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Abstract
A class of (possibly) degenerate integro-differential equations of parabolic type is con-
sidered, which includes the Kolmogorov equations for jump diffusions. Existence and
uniqueness of the solutions are established in Bessel potential spaces and in Sobolev-
Slobodeckij spaces. Generalisations to stochastic integro-differential equations, arising in
filtering theory of jump diffusions, will be given in a forthcoming paper.
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1 Introduction

We consider the equation

∂

∂t
u(t, x) = Au(t, x) + f (t, x) (1.1)

on HT = [0, T ] × R
d for a given T > 0, with initial condition u(0, x) = ψ(x) for x ∈ R

d ,
where A is an integro-differential operator of the form A = L + M + N + R, with a
“zero-order” linear operator R, a second order differential operator

L(t) = aij (t, x)Dij + bi(t, x)Di + c(t, x)
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and nonlocal linear operators M and N defined by

M(t)ϕ(x) =
∫

Z

(ϕ(x + ηt,z(x)) − ϕ(x) − ηt,z(x)∇ϕ(x))μ(dz), (1.2)

N (t)ϕ(x) =
∫

Z

(ϕ(x + ξt,z(x)) − ϕ(x))ν(dz) (1.3)

for a suitable class of real-valued functions ϕ(x) on R
d . Here aij , bi and c are real-valued

bounded functions defined on HT , μ and ν are σ -finite measures on a measurable space
(Z,Z). The functions η and ξ are R

d -valued mapping defined on HT × Z. Under “zero-
order operators” we mean bounded linear operators R mapping the Sobolev spaces Wk

p

into themselves for k = 0, 1, 2, .., n for some n. Examples include integral operators R(t)

defined by

R(t)ϕ(x) =
∫

Z

ϕ(x + ζt,z(x))λ(dz) (1.4)

with appropriate functions ζ on HT × Z and finite measures λ on Z .
Our aim is to investigate the solvability of Eq. 1.1 in Bessel potential spaces Hm

p and
Sobolev-Slobodeckij spaces Wm

p for p ≥ 2 and m ∈ [1, ∞).
Such kind of equations arise, for example, as Kolmogorov equations for Markov pro-

cesses given by stochastic differential equations, driven by Wiener processes and Poisson
random measures, see e.g., [1, 2, 12, 13] and [17]. They play important roles in studying
random phenomena modelled by Markov processes with jumps, in physics, biology, engi-
neering and finance, see e.g., [3, 8, 33, 38] and the references therein. There is a huge
literature on the solvability of these equations, but in most of the publications some kind of
non-degeneracy conditions on the equations, or specific assumptions on the measures μ and
ν are assumed. Results in this direction can be found, for example, in [12, 13, 17, 27, 29, 30,
32] and [39], and for nonlinear equations of the type (1.1), arising in the theory of stochas-
tic control of random processes with jumps, we refer to [13] and [40]. Extensions of the
Lp-theory of Krylov [18] to stochastic equations and systems of stochastic equations with
integral operators of the type M and N above are developed in [6, 7, 19, 20, 28] and [31].

Note that, since with a positive constant cα,d the fractional Laplacian operator �α/2 :=
−(−�)α/2 has the integral representation

�α/2ϕ(x) = lim
ε↓0

cα,d

∫
|z|≥ε

(ϕ(x + z) − ϕ(x))
1

|z|d+α
dz, α ∈ (0, 2)

for smooth functions ϕ with compact support on R
d , we have �α/2 = N + R − c̄α,d

for α ∈ (0, 1) and �α/2 = M + R − c̄α,d for α ∈ [1, 2), where M, N and R are
defined in Eqs. 1.2, 1.3 and 1.4, with ηt,z(x) = ξt,z(x) = ζt,z(x) = z ∈ Z := R

d \ {0},
μ(dz) = ν(dz) = cα,d1|z|≤1|z|−d−αdz, λ(dz) = cα,d1|z|>1|z|−d−αdz and with

c̄α,d = cα,d

∫
|z|>1

1

|z|d+α
dz.

Thus examples for Eq. 1.1 include equations with �α/2, α ∈ (0, 2). There are many impor-
tant results in the literature about fractional operators and about equations containing them,
see e.g., [4, 5, 42] and the references therein.

In this paper we are interested in the solvability of Eq. 1.1 when it can degenerate, and
besides some integrability conditions, no specific conditions on the measures μ and ν are
assumed. An L2-theory of degenerate linear elliptic and parabolic PDEs is developed in
[34–37]. The solvability in L2-spaces of linear degenerate stochastic PDEs of parabolic type
were first studied in [23] (see also [41]). The first existence and uniqueness theorem on
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solvability of these equations in Wm
p spaces, for integers m ≥ 1 and any p ≥ 2, is presented

in [24]. A gap in the proof of a crucial Lp-estimate in [24] is filled in, and the existence
and uniqueness theorem is substantially improved in [15]. The solvability of degenerate
stochastic integro-differential equations, which include the type of Eq. 1.1, are studied in
[9, 25] and [26]. Existence and uniqueness theorems are obtained in Hölder spaces in [25],
and in L2-spaces in [9] and [26]. Our main result, Theorem 2.1 below, is an existence and
uniqueness theorem in Lp-spaces, which generalises the main result in [9] restricted to
equations without stochastic terms. To some extent Theorem 2.1 generalises also the main
result, Theorem 3.3, in [26], restricted to equations without stochastic terms. Our main
theorem, however, does not cover Theorem 3.3 in [26], especially that in [26] a weakly
coupled system of stochastic integro-differential equations (IDEs) is considered instead of
a single IDE. In this respect we note that the proof of our main result suggests that it is
possible to extend it to weakly coupled systems of IDEs, but that is not considered in the
present paper. Concerning solvability of Eq. 1.1 in Hölder spaces it is worth mentioning
that applying our existence and uniqueness theorem in Sobolev spaces Wm

p with sufficiently
large p, and using suitable Sobolev embedding it is possible to get existence and uniqueness
theorems in Hölder spaces.

A generalisation of Theorem 2.1 to stochastic integro-differential equations will be
presented in a forthcoming paper.

In conclusion we introduce some notations used throughout the paper. For vectors v =
(vi) and w = (wi) in R

d we use the notation vw = ∑m
i=1 viwi and |v|2 = ∑

i |vi |2.
For real-valued Lebesgue measurable functions f and g defined on R

d the notation (f, g)

means the integral of the product fg over Rd with respect to the Lebesgue measure on R
d .

A finite list α = α1α2, ..., αn of numbers αi ∈ {1, 2, ..., d} is called a multi-number of
length |α| := n, and the notation

Dα := Dα1Dα2 ...Dαn

is used for integers n ≥ 1, where

Di = ∂

∂xi
, for i ∈ {1, 2, ..., d}.

We use also the multi-number ε of length 0, and agree that Dε means the identity operator.
For an integer n ≥ 0 and functions v on R

d , whose partial derivatives up to order n are
functions, we use the notation Dnv for the collection {Dαv : |α| = n}, and define

|Dnv|2 =
∑
|α|=n

|Dαv|2.

For differentiable functions v = (v1, ..., vd) : R
d → R

d the notation Dv means the
Jacobian matrix whose j -th entry in the i-th row is Djv

i .
For a separable Banach space V we use the notation Lp([0, T ], V ) for the space of

Borel functions f : [0, T ] → V such that |f |pV has finite integral with respect to the
Lebesgue measure on [0, T ]. The Borel σ -algebra on V is denoted by B(V ). The notations
C([0, T ], V ) and Cw([0, T ], V ) mean the space of V -valued functions on [0, T ], which
are continuous with respect to the strong topology and with respect to the weak topology,
respectively, on V . For m ∈ R and p ∈ (1, ∞) we use the notation Hm

p for the Bessel
potential space with exponent p and order m, defined as the space of generalised functions
ϕ on R

d such that

(1 − �)m/2ϕ ∈ Lp and |ϕ|Hm
p

:= |(1 − �)m/2ϕ|Lp < ∞,
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where � = ∑d
i=1 D2

i , and Lp is the space of real-valued Borel functions f on R
d such that

|f |pLp
:=

∫
Rd

|f (x)|pdx < ∞.

For p ∈ [1, ∞) and integers m ≥ 0 the notation Wm
p means the Sobolev space defined as

the completion of C∞
0 = C∞

0 (Rd), the space of smooth functions with compact support on
R

d , in the norm
|ϕ|Wm

p
:=

∑
|α|≤m

|Dαϕ|Lp .

For integers m ≥ 0 the space Wm∞ is the completion of C∞
b , the space of bounded functions

on R
d with bounded smooth derivatives, in the norm

|ϕ|Wm∞ :=
∑

|α|≤m

esssup |Dαϕ|.

Moreover, we use W−m
q to denote the dual space of Wm

p , where q is the conjugate exponent
of p, i.e. 1/p + 1/q = 1. One knows that Hm

p and Wm
p are the same as vector spaces, and

their norms are equivalent for p ∈ (1, ∞) and integers m ≥ 0. When m > 0 is not an
integer, then Wm

p denotes space of functions f ∈ W
	m

p such that

[Dαf ]p{m},p :=
∫
Rd

∫
Rd

|Dαf (x) − Dαf (y)|p
|x − y|p{m}+d

dxdy < ∞
for every multi-index α of length 	m
, where 	m
 is the largest integer smaller than m, and
{m} = m − 	m
. When m > 0 is not an integer, then Wm

p with the norm

|f |Wm
p

= |f |
W

	m

p

+
∑

|α|=	m

[Dαf ]{m},p

is a Banach space, called a Slobodeckij space. Derivatives are understood in the generalised
sense unless otherwise noted. The summation convention with respect to repeated indices is
used throughout the paper, where it is not indicated otherwise. For basic notions and results
on solvability of parabolic PDEs in Sobolev spaces we refer to [21].

The paper is organised as follows. The formulation of the problem and the main result,
Theorem 2.1, is in Section 2. Some technical tools and the crucial Lp estimates are collected
in Sections 3 and 4, respectively. The proof of Theorem 2.1 is given in the last section,
Section 5.

2 Formulation of theMain Results

Let K be a fixed constant and let η̄ and ξ̄ be fixed nonnegative Z-measurable functions on
Z such that

K2
η̄ :=

∫
Z

η̄2(z)μ(dz) < ∞, Kξ̄ :=
∫

Z

ξ̄(z)ν(dz) < ∞.

We make the following assumptions, where p ∈ [2, ∞) and m ≥ 0 are fixed real numbers
and �m� denotes the smallest integer which is greater than or equal to m.

Assumption 2.1 The derivatives of c in x ∈ R
d up to order �m�, and the derivatives of

bi in x up to order max{�m�, 1} are Borel functions on HT , bounded by K for all i =
1, 2, .., d . The derivatives of aij in x up to order max{�m�, 2} are Borel functions on HT for
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i, j = 1, ..., d , and are bounded by K . Moreover, aij = aji for all i, j = 1, ..., d and for
dt ⊗ dx-almost all (t, x) ∈ HT

aij zizj ≥ 0 for all (z1, ..., zd) ∈ R
d . (2.1)

Assumption 2.2 The function η = (ηi) is an R
d -valued B(HT ) ⊗ Z-measurable mapping

on HT × Z, its derivatives in x ∈ R
d up to order max{�m�, 3} exist and are continuous in

x, such that

|η| ≤ η̄, |Dkη| ≤ η̄ ∧ K, k = 1, 2, ..., max(�m�, 3) =: mη

for all (t, x, z) ∈ HT × Z, and

K−1 ≤ | det(I + θDηt,z(x))|
for all (t, x, z, θ) ∈ HT ×Z ×[0, 1], where I is the d × d identity matrix and recall that Dη

denotes the Jacobian matrix of η.

