (IO Paticr) - Paicr) 3.0
n=1 K]I_l"-\_ll(n:l_
where the second summation on the right-hand side means summation over the different
partitions of I := {1, 2, ..., 1}, and for each | and each partition of I there is also a summation
with respect to the repeated indicesi; € {1,2, ...,d} for j = 1,2, ..., n.

Proof One can prove this lemma by induction on /, and it is left for the reader as an easy
exercise. O

A one-to-one function, mapping R< onto RY, is called a CX-diffeomorphism on R? for an
integer k > 1, if the derivatives up to order k of the function and its inverse are continuous.
If p is a Ck-diffeomorphism such that

M < |detDp|and |D'p| < N fori =1,2, ...k (3.2)

for some positive constants M and N, then Lemma 3.1 can be extended to u € Wﬁ for any
p €[1, o0l

Lemma 3.2 Let p be a CX(RY)-diffeomorphism for some k > 1 such that Eq. 3.2 holds.
Then the following statements hold.
(i) There is a constant C = C(M, N, d, p, k) such that for u € wi, p € [1,00] and
v E Wéo
lu(p)vlws = Clulyi vl (3.3)

forl =0,1,2, .., k.
(ii) Forl < |a| <k Eq. 3.1 holds dx-almost everywhere for any u € Wg, p €1, 00]

Proof We prove (3.3) by induction on [/, assuming that u € WII,, v € W(l,O are smooth
functions and p # oo. For [ = 0 by the change of variable p(x) = y and by the first
inequality in Eq. 3.2 we have

lu(p)vl, < esssup vl /R | lu)1P1detDp~! (y)ldy

= esssup [v]|” /d ()17 1detDp(p~" (7))~ dy < M7 ul] esssup |v|”,
R
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450 M. De Ledn-Contreras et al.

which proves (3.3) for [ = 0. Let / > 1 and assume that statement (i) is true for / — 1 in
place of /. By the Leibniz rule and the chain rule

Diu(p)v) = uj(p)pl v+ u(p)v; foreachi =1,2,...d.

Hence by the induction hypothesis and the second inequality in Eq. 3.2 we have
i@yt =l (0)p] Iyt + ()il i

< Clu/'Wll,_llpijv'Wéo_] + CIMIW,’,_l|vi|Wé;1 < C(Nd + ])|M|W,I;|U|Wéo'

Thus
d

u(P)vlwy = D IDi@(@I0)lyi1 < CANd + Dlulyy o]y,
i=1
which finishes the induction proof. When p = oo and / = 0 then Eq. 3.3 is obvious, and by
induction on / we get the result as before. Clearly, the condition given by the first inequality
in Eq. 3.2 is not needed in this case. Since Cg° is dense in WIZ, when p # oo and Cp° is
dense in Wéo, we can finish the proof of (ii) by a standard approximation argument. Making
use of (ii) we can get (i) also by approximating u by Cg° functions when p # oo and by
C;° functions when p = oo. O

Lemma 3.3 Let p be a CK(RY)-diffeomorphism for k > 1, such that Eq. 3.2 holds. Then
there are positive constants M' = M'(N,d) and N' = N'(N, M, d, k) such that Eq. 3.2
holds with g := p~!, the inverse of p, in place of p, with M’ and N’ in place of M and N,
respectively.

Proof It follows from the second estimate in Eq. 3.2 that |det(Dp)| < d IN9, and since
Dg(x) = (Dp)~'(g(x)), we have

| det Dg(x)| = | det(Dp)(g(x))| ™! = (@'N) ™",

which proves the first estimate in Eq. 3.2 for g = o~ lin place of p. To estimate |Dg|

notice that | Dg(x)|| = A1, where ||Dg(x)|| is the operator norm of the matrix Dg(x), and
A > Ay > ... = Ag > 0 are the singular values of the matrix Dg(x). Since 1/Ag >
1/Xg—1 > ... > 1/A; are the singular values of A(x) := (Dp)(g(x)), we have | det A(x)| =
1/1¢_2; > M and |A(x)|| = 1/Aq < N.Hence

[(()]\1117l
M
3.4
with a constant Ko = Ko (d). To estimate |Dig| forl <i <kandk > 1, we claim that for
every multi-number « of length i < k each entry B () of the matrix B(«) := D, Dgisa
linear combination of products of at most k£ + 2 functions, with multiplicity, taken from the
set

d
1Dp~ ' (¥)| < Kol Dp™' (0)1| = Kot < Ko(NA)* ™'y < KoN ' [ <

i=1

h(e). g} 1 jr=1.2,d 1 <|Bl <k, 1 < |yl <k}
with integer coefficients, determined by o and d, where vg := Dgv for functions v and

multi-numbers B. By the chain rule from p(g(x)) = x we have ADg = I with A =
(Dp)(g)- Hence, for |o| =1

D,Dg = —A"'DyADg = —DgDyADg =: B().
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This gives B" () = —g;p;;l. (8)gl,g} forr,1 = 1,2, .., d, which proves the claim for k = 2,
and our claim follows by induction on k. Hence also by induction on k we immediately
obtain that

|IDig| < N’ forl <i <k withaconstant N' = N'(N, M, d, k),

since we have already proved this statement for k = 1 above. O

In Section 5 we will approximate (1.1) by mollifying the data ¥ and f, the coefficients
of £ and the functions 7 and £ in the variable x € R?. It is easy to see that the mollifications
of the data and the coefficients of £ by a nonnegative C5° kernel of unit integral satisfy
Assumptions 2.1 and 2.5. It is less clear, however, that mollifications of 7 and & satisfy
Assumptions 2.2 and 2.3. We clarify this by the help of some lemmas below. In the rest of
the paper for ¢ > 0 and locally integrable functions v defined on R we use the notation
v® for the mollification of v, defined by

v (x) = Spv(x) ;=7 /d v(Yk((x — y)/e)dy, x e R, (3.5)
R

where k = k(x) is a fixed nonnegative smooth function on R? such that k(x) = 0 for |x| >
1, k(—x) = k(x) for x € R?, and [4 k(x)dx = 1. We define also ve 9y = v+ (1 — 9)v®
fore > 0and ¥ € [0, 1].

Lemma 3.4 Let p be a CK(RY)-diffeomorphism for k > 2, such that Eq. 3.2 holds. Then
there is a positive constant e) = go(M, N, d) such that pe y is a C k(]Rd)-diﬁ‘eomorphism
for every ¢ € (0, &9) and ¥ € [0, 1], and Eq. 3.2 remains valid for p, » in place of p, with
M" = M/2 in place of M. Moreover, p'® is a C*®-diffeomorphism for ¢ € (0, &9).

Proof We show first that | det Do, »| is separated away from zero for sufficiently small
& > 0. To this end observe that if v = (v', vZ, ., vd) is a Lipschitz function on R4 with
Lipschitz constant L, and in magnitude it is bounded by a constant K, then for every ¢ > 0
and 9 € [0, 1]

d
I v = Il 1 < Y K =l g < K9 Le.
i=1

By virtue of this observation, taking into account that D;p’ is bounded by N and it is
Lipschitz continuous with a Lipschitz constant N, we get

|det Dp — det Dp; | < d!N.
Thus setting &’ = M/(2d!N9), for & € (0,¢') and & € [0, 1] we have
| det Dpg 5| = | det Dp| — | det Dp — det Dp; 5|
> |det Dp|/2 > M/2.

Clearly, pg 9 is a C* function. Hence by the implicit function theorem p; » is a local ck-
diffeomorphism for ¢ € (0,¢’) and ¢ € [0, 1]. We prove now that p. » is a global Ck-
diffeomorphism for sufficiently small . Since by the previous lemma |Dp~!| < N’, we
have

N'|p(x) — p(»)]
N'|pe,9(x) = P (M| + N'|p(x) = pe,9(x) + pe.9(¥) — p(¥)]

lx — yl

IAIA
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452 M. De Ledn-Contreras et al.

forall x, y € R and ¢ > 0 and ® € [0, 1]. Observe that

lo(x) = pe,p (X) + pep (V) — p(WM] = /Rd lo(x) — p(x —eu) + p(y — eu) — p(y)|k(u)du

IA

1
/ / elul|lVp(x —6Oeu) — Vp(y — Osu)|k(u)dddu
R4 JO

IA

eN|x —y| lulk(u)du < eN|x — y|.