Remark 2.1 By Taylor’s formula we have

v(x + η(x)) − v(x) − η(x)∇v(x) =
∫ 1

0
ηk(x)(vk(x + θη(x)) − vk(x))dθ

=
∫ 1

0
ηk(x)Dk(v(x + θη(x)) − v(x))dθ −

∫ 1

0
θηk(x)ηl

k(x)vl(x + θη(x))dθ

for every v ∈ C∞
0 , where to ease notation we do not write the arguments t and z and write

vk instead of Dkv for functions v. Due to Assumption 2.2 these equations extend to v ∈ W 1
p

for p ≥ 2 as well. Hence after changing the order of integrals, by integration by parts we
obtain

(Mv, ϕ) = −(J kv,Dkϕ) + (J 0v, ϕ)

for ϕ ∈ C∞
0 , with

J k(t)v(x) =
∫ 1

0

∫
Z

ηk(v(τθη(x)) − v(x))μ(dz)dθ, k = 1, 2, ..., d, (2.2)

J 0(t)v(x) = −
∫ 1

0

∫
Z

{
∑

k

ηk
k(v(τθη(x)) − v(x)) + θηk(x)ηl

k(x)vl(τθη(x))}μ(dz)dθ, (2.3)

where for the sake of short notation the arguments t, z of η and ηk have been omitted, and

τθη(x) := x + θηt,z(x) for x ∈ R
d , t ∈ [0, T ], z ∈ Z and θ ∈ [0, 1]. (2.4)

Assumption 2.3 The function ξ = (ξ i) is an R
d -valued B(HT ) ⊗ Z-measurable mapping

on HT × Z, its derivatives in x ∈ R
d up to order max{�m�, 2} exist and are continuous in x

such that
|ξ | ≤ ξ̄ , |Dkξ | ≤ ξ̄ ∧ K, k = 1, 2, ..., max(�m�, 2) =: mξ

for all (t, x, z) ∈ HT × Z, and

K−1 ≤ | det(I + θDξt,z(x))|
for all (t, x, z, θ) ∈ HT × Z × [0, 1].

Assumption 2.4 The operatorR(t) is a linear mapping from Lp(Rd) into Lp(Rd) for every
t ∈ [0, T ], such that for every ϕ ∈ C∞

0 the function R(t)ϕ is Borel measurable in t and

|R(t)ϕ|Wn
p

≤ K|ϕ|Wn
p

for integers n = 0, 1, ..., �m�.
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Remark 2.2 Clearly, there are many important examples of linear operators satisfying this
condition. By Lemma 3.2 below it is not difficult to show that the operator R defined in
Eq. 1.4 satisfies Assumption 2.4 if ζ = (ζ i) is an R

d -valued B(HT ) ⊗ Z-measurable
mapping on HT × Z and it is a C�m�-diffeomorphism of Rd for every (t, z) ∈ [0, T ] × Z

such that

|Dkζ | ≤ K, k = 1, 2, ..., �m�, K−1 ≤ | det(I + Dζt,z(x))|
for all (t, x, z) ∈ HT × Z.

In the next assumption, and correspondingly in the main result below, V s
p denotes either

Hs
p or Ws

p for every s ≥ 0.

Assumption 2.5 We have ψ ∈ V m
p and f ∈ Lp([0, T ], V m

p ).

Using Remark 2.1 we define the notion of generalised solutions to Eq. 1.1 as follows.

Definition 2.1 An Lp(Rd)-valued continuous function u = u(t), t ∈ [0, T ] is a generalised
solution to Eq. 1.1 with initial condition u(0) = ψ , if u(t) ∈ W 1

p(Rd) for dt-almost every

t ∈ [0, T ], u ∈ Lp([0, T ], W 1
p), and

(u(t), ϕ) = (ψ, ϕ) +
∫ t

0
〈A(s)u(s), ϕ〉 + (f (s), ϕ)ds (2.5)

for every ϕ ∈ C∞
0 (Rd) and t ∈ [0, T ], where

〈Au, ϕ〉 := −(aijDju,Diϕ) + (b̄iDiu + cu, ϕ) − (J iu,Diϕ) + (J 0u, ϕ)

+(Nu, ϕ) + (Ru, ϕ)

with b̄i = bi − Dja
ij .

Observe that, if Assumptions 2.2 and 2.3 hold, then there is a constant N such that

|J 0(s)v|Lp ≤ N |v|W 1
p
, |J k(s)v|Lp ≤ N |v|W 1

p
, |N (s)v|Lp ≤ N |v|W 1

p
,

for all v ∈ W 1
p and s ∈ [0, T ] (see Proposition 3.10 below). Thus 〈Au, ϕ〉 is well-defined

when Assumptions 2.1 through 2.4 are satisfied.

Theorem 2.1 Let Assumptions 2.1 through 2.5 hold with m ≥ 1. Then Eq. 1.1 with initial
condition u(0) = ψ has a generalised solution u, which is a weakly continuous V m

p -valued
function, and it is strongly continuous as a V s

p -valued function of t ∈ [0, T ] for any s < m.
Moreover, there is a constant N = N(K, d,m, p, T , Kξ̄ ,Kη̄) such that

sup
t≤T

|u(t)|pV s
p

≤ N

(
|ψ |pV s

p
+

∫ T

0
|f (t)|pV s

p
dt

)
for s ∈ [0, m]. (2.6)

If Assumptions 2.1 through 2.5 hold with m = 0, then there is at most one generalised
solution.

3 preliminaries

First we present some lemmas which may well be known from textbooks in analysis. Recall
that we use multi-numbers α = α1 . . . αn, where αj ∈ {1, . . . , d}, to denote higher order
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derivatives. For a multi-number α = α1....αk of length k and a subset κ of k̄ := {1, 2, ..., k}
we use the notation α(κ) for the multi-number αl1 ...αln , where l1, ..., ln are the elements
of κ , listed in increasing order. For short we use the notation vα := Dαv for functions v

of x ∈ R
d . We write κ1 � · · · � κn = k̄ for the partition of {1, 2, .., k} into n nonempty

disjoint sets κ1, ..., κn. Two partitions are considered different if one of the sets in one of
the partitions is different from each set in the other partition. Using the above notation the
chain rule for (u(ρ))α := Dα(u(ρ)) for functions u : Rd → R and ρ : Rd → R

d can be
formulated as follows.

Lemma 3.1 Assume that the derivatives of u and ρ = (ρ1, ...ρd) up to order k ≥ 1 exist
and are continuous functions. Then for any multi-number α = α1α2...αl of length l ∈
{1, 2, ..., k} we have

(u(ρ))α =
l∑

n=1

∑
κ1�···�κn=l̄

ui1...in (ρ)ρ
i1
α(κ1)

ρ
i2
α(κ2)

. . . ρ
in
α(κn), (3.1)

where the second summation on the right-hand side means summation over the different
partitions of l̄ := {1, 2, ..., l}, and for each l and each partition of l̄ there is also a summation
with respect to the repeated indices ij ∈ {1, 2, ..., d} for j = 1, 2, ..., n.

Proof One can prove this lemma by induction on l, and it is left for the reader as an easy
exercise.

A one-to-one function, mapping R
d onto R

d , is called a Ck-diffeomorphism on R
d for an

integer k ≥ 1, if the derivatives up to order k of the function and its inverse are continuous.
If ρ is a Ck-diffeomorphism such that

M ≤ | det Dρ| and |Diρ| ≤ N for i = 1, 2, ..., k (3.2)

for some positive constants M and N , then Lemma 3.1 can be extended to u ∈ Wk
p for any

p ∈ [1, ∞].

Lemma 3.2 Let ρ be a Ck(Rd)-diffeomorphism for some k ≥ 1 such that Eq. 3.2 holds.
Then the following statements hold.

(i) There is a constant C = C(M,N, d, p, k) such that for u ∈ Wl
p , p ∈ [1, ∞] and

v ∈ Wl∞
|u(ρ)v|Wl

p
≤ C|u|Wl

p
|v|Wl∞ (3.3)

for l = 0, 1, 2, ..., k.
(ii) For 1 ≤ |α| ≤ k Eq. 3.1 holds dx-almost everywhere for any u ∈ Wk

p , p ∈ [1, ∞].

Proof We prove (3.3) by induction on l, assuming that u ∈ Wl
p , v ∈ Wl∞ are smooth

functions and p �= ∞. For l = 0 by the change of variable ρ(x) = y and by the first
inequality in Eq. 3.2 we have

|u(ρ)v|pLp
≤ esssup |v|p

∫
Rd

|u(y)|p|detDρ−1(y)|dy

= esssup |v|p
∫
Rd

|u(y)|p|detDρ(ρ−1(y))|−1dy ≤ M−1|u|pLp
esssup |v|p,
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which proves (3.3) for l = 0. Let l ≥ 1 and assume that statement (i) is true for l − 1 in
place of l. By the Leibniz rule and the chain rule

Di(u(ρ)v) = uj (ρ)ρ
j
i v + u(ρ)vi for each i = 1, 2, ..., d .

Hence by the induction hypothesis and the second inequality in Eq. 3.2 we have

|Di(u(ρ)v)|
Wl−1

p
≤ |uj (ρ)ρ

j
i v|

Wl−1
p

+ |u(ρ)vi |Wl−1
p

≤ C|uj |Wl−1
p

|ρj
i v|

Wl−1∞ + C|u|
Wl−1

p
|vi |Wl−1∞ ≤ C(Nd + 1)|u|Wl

p
|v|Wl∞ .

Thus

|u(ρ)v|Wl
p

=
d∑

i=1

|Di(u(ρ)v)|
Wl−1

p
≤ Cd(Nd + 1)|u|Wl

p
|v|Wl∞ ,

which finishes the induction proof. When p = ∞ and l = 0 then Eq. 3.3 is obvious, and by
induction on l we get the result as before. Clearly, the condition given by the first inequality
in Eq. 3.2 is not needed in this case. Since C∞

0 is dense in Wl
p when p �= ∞ and C∞

b is

dense in Wl∞, we can finish the proof of (ii) by a standard approximation argument. Making
use of (ii) we can get (i) also by approximating u by C∞

0 functions when p �= ∞ and by
C∞

b functions when p = ∞.

Lemma 3.3 Let ρ be a Ck(Rd)-diffeomorphism for k ≥ 1, such that Eq. 3.2 holds. Then
there are positive constants M ′ = M ′(N, d) and N ′ = N ′(N, M, d, k) such that Eq. 3.2
holds with g := ρ−1, the inverse of ρ, in place of ρ, with M ′ and N ′ in place of M and N ,
respectively.

Proof It follows from the second estimate in Eq. 3.2 that | det(Dρ)| ≤ d!Nd , and since
Dg(x) = (Dρ)−1(g(x)), we have

| det Dg(x)| = | det(Dρ)(g(x))|−1 ≥ (d!Nd)−1,

which proves the first estimate in Eq. 3.2 for g = ρ−1 in place of ρ. To estimate |Dg|
notice that ‖Dg(x)‖ = λ1, where ‖Dg(x)‖ is the operator norm of the matrix Dg(x), and
λ1 ≥ λ2 ≥ ... ≥ λd > 0 are the singular values of the matrix Dg(x). Since 1/λd ≥
1/λd−1 ≥ ... ≥ 1/λ1 are the singular values of A(x) := (Dρ)(g(x)), we have | det A(x)| =
1/�d

i=1λi ≥ M and ‖A(x)‖ = 1/λd ≤ N . Hence

|Dρ−1(x)| ≤ K0‖Dρ−1(x)‖ = K0λ1 ≤ K0(Nλd)d−1λ1 ≤ K0N
d−1

d∏
i=1

λi ≤ K0N
d−1

M

(3.4)
with a constant K0 = K0(d). To estimate |Dig| for 1 ≤ i ≤ k and k > 1, we claim that for
every multi-number α of length i < k each entry Brl(α) of the matrix B(α) := DαDg is a
linear combination of products of at most k + 2 functions, with multiplicity, taken from the
set

{ρj
β(g), gr

γ : j, r = 1, 2, .., d, 1 ≤ |β| ≤ k, 1 ≤ |γ | < k}
with integer coefficients, determined by α and d , where vβ := Dβv for functions v and
multi-numbers β. By the chain rule from ρ(g(x)) = x we have ADg = I with A =
(Dρ)(g). Hence, for |α| = 1

DαDg = −A−1DαADg = −DgDαADg =: B(α).
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This gives Brl(α) = −gr
jρ

j
pi(g)gi

αg
p
l for r, l = 1, 2, .., d , which proves the claim for k = 2,

and our claim follows by induction on k. Hence also by induction on k we immediately
obtain that

|Dig| ≤ N ′ for 1 ≤ i ≤ k with a constant N ′ = N ′(N,M, d, k),

since we have already proved this statement for k = 1 above.

In Section 5 we will approximate (1.1) by mollifying the data ψ and f , the coefficients
of L and the functions η and ξ in the variable x ∈ R

d . It is easy to see that the mollifications
of the data and the coefficients of L by a nonnegative C∞

0 kernel of unit integral satisfy
Assumptions 2.1 and 2.5. It is less clear, however, that mollifications of η and ξ satisfy
Assumptions 2.2 and 2.3. We clarify this by the help of some lemmas below. In the rest of
the paper for ε > 0 and locally integrable functions v defined on R

d we use the notation
v(ε) for the mollification of v, defined by

v(ε)(x) = Sεv(x) := ε−d

∫
Rd

v(y)k((x − y)/ε)dy, x ∈ R
d , (3.5)

where k = k(x) is a fixed nonnegative smooth function on R
d such that k(x) = 0 for |x| ≥

1, k(−x) = k(x) for x ∈ R
d , and

∫
Rd k(x)dx = 1. We define also vε,ϑ = ϑv + (1 − ϑ)v(ε)

for ε > 0 and ϑ ∈ [0, 1].

Lemma 3.4 Let ρ be a Ck(Rd)-diffeomorphism for k ≥ 2, such that Eq. 3.2 holds. Then
there is a positive constant ε0 = ε0(M,N, d) such that ρε,ϑ is a Ck(Rd)-diffeomorphism
for every ε ∈ (0, ε0) and ϑ ∈ [0, 1], and Eq. 3.2 remains valid for ρε,ϑ in place of ρ, with
M ′′ = M/2 in place of M . Moreover, ρ(ε) is a C∞-diffeomorphism for ε ∈ (0, ε0).

Proof We show first that | det Dρε,ϑ | is separated away from zero for sufficiently small
ε > 0. To this end observe that if v = (v1, v2, ..., vd) is a Lipschitz function on R

d with
Lipschitz constant L, and in magnitude it is bounded by a constant K , then for every ε > 0
and ϑ ∈ [0, 1]

|�d
i=1v

i − �d
i=1v

i
ε,ϑ | ≤

d∑
i=1

Kd−1|vi − vi
ε,ϑ | ≤ Kd−1Lε.

By virtue of this observation, taking into account that Diρ
l is bounded by N and it is

Lipschitz continuous with a Lipschitz constant N , we get

| det Dρ − det Dρε,ϑ | ≤ d!Ndε.

Thus setting ε′ = M/(2d!Nd), for ε ∈ (0, ε′) and ϑ ∈ [0, 1] we have

| det Dρε,ϑ | ≥ | det Dρ| − | det Dρ − det Dρε,ϑ |
≥ | det Dρ|/2 ≥ M/2.

Clearly, ρε,ϑ is a Ck function. Hence by the implicit function theorem ρε,ϑ is a local Ck-
diffeomorphism for ε ∈ (0, ε′) and ϑ ∈ [0, 1]. We prove now that ρε,ϑ is a global Ck-
diffeomorphism for sufficiently small ε. Since by the previous lemma |Dρ−1| ≤ N ′, we
have

|x − y| ≤ N ′|ρ(x) − ρ(y)|
≤ N ′|ρε,ϑ (x) − ρε,ϑ (y)| + N ′|ρ(x) − ρε,ϑ (x) + ρε,ϑ (y) − ρ(y)|
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for all x, y ∈ R
d and ε > 0 and ϑ ∈ [0, 1]. Observe that

|ρ(x) − ρε,ϑ (x) + ρε,ϑ (y) − ρ(y)| ≤
∫
Rd

|ρ(x) − ρ(x − εu) + ρ(y − εu) − ρ(y)|k(u)du

≤
∫
Rd

∫ 1

0
ε|u||∇ρ(x − θεu) − ∇ρ(y − θεu)|k(u)dθdu

≤ εN |x − y|
∫

|u|≤1
|u|k(u)du ≤ εN |x − y|.

Thus |x − y| ≤ N ′|ρε,ϑ (x) − ρε,ϑ (y)| + εN ′N |x − y|. Therefore setting ε′′ = 1/(2NN ′),
for all ε ∈ (0, ε′′) and ϑ ∈ [0, 1] we have

|x − y| ≤ 2N ′|ρε,ϑ (x) − ρε,ϑ (y)| for all x, y ∈ R
d , (3.6)

which implies lim|x|→∞ |ρε,ϑ (x)| = ∞, i.e., the pre-image by ρε,ϑ of any compact set is a
compact set for each ε ∈ (0, ε′′) and ϑ ∈ [0, 1]. A continuous function with this property is
called a proper function, and by Theorem 1 in [11] a local C1- diffeomorphism from R

d into
R

d is a global diffeomorphism if and only if it is a proper function. Thus we have proved that
ρε,ϑ is a global Ck-diffeomorphism for ε ∈ (0, ε0) and ϑ ∈ [0, 1], where ε0 = min(ε′, ε′′).
Clearly, ρε,0 = ρ(ε) is a C∞ function and hence it is a C∞-diffeomorphism for every
ε ∈ (0, ε0).

Now we can complete the proof of the lemma by noting that since Djρ
(ε) = (Djρ)(ε),

the condition |Diρ| ≤ N implies |Diρε,ϑ | ≤ N for any ε > 0 and ϑ ∈ [0, 1].

Recall the definition τθη by Eq. 2.4. Similarly, for each t ∈ [0, T ], θ ∈ [0, 1] and z ∈ Z

we use the notation τθξ for the R
d valued function on R

d , defined by

τθξt,z (x) = x + θξt,z(x), (3.7)

for x ∈ R
d . To ease notation we will often omit the variables t and z of η and ξ .

We can apply the above lemmas to τθη and τθξ by virtue of the following proposition.

Proposition 3.5 Let Assumptions 2.2 and 2.3 hold. Then for each t ∈ [0, T ], θ ∈ [0, 1] and
z ∈ Z the functions τθη and τθξ are Ck(Rd)-diffeomorphisms with mη and mξ in place of
k, respectively.

Proof By the inverse function theorem τθη and τθξ are local C1(Rd)-diffeomorphisms for
each t , θ and z. Since

|ηt,z(x)| ≤ η̄(z) < ∞, |ξt,z(x)| ≤ ξ̄ (z) < ∞,

we have

lim|x|→∞ |τθη(x)| = lim|x|→∞ |τθξ (x)| = ∞.

Hence τθη and τθξ are global C1-diffeomorphisms by Theorem 1 in [11] for each t ∈ [0, T ],
z ∈ Z and θ ∈ [0, 1]. Note that by the formula on the derivative of inverse functions a
C1(Rd)-diffeomorphism and its inverse have continuous derivatives up to the same order.
This observation finishes the proof of the proposition.

Corollary 3.6 Let Assumptions 2.2 and 2.3 hold. Then Lemmas 3.2 through 3.4 hold for
τθη and τθξ in place of ρ and with mη and mξ in place of k, respectively. In particular, there
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are positive constants M = M(K, d,m), N = (K, d, m) and ε0 = ε0(K, d) such that for
ρ̃ := ϑτθη + (1 − ϑ)τθη(ε) and ρ̄ := ϑτθξ + (1 − ϑ)τθξ(ε) we have

M ≤ min(|detDρ̃|, |det(Dρ̃)−1|, |detDρ̄|, |det(Dρ̄)−1|)
max(|Dkρ̃|, |Dk(ρ̃)−1|) ≤ N, and max(|Dlρ̄|, |Dl(ρ̄)−1|) ≤ N

for all ε ∈ (0, ε0), θ ∈ [0, 1], ϑ ∈ [0, 1], (t, x, z) ∈ HT × Z, and for k = 1, 2, ...,mη and
l = 1, 2, ...,mξ .

Lemma 3.7 Let (S,S, ν) be a measure space with a σ -finite measure ν, and let g = g(s, x)

be a S ⊗ B(Rd)-measurable real function on S × R
d , where S ⊗ B(Rd) is the ν ⊗ dx-

completion of the product σ -algebra S ⊗ B(Rd). Assume that∫
|x|≤R

∫
S

|g(s, x)|ν(ds)dx < ∞ for every R > 0.

Then the following statements hold.

(i) If for a multi-number α the derivative Dαg of g in x is a S ⊗ B(Rd)-measurable
function such that ∫

S

∫
{|x|≤R}

|Dαg(s, x)|dxν(ds) < ∞
for every R > 0, then dx-almost everywhere

Dα

∫
S

g(s, x)ν(ds) =
∫

S

Dαg(s, x)ν(ds). (3.8)

(ii) If Dαg is a S ⊗ B(Rd)-measurable function for every multi-number α, |α| ≤ m, such
that ∫

S

|g(s)|Wm
p

ν(ds) < ∞,

then ∣∣∣∣
∫

S

g(s, x)ν(ds)

∣∣∣∣
Wm

p

≤
∫

S

|g(s)|Wm
p

ν(ds). (3.9)

Proof Set G(x) = ∫
S

g(s, x)ν(ds). To prove (i) notice that by the definition of generalised
derivatives and by Fubini’s theorem∫

Rd

DαG(x)ϕ(x)dx = (−1)|α|
∫
Rd

∫
S

g(s, x)ν(ds)Dαϕ(x)dx =
∫

S

∫
Rd

Dαg(s, x)ϕ(x)dxν(ds)

=
∫
Rd

∫
S

Dαg(s, x)ν(ds)ϕ(x)dx

for every ϕ ∈ C∞
0 (Rd), which implies (3.8). Hence by Hölder’s inequality∣∣∣∣

∫
Rd

DαG(x)ϕ(x)dx

∣∣∣∣ ≤ |ϕ|Lq

∫
S

|Dαg(s)|Lpν(ds)

for every ϕ ∈ C∞
0 (Rd), which implies

|DαG|Lp ≤
∫

S

|Dαg(s)|Lpν(ds),

and Eq. 3.9 follows.
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For vectors v = (v1, ...., vd) ∈ R
d we define the operators T v , I v and J v by

T vϕ(x) = ϕ(x + v), I vϕ(x) = ϕ(x + v) − ϕ(x), (3.10)

J vφ(x) = φ(x + v) − φ(x) − viDiφ(x), x ∈ R
d (3.11)

acting on functions ϕ and φ defined on R
d such that the generalised derivatives Diφ exist.

If v = v(t, x, z) is a function of (t, x, z) ∈ HT × Z, e.g., when v = η or v = ξ , then T vϕ,
I vϕ and J vφ denote functions on HT × Z, defined by

(T ξϕ)(t, x, z) = ϕ(t, x + ξt,z(x)) (I ξϕ)(t, x, z) = ϕ(t, x + ξt,z(x)) − ϕ(t, x),

(J ηφ)(t, x, z) = φ(t, x + ηt,z(x)) − φ(t, x) − ηi
t,z(x)Diφ(t, x),

for (t, x, z), when ϕ and φ are functions on HT . We will often use the Taylor formulas

I vϕ(x) =
∫ 1

0
ϕi(x + θv)vidθ (3.12)

and

J vφ(x) =
∫ 1

0
(1 − θ)φij (x + θv)vivj dθ (3.13)

with ϕi := Diϕ and φij := DiDjφ, which hold for every x ∈ R
d when ϕ and φ have

continuous derivatives up to first and second order, respectively. These equalities hold for
dx-almost every x ∈ R

d when ϕ ∈ W 1
p and φ ∈ W 2

p .