Jul<1
Thus [x — y| < N'|pe.0(x) — pe.s (¥)| + eN'N|x — y|. Therefore setting ¢” = 1/(2NN'),
forall e € (0, &”) and ¥ € [0, 1] we have

lx — ¥ < 2N'|pe,y (x) = pe.p ()| forall x, y € RY, (3.6)

which implies lim|x| 0o | 0,9 (X)| = 00, i.e., the pre-image by p, » of any compact set is a
compact set for each ¢ € (0, ¢”) and 9 € [0, 1]. A continuous function with this property is
called a proper function, and by Theorem 1 in [11] a local C- diffeomorphism from R? into
R is a global diffeomorphism if and only if it is a proper function. Thus we have proved that
e is a global C*-diffeomorphism for & € (0, g9) and € [0, 1], where &9 = min(e’, £”).
Clearly, p.0 = p® is a C* function and hence it is a C*°-diffeomorphism for every
e € (0, o).

Now we can complete the proof of the lemma by noting that since D; p® = (D j )@,
the condition | D' p| < N implies | D' p; 9| < N forany ¢ > 0 and ® € [0, 1]. O

Recall the definition 79, by Eq. 2.4. Similarly, for eacht € [0,T],0 € [0, 1] and z € Z
we use the notation tg¢ for the R4 valued function on R?, defined by

Tog, . (X) = x + 0§ 7 (x), (3.7)

for x € R?. To ease notation we will often omit the variables ¢ and z of 1 and &.
We can apply the above lemmas to 79, and tg¢ by virtue of the following proposition.

Proposition 3.5 Ler Assumptions 2.2 and 2.3 hold. Then for each t € [0, T], 6 € [0, 1] and
z € Z the functions tg, and te¢ are C*(R?)-diffeomorphisms with my and mg in place of
k, respectively.

Proof By the inverse function theorem 74, and 7y are local c! (Rd)-diffeomorphisms for
each ¢, 6 and z. Since
(0] < i(2) < 00, |&.:(x)] < &(2) < o0,
we have
lim [79,(x)| = lim |79 (x)| = 00.
[x]—o00 |x]— o0

Hence 74, and t4¢ are global C 1-diffeomorphisms by Theorem 1 in [11] foreach ¢ € [0, T],
z € Z and 6 € [0, 1]. Note that by the formula on the derivative of inverse functions a

C!(R?)-diffeomorphism and its inverse have continuous derivatives up to the same order.
This observation finishes the proof of the proposition. O

Corollary 3.6 Let Assumptions 2.2 and 2.3 hold. Then Lemmas 3.2 through 3.4 hold for
Ty and Tgg in place of p and with m,, and mg in place of k, respectively. In particular, there
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are positive constants M = M(K,d, m), N = (K, d, m) and ey = eo(K, d) such that for
p =019, + (1 — N tgye and p := Vtpe + (1 — 9)Tpe) we have

M < min(|detDj|, |det(Dp) "], |detDpl, |det(Dp) ™)

max(|D*5, |ID*(5)~')) < N, and max(ID'p|, D'~ <N

foralle € (0,60), 0 €[0,1], 9 €[0,1], (t,x,2) € Hr x Z, and fork = 1,2, ...,m; and
I=1,2,..,mg.

Lemma 3.7 Let (S, S, v) be a measure space with a o -finite measure v, and let g = g(s, x)
be a S ® B(R?)-measurable real function on S x R?, where S @ B(RY) is the v Q dx-
completion of the product o-algebra S ® B(RY). Assume that

/ / lg(s, x)|v(ds)dx < oo forevery R > 0.
[X|<R JS
Then the following statements hold.

(i)  If for a multi-number o the derivative Dyg of g in x is a S ® B(RY)-measurable

function such that
// |[Dyg(s, x)|dxv(ds) < oo
S J{|x|<R}

for every R > 0, then dx-almost everywhere

Da/g(s,X)V(dS) Z/Dag(s,X)V(dS)~ (3.8)
S S
(ii) If Dygisa S ® B(RY)-measurable function for every multi-number «, || < m, such
that
/Slg(s)lw;;wv(ds) < 00,
then

‘ [ ov@s)| < [ 1w, (3.9)
N w N

Proof Set G(x) = f 5 8(s, x)v(ds). To prove (i) notice that by the definition of generalised
derivatives and by Fubini’s theorem

/ DyG(x)p(x)dx = (—1)‘“'f /g(s,x)v(ds)Daw(x)dx:f/ Dqag(s, x)o(x)dxv(ds)
R4 Rd JS S JIRA
- / / Dag(s. x)v(ds)p(x)dx
R4 JS

for every ¢ € C§° (R?), which implies (3.8). Hence by Holder’s inequality

‘/ D,G(x)p(x)dx
R4

< |¢|quS|Dag(s>|Lpu(ds>

for every ¢ € Cg° (R?), which implies

DJGlL, s/wag(sm,,v(ds),
S

and Eq. 3.9 follows. O
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For vectors v = (v!, ...., v?) € R? we define the operators 7V, IV and JV by
T o(x) =px +v), I'px) =9k +v)—ek), (3.10)
J'(x) =p(x +v) —p(x) —v' Dip(x), x e R? (3.11)

acting on functions ¢ and ¢ defined on R? such that the generalised derivatives D;¢ exist.
If v = v(t, x, z) is a function of (¢, x,z) € Hr x Z,e.g., whenv = norv = §, then T,
IV and JV¢ denote functions on Hr x Z, defined by

(T5)(t,x,2) = @(t,x + & ,(x))  (IFp)(t,x,2) = (t, x + & (X)) — ¢(t, %),
(J)(t, x,2) = $(t, x + 01.2(x)) — $(t,x) — 1} .(X)Dip (¢, x),

for (¢, x, z), when ¢ and ¢ are functions on Hr. We will often use the Taylor formulas

1
Iv(p(x)=/ @i (x + 6v)v'do (3.12)
0
and .
J”¢(x):/ (1 —0)¢ij(x + Ov)v' v/ d6 (3.13)
0

with ¢; := D¢ and ¢;; := D;D;¢, which hold for every x € R? when ¢ and ¢ have
continuous derivatives up to first and second order, respectively. These equalities hold for
dx-almost every x € R? when ¢ € W}l7 and ¢ € Wg.

Lemma 3.8 Let Assumptions 2.2 and 2.3 hold. Then Tégo(x), 15<p(x) and J"p(x) are
B(Hr) ® Z-measurable functions of (t,x,z) € Hr x Z for each ¢ € Cg°. For every
multi-number o of length k < m we have

1DaT 0|, < Nlglws.  [Dal®¢lr, < NE@Iglyi, (3.14)

1Dad"¢lL, < NiP @@l (3.15)
fort €10, T], z € Zand p € [1, 00), where N is a constant depending only ond, K, m, p.

Proof Clearly, T¢¢(x), I¥¢(x) and J"¢(x) are B(Hr) ® Z-measurable functions by
Fubini’s theorem, and one can easily get estimates (3.14)—(3.15) by using Lemmas 3.1
and 3.2, together with Lemma 3.7. O

Corollary 3.9 Let Assumptions 2.2 and 2.3 hold. Then for every t,z the operators T¢,
I% and J" extend to bounded linear operators from W;‘ to W;,‘, from W’;H to W]],‘ and

from W’1§+2 to WK, respectively, for k = 0,1,2, ..., m, such that T, I¢ f and J"g are
B0, T]) ® Z-measurable W’;-valuedfunctions of (t, z) and

T plws < Nlplws. 1 flwx < NE@Iflyern.  178lws < Ni2@)1glyese
forallp € Wk, f e W;f‘” and g € W;f"'z.
Proposition 3.10 Under Assumptions 2.1, 2.2 and 2.3 for every integer k € [1, m] we have
Iﬁ(t)vlwg—z = Nlvlwe, |M(t)v|W§72 = Nfvlwe, |N(t)vlwlk;—1 = Nfvlyge  (3.16)

|jl(t)v|W1p(_1 < Nplyg 1=0,1,2,...d (3.17)

forallv e W1]§ andt € [0, T), where J' forl = 0, 1, ..., d are defined by Eqs. 2.2-2.3 and
N is a constant, depending only ond, m, p, K, T, K; and K.
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Proof Ttis sufficient to prove the proposition for v € C§°. Then clearly, the statement on £
with a constant N = N(d, K, T, m, p) is obvious. By Taylor’s formula

1 . .
Mu(x) = /Z (0 +1) — o) — V() (d2) = fz fo (1= B)vi; (x + Ony 1 dO ().