Lemma 3.8 Let Assumptions 2.2 and 2.3 hold. Then T ξϕ(x), I ξϕ(x) and J ηϕ(x) are
B(HT ) ⊗ Z-measurable functions of (t, x, z) ∈ HT × Z for each ϕ ∈ C∞

0 . For every
multi-number α of length k ≤ m we have

|DαT ξϕ|Lp ≤ N |ϕ|Wk
p
, |DαIξϕ|Lp ≤ Nξ̄(z)|ϕ|

Wk+1
p

, (3.14)

|DαJηϕ|Lp ≤ Nη̄2(z)|ϕ|
Wk+2

p
(3.15)

for t ∈ [0, T ], z ∈ Z and p ∈ [1, ∞), where N is a constant depending only on d,K,m, p.

Proof Clearly, T ξϕ(x), I ξϕ(x) and J ηϕ(x) are B(HT ) ⊗ Z-measurable functions by
Fubini’s theorem, and one can easily get estimates (3.14)–(3.15) by using Lemmas 3.1
and 3.2, together with Lemma 3.7.

Corollary 3.9 Let Assumptions 2.2 and 2.3 hold. Then for every t, z the operators T ξ ,
I ξ and J η extend to bounded linear operators from Wk

p to Wk
p , from Wk+1

p to Wk
p and

from Wk+2
p to Wk

p , respectively, for k = 0, 1, 2, ...,m, such that T ξϕ, I ξ f and J ηg are

B([0, T ]) ⊗ Z-measurable Wk
p-valued functions of (t, z) and

|T ξϕ|Wk
p

≤ N |ϕ|Wk
p
, |I ξf |Wk

p
≤ Nξ̄(z)|f |

Wk+1
p

, |J ηg|Wk
p

≤ Nη̄2(z)|g|
Wk+2

p

for all ϕ ∈ Wk
p , f ∈ Wk+1

p and g ∈ Wk+2
p .

Proposition 3.10 Under Assumptions 2.1, 2.2 and 2.3 for every integer k ∈ [1, m] we have
|L(t)v|

Wk−2
p

≤ N |v|Wk
p
, |M(t)v|

Wk−2
p

≤ N |v|Wk
p
, |N (t)v|

Wk−1
p

≤ N |v|Wk
p

(3.16)

|J l (t)v|
Wk−1

p
≤ N |v|Wk

p
l = 0, 1, 2, ..., d (3.17)

for all v ∈ Wk
p and t ∈ [0, T ], where J l for l = 0, 1, ..., d are defined by Eqs. 2.2–2.3 and

N is a constant, depending only on d,m, p, K, T ,Kη̄ and Kξ̄ .
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Proof It is sufficient to prove the proposition for v ∈ C∞
0 . Then clearly, the statement on L

with a constant N = N(d,K, T , m, p) is obvious. By Taylor’s formula

Mv(x) =
∫

Z

(v(x +η)−v(x)−η∇v(x))μ(dz) =
∫

Z

∫ 1

0
(1−θ)vij (x +θη)ηiηj dθμ(dz).

Hence, due to Assumption 2.2, by Lemma 3.2 for k ∈ [2, m] we get

|Mv|
Wk−2

p
≤

∫
Z

∫ 1

0

∣∣vij (· + θη)
∣∣
Wk−2

p
η̄2dθμ(dz) ≤ |v|Wk

p

∫
Z

η̄2(z)μ(dz),

which proves (3.16) for M when k ≥ 2. For every ϕ ∈ C∞
0 by using Taylor’s formula as

above, then changing variable y = x + θη and integrating by parts, by Hölder’s inequality
and Lemma 3.2 we have
a positive constant N = N(K,p, d,Kη̄) such that

(Mv, ϕ) ≤ N |v|W 1
p
|ϕ|W 1

q

for any v ∈ W 1
p and ϕ ∈ C∞

0 , which proves (3.16) for M when k = 1. For N we have

N v(x) =
∫

Z

(v(x + ξt,z(x) − v(x))ν(dz) =
∫

Z

∫ 1

0
ξt,z(x)∇v(x + θξt,z(x))dθν(dz).

Proceeding as before, using Assumption 2.3 we get Eq. 3.16 for N . Estimates (3.17) can be
proved similarly.

Lemma 3.11 Let Assumptions 2.2 and 2.3 hold with m = 0. Then for t ∈ [0, T ] and z ∈ Z∫
Rd

I ξ ϕ(x)dx ≤ Nξ̄(z)|ϕ|L1 , (3.18)

∫
Rd

J ηφ(x)dx ≤ Nη̄2(z)|φ|L1 (3.19)

for ϕ ∈ W 1
1 and φ ∈ W 2

1 with a constant N = N(K, d).

Proof The proof of Eq. 3.19 is given in [9]. For the convenience of the reader we prove both
estimates here. We may assume that ϕ, φ ∈ C∞

0 . For each (t, z, θ) ∈ [0, T ] × Z × [0, 1] let
π−1

t,z,θ and τ−1
t,z,θ denote the inverse of the functions x → x +θξt,z(x) and x → x +θηt,z(x),

respectively. Using Eqs. 3.12 and 3.13 by change of variables we have∫
Rd

I ξ ϕ(x)dx =
∫ 1

0

∫
Rd

∇ϕ(x)χt,z,θ (x)dxdθ (3.20)

∫
Rd

J ηφ(x)dx =
∫ 1

0

∫
Rd

(1 − θ)Dijφ(x)�
ij
t,z,θ (x)dxdθ (3.21)

with

χt,θ,z(x) = ξt,z(π
−1
t,z,θ (x))|detDπ−1

t,z,θ (x)|,
�

ij
t,z,θ (x) = ηi

t,z(τ
−1
t,z,θ (x))η

j
t,z(τ

−1
t,z,θ (x))|detDτ−1

t,z,θ (x)|.
Due to Assumptions 2.2 and 2.3, using Corollary 3.6 we have a constant N = N(K, d)

such that
|Dχt,θ,z(x)| ≤ Nξ̄(z), |Dij�

ij
t,z,θ (x)| ≤ Nη̄2(z)

for all (t, z, θ) ∈ [0, T ] × Z × [0, 1]. Thus from Eqs. 3.20 and 3.21 by integration by parts
we get (3.18) and (3.19).

455Integro-Differential Equations



Next we present a special case of Theorem 2.1 from [22] on the Lp-norm of semi-
martingales with values in Sobolev spaces, where we use the notation D∗

α = −Dk for
α = k = 1, 2, ..., d , and D∗

0 = D0 stands for the identity operator.

Lemma 3.12 Let ψ ∈ Lp(Rd), u ∈ Lp([0, T ], W 1
p(Rd)) and f α ∈ Lp([0, T ], Lp(Rd))

for some p ≥ 2, for α = 0, 1, ..., d , such that for each ϕ ∈ C∞
0∫

Rd

u(t)ϕdx =
∫
Rd

ψϕdx +
∫ t

0

∫
Rd

f α(s)D∗
αϕdxds dt-almost everywhere.

Then, there is an Lp(Rd)-valued continuous function ũ such that ũ(t) = u(t) for dt-a.e.,
and

|ũt |pLp
= |ψ |pLp

+
∫ t

0

∫
Rd

p|u(s)|p−2u(s)f 0(s) − p(p − 1)|u(s)|p−2Diu(s)f i(s)dxds

(3.22)
for all t ∈ [0, T ], where the repeated index i means summation over i = 1, 2, ..., d .

The next lemma is a vector-valued version of a special case of Lemma 5.1 from [22]. Its
proof is a simple exercise left for the reader.

Lemma 3.13 Let ψα ∈ Lp , uα ∈ Lp([0, T ],W 1
p(Rd)) and f α ∈ Lp([0, T ], Lp(Rd)) for

some p ≥ 2, for α ∈ A for a finite index set A, such that for each ϕ ∈ C∞
0 and α ∈ A

∫
Rd

uα(t)ϕdx =
∫
Rd

ψαϕdx +
∫ t

0

∫
Rd

f α(s)ϕdxds dt-almost everywhere.

Then for every α ∈ A there is an Lp(Rd)-valued continuous function ũα on [0, T ], such
that ũα(t) = uα(t) for dt-almost every t ∈ [0, T ], and

|ũt |pLp
= |ψ |pLp

+
∑
α∈A

∫ t

0

∫
Rd

p|u(s)|p−2uα(s)f α(s)dxds (3.23)

holds for all t ∈ [0, T ], where |ũ| := ( ∑
α(ũα)2

)1/2
and |u| := (∑

α(uα)2
)1/2

.

We will also make use of the following lemma from [22].

Lemma 3.14 Let (S,S, ν) be a measure space, and let {vn}n∈N be a sequence of real-
valued S-measurable functions defined on S such that such that vn → v in the measure ν,
and ∫

S

|vn|rdν →
∫

S

|v|rdν

for some r > 0. Then
∫ |vn − v|rdν → 0 as n → ∞.

To prove Lemma 4.2 below, we use an estimate from [37] for nonnegative quadratic
forms (see Lemma 1.7.1 therein), which, in a slightly more general setting as in [37], can
be formulated as follows.

Lemma 3.15 Let be a = (aij (x)) be a function, mapping R
d into the set of nonnegative

definite n × n-matrices with real entries for an integer n ≥ 1. Assume that the generalised
second order partial derivatives of (aij ) are functions, in magnitude bounded by a constant
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L. Then for dx-almost every x ∈ R
d we have

|Dla
ijV ij |2 ≤ NaijV ikV jk, l = 1, 2, ..., d (3.24)

for all symmetric n × n matrices V = (V ij ), with a constant Ndepending only on L and d.

Proof Though this lemma is known, for the convenience of the readers we present a proof
of it here. Since a(x) is a nonnegative symmetric matrix for every x ∈ R

d , with second
order partial derivatives bounded in magnitude by L, one knows from [10] (or see, e.g.,
Proposition IV.6.2 in [16]), the existence of a function σ , mapping R

d into the space of
real-valued n × n-symmetric matrices, such that σσ ∗ = σ 2 = a and |Dσ | ≤ C for dx-
almost every x ∈ R

d with a constant C = C(L, d). Thus, using the notation fl := Dlf for
functions f on R

d , and tr(b) for the trace of n × n matrices b, we have

al := Dl(σ
2) = σlσ + σσl,

and by using elementary properties of the trace of matrices and of their products, we obtain

|aij
l V ij |2 = |tr(alV )|2 = |tr(σlσV ) + tr(σσlV )|2 = 4|tr(σlσV )|2

≤ 4tr(σlσ
∗
l )tr(σV (σV )∗) ≤ 4Ctr(V aV ) = 4CaijV ikV jk, (dx − a.e.),

that finishes the proof of the lemma.

4 Lp Estimates

We are going to obtain the following crucial Lp-estimate if p = 2k for an integer k ≥ 1.

Theorem 4.1 Let Assumptions 2.1, 2.2 and 2.3 hold with an integer m ≥ 0. AssumeR(t) =
0 for all t ∈ [0, T ]. Let p = 2k for an integer k ≥ 1. Then for n = 0, 1, ...,m∑

|α|=n

(|Dnv|p−2Dαv, DαAv) ≤ N |v|pWn
p

for all v ∈ Wn+2
p with a constant N = N(d, p,m, K,Kξ̄ ,Kη̄).

We prove this theorem after some lemmas.

Lemma 4.2 Let Assumption 2.1 hold. Then for p ≥ 2 and n = 0, 1, ...,m

Qn,p(v) :=
∑
|α|=n

(|Dnv|p−2Dαv, DαLv) ≤ N |v|pWn
p

(4.1)

for all v ∈ Wn+2
p with a constant N = N(d, p,m, K).