Hence, due to Assumption 2.2, by Lemma 3.2 for k € [2, m] we get

1
| M|y s// |vij - 4 0m)| iz T2dOp(dz) < |v|Wk/ 7 (2)u(dz),
7 zJo 4 rJz

which proves (3.16) for M when k > 2. For every ¢ € C§° by using Taylor’s formula as
above, then changing variable y = x + 67 and integrating by parts, by Holder’s inequality
and Lemma 3.2 we have

a positive constant N = N (K, p, d, Kj) such that

(Mo, ¢) < Nlvlwilelw
forany v € W[], and ¢ € C3°, which proves (3.16) for M when k = 1. For A/ we have

1
No() = f (0(x + &2 (6) — v()V(d2) = / / £ (0 Vo(x + 08 £ (X))dOV(d2).
Z Z JO

Proceeding as before, using Assumption 2.3 we get Eq. 3.16 for A/. Estimates (3.17) can be
proved similarly. O

Lemma 3.11 Let Assumptions 2.2 and 2.3 hold withm = 0. Then fort € [0, Tland z € Z

/Rd Fo(x)dx < NEQ@)elL,, (3.18)

/ JJ"o0dx < NP @Il (3.19)
R
foro € Wl1 and ¢ € le with a constant N = N(K, d).

Proof The proof of Eq. 3.19 is given in [9]. For the convenience of the reader we prove both
estimates here. We may assume that ¢, ¢ € C(‘)X’. Foreach (t,z,0) € [0, T] x Z x [0, 1] let

nljzlﬂ and r;zl, o denote the inverse of the functions x — x +6& . (x) and x — x +0n; ;(x),
respectively. Using Egs. 3.12 and 3.13 by change of variables we have

1
/ I%p(x)dx:f / Vo (x)x:,z.0(x)dxd6 (3.20)
Rd 0 Rd

1 N
/ J"¢(x)dx:f f (1= 0)Dijp(x)o,, o(x)dxd6 (3.21)
R4 0 JR4 -

with
X602 (X) = & (1} (x)|detDr !y ()],

010 () = (g Cml (5, (e ldetDT, Ly ().
Due to Assumptions 2.2 and 2.3, using Corollary 3.6 we have a constant N = N(K, d)
such that -
IDxr6.:(0) < NER), Do, 4(x)| < Ni*(2)
forall (t,z,60) € [0, T] x Z x [0, 1]. Thus from Eqs. 3.20 and 3.21 by integration by parts
we get (3.18) and (3.19). O
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Next we present a special case of Theorem 2.1 from [22] on the L ,-norm of semi-
martingales with values in Sobolev spaces, where we use the notation D} = —Dy for
a=k=1,2,..,d,and D(’)‘ = Dy stands for the identity operator.

Lemma 3.12 Let ¢y € L,(RY), u € L,([0, T], Wy(RY)) and f* € L,([0, T], L,(R?))
for some p > 2, fora =0, 1, ...,d, such that for each ¢ € Cg°

t
/ u(t)godx:/ 1Wpdx+// FY(s)Diodxds dt-almost everywhere.
R4 R4 0 Jrd

Then, there is an L, (RY)-valued continuous function i such that i(t) = u(t) for dt-a.e.,
and

t .
il = 1917, +/0 /R plu)IP2u(s) f0(s) = p(p = DIu)|” > Dju(s) f' (s)dxds

(3.22)
forallt € [0, T, where the repeated index i means summation overi = 1,2, ..., d.

The next lemma is a vector-valued version of a special case of Lemma 5.1 from [22]. Its
proof is a simple exercise left for the reader.

Lemma 3.13 Let Y% € Ly, u® € L,([0, T], Wy (RY) and f* € L,([0, T], L,(R?)) for
some p > 2, for a € A for a finite index set A, such that for each ¢ € C5° and a € A

t
f u®(t)pdx :/ wa(pdx—l—/ / f¥(s)pdxds dt-almost everywhere.
Rd R4 0 JRd

Then for every o« € A there is an L p(Rd)—valued continuous function u® on [0, T, such
that u®(t) = u®(t) for dt-almost every t € [0, T, and

t
|12t|fp = le’L’p + Z/o A;d plu(s)[P~2u®(s) £ (s)dxds (3.23)

ac€A

1/2 1/2

holds for all t € [0, T1, where |ii| := (Y., @*)?)"'" and |u| := (3, @*)?)

We will also make use of the following lemma from [22].

Lemma 3.14 Let (S, S, v) be a measure space, and let {v,},en be a sequence of real-
valued S-measurable functions defined on S such that such that v, — v in the measure v,

and
/|vn|’dv—>/|v|rdv
S S

for some r > 0. Thenf v, —v|"dv — 0asn — oo.

To prove Lemma 4.2 below, we use an estimate from [37] for nonnegative quadratic
forms (see Lemma 1.7.1 therein), which, in a slightly more general setting as in [37], can
be formulated as follows.

Lemma 3.15 Let be a = (a' (x)) be a function, mapping RY into the set of nonnegative

definite n x n-matrices with real entries for an integer n > 1. Assume that the generalised
second order partial derivatives of (a') are functions, in magnitude bounded by a constant
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L. Then for dx-almost every x € R we have
|Dia " vii? < Nalvikvik o 1 =1,2,...d (3.24)

for all symmetric n x n matrices V.= (VJ), with a constant Ndepending only on L and d.

Proof Though this lemma is known, for the convenience of the readers we present a proof
of it here. Since a(x) is a nonnegative symmetric matrix for every x € RY, with second
order partial derivatives bounded in magnitude by L, one knows from [10] (or see, e.g.,
Proposition IV.6.2 in [16]), the existence of a function o, mapping R? into the space of
real-valued n x n-symmetric matrices, such that oo™ = 02 = g and |Do| < C for dx-
almost every x € R? with a constant C = C(L, d). Thus, using the notation f; := Dy f for
functions f on R4, and tr(b) for the trace of n x n matrices b, we have

aj = Di(0%) = o0 + o0y,
and by using elementary properties of the trace of matrices and of their products, we obtain
la)! VI 12 = e V) = |w(oro V) + tr(ooy V) [? = 4lte(oro V)
< dtr(oyo)r(o V(o V)*) < 4Ct(VaV) = 4Ca 7 Vikvik  (dx —ae.),
that finishes the proof of the lemma. O

4 [P Estimates
We are going to obtain the following crucial L ,-estimate if p = 2K for an integer k > 1.
Theorem 4.1 Let Assumptions 2.1, 2.2 and 2.3 hold with an integer m > 0. Assume R(t) =
Oforallt € [0,T]. Let p = Zkfor an integer k > 1. Then forn =0, 1, ..., m

> (ID"0P"2Dyv, Dy Av) < N|vlfp

|a|=n

forallv e W]’)l+2 with a constant N = N(d, p,m, K, Kg, K3).
We prove this theorem after some lemmas.

Lemma 4.2 Let Assumption 2.1 hold. Then for p > 2 andn =0, 1, ....m

Qnp) == Y (ID"0|""2Dyv, DyLv) < NIvlfy, @.1)

la|=n

forallv e W;,“"z with a constant N = N(d, p, m, K).