Proof This lemma can be obtained from general estimates given in [15]. Here we give a
direct proof of it. For functions g and h on R

d we write g ∼ h if they have identical integrals
over R

d , and we write g � h if g ∼ h + h̃ such that the integral of h̃ over Rd can be
estimated by the right-hand side of Eq. 4.1. Consider first the case n = 0. It is easy to see
that

p|v|p−2vLv � p|v|p−2v(aij vij + bivi)
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∼ −p(p − 1)|v|p−2aij vivj − a
ij
j (|v|p)i + (|v|p)ib

i

∼ −p(p − 1)|v|p−2aij vivj + (a
ij
ji − bi

i )|v|p
� −p(p − 1)|v|p−2aij vivj ,

where, and later on, we use the notation gα := Dαg for functions g over Rd and multi-
numbers α = α1 . . . αn. This by virtue of Assumption 2.1 proves (4.1) when n = 0. Let us
now estimate Q when n ≥ 1. Then it is easy to see that

A := p|Dnv|p−2
∑
|α|=n

vαDαLv

� p|Dnv|p−2
∑
|α|=n

(vαaij vαij +
n∑

l=1

vαa
ij

α(l)Dij vᾱ(l) + vαbivαi), (4.2)

where α(l) denotes the l-th element of multi-number α, and ᾱ(l) is the multi-number we
get from α by leaving out its l-th element. Notice that

2vαaij vijα = aij [|Dnv|2]ij − 2aij viαvjα, 2vαbiviα = bi(|Dnv|2)i .
Hence integrating by parts and using Assumption 2.1, with cp = p(p − 2)/4 ≥ 0 we have

p|Dnv|p−2
∑
|α|=n

vαaij vαij = p
2 |Dnv|p−2(aij [|Dnv|2]ij − 2aij viαvjα) (4.3)

∼ −cp|Dnv|p−4aij [|Dnv|2]i[|Dnv|2]j − p
2 a

ij
j |Dnv|p−2[|Dnv|2]i − p|Dnv|p−2aij viαvjα

� a
ij
ji |Dnv|p − p|Dnv|p−2aij viαvjα � −p|Dnv|p−2aij viαvjα, (4.4)

and

p|Dnv|p−2
∑
|α|=n

vαbiviα = p
2 |Dnv|p−2bi(|Dnv|2)i = bi(|Dnv|p)i ∼ −bi

i |Dnv|p � 0.

(4.5)
Taking into account (4.4) and (4.5), from (4.2) we get

A � −p|Dnv|p−2aij viαvjα + B (4.6)

with

B := p|Dnv|p−2
∑
|α|=n

vα

n∑
l=1

a
ij

α(l)Dij vᾱ(l).

Note that the computations in Eq. 4.4 are valid only for p ≥ 4. For p = 2 we can get (4.6)
directly from Eq. 4.2 by noticing that by integrating by parts we have

2
∑
|α|=n

vαaij vαij ∼ −2aij vαivαj − 2a
ij
j vαvαi = −2aij vαivαj − a

ij
j [|Dnv|2]i

∼ −2aij vαivαj + a
ij
ji |Dnv|2 � −2aij vαivαj .

For p ∈ (2, 4) we modify the calculations in Eq. 4.4 by taking φε(|Dnv|2) in place of
|Dnv|p−2 in Eq. 4.3, where φε for each ε > 0 is a function defined by

φε(r) =
∫ |r|

0
ϕε(s)ds, r ∈ R

with a continuous function ϕε on [0, ∞), supported on [ε, ∞) such that

0 ≤ ϕε(r) ≤ (p − 2)r(p−4)/2/2, for r ≥ 0, ϕε(r) = (p − 2)r(p−4)/2/2 for r ≥ 2ε.
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Clearly, φε is continuously differentiable such

φ′
ε(r) = dφε(r)/dr ≥ 0 for r ≥ 0,

lim
ε→0

φε(r) = |r|(p−2)/2, |φε(r)| ≤ N |r|(p−2)/2, |φ′
ε(r)| ≤ N |r|(p−4)/2 for r ∈ R,

and

�ε(r) :=
∫ r

0
φε(s)ds ≤ Nrp/2 for r ≥ 0

with a constant N depending only on p. Then noticing that

φε(|Dnv|2)aij [|Dnv|2]ij ∼ −φ′
ε(|Dnv|2)aij [|Dnv|2]i[|Dnv|2]j −φε(|Dnv|2)aij

j [|Dnv|2]i
≤ −φε(|Dnv|2)aij

j [|Dnv|2]i ,
we get

pφε(|Dnv|2)
∑
|α|=n

vαaij vαij = p
2 φε(|Dnv|2)(aij [|Dnv|2]ij − 2aij viαvjα)

� −p
2 a

ij
j φε(|Dnv|2)[|Dnv|2]i − pφε(|Dnv|2)aij viαvjα .

= −p
2 a

ij
j Di�ε(|Dnv|2) − pφε(|Dnv|2)aij viαvjα

� a
ij
ji�ε(|Dnv|2) − pφε(|Dnv|2)aij viαvjα

� −pφε(|Dnv|2)aij viαvjα .

Consequently,

pφε(|Dnv|2)
∑
|α|=n

vαaij vαij � −pφε(|Dnv|2)aij viαvjα for ε > 0.

Letting here ε → 0, by Lebesgue’s theorem on dominated convergence we obtain

p|Dnv|p−2
∑
|α|=n

vαaij vαij � −p|Dnv|p−2aij viαvjα .

Hence, taking into account (4.5), from Eq. 4.2 we get (4.6) also for p ∈ (2, 4), i.e., (4.6) is
valid for all p ≥ 2. We estimate B by using the simple inequality

|vα

n∑
l=1

a
ij

α(l)Dij vᾱ(l)| ≤ ε−1|vα|2 + εn

n∑
l=1

|aij

α(l)Dij vᾱ(l)|2

for every ε > 0 and multi-number α, to get

B ≤ pε−1|Dnv|p + εnp|Dnv|p−2C with C :=
∑
|α|=n

n∑
l=1

|aij

α(l)Dij vᾱ(l)|2. (4.7)

Using estimate Eq. 3.24 with V ij := Dijvᾱ(l) for each l = 1, 2, ..., n and multi-number α

of length n, we get

C ≤ N
∑
|α|=n

n∑
l=1

aijDikvᾱ(l)Djkvᾱ(l) ≤ N ′ ∑
|α|=n

aijDivαDjvα

with a constant N ′ = N ′(d,K, n). Thus, choosing ε sufficiently small in the inequality in
Eq. 4.7, from Eq. 4.6 we obtain A � 0, which proves the lemma.
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For the following lemmas recall the definition of the operators I ξ , Iη and J η by Eqs. 3.10
and 3.11, and notice that the identities

2vI ξ v = I ξ v2 − (I ξ v)2 (4.8)

2vJ ηv = J ηv2 − (I ηv)2 (4.9)

hold for (t, x, z) ∈ HT × Z, for functions v = v(x) of x ∈ R
d .

Lemma 4.3 Let Assumption 2.3 hold with an integer m ≥ 0. Assume p = 2k for an integer
k ≥ 1. Then for n = 0, 1, ...,m

I(v) :=
∑
|α|=n

(|Dnv|p−2Dαv, DαI ξ v) ≤ Nξ̄ |v|pWn
p

(4.10)

with a constant N = N(d, p,m, K) for all v ∈ Wn+1
p and (t, z) ∈ [0, T ] × Z.

Proof Consider first the case n = 0. Then by identity (4.8)

|v|p−2vI ξ v = 1
2 |v|p−2I ξ v2 − 1

2 |v|p−2(I ξ v)2 = 1
2 |v|p−4v2I ξ v2 − 1

2 |v|p−2(I ξ v)2

= 1
4 |v|p−4I ξ v4 − 1

2 |v|p−2(I ξ v)2 − 1
4 |v|p−4(I ξ v2)2 = · · · = 1

p
I ξ vp − A (4.11)

with

A =
k∑

j=1

2−j |v|p−2j

(I ξ vj )2 ≥ 0.

Hence integrating over Rd , by Eq. 3.18 we have

I(v) ≤ 1

p

∫
Rd

I ξ vpdx ≤ Nξ̄ |v|pLp
.

Assume now that n ≥ 1 and let α be a multi-number of length n. Then

(I ξ v)k = I ξ vk + ξ i
kT

ξ vi, (T ξ v)k = T ξvk + ξ i
kT

ξ vi

for k = 1, 2, ..., d . (Recall that we use the notation gα = Dαg for multi-numbers α.) Hence,
by induction on the length n of the multi-number of α, we obtain

(I ξ v)α = I ξ vα +
∑

1≤|β|≤n

qα,βT ξ vβ,

with some polynomial qα,β of {ξ i
γ : 1 ≤ |γ | ≤ n, i = 1, ..., d} for each multi-number β of

length between 1 and n. The degree of these polynomials is not greater than n, their constant
term is zero, and the other coefficients are nonnegative integers. Hence

|Dnv|p−2vα(I ξ v)α = |Dnv|p−2vαI ξ vα +
∑

1≤|β|≤n

|Dnv|p−2vαqα,βT ξ vβ,

where the repeated multi-numbers α mean summation over |α| = n. By using the same
calculation as in Eq. 4.11 we have

|Dnv|p−2vαI ξ vα = 1
2 |Dnv|p−2{I ξ (|Dnv|2) −

∑
|α|=n

(I ξ vα)2}

≤ 1
2 |Dnv|p−4|Dnv|2I ξ (|Dnv|2) ≤ · · · ≤ 1

p
I ξ (|Dnv|p).

Thus
|Dnv|p−2vα(I ξ v)α ≤ 1

p
I ξ (|Dnv|p) + Nξ̄ |Dnv|p−1

∑
1≤|β|≤n

|T ξvβ |
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≤ 1
p
I ξ (|Dnv|p) + Nξ̄ |Dnv|p + N ′ξ̄

∑
1≤|β|≤n

|T ξvβ |p (4.12)

with constants N and N ′ depending only on m, d, p and K . Integrating here over Rd we
get (4.10).

Lemma 4.4 Let Assumption 2.2 hold with an integer m ≥ 0. Assume p = 2k for an integer
k ≥ 1. Then for n = 0, 1, ...,m we have

J(v) :=
∑
|α|=n

(|Dnv|p−2Dαv,DαJ ηv) ≤ Nη̄2|v|pWn
p

(4.13)

with a constant N = N(d, p,m, K) for all v ∈ Wn+2
p and (t, z) ∈ [0, T ] × Z.

Proof Consider first the case n = 0. Then using identity (4.9) and proceeding with the
proof in the same way as in the proof of the previous lemma we get

vp−2vJ ηv = 1
2vp−2J η(v2) − 1

2vp−2(I ηv)2 = · · · = 1
p
J ηvp − B (4.14)

with

B =
k∑

j=1

2−j |v|p−2j

(I ηvj )2 ≥ 0.

Integrating here over Rd by Eq. 3.19 we have

J(v) ≤ 1
p

∫
Rd

J ηvpdx ≤ Nη̄2|v|pLp
.

Assume now that n ≥ 1 and let α be a multi-number of length n. Then for (T ηv)k :=
Dk(T

ηv), (I ηv)k := Dk(I
ηv) and (J ηv)k := Dk(J

ηv) we have

(T ηv)k = T ηvk + ηi
kT

ηvi, (I ηv)k = Iηvk + ηi
kT

ηvi, (J ηv)k = J ηvk + ηi
kI

ηvi

for every k = 1, ..., d . Hence by induction on the length of α we get

(J ηv)α = J ηvα +
∑

1≤|β|≤n

pα,βI ηvβ +
∑

1≤|β|≤n

qα,βT ηvβ,

with some polynomials pα,β and qα,β of {ηi
γ : 1 ≤ |γ | ≤ n, i = 1, ..., d}. The degree of

these polynomials is not greater than n, their constant term is zero, the coefficients of each
first order term in the polynomials qα,β is also zero, all the other coefficients in pα,β and
qα,β are nonnegative integers. Hence we get

|Dnv|p−2vα(J ηv)α = |Dnv|p−2vαJ ηvα + Aβ + Bβ (4.15)

with
Aβ := |Dnv|p−2vαpα,βIηvβ, Bβ := |Dnv|p−2vαqα,βT ηvβ,

where repeated α means summation over the multi-numbers α of length n.
Clearly, for all β we have

|Bβ | ≤ Nη̄2|Dv|p−1|T ηvβ |
with constants N = N(m,K, d). For |β| ≤ n − 1 we estimate Aβ in the same way to get

|Aβ | ≤ Nη̄|Dnv|p−1|Iηvβ |,
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and for |β| = n we use Young’s inequality to write

|vαpα,βIηvβ | ≤ ε|Iηvβ |2 + ε−1|vαpα,β |2 ≤ ε|Iηvβ |2 + ε−1|Dnv|2
∑
|α|=n

|pα,β |2

≤ ε|Iηvβ |2 + Nε−1η̄2|Dnv|2.