Proof This lemma can be obtained from general estimates given in [15]. Here we give a
direct proof of it. For functions g and / on R¢ we write g ~ h if they have identical integrals
over R, and we write g < h if g ~ h + h such that the integral of 7 over R? can be
estimated by the right-hand side of Eq. 4.1. Consider first the case n = 0. It is easy to see
that

plv|P2vLly < p|v|p72v(aijv,-j + b'vy)

@ Springer



458 M. De Ledn-Contreras et al.

4

—p(p = D|P2a" vv; — a ([v]P); + (v|P);b’

2

5 i , .
—p(p = D" *a" vjv; + (aj; — bplv]”

< —p(p = DIl %a"vv;,
where, and later on, we use the notation g, := Dgg for functions g over R? and multi-

numbers o = «j ...a,. This by virtue of Assumption 2.1 proves (4.1) when n = 0. Let us
now estimate Q when n > 1. Then it is easy to see that

A := p|D"v|P™? Z Vg Dy L

lor|=n

n
< pID"IP2 Y (waavaij + Y Vet Dijva) + vab' vai), 4.2)
la|=n =1
where (/) denotes the [-th element of multi-number «, and (/) is the multi-number we
get from « by leaving out its /-th element. Notice that

204a" vijo = a7 [|D"0[*]ij — 247 vigVja,  20ab'vig = b (ID"V]);.
Hence integrating by parts and using Assumption 2.1, with ¢, = p(p — 2)/4 > 0 we have
pID™WP2 Y " vyavgij = BID" P 2@V [|D" )i — 20 vigvje)  (43)
la|=n

—4 ij 2 2 ij -2 2 -2 ij
~ —cp|D"o[P"*a | D" 7L [| D" v|*]j — SaT D" |PTA D )i — pID" P a vigujg
P j— 24 J

< a|D"|? = pID"v|Pa vigvjy < —pID"V|P A vigja, (4.4)
and
pID"0|P72 > " vubivig = 5|D"0|P2b (D" v[?) = b (ID"v|P); ~ —b}|D"v|” < 0.
|a|=n
4.5)

Taking into account (4.4) and (4.5), from (4.2) we get
A < —p|D"v|"2aY viqvjq + B (4.6)
with
n
B = p|D"u|P™2 > vy Y ally Dijvaq)-
lael=n =1

Note that the computations in Eq. 4.4 are valid only for p > 4. For p = 2 we can get (4.6)
directly from Eq. 4.2 by noticing that by integrating by parts we have

ij ij ij ij ij n, 2
2 E Vo0 Vgij ~ —2a" Vg Vo —Zaj Vo Voi = —2a" VgV —a; [ID"v[7];
lae|=n
~ 2 ij . . ij Dn 2 =< 2 ij . .
—2a" Vg Vg +aji| v[* =X —2aY v 04

For p € (2,4) we modify the calculations in Eq. 4.4 by taking ¢, (|D"v|?) in place of
|D"v|P~2 in Eq. 4.3, where ¢, for each ¢ > 0 is a function defined by

[r]
¢s(r)=/ pe(s)ds, reR
0

with a continuous function ¢, on [0, c0), supported on [g, 00) such that

0<¢:(r) <(p—2rP P22 forr >0, @(r)=(p—2rPH?2/2 forr>2e.
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Clearly, ¢, is continuously differentiable such
¢u(r) =de¢e(r)/dr =0 forr >0,
lim . () = [r| 722, ige ()] = NIr(P22 1gl)] < NIr0 2 forr € R,
E—>

and

,
. (r) ::/ be(s)ds < NrP? forr >0
0
with a constant N depending only on p. Then noticing that
¢ (ID"v))a" [| D" v|*ij ~ =L (1D"v)a [| D" 2L [ D" |2 — ¢ (1D" v [| D" v,

< —¢:(ID"v)a] [ID"v]*1;,

we get
pe(ID"0*) > vaavaij = 5 (ID"0]*) (@ [|D"v]*)ij — 207 vigvja)
la|=n

< —5d7¢.(1D"vPID"P) — pee (1D v)a" vigvje.
= —£4] D;®.(ID"P) — pge(ID"v*)a vigvja
< @i (ID"v]*) — pee (ID"v))a" vig ;e
< —p¢e(ID"v)a vigvjq.

Consequently,

Poe(ID"*) Y vea" vaij < —pee(ID"v*)a vigujq  fore > 0.

|l|=n
Letting here ¢ — 0, by Lebesgue’s theorem on dominated convergence we obtain
n -2 ij n -2 ij
p|D"v|? Z V@’ vaij < —p|D"v|P T aY viqvjg.
|la|=n

Hence, taking into account (4.5), from Eq. 4.2 we get (4.6) also for p € (2,4), i.e., (4.6) is
valid for all p > 2. We estimate B by using the simple inequality

n n
. I y 5
[V Z a;J(l)Dij vam| <& val” +en Z |a;j(1)Dij va@) |
=1 =1

for every ¢ > 0 and multi-number «, to get
n
B < pe”'[D"0|? + enp|D"v|PAC with C:= Y Y lag, Dijval®. (47
la|=n =1

Using estimate Eq. 3.24 with Vil .= D; jvg@ foreach I = 1,2, ..., n and multi-number o
of length n, we get

n
C<N Z ZaijDikv&([)Djkva(l) <N’ Z aijDivaDjva

la|=n =1 loe|=n

with a constant N’ = N'(d, K, n). Thus, choosing ¢ sufficiently small in the inequality in
Eq. 4.7, from Eq. 4.6 we obtain A < 0, which proves the lemma. O
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For the following lemmas recall the definition of the operators ¢, I and J" by Egs. 3.10
and 3.11, and notice that the identities

iy = 1502 — (I5v)? 4.8)
20JM = JT? — (I"v)? (4.9)
hold for (¢, x, z) € Hy x Z, for functions v = v(x) of x € R?.

Lemma 4.3 Let Assumption 2.3 hold with an integer m > 0. Assume p = 2F for an integer
k> 1.Thenforn =0,1,..,m
Z():= Y (ID"v|""*Dyv, DuIfv) < N&[v|}y, (4.10)
P
|a|=n

with a constant N = N(d, p,m, K) forall v € W;,lJrl and (t,z) € [0, T] x Z.

Proof Consider first the case n = 0. Then by identity (4.8)
P 208 = S|P 2150 = S|P () = APt TR — S|P (1R )?

= lolP 7t = P U = PR US) = = ST - A @)

with
k

A=Y 27 (15vi)? > 0.
j=1
Hence integrating over R, by Eq. 3.18 we have

1 _
I(v) < f/ IFvPdx < NEv|? .
P Jrd p

Assume now that n > 1 and let o be a multi-number of length n. Then
(T =P + § T, (TFu) = Tu + £ T

fork = 1,2, ..., d. (Recall that we use the notation g, = D, g for multi-numbers «.) Hence,
by induction on the length n of the multi-number of «, we obtain

(IFv)g = Fvg+ Y q* T,

1=<|Bl=n

with some polynomial qo"ﬁ of {E)", 1 <|y| <n,i =1,..,d} for each multi-number 8 of
length between 1 and n. The degree of these polynomials is not greater than n, their constant
term is zero, and the other coefficients are nonnegative integers. Hence

D07 20, (6 0}y = D0 2ua vy + Y 1D 0]P 2uag®P T vy,
1=<|Bl=n
where the repeated multi-numbers @ mean summation over |¢| = n. By using the same
calculation as in Eq. 4.11 we have

D" 0[P ug IS0 = 3| D"0|P~HIS(ID" ) = ) (I5e)%)

la|=n

< 3ID"oP D" PIE(ID ) < - < S T5(ID"]P).
Thus }
|D" 0[P 2oy (I5v)y < LI5(ID"v|P) + NEID"0|P™! Y~ [T g

1<|B|=n
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=

I5(ID"v|P) + NEID"v|? + N'E Y~ |TSug/P (4.12)

1<|Bl<n

1
p

with constants N and N’ depending only on m, d, p and K. Integrating here over R? we
get (4.10). O

Lemma 4.4 Let Assumption 2.2 hold with an integer m > 0. Assume p = 2¥ for an integer
k > 1. Then forn =0, 1, ..., m we have

J) = § (|D"v|P~2Dyv, DuJ"v) < Ni*|v|5,, (4.13)
P
|la|=n

with a constant N = N(d, p,m, K) forallv € W;"'z and (t,z) € [0, T] x Z.