Hence for |β| = n we have

|Aβ | ≤ ε|Dnv|p−2|Iηvβ |2 + Nε−1η̄2|Dnv|p
for ε > 0 with a constant N = N(K, d, m). Calculating as in Eq. 4.14 we obtain

|Dnv|p−2vαJ ηvα ≤ 1
2 |Dnv|p−2{J η(|Dnv|2) −

∑
|α|=n

|Iηvα|2}

≤ 1
4 |Dnv|p−4|Dnv|2J η(|Dnv|2) − 1

2

∑
|α|=n

|Dnv|p−2|Iηvα|2 ≤ . . .

≤ 1
p
J η(|Dnv|p) − 1

2

∑
|α|=n

|Dnv|p−2|Iηvα|2.

Using these estimates, from Eq. 4.15 we obtain

|Dnv|p−2vα(J ηv)α ≤ 1
p
J η(|Dnv|p)− 1

2

∑
|α|=n

|Dnv|p−2|Iηvα|2 + ε|Dnv|p−2
∑

|β|=n

|Iηvβ |2

+Nε−1η̄2|Dnv|p + Nη̄2|Dnv|p−1
∑

1≤|β|≤n

|T ηvβ | + Nη̄|Dnv|p−1
∑

1≤|β|≤n−1

|Iηvβ |.

Choosing here ε = 1/2, we get

|Dnv|p−2vα(J ηv)α ≤ 1
p
J η(|Dnv|p) + Nη̄2|Dv|p

+ Nη̄2|Dnv|p−1
∑

1≤|β|≤n

|T ηvβ | + Nη̄|Dnv|p−1
∑

1≤|γ |≤n−1

|Iηvγ |. (4.16)

By Hölder’s inequality, taking into account (3.14) we have∫
Rd

|Dnv|p−1|T ηvβ |dx ≤ N |v|p−1
Wn

p
|T ηvβ |Lp ≤ N ′|v|pWn

p
for |β| ≤ n,

∫
Rd

|Dnv|p−1|Iηvγ |dx ≤ N |v|p−1
Wn

p
|Iηvγ |Lp ≤ N ′η̄|v|pWn

p
for |γ | ≤ n − 1 (4.17)

with some constants N = N(d, p) and N ′ = N ′(d,m, p,K). Integrating inequality (4.16)
over Rd and using inequalities (3.19) and (4.17) we obtain (4.13).

Proof of Theorem 4.1 By the definition of A for v ∈ Wn+2
p we have

∑
|α|=n

(|Dnv|p−2Dαv, DαAv) =
∑
|α|=n

(|Dnv|p−2Dαv, DαLv) +
∫

Z

I(v)ν(dz) +
∫

Z

J(v)μ(dz),

where I and J are defined in Eqs. 4.10 and 4.13, respectively. Hence we get Theorem 4.1
by Lemmas 4.2, 4.3 and 4.4.
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5 Proof of theMain Result

5.1 Uniqueness of the Generalised Solution

Assume that Assumptions 2.1 through 2.4 hold with m = 0. Let ui ∈ Lp([0, T ], W 1
p)

be generalised solutions to Eq. 1.1 with initial condition ui(0) = ψ for i = 1, 2. Then
v := u1 − u2 is a generalised solution of Eq. 1.1 such that v(0) = 0 and f = 0. By
Lemma 3.12 we have

|v(t)|pLp
=

∫ t

0
Q(s, vs) + Qη(s, vs) + Qξ(s, vs) + p|v(s)|p−2v(s)Rv(s)ds (5.1)

where

Q(s, v) := −(p(p − 1)|v|p−2Div, aij (s)Djv) + (p|v|p−2v, b̄i(s)Div + cv),

Qη(s, v) := −(p(p − 1)|v|p−2Dkv,J kv) + (p|v|p−2v,J 0v),

Qξ (s, v) :=
∫

Z

(p|v|p−2v, I ξ v)ν(dz)

for any v ∈ W 1
p , and recall that b̄i = bi − Dja

ij ,

I ξ v = v(x + ξs,z(x)) − v(x)

and J k and J 0 are defined in Eqs. 2.2 and 2.3.
We need the following lemma.

Lemma 5.1 For any p ≥ 2 we have

Q(s, v) ≤ N |v|pLp
, Qη(s, v) ≤ N1|v|pLp

, Qξ (s, v) ≤ N2|v|pLp
(5.2)

for all v ∈ W 1
p and s ∈ [0, T ], with constants N = N(d, p), N1 = N1(d, p,K,Kη̄),

N2 = N2(d, p, K,Kξ̄ ).

Proof Notice that |v|p is a convex function of v. Hence we have

I ξ |v|p − p|v|p−2vI ξ v ≥ 0

for all (z, s, x) ∈ Z × HT , which implies

p|v|p−2vI ξ v = p|v|p−2vI ξ v − I ξ |v|p + I ξ |v|p ≤ I ξ |v|p .

Then by using estimate (3.18) in Lemma 3.11, we get the last estimate in Eq. 5.2. To prove
the first and second estimates in Eq. 5.2 notice that

Q(s, v) = p(|v|p−2v,L(s)v), Qη(s, v) = p(|v|p−2v,M(s)v)

for v ∈ W 2
p . By Lemma 4.2, we obtain

Q(s, v) ≤ N |v|pLp
for v ∈ W 2

p .

Using the definition of the operators J η and Iη and the convexity of the function |v|p , we
have

p|v|p−2vJ ηv = p|v|p−2v(Iηv − viη
i) = p|v|p−2vIηv + J η|v|p − Iη|v|p ≤ J η|v|p,
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which by Eq. 3.19 in Lemma 3.11 implies

Qη(s, v) ≤ N1|v|pLp
for v ∈ W 2

p . (5.3)

It remains to show Q(s, v) and Qη(s, v) are continuous in v ∈ W 1
p . Let {vn}∞n=1 be a

sequence of W 2
p functions, which converges in the W 1

p norm to some v ∈ W 1
p as n → ∞.

We claim that Qη(s, vn) → Qη(s, v). Clearly,

Qη(s, vn) − Qη(s, v) = p(p − 1)Bn + pCn

with

Bn :=
∫
Rd

(|v|p−2DkvJ kv − |vn|p−2DkvnJ kvn)dx,

Cn :=
∫
Rd

(|vn|p−2vnJ 0vn − |v|p−2vJ 0v)dx.

Observe that Bn = B
(1)
n + B

(2)
n + B

(3)
n with

B(1)
n :=

∫
Rd

(|v|p−2 − |vn|p−2)DkvJ kvdx,

B(2)
n :=

∫
Rd

|vn|p−2(Dkv − Dkvn)J kvdx,

B(3)
n :=

∫
Rd

|vn|p−2Dkvn(J kv − J kvn)dx.

By Hölder’s inequality,

|B(1)
n | ≤ ||vn|p−2 − |v|p−2|

L
p

p−2
|Dkv|Lp |J kv|Lp ,

|B(2)
n | ≤ |vn|p−2

Lp |Dkv − Dkvn|Lp |J kv|Lp ,

|B(3)
n | ≤ |vn|p−2

Lp
|Dkvn|Lp |J kv − J kvn|Lp .

Since vn → v in W 1
p , it is easy to see that B

(i)
n → 0 for i = 2, 3. By Lemma 3.14 we have

||vn|p−2 − |v|p−2|
L

p
p−2

→ 0,

which gives limn→∞ B
(1)
n = 0. We get in the same way that limn→∞ Cn = 0. The continuity

of Q(s, v) in v ∈ W 1
p can be proved similarly.

Using the above lemma and Assumption 2.4, from Eq. 5.1 we get

|v(t)|pLp
≤ N

∫ t

0
|v(s)|pLp

ds t ∈ [0, T ]
with a constant N , which completes the proof of the uniqueness.

5.2 Existence of a Generalised Solution

In the whole subsection we assume that Assumptions 2.1 through2.5 hold with given real
numbers m ≥ 1 and p ≥ 2. We prove the existence of a solution to Eq. 1.1 with initial
condition u(0) = ψ in several steps below. In the first two steps, we make the additional
assumptions that R = 0, p = 2k for some integer k ≥ 1 and that m is an integer. We con-
struct a solution u in Lp([0, T ],Wm

p ) by approximation procedures, and estimate its norm
in Lp([0, T ], Ws

p) for integers s = 0, 1, ...,m by the right-hand side of Eq. 2.6. Hence,
using standard results from interpolation theory we prove the existence of a generalised
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solution u ∈ Lp([0, T ], V m
p ) without assuming that p = 2k . Then using the method of con-

tinuity(see e.g., [21]) we extend this result to equations with R satisfying Assumption 2.4.
Hence using interpolation again, we dispense with the assumption that m is an integer.
Moreover, we prove that u ∈ C([0, T ], V s

p) ∩ Cw([0, T ], V m
p ) for every s < m, and obtain

also the estimate Eq. 2.6. We note that similar interpolation arguments are used in [14] to
obtain estimates in Lp-spaces for solutions of stochastic finite difference schemes.

Step 1. First we assume that Assumptions 2.1, 2.2, 2.3 and 2.5 hold with integers m ≥ 1
and p = 2k for an integer k ≥ 1. Moreover, we assume that ψ and f are compactly
supported. Under these assumptions we approximate the Cauchy problem (1.1) with initial
condition u(0) = ψ by smoothing the data and the coefficients in the problem. Recall that
for ε > 0 and functions v on R

d the notation v(ε) means the mollification v(ε) = Sεv of v

defined in Eq. 3.5. We consider the Cauchy problem

dv(t, x) = (A0
ε(t)v(t, x) + f (ε)(t, x))dt, (t, x) ∈ HT , (5.4)

v(0, x) = ψ(ε)(x), x ∈ R
d (5.5)

for ε ∈ (0, ε0), where ε0 is given in Corollary 3.6, and

A0
ε := Lε + Mε + Nε

with operators Lε , Mε and Nε , defined by

Lε = aij
ε Dij + b(ε)iDi + c(ε), aε = a(ε) + εI,

Mεϕ(x) =
∫

Z

{ϕ(x + η
(ε)
t,z ) − ϕ(x) − η

(ε)
t,z∇ϕ(x)}μ(dz),

Nεϕ =
∫

Z

{ϕ(x + ξ
(ε)
t,z ) − ϕ(x)}ν(dz)

for ϕ ∈ C∞
0 . (Recall that I denotes the d × d unit matrix.)