Proof Consider first the case n = 0. Then using identity (4.9) and proceeding with the
proof in the same way as in the proof of the previous lemma we get

v’ o = 3P ?) = JuP () == LI - B (4.14)

with
k

B=> 27| 1) > 0.
j=1
Integrating here over RY by Eq. 3.19 we have

~ 1 n.,P =21P
d(v)fp/RdJ vPdx < Nn |U|L,,-

Assume now that n > 1 and let & be a multi-number of length n. Then for (T7v); :=
Dy (T"v), (I"v)g := Dr(I"v) and (J"v); := Di(J"v) we have
(T = T+ T, (M) = Do+, T, (JT0) = Mo + i I,
for every k = 1, ..., d. Hence by induction on the length of o we get
J")g = JNvg + Z p“'ﬂl"vﬂ + Z q“’ﬂT"vﬂ,
1<|Bl=<n 1<|B|=n

with some polynomials p“’ﬂ and q“*ﬂ of {775, 1 <|y| €n,i =1,...,d}. The degree of
these polynomials is not greater than n, their constant term is zero, the coefficients of each
first order term in the polynomials ¢%# is also zero, all the other coefficients in p®# and
g%P are nonnegative integers. Hence we get

ID"v|”" 0, (JT0)g = | D"0|P v J vy + AP + BP (4.15)
with
AP = |D”v|p_2vo,p“’ﬁl”vﬁ, Bf = |D"v|p_2vaq°“’3T’7v,3,
where repeated o means summation over the multi-numbers « of length n.
Clearly, for all 8 we have

|BF| < Nip?| Dv|P~ | T g
with constants N = N(m, K, d). For |8] < n — 1 we estimate AP in the same way to get

|AP| < Nij|D"v|P~ ! I"vg),
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and for || = n we use Young’s inequality to write
vap®P I"vg| < l1"Mvp|* + &~ og p™P 1> < el v > + &7 D" Y |p*F?
loe|=n
< e|lMg|* + Ne7'7?|D"v)?.
Hence for || = n we have
|AP) < €| D"v|" 72| 1Mvg > + Ne™' % | D"l
for ¢ > 0 with a constant N = N (K, d, m). Calculating as in Eq. 4.14 we obtain

D" 0[PP ug I vy < §ID"0|PTHIT(ID ) = Y [17vel?)

lo|=n
< HID" PP PIT(D ) = 3 D" P Mg <
|la|=n
< 577D ") = 5 Y 1D P T v,
jal=n

Using these estimates, from Eq. 4.15 we obtain

|D"v|P 20y (JT0)y < LI D" [Py -4 D D P Mg P+ e[ D" 0[P Y | v
|o|=n |Bl=n
+Ne D" + N2 D [P Y [T g+ NID P~ Y [Tl
1<|Bl=n 1<|Bl=n—1

Choosing here ¢ = 1/2, we get
| D" 020 (JT0)o < 37D 0I") + N | Dv|”

+ NP D™ [Pt Y TTgl + NalD"u|P Y [Ty (4.16)

1<Il<n 1<lyl<n-1

By Holder’s inequality, taking into account (3.14) we have

f D7 N Tugldx < Nl | Tvsl1, < N'olf,,  for |] <,
R4 p »

/Rd |D"v|P~ 1My |dx < N|v|€VEI|I”vy|LP < N’ﬁ|v|”g for |yl <n—1 (4.17)

with some constants N = N(d, p) and N’ = N’(d, m, p, K). Integrating inequality (4.16)
over RY and using inequalities (3.19) and (4.17) we obtain (4.13). O

Proof of Theorem 4.1 By the definition of A for v € W;}"'Z we have

> (D"0P2Dgv, Do Av) = 3 (ID"0]P 2 Dgv, DoLv) + /Z Tw)v(dz) + /Z IWu(dz),

loe|=n la|=n

where 7 and J are defined in Eqs. 4.10 and 4.13, respectively. Hence we get Theorem 4.1
by Lemmas 4.2, 4.3 and 4.4. O
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5 Proof of the Main Result
5.1 Uniqueness of the Generalised Solution

Assume that Assumptions 2.1 through 2.4 hold with m = 0. Let u; € L,([0, T1, W,{)
be generalised solutions to Eq. 1.1 with initial condition u;(0) = ¢ for i = 1, 2. Then
v := u1 — up is a generalised solution of Eq. 1.1 such that v(0) = 0 and f = 0. By
Lemma 3.12 we have

t
ol = / Q(s, v5) + Q"(s, v5) + @ (s, v) + plv(®IP *v(©)Ru(s)ds  (5.1)
0
where

0G5, v) := —(p(p — DIIP72D;v, a (s)D;v) + (plv|P v, b’ (s) Div + cv),
Q"(s,v) = —(p(p — D|P2Dyv, T*v) + (plv|P~>v, T ),

0% (s, v) = /(p|v|P—2v,1%)v(dz)
Z

forany v € W1 and recall that b’ = b — Djaij,

ISU = U(x + 'i:s,z(x)) - U(X)

and J* and 79 are defined in Egs. 2.2 and 2.3.
We need the following lemma.

Lemma 5.1 Forany p > 2 we have

QG v) < NIy . Q"G v) < Nifvlf . Q%(s,v) < Nafulf (5.2)

forall v € W; and s € [0, T], with constants N = N(d, p), N1 = N1, p, K, Ky),
Ny = N2, p, K, Ké)

Proof Notice that |v|? is a convex function of v. Hence we have
IE]P — plv|P2vIfv >0
for all (z, s, x) € Z x Hr, which implies
plv|P"2vIv = plv|P2vlfv — I5|v|P + IE|v]P < I5|v|P.

Then by using estimate (3.18) in Lemma 3.11, we get the last estimate in Eq. 5.2. To prove
the first and second estimates in Eq. 5.2 notice that

Q(s,v) = p(Iv|” v, L(s)v),  Q"(s.v) = p(|v|” v, M(s)v)
forv e Wg. By Lemma 4.2, we obtain
Q(s.v) < Nl forve W

Using the definition of the operators J7 and /" and the convexity of the function |v|?, we
have

plvIP v = plv|P 2u(I"v — vin') = plvlP vl + J|u|? = [l < J7|u|?,
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which by Eq. 3.19 in Lemma 3.11 implies
Q"(s,v) < N1|v|{p forve W, (5.3)

It remains to show Q(s, v) and Q"(s, v) are continuous in v € Wlﬁ. Let {v,}52, be a

sequence of Wg functions, which converges in the W; norm to some v € W; asn — oo.
We claim that Q" (s, v,) — Q" (s, v). Clearly,

Q"(s, vy) — Q"(s,v) = p(p — 1)B, + pCy

with

. p—2 k p—2 k

B, = /d(lv| DivJ"v — vy Dyv, T vy)dx,
R
Cpi= / oalP 00T 0, — P20 T vy,
R

Observe that B, = B,Sl) + B,&Z) + Bf) with

BV = f 177 = a7 Dw T v,
R

B = / L 1valP (D = Devn) T v,
R

B = / oal? 2 Dion(THv = TFva)dx.
R

By Holder’s inequality,
1B,V

IA

-2 -2 k
lonlP=% = 1017751 e, 1DevlLe | T 0lLr,

IA

2 -2 k
1B < [val?, " 1Dgv — Dival e | T* 0] 10,

3 -2 k k
1BY] < loal] "1 Dikvale, 1T v = T val,-

A

Since v, — v in W;, it is easy to see that B,gi) — O fori =2, 3. By Lemma 3.14 we have

-2 -2
a2 = P77 p — 0,
LP-2

which gives lim,,— 5o B,(Ll) = 0. We get in the same way that lim,,_, , C,, = 0. The continuity
of O(s,v)inv € W; can be proved similarly. O

Using the above lemma and Assumption 2.4, from Eq. 5.1 we get
t
w@lf, <N [l rei0.7)
with a constant N, which completes the proof of the uniqueness.

5.2 Existence of a Generalised Solution

In the whole subsection we assume that Assumptions 2.1 through2.5 hold with given real
numbers m > 1 and p > 2. We prove the existence of a solution to Eq. 1.1 with initial
condition u(0) = ¥ in several steps below. In the first two steps, we make the additional
assumptions that R = 0, p = 2 for some integer k > 1 and that m is an integer. We con-
struct a solution u in L, ([0, T'], W]’,”) by approximation procedures, and estimate its norm
in L,([0, T], W;) for integers s = 0, 1, ..., m by the right-hand side of Eq. 2.6. Hence,
using standard results from interpolation theory we prove the existence of a generalised
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solution u € L, ([0, T1, VI',”) without assuming that p = 2% Then using the method of con-
tinuity(see e.g., [21]) we extend this result to equations with R satisfying Assumption 2.4.
Hence using interpolation again, we dispense with the assumption that m is an integer.
Moreover, we prove that u € C([0, T], V; YN Cy ([0, T, V;”) for every s < m, and obtain
also the estimate Eq. 2.6. We note that similar interpolation arguments are used in [14] to
obtain estimates in L ,-spaces for solutions of stochastic finite difference schemes.

Step 1. First we assume that Assumptions 2.1, 2.2, 2.3 and 2.5 hold with integers m > 1
and p = 2F for an integer k > 1. Moreover, we assume that ¥ and f are compactly
supported. Under these assumptions we approximate the Cauchy problem (1.1) with initial
condition #(0) = ¥ by smoothing the data and the coefficients in the problem. Recall that
for ¢ > 0 and functions v on R? the notation v‘®) means the mollification v® = S,v of v
defined in Eq. 3.5. We consider the Cauchy problem

dv(t, x) = (A20)v(t, x) + F© @, x)dt, (t,x) € Hr, (5.4)
v(0,x) = Yy (x), xeR? (5.5)
for e € (0, &9), where g is given in Corollary 3.6, and
A= Lo+ M. + N,
with operators L, M, and N, defined by
Le=d Dij +b9' D+, a. =a® tel,

Mep(x) = /Z (00 + 1) — 0) — Vel dz),

Nop = [ ot +£2) = oot
for ¢ € C°. (Recall that Il denotes the d x d unit matrix.)

Since ¥ and f® are compactly supported, they belong to W3 for every n > 0. By
standard results of the L,-theory of parabolic PDEs, (5.4)—(5.5) has a unique solution u,,
which is a continuous Wé’—valued function of ¢ € [0, T'] for every n > 0 (see, e.g., [23] or
[41]). Thus for any ¢ € C(C;O we have

e (1), ) = @, 9)
t
+ / — (@ Djuc(s), Dig) + ('@ Djuc(s) + cWue(s) + f©s), p)ds
0

t
+/ — (T ue(s), Dig) + (Tue(s), 9) + Neute (), p)ds (5.6)
0

fort € [0, T'], where JS’ and jgo are defined as 77 and J°, respectively in Eq. 2.3, but with
nk(g) and ni(g) in place of nk and ni, respectively, for k,/ = 1, 2, ..., d. Notice that Eq. 5.6
can be rewritten as

t
(s(t), 9) = (Y@, 9) + / (Aug(s) + @), 9)ds, 1€[0,T], ¢eC,
0
and, equivalently, as
t
(Daue (1), 9) = (Da¥®, @)+ / (Dg Aluc(s)+ Dy fO5), @)ds t€[0,T], ¢eC
0

for all multi-numbers « of length n. By Sobolev embedding u, is a continuous W7 -valued
function for every n > 0 and p > 2. Hence by Lemma 3.13 we have

P _ ()P
ID"uclf = D"y
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t
+p / > (ID"ue ()72 Dyt (), Da A (s) + Do £ (5))ds,
0
la|=n
which for p = 2% by Theorem 4.1, known properties of mollifications and Young’s
inequality gives

t
ID"uely, < D"V, +Nf e (5)[fyy + (1 D"1te(5)|P~? Datte (5), Do f ) (5))ds
0

t
<10, + N [l + E a0l + 3176 s

This via Gronwall’s lemma implies that for ¢ € (0, &9)

T
sup |ug(t)|yyn <N (le”,, +/ |f(t)|”ndt> (5.7)
P P 0 P

tel0,T]

forn = 0,1, ...,m with a constant N = N(T, p,d,m, K, Kg, Kj7).Forr > land p > 2
we denote by W;‘,,r the space of W]'j-valued Borel functions v = v(¢) of t € [0, T] such that

T 1/r
[l = (/0 |v(r)|’ngr> < oo.

We use also the notation W’;, and L., for W’; » and W(z)v s respectively. Observe that with

this norm W, . is a reflexive Banach space, and from Eq. 5.7 we have

T
elfyy <N (|x/f|”;; +f If(t)l”;;dt> (5.8)

for all ¢ € (0, &9), p = 2 r>~1landn=0,1,2, .., m, with a constant N depending only
onT, p,d, m, K, Kg and Kj. Hence there exists a sequence of positive numbers {& }ren
such that &y — 0 for k — o0, and u,, converges weakly to a function u in W', . for every
n=0,1,...,mand integers r > 1. Letting ¢ = gy — 0 in Eq. 5.8, we get

T
iy, =N (wihy + [ 1rolar). 59)

Our aim now is to pass to the limit in Eq. 5.6 along & — 0. To this end we take a real-
valued bounded Borel function & of ¢ € [0, T'], multiply both sides of Eq. 5.6 with A (¢) and
then integrate it against dt over [0, T]. Thus for a fixed ¢ € C{° and taking & in place of
&, we obtain

T 4 T ,t
Fu) = [ @ ohwdr+ Y Fay + [ [ 6. onodsr, 510

i=1

where F and F, ,i are functionals defined for v € W}, by
T
Fo) = [ 0o, ohoar (5.11)
0
T t ' -
Flw) = / h(t)/ — (@ Djv(s), Dig) + (B Dyv(s) + cFu(s), p)dsdt,
0 0
T t
Frv) = — / 10) / (T v(s), Dig)dsdt,
0 0

T t
Fv) = / h(1) f (T2v(s), 9)dsdt,
0 0
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T t
Fl(w) = / h(1) / (Neyv(s), @)dsdt.
0 0

For each i define also the functional F in the same way as F, ,é is defined above, but with a,
b,c, J', J° and NV in place of ag,, b, &), Ti jg{ and N, , respectively. Clearly, due

&
to the boundedness of & we have a constant C such that for all v € W})

F@) = Clvle, lele, = ClvlwlelL,

where g = p/(p—1). Thismeans F € W},*, the Banach space of bounded linear functionals
on W}). To take the limit k — oo in Eq. 5.10 we show below that F, ,i and F! are in W;,*,
and F,i — F' strongly in W};‘, for every i as k — oo.

Lemma 5.2 The functionals F' and F,Z belong to W;,* fori = 1,2,3,4, for sufficiently
large k.

Proof Since the functions #, a,, @ and ¢® are in magnitude bounded by a constant, by
Holder’s inequality we have

|FE )] < Nl 19l

with a constant N independent of v, which shows that F, kl € W},* for all k. In the same way
we get Fl e W},*. Using that by Taylor’s formula

1
v(x +0n®) —v(x) = / Div(x + 90700 dv,
0

and taking into account that || is bounded by a constant, we have
1 pl pT

|F,§(v)|5c/// // |Du(s, x + 900 ) [72(2) | De(x) |dx u(dz)dsdd.
o Jo Jo JzJrd ”

Hence by Holder’s inequality and then the change of variable y = x + ﬁ@nlgfé‘)(x), by
Corollary 3.6 we get a constant C such that for sufficiently large k

R =€ [ PQu@Ivhsy1Dolz, = CKX vl 1Dyl
A

which proves that F2 e W};" for sufficiently large k. We can prove in the same way that
F2, F,ﬁ € W},* and F' € W},* fori = 3, 4, for sufficiently large k. O

Lemma 5.3 Foreveryi =1,2,3,4
Jim - sup I(F} — F))(v)| = 0. (5.12)

Proof Since h is bounded, for a constant N we have

3
IF @) = F')l < N Y Ay(v)

i=1
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for all £ > 1 with

T
Apw) = / /d |Djv(s, x)llal (s, x) — a” (s, x)|| Digp(x)|dxds,
0 R
T - -
A2y i= [ [ 1o 0lF D .0 - 5 s 0liDipwdds,
0 R4

T
= [ [ 0160 - conlpwdrds.
0 R
By Holder’s inequality
sup Ay (v) < |lag, —al|Dyl|

[vly1 <1
Wp

sup Aj(v) < [[b™ — bl Dyl .