Since ψ(ε) and f (ε) are compactly supported, they belong to Wn
2 for every n ≥ 0. By

standard results of the L2-theory of parabolic PDEs, (5.4)–(5.5) has a unique solution uε ,
which is a continuous Wn

2 -valued function of t ∈ [0, T ] for every n ≥ 0 (see, e.g., [23] or
[41]). Thus for any ϕ ∈ C∞

0 we have

(uε(t), ϕ) = (ψ(ε), ϕ)

+
∫ t

0
− (aij

ε Djuε(s),Diϕ) + (b̄i(ε)Diuε(s) + c(ε)uε(s) + f (ε)(s), ϕ)ds

+
∫ t

0
− (J i

ε uε(s),Diϕ) + (J 0
ε uε(s), ϕ) + (Nεuε(s), ϕ)ds (5.6)

for t ∈ [0, T ], where J i
ε and J 0

ε are defined as J i and J 0, respectively in Eq. 2.3, but with

ηk(ε) and η
l(ε)
k in place of ηk and ηl

k , respectively, for k, l = 1, 2, ..., d . Notice that Eq. 5.6
can be rewritten as

(uε(t), ϕ) = (ψ(ε), ϕ) +
∫ t

0
(A0

εuε(s) + f (ε)(s), ϕ)ds, t ∈ [0, T ], ϕ ∈ C∞
0 ,

and, equivalently, as

(Dαuε(t), ϕ) = (Dαψ(ε), ϕ)+
∫ t

0
(DαA0

εuε(s)+Dαf (ε)(s), ϕ)ds t ∈ [0, T ], ϕ ∈ C∞
0

for all multi-numbers α of length n. By Sobolev embedding uε is a continuous Wn
p -valued

function for every n ≥ 0 and p ≥ 2. Hence by Lemma 3.13 we have

|Dnuε|pLp
= |Dnψ(ε)|pLp
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+p

∫ t

0

∑
|α|=n

(|Dnuε(s)|p−2Dαuε(s),DαA0
εuε(s) + Dαf (ε)(s))ds,

which for p = 2k by Theorem 4.1, known properties of mollifications and Young’s
inequality gives

|Dnuε|pLp
≤ |Dnψ |pLp

+ N

∫ t

0
|uε(s)|pWn

p
+ (|Dnuε(s)|p−2Dαuε(s),Dαf (ε)(s))ds

≤ |Dnψ |pLp
+ N

∫ t

0
{|uε(s)|pWn

p
+ p−1

p
|uε(s)|pWn

p
+ 1

p
|f (s)|pWn

p
}ds.

This via Gronwall’s lemma implies that for ε ∈ (0, ε0)

sup
t∈[0,T ]

|uε(t)|pWn
p

≤ N

(
|ψ |pWn

p
+

∫ T

0
|f (t)|pWn

p
dt

)
(5.7)

for n = 0, 1, ...,m with a constant N = N(T , p, d,m, K,Kξ̄ , Kη̄). For r > 1 and p ≥ 2
we denote by W

n
p,r the space of Wn

p -valued Borel functions v = v(t) of t ∈ [0, T ] such that

|v|Wn
p,r

:=
(∫ T

0
|v(t)|rWn

p
dt

)1/r

< ∞.

We use also the notation W
n
p and Lp for Wn

p,p and W
0
p,p, respectively. Observe that with

this norm W
n
p,r is a reflexive Banach space, and from Eq. 5.7 we have

|uε|pWn
p,r

≤ N

(
|ψ |pWn

p
+

∫ T

0
|f (t)|pWn

p
dt

)
(5.8)

for all ε ∈ (0, ε0), p = 2k , r > 1 and n = 0, 1, 2, ...,m, with a constant N depending only
on T , p, d, m, K , Kξ̄ and Kη̄. Hence there exists a sequence of positive numbers {εk}k∈N
such that εk → 0 for k → ∞, and uεk

converges weakly to a function u in W
n
p,r for every

n = 0, 1, . . . , m and integers r > 1. Letting ε = εk → 0 in Eq. 5.8, we get

|u|p
Wn

p,r
≤ N

(
|ψ |pWn

p
+

∫ T

0
|f (t)|pWn

p
dt

)
. (5.9)

Our aim now is to pass to the limit in Eq. 5.6 along εk → 0. To this end we take a real-
valued bounded Borel function h of t ∈ [0, T ], multiply both sides of Eq. 5.6 with h(t) and
then integrate it against dt over [0, T ]. Thus for a fixed ϕ ∈ C∞

0 and taking εk in place of
ε, we obtain

F(uεk
) =

∫ T

0
(ψ(εk), ϕ)h(t)dt +

4∑
i=1

F i
k (uεk

) +
∫ T

0

∫ t

0
(f (εk)(s), ϕ)h(t)dsdt, (5.10)

where F and F i
k are functionals defined for v ∈ W

1
p by

F(v) =
∫ T

0
(v(t), ϕ)h(t)dt, (5.11)

F 1
k (v) =

∫ T

0
h(t)

∫ t

0
− (aij

εk
Djv(s),Diϕ) + (b̄i(εk)Div(s) + c(εk)v(s), ϕ)dsdt,

F 2
k (v) = −

∫ T

0
h(t)

∫ t

0
(J i

εk
v(s),Diϕ)dsdt,

F 3
k (v) =

∫ T

0
h(t)

∫ t

0
(J 0

εk
v(s), ϕ)dsdt,
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F 4
k (v) =

∫ T

0
h(t)

∫ t

0
(Nεk

v(s), ϕ)dsdt .

For each i define also the functional F i in the same way as F i
k is defined above, but with a,

b, c, J i , J 0 and N in place of aεk
, b(εk), c(εk), J i

εk
, J 0

εk
and Nεk

, respectively. Clearly, due
to the boundedness of h we have a constant C such that for all v ∈ W

1
p

F (v) ≤ C|v|Lp
|ϕ|Lq ≤ C|v|W1

p
|ϕ|Lq ,

where q = p/(p−1). This means F ∈ W
1∗
p , the Banach space of bounded linear functionals

on W
1
p. To take the limit k → ∞ in Eq. 5.10 we show below that F i

k and F i are in W
1∗
p ,

and F i
k → F i strongly in W

1∗
p , for every i as k → ∞.

Lemma 5.2 The functionals F i and F i
k belong to W

1∗
p for i = 1, 2, 3, 4, for sufficiently

large k.

Proof Since the functions h, aε , b̄(ε) and c(ε) are in magnitude bounded by a constant, by
Hölder’s inequality we have

|F 1
k (v)| ≤ N |v|W1

p
|ϕ|W 1

q
,

with a constant N independent of v, which shows that F 1
k ∈ W

1∗
p for all k. In the same way

we get F 1 ∈ W
1∗
p . Using that by Taylor’s formula

v(x + θη(ε)) − v(x) =
∫ 1

0
Div(x + ϑθη(ε))θη(ε)idϑ,

and taking into account that |h| is bounded by a constant, we have

|F 2
k (v)| ≤ C

∫ 1

0

∫ 1

0

∫ T

0

∫
Z

∫
Rd

|Dv(s, x + ϑθη(εk)
s,z (x))|η̄2(z)|Dϕ(x)|dxμ(dz)dsdθdϑ .

Hence by Hölder’s inequality and then the change of variable y = x + ϑθη
(εk)
s,z (x), by

Corollary 3.6 we get a constant C such that for sufficiently large k

|F 2
k (v)| ≤ C

∫
Z

η̄2(z)μ(dz)|v|W1
p
|Dϕ|Lq = CK2

η |v|W1
p
|Dϕ|Lq ,

which proves that F 2 ∈ W
1∗
p for sufficiently large k. We can prove in the same way that

F 2, F i
k ∈ W

1∗
p and F i ∈ W

1∗
p for i = 3, 4, for sufficiently large k.

Lemma 5.3 For every i = 1, 2, 3, 4

lim
k→∞ sup

|v|
W

1
p
≤1

|(F i
k − F i)(v)| = 0. (5.12)

Proof Since h is bounded, for a constant N we have

|F 1
k (v) − F 1(v)| ≤ N

3∑
i=1

Ai
k(v)
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for all k ≥ 1 with

A1
k(v) :=

∫ T

0

∫
Rd

|Djv(s, x)||aij
εk

(s, x) − aij (s, x)||Diϕ(x)|dxds,

A2
k(v) :=

∫ T

0

∫
Rd

|v(s, x)||b̄i(εk)(s, x) − b̄i (s, x)||Diϕ(x)|)dxds,

A3
k(v) :=

∫ T

0

∫
Rd

|v(s, x)||c(εk)(s, x) − c(s, x)||ϕ(x)|dxds.

By Hölder’s inequality

sup
|v|

W
1
p
≤1

A1
k(v) ≤ ∣∣|aεk

− a||Dϕ|∣∣
Lq

, sup
|v|

W
1
p
≤1

A2
k(v) ≤ ∣∣|b(εk) − b||Dϕ|∣∣

Lq
,

sup
|v|

W
1
p
≤1

A3
k(v) ≤ ∣∣(c(εk) − c)ϕ

∣∣
Lq

,

where Lq = W
0
q,q . Letting here k → ∞ by Lebesgue’s theorem on dominated convergence

we get
lim

k→∞ sup
|v|

W
1
p
≤1

Ai
k(v) = 0 for i = 1, 2, 3,

which gives (5.12) for i = 1. Clearly,

|F 2
k (v) − F 2(v)| ≤ B1

k (v) + B2
k (v) (5.13)

with

B1
k (v) :=

∫ 1

0

∫ T

0

∫
Z

(|η(εk) − η||v(s, τθη(εk ) ) − v(s)|, |Dϕ|)μ(dz)dsdθ,

B2
k (v) :=

∫ 1

0

∫ T

0

∫
Z

(η̄|v(s, τθη(εk ) ) − v(s, τθη)|, |Dϕ|)μ(dz)dsdθ .

Note that |η(ε) −η| ≤ εη̄ for all t ∈ [0, T ], x ∈ R
d , z ∈ Z and ε > 0. Moreover, by Taylor’s

formula, Minkowski’s inequality and Corollary 3.6

|v(s, τθη(ε) ) − v(s)|Lp ≤ η̄

∫ 1

0
|Dv(s, τϑθη(ε) )|Lpdϑ ≤ Nη̄|Dv(s)|Lp ,

|v(s, τθη(εk ) )−v(s, τθη)|Lp ≤
∫ 1

0
||η(ε)−η||Dv(s, (1−ϑ)τθη(ε) +ϑτθη)||Lpdϑ ≤ Nεη̄|Dv(s)|Lp

for s ∈ [0, T ], z ∈ Z and ε ∈ (0, ε0), with a constant N = N(K, d, p). Hence by Hölder’s
inequality for sufficiently large k we have

Bi
k ≤ εkN |v|W1

p
|Dϕ|Lq

∫
Z

η̄2(z)μ(dz) = εkNK2
η |v|W1

p
|Dϕ|Lq for i = 1, 2,

which by virtue of Eq. 5.13 proves (5.12) for i = 2. We can prove similarly that Eq. 5.12
holds for i = 3, 4.

By the above lemmas, for i = 1, 2, 3, 4 we have F i
k → F i strongly in W

1∗
p as k → ∞.

Thus due to the convergence of uεk
to u weakly in W

1
p, we have

lim
k→∞ F(uεk

) = F(u), lim
k→∞ F i

k (uεk
) = F(u) for i = 1, 2, 3, 4.
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Clearly,

lim
k→∞

∫ T

0
(ψ(εk), ϕ)dt =

∫ T

0
(ψ, ϕ)dt,

lim
k→∞

∫ T

0

∫ t

0
(f (εk)(s), ϕ)dsdt =

∫ T

0

∫ t

0
(f (s), ϕ)dsdt .

Thus taking k → ∞ in Eq. 5.10 we obtain

F(u) =
∫ T

0
(ψ, ϕ)h(t)dt +

4∑
i=1

F i(u) +
∫ T

0

∫ t

0
(f (s), ϕ)h(t)dsdt . (5.14)

This means for every bounded real function h the function u : [0, T ] → W 1
p satisfies the

equation∫ T

0
h(t)(u(t), ϕ)dt =

∫ T

0
h(t)(ψ, ϕ)dt +

∫ T

0
h(t)

∫ t

0
〈Au(s), ϕ〉 + (f (s), ϕ)dsdt

for every ϕ ∈ C∞
0 . Thus for each ϕ ∈ C∞

0 (2.5) holds for dt-almost every t ∈ [0, T ]. Hence
taking into account that u ∈ Lp([0, T ], W 1

p), by Lemma 3.12 u has a modification, denoted
also by u, which is continuous as an Lp-valued function and it is the solution of Eq. 1.1
with initial value ψ .