)
La [Vl =<
P

sup AR (v) < [ (€ — o)l ,
|U|W})§1 4

where L, = Wg, e Letting here k — oo by Lebesgue’s theorem on dominated convergence
we get
lim sup Ap(v) =0 fori=1,2,3,
k—o00 ‘U| 1 <1
wh=
which gives (5.12) for i = 1. Clearly,
|F{(v) = F*(v)| < B} (v) + B{ (v) (5.13)

with

1 pT
Bl(v) := fo /0 /Z (0 = nllv(s, 7p,e0) — V(). IDehu(dz)dsdo,

1 T
B{(v) :=/O /o /Z(ﬁlv(s,fg,](sk))—v(& ton)|, |D@l)(dz)dsdb.

Note that |n(5) —n| <enforallt € [0,T], x € R4 7z € Z and ¢ > 0. Moreover, by Taylor’s
formula, Minkowski’s inequality and Corollary 3.6

1
05, Tyye)) — v(S)]2, < ﬁ/ IDU(s, Tygye)lL,dd < Nl Du(s)lz,,
0

1
[v(s, Tgye) =V (s, Tan)lL, sf |17 =nl|Du(s, (1 =)y, +9 1051, dP® < Nei| Dv(s)|L,
0

fors € [0,T],z € Zand ¢ € (0, &), with a constant N = N (K, d, p). Hence by Holder’s
inequality for sufficiently large k we have

B;;sekN|v|W;|D¢|Lq/ P@dz) = eNK2 ol IDlz, fori = 1,2,
Z

which by virtue of Eq. 5.13 proves (5.12) for i = 2. We can prove similarly that Eq. 5.12
holds for i = 3, 4. O

By the above lemmas, for i = 1, 2, 3, 4 we have F,ﬁ — Fi strongly in WIIJ* as k — oo.
Thus due to the convergence of u,, to u weakly in W! we have

lim F(ug) = F(u), lim Fj(ug)=Fu) fori=1,2,3,4.
k— 00 k— 00
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Clearly,
T T
lim / W, p)dr = / W, p)d1,
k— 00 0 0

T t T t
lim f f (F(s), p)dsdi = f / (F(5), )dsd.
k—o0 Jo Jo 0o Jo
Thus taking k — oo in Eq. 5.10 we obtain

T 4 T pt
F(u) :/0 (v, <p)h(t)dt+ZF’(u)+/0 /(;(f(s),go)h(t)dsdt. (5.14)
i=1

This means for every bounded real function £ the function u : [0, T] — W’} satisfies the
equation

T T T t
/0 B W), 9)di = /0 hO W, 9)di + /0 7o) fo (Aus), 9} + (F(5). @)dsdi

for every ¢ € C3°. Thus for each ¢ € C§° (2.5) holds for dt-almost every ¢ € [0, T]. Hence
taking into account that u € L, ([0, T], W;), by Lemma 3.12 u has a modification, denoted
also by u, which is continuous as an L ,-valued function and it is the solution of Eq. 1.1
with initial value .

Step 2. Now we dispense with the additional assumption that i and f vanish for |x| > R
for some R > 0.Letyy € W' and f € L, ([0, T], W) for p = 2K for some integer k > 1.
Then for integers n > 1 define /" and f" by

Y =Y xax), U x) = fE D)), 1€[0,T]x eRY,

where x,(-) = x(-/n) with a nonnegative function x € C2°, such that x (x) = 1 for x| < 1
and x(x) = O for |x| > 2. Then by virtue of Step 2 (1.1) with f” in place of f and with
initial condition u(0) = " has a solution u", i.e.,

T T
/0 RO W (0, 9)di = fo hOW", 9)di

T t
+ / ho) / (AW (), @) + (f"(s), @)dsdi (5.15)
0 0

for every ¢ € Cgo and bounded Borel function % : [0, T] — R. We also have estimate (5.9)
with ", ¥" and f" in place of u, ¢ and f, respectively. Hence for any n and k
n_  kp n_ g kip n _ ckip
=y, S NG = = SN

p.r

which shows that " is a Cauchy sequence in W{,,,, and hence it converges in the norm of

Wf,,, to some u € Wf,,, forevery j =0, 1,2, ..., m and integers r > 1. It is easy to pass to
the limit in Eq. 5.15 and see that u solves (1.1) with initial and free data v and f. Clearly,
u satisfies also the estimate (5.9).

Set Wi := H', ) := Lp([0,T], H') and Uy := L,([0,T], H}') form € [1, 00),
p € [2,00) and for fixed r > 1. Denote by S the operator that assigns the solution u of
Eq. 1.1 to (¢, f), the pair of initial and free data. By virtue of Step 2 we know that S is a
continuous linear operator from W7 x ' into U’} for p = 2%, with integers k > 1, for every
integer m > 1, with operator norm, depending only on p, d, T, m and on the constants K,
K5 and Kg. To show that this holds also for any p € [2, o0) and any m € (1, 00), we use
some results from the theory of complex interpolation of Banach spaces.
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A pair of complex Banach spaces Ap and A;, which are continuously embedded into
a Hausdorff topological vector space H, is called an interpolation couple, and [Ag, A1]g
denotes the complex interpolation space between Ag and A with parameter 6 € (0, 1). For
an interpolation couple Ag and A; the notation Ag + A is used for subspace of vectors in
H, {vo + v1 : v € Ag, v1 € A1}, equipped with the norm

[vlag+a, = inf{lvola, + [vila, 1 v =vo +v1,v0 € Ag, V1 € Ay},
Then the following statements hold (see 1.9.3, 1.18.4 and 2.4.2 from [43]).

(i) If Ag, A1 and By, B are two interpolation couples and S : Ag + A1 — Bo + B
is a linear operator such that its restriction onto A; is a continuous operator into B;

with operator norm C; for i = 0, 1, then its restriction onto Ag = [Ag, A1]p is
a continuous operator into By = [By, B1]p with operator norm Cé_e C(f for every
6 € (0,1).

(i)  For a measure space 9t and 1 < po, p1 < oo,
[Lpe (M, Ag), Lp (M, A1)]g = L, (M, [Ag, A1lp)

for every 0 € (0, 1), where 1/p = (1 —6)/po + 6/ p1.
(iii) Formg,m; € R, 1 < pg, p1 < o0,
[H,", Hy'lg = H)',

where m = (1 — 0)mo +6my,and 1/p = (1 —0)/po +6/p1.
(iv) For 6 € [0, 1] there is a constant ¢y such that

1-0, 16
[vlag = colvly,” vl
forallv e ApgN Aj.

Now for an arbitrary p > 2 we take an integer k > 1 and a parameter 6 € [0, 1] such that
po=2F<p <2l =prand 1/p = (1 — 6)/po + 0/ p1. By property (ii) we have
W= W W g = HYFT = [F F )y = L, ([0, T1, H),
Un = (U, U 1o = L, ([0, T]. HI),
and therefore by (i) the solution operator S is continuous for any p > 2 and integer m > 0,
and the solution u satisfies

T 1/r
(fo |u(s)|;1;;zds) < Nl + 1 fluy) (5.16)

with a constant N = (p,d, m, T, K, K, Ké), where forany s > Oand p > 1, ]HI; denotes
the space of H [S,—Valued Borel functions g on [0, 7'] such that

T
gl% :=/ gD, di < oo,
14 0 P

Letting here r — 0o we obtain

T
esssup [u(s) |y < N7 (wﬂ;pm + fo |f<s>|";,nds> (5.17)

s€[0,T]

with a constant N = (p,d, m, T, K, Kj, Kg), which increases when 7 increases.
The next theorem extends the above result to Eq. 1.1 with R satisfying Assumption 2.4.
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Theorem 5.4 Let Assumptions 2.1 through 2.5 hold with an integer m > 1 and a real
number p > 2. Then Eq. 1.1 with initial condition u(0) =  has a unique generalised
solution u € W’[’} such that estimate (5.17) holds.

Proof We use the standard method of continuity, see, e.g., [21]. For A € [0, 1], we consider
the equation
du(t, x) = (A°(Ou(t, x) + \R@u(t, x) + f(t, x)dt,  u©0,x) =9y x),  (5.18)
for x € R?, where
A1) = L(t) + M) + N (1)
for every ¢ € [0, T']. Notice that Eq. 5.17 holds with any ¢ € [0, T] in place of T. Hence, if
ue W' is a generalised solution to Eq. 5.18, then by Assumption 2.4 we have

esssup |1 (s)|%m
s<t 4

t
< NIl + N/o ARy + 17 ) s

t
< C Iy +1 £V +/ esssup Ju(r) [ )
4 0

r<s
with a constant C = C(m, d, p, T, K, Kg, K35). Hence by Gronwall’s lemma we have esti-
mate (5.17) for u. Let A denote the set of A € [0, 1] such that for any € Wﬁ and fe W’;’,
(5.18) has a unique generalised solution in W’}. Clearly 0 € A. Then we only need to prove
1 € A. To this end, it suffices to show that there is an § > 0 such that for any Ag € A,
[Mo =68, 20+8]1N[0, 1] € A.
Fix Ao € A, ¢ € WZ’ and fe er';' Forv e W’I’} and X € [0, 1] we consider the equation

du(t, x) = (A’ Oult, )+ 1R Ou(t, x)+h—r) ROV, x)+ f(t, x)dt,  u(0,x) = P (x)
for x € R?. Since Ao € A, this problem has a unique generalised solution ue W7 Define
the operator Q, by u = Q;v. Then Q; maps W’; into itself, and A € A if and only if there
is a fixed point of Q. If v; € W’]’} and u; = Q;v; fori =1, 2, then for u := uy —u; we have

du(t) = A (Ou) + MROu) + O — A)R(H (2() — v1 (1)),  u(0) = 0.
Hence, using estimate (5.17) for u and Assumption 2.4 on R we get

105,02 = Qavilwn = N'Ix = Aol|R(v2 — vDlwn < N"|A = hollva — vilwm,
with constants N' and N” depending only on m,d, p, T, K, Kz and Kj. Taking § =
(2N")~! we obtain that Q, is a contraction mapping on W;,” if A € [Ag—38, A0+ 38]1N[O, 1].
Consequently, (5.18) has a unique solution © in W”!, and it satisfies (5.17). O

When s € (0, m] is not an integer then we set & = s — |s]. Then by (ii) and (iii)
s =W Wy = By B = [FYL FRT = L,((0, T, H)),
Us, = [US), UKy = L.([0. T], Hy)

forevery p > 2 and integers r > 1. We have seen above that under Assumptions 2.1,2.2,2.3
and 2.4 with m > 1, the solution operator S is continuous from ¥ ;m] x ]F,[,m to U;ﬁ], and
from ¥ ,L,mJ X IF},'"J to U},mrj Hence by (i) again for the solution u we have

1/r

T
([ wrmyar) = NOw1ng + 171 (5.19)
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with a constant N = (p,d, m, T, K, K3, Ké). Letting here r — 0o we obtain

esssup [u()|my < N(W 1 + 1 f]z5;)- (5.20)
1€[0,T]
By Lemma 3.12 we already know that the solution « is in C ([0, T, Hg). To show that it
is weakly continuous as an H ;,"-valued function we use the following lemma.

Lemma 5.5 Let V be a reflexive Banach space, embedded continuously and densely into
a Banach space U. Let f be a U-valued weakly continuous function on [0, T] and assume
there is a dense subset S of [0, T] such that f(s) € V fors € S and sup,cg | f(s)|v < o0.
Then f is a V-valued function, which is continuous in the weak topology of V.

Proof Since S is dense in [0, T'], for a given ¢ € [0, T] there is a sequence {t, ;’;l with
elements in S such that #, — . Due to sup,, .y | f (t,)|v < 0o and the reflexivity of V' there
is a subsequence {t,,} such that f(#,,) converges weakly in V to some element v € V.
Since f is weakly continuous in U, for every continuous linear functional ¢ over U we have
limg_ 00 (f (1)) = @(f(#)). Since the restriction of ¢ in V is a continuous functional
over V we have limg_. o0 ¢(f(#:,)) = @(v). Hence f(#) = v, which proves that f is a
V-valued function. Moreover, by taking into account that
[fDly = |vly <liminf|f(#,)lv < sup|f()ly < oo,
k— 00 tes

we obtain K := sup,co 1 |f(s)lv < 0o. Let ¢ be a continuous linear functional over V.
Due to the reflexivity of V, the dual U* of the space U is densely embedded into V*, the
dual of V. Thus for ¢ € V* and ¢ > 0 there is ¢ € U™ such that |¢ — ¢.|y+ < &. Hence

1P (f (@) = d(f )] < @ (f (1) = fE))] + (P — de) (f (1) — [ (1n))]
S e (f @) = fE + el f(1) = ft)ly = 1@ (f(2) — fta))] + 2eK.

Letting here n — oo and then ¢ — 0, we get
limsup |¢(f (1)) — ¢ (f ()] =0,
n—oo
which completes the proof of the lemma. O

Clearly, u is weakly continuous as an H 2-valued function. Hence applying Lemma 5.5
with V.= H}' and U = H[(,), by using (5.20) with s = m, we obtain that u is weakly
continuous as an H g’ -valued function. Thus by virtue of Eq. 5.20 we have

sup [u(®)lry < N |my +1f1ms) (521
te[0,T]
for all s € [0, m] and p > 2 with a constant N = N(m, p,d, K, K"g, K5, T).

To show that u is strongly continuous as an H,-valued function for any s < m, notice
that by the multiplicative inequality (iv) we have a constant ¢ such that for any sequence
t, — tin [0, T'] we have

) = i)y < elu@) =l " ) =) s (5.22)

Letting here n — oo we get lim;,_, o |u(t) — M(fn)|H; = 0 by using (5.21) and the strong
continuity of u as an L ,-valued function. This shows that u € C([0,T], H ;) for every
s < m and finishes the proof of the existence of solutions in Theorem 2.1 for V' := H}.
Consider now the case V' := W}'. Since for integers m > 0 the spaces H)' and W}!
are the same as vector spaces equipped with equivalent norms for any p > 1, we need only
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consider the case when m is not an integer and p > 2 is a real number. We will make use
of the following facts about the interpolation spaces (Ag, A1)g,q With parameters 6 € (0, 1)
and g € [1, oo], obtained by real interpolation methods from an interpolation couple of
Banach spaces Ag and A (see 1.3.3 in [43]).

(a) If Ag, A1 and By, B, are two interpolation couples and S : Ag + A; — Bo + Bj
is a linear operator such that its restriction onto A; is a continuous operator into B;
with operator norm C; for i = 0, 1, then its restriction onto Ag , = (Ag, A1)g,q IS a
continuous operator into By , = (By, B1)g,q With operator norm Cé% C ? for every
6 € (0,1)and g € [1, oc].

(b) For a o-finite measure space 1 for pg, p1 € (1, o) we have

(Lpy(M, Ag), Lp, (M, A1))e,p = Lp(M, (Ao, A1)e,p)

forevery 6 € (0, 1), where 1/p = (1 —6)/po+6/p1.
(c) Forsg, s1 € (0, 00), 50 # 51

(W, W, =W, for6 e (0,1)and p € (1, 00)

when s := (1 — 6)sp + s is not an integer.
(d) Forf e (0,1)and g € [1, oo] there is a constant ¢y, such that

1-6 0
|U|A9,q < Cﬁ,q|U|AO |U|A]
forallv e Ag N Aj.

For a fixed t € [0, T] consider the operator S(r) mapping (¥, f) € W;,’ x L([0, T], W;)
to u(t) € W;’, the solution of Eq. 1.1 at time t. We already know that S(¢) is a bounded
operator for p > 2 and integers n € [0, m], and its norm can be estimated by the right-hand
side of Eq. 5.21 in this case. When n = s > 0 is not an integer, then we set § = s — [s],
and using (b) and (c) we have

WSl Wil =W, [L,(10,T1, Wi, Ly(10, 71, W) Dle,, = L,(10, T1, W3),
Moreover by (a) we get that u(z) € W;, forevery ¢t € [0, T] and s € [0, m], and we have

T
sup w2, < NJID, +N/ O di
t€[0,T] P P 0 r

for every s € [0, m] and p > 2. Hence taking into account that u is strongly continuous in
t as an L ,-valued function, by (c) and (d) we get that it is (strongly) continuous as a W;—
valued function for every s < m. Moreover, using Lemma 5.5 with V.= W andU = L,
it follows that u is weakly continuous as a W'-valued function.
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