Step 2. Now we dispense with the additional assumption that ψ and f vanish for |x| ≥ R

for some R > 0. Let ψ ∈ Wm
p and f ∈ Lp([0, T ], Wm

p ) for p = 2k for some integer k ≥ 1.
Then for integers n ≥ 1 define ψn and f n by

ψn(x) = ψ(x)χn(x), f n(t, x) = f (t, x)χn(x), t ∈ [0, T ], x ∈ R
d ,

where χn(·) = χ(·/n) with a nonnegative function χ ∈ C∞
0 , such that χ(x) = 1 for |x| ≤ 1

and χ(x) = 0 for |x| ≥ 2. Then by virtue of Step 2 (1.1) with f n in place of f and with
initial condition u(0) = ψn has a solution un, i.e.,∫ T

0
h(t)(un(t), ϕ)dt =

∫ T

0
h(t)(ψn, ϕ)dt

+
∫ T

0
h(t)

∫ t

0
〈Aun(s), ϕ〉 + (f n(s), ϕ)dsdt (5.15)

for every ϕ ∈ C∞
0 and bounded Borel function h : [0, T ] → R. We also have estimate (5.9)

with un, ψn and f n in place of u, ψ and f , respectively. Hence for any n and k

|un − uk|p
W

j
p,r

≤ N(|ψn − ψk|p
W

j
p

+ |f n − f k|p
W

j
p

)

which shows that un is a Cauchy sequence in W
j
p,r , and hence it converges in the norm of

W
j
p,r to some u ∈ W

j
p,r for every j = 0, 1, 2, ...,m and integers r > 1. It is easy to pass to

the limit in Eq. 5.15 and see that u solves (1.1) with initial and free data ψ and f . Clearly,
u satisfies also the estimate (5.9).

Set �m
p := Hm

p , Fm
p := Lp([0, T ], Hm

p ) and U
m
p := Lr([0, T ], Hm

p ) for m ∈ [1, ∞),
p ∈ [2, ∞) and for fixed r > 1. Denote by S the operator that assigns the solution u of
Eq. 1.1 to (ψ, f ), the pair of initial and free data. By virtue of Step 2 we know that S is a
continuous linear operator from �m

p ×F
m
p into U

m
p for p = 2k , with integers k ≥ 1, for every

integer m ≥ 1, with operator norm, depending only on p, d, T , m and on the constants K ,
Kη̄ and Kξ̄ . To show that this holds also for any p ∈ [2, ∞) and any m ∈ (1, ∞), we use
some results from the theory of complex interpolation of Banach spaces.
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A pair of complex Banach spaces A0 and A1, which are continuously embedded into
a Hausdorff topological vector space H, is called an interpolation couple, and [A0, A1]θ
denotes the complex interpolation space between A0 and A1 with parameter θ ∈ (0, 1). For
an interpolation couple A0 and A1 the notation A0 + A1 is used for subspace of vectors in
H, {v0 + v1 : v0 ∈ A0, v1 ∈ A1}, equipped with the norm

|v|A0+A1 := inf{|v0|A0 + |v1|A1 : v = v0 + v1, v0 ∈ A0, v1 ∈ A1}.
Then the following statements hold (see 1.9.3, 1.18.4 and 2.4.2 from [43]).

(i) If A0, A1 and B0, B1 are two interpolation couples and S : A0 + A1 → B0 + B1
is a linear operator such that its restriction onto Ai is a continuous operator into Bi

with operator norm Ci for i = 0, 1, then its restriction onto Aθ = [A0, A1]θ is
a continuous operator into Bθ = [B0, B1]θ with operator norm C1−θ

0 Cθ
1 for every

θ ∈ (0, 1).
(ii) For a measure space M and 1 < p0, p1 < ∞,

[Lp0(M, A0), Lp1(M, A1)]θ = Lp(M, [A0, A1]θ )
for every θ ∈ (0, 1), where 1/p = (1 − θ)/p0 + θ/p1.

(iii) For m0,m1 ∈ R, 1 < p0, p1 < ∞,

[Hm0
p0

, Hm1
p1

]θ = Hm
p ,

where m = (1 − θ)m0 + θm1, and 1/p = (1 − θ)/p0 + θ/p1.
(iv) For θ ∈ [0, 1] there is a constant cθ such that

|v|Aθ ≤ cθ |v|1−θ
A0

|v|θA1

for all v ∈ A0 ∩ A1.

Now for an arbitrary p ≥ 2 we take an integer k ≥ 1 and a parameter θ ∈ [0, 1] such that
p0 = 2k ≤ p ≤ 2k+1 = p1 and 1/p = (1 − θ)/p0 + θ/p1. By property (ii) we have

�m
p = [�m

p0
, �m

p1
]θ = Hm

p , F
m
p = [Fm

p0
,Fm

p1
]θ = Lp([0, T ], Hm

p ),

U
m
p = [Um

p0
,Um

p1
]θ = Lr([0, T ], Hm

p ),

and therefore by (i) the solution operator S is continuous for any p ≥ 2 and integer m ≥ 0,
and the solution u satisfies

(∫ T

0
|u(s)|rHm

p
ds

)1/r

≤ N(|ψ |Hm
p

+ |f |Um
p
) (5.16)

with a constant N = (p, d, m, T , K, Kη̄,Kξ̄ ), where for any s > 0 and p > 1, Hs
p denotes

the space of Hs
p-valued Borel functions g on [0, T ] such that

|g|p
Hs

p
:=

∫ T

0
|g(t)|pHs

p
dt < ∞.

Letting here r → ∞ we obtain

esssup
s∈[0,T ]

|u(s)|pHm
p

≤ Np

(
|ψ |pHm

p
+

∫ T

0
|f (s)|pHm

p
ds

)
(5.17)

with a constant N = (p, d, m, T , K, Kη̄, Kξ̄ ), which increases when T increases.
The next theorem extends the above result to Eq. 1.1 with R satisfying Assumption 2.4.
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Theorem 5.4 Let Assumptions 2.1 through 2.5 hold with an integer m ≥ 1 and a real
number p ≥ 2. Then Eq. 1.1 with initial condition u(0) = ψ has a unique generalised
solution u ∈ W

m
p such that estimate (5.17) holds.

Proof We use the standard method of continuity, see, e.g., [21]. For λ ∈ [0, 1], we consider
the equation

du(t, x) = (A0(t)u(t, x) + λR(t)u(t, x) + f (t, x))dt, u(0, x) = ψ(x), (5.18)

for x ∈ R
d , where

A0(t) = L(t) + M(t) + N (t)

for every t ∈ [0, T ]. Notice that Eq. 5.17 holds with any t ∈ [0, T ] in place of T . Hence, if
u∈ W

m
p is a generalised solution to Eq. 5.18, then by Assumption 2.4 we have

esssup
s≤t

|u(s)|pHm
p

≤ N |ψ |pHm
p

+ N

∫ t

0
|λR(s)u(s)|pHm

p
+ |f (s)|pHm

p
ds

≤ C(|ψ |pHm
p

+ |f |p
Hm

p
+

∫ t

0
esssup

r≤s
|u(r)|pHm

p
ds)

with a constant C = C(m, d, p, T ,K,Kξ̄ , Kη̄). Hence by Gronwall’s lemma we have esti-
mate (5.17) for u. Let � denote the set of λ ∈ [0, 1] such that for any ψ ∈ Wm

p and f ∈ W
m
p ,

(5.18) has a unique generalised solution in W
m
p . Clearly 0 ∈ �. Then we only need to prove

1 ∈ �. To this end, it suffices to show that there is an δ > 0 such that for any λ0 ∈ �,

[λ0 − δ, λ0 + δ] ∩ [0, 1] ∈ �.

Fix λ0 ∈ �, ψ ∈ Wm
p and f ∈ W

m
p . For v ∈ W

m
p and λ ∈ [0, 1] we consider the equation

du(t, x) = (A0(t)u(t, x)+λ0R(t)u(t, x)+(λ−λ0)R(t)v(t, x)+f (t, x))dt, u(0, x) = ψ(x)

for x ∈ R
d . Since λ0 ∈ �, this problem has a unique generalised solution u∈ W

m
p . Define

the operator Qλ by u = Qλv. Then Qλ maps Wm
p into itself, and λ ∈ � if and only if there

is a fixed point of Qλ. If vi∈ W
m
p and ui = Qλvi for i = 1, 2, then for u := u2−u1 we have

du(t) = A0(t)u(t) + λ0R(t)u(t) + (λ − λ0)R(t)(v2(t) − v1(t)), u(0) = 0.

Hence, using estimate (5.17) for u and Assumption 2.4 on R we get

|Qλv2 − Qλv1|Wm
p

≤ N ′|λ − λ0||R(v2 − v1)|Wm
p

≤ N ′′|λ − λ0||v2 − v1|Wm
p
,

with constants N ′ and N ′′ depending only on m, d, p, T , K,Kξ̄ and Kη̄. Taking δ =
(2N ′)−1 we obtain that Qλ is a contraction mapping on W

m
p if λ ∈ [λ0 − δ, λ0 + δ] ∩ [0, 1].

Consequently, (5.18) has a unique solution u in W
m
p , and it satisfies (5.17).

When s ∈ (0,m] is not an integer then we set θ = s − 	s
. Then by (ii) and (iii)

�s
p = [�	s


p ,��s�
p ]θ = Hs

p, F
s
p = [F	s


p ,F�s�
p ]θ = Lp([0, T ], H s

p),

U
s
p = [U	s


p ,U�s�
p ]θ = Lr([0, T ], H s

p)

for every p ≥ 2 and integers r > 1. We have seen above that under Assumptions 2.1, 2.2, 2.3
and 2.4 with m ≥ 1, the solution operator S is continuous from �

�m�
p × F

�m�
p to U

�m�
p,r , and

from �
	m

p × F

	m

p to U

	m

p,r . Hence by (i) again for the solution u we have
(∫ T

0
|u(t)|rHs

p
dt

)1/r

≤ N(|ψ |Hs
p

+ |f |Hs
p
) (5.19)

471Integro-Differential Equations



with a constant N = (p, d, m, T , K, Kη̄, Kξ̄ ). Letting here r → ∞ we obtain

esssup
t∈[0,T ]

|u(t)|Hs
p

≤ N(|ψ |Hs
p

+ |f |Hs
p
). (5.20)

By Lemma 3.12 we already know that the solution u is in C([0, T ], H 0
p). To show that it

is weakly continuous as an Hm
p -valued function we use the following lemma.

Lemma 5.5 Let V be a reflexive Banach space, embedded continuously and densely into
a Banach space U . Let f be a U -valued weakly continuous function on [0, T ] and assume
there is a dense subset S of [0, T ] such that f (s) ∈ V for s ∈ S and sups∈S |f (s)|V < ∞.
Then f is a V -valued function, which is continuous in the weak topology of V .

Proof Since S is dense in [0, T ], for a given t ∈ [0, T ] there is a sequence {tn}∞n=1 with
elements in S such that tn → t . Due to supn∈N |f (tn)|V < ∞ and the reflexivity of V there
is a subsequence {tnk

} such that f (tnk
) converges weakly in V to some element v ∈ V .

Since f is weakly continuous in U , for every continuous linear functional ϕ over U we have
limk→∞ ϕ(f (tnk

)) = ϕ(f (t)). Since the restriction of ϕ in V is a continuous functional
over V we have limk→∞ ϕ(f (tnk

)) = ϕ(v). Hence f (t) = v, which proves that f is a
V -valued function. Moreover, by taking into account that

|f (t)|V = |v|V ≤ lim inf
k→∞ |f (tnk

)|V ≤ sup
t∈S

|f (t)|V < ∞,

we obtain K := supt∈[0,T ] |f (s)|V < ∞. Let φ be a continuous linear functional over V .
Due to the reflexivity of V , the dual U∗ of the space U is densely embedded into V ∗, the
dual of V . Thus for φ ∈ V ∗ and ε > 0 there is φε ∈ U∗ such that |φ − φε|V ∗ ≤ ε. Hence

|φ(f (t)) − φ(f (tn))| ≤ |φε(f (t) − f (tn))| + |(φ − φε)(f (t) − f (tn))|
≤ |φε(f (t) − f (tn))| + ε|f (t) − f (tn)|V ≤ |φε(f (t) − f (tn))| + 2εK .

Letting here n → ∞ and then ε → 0, we get

lim sup
n→∞

|φ(f (t)) − φ(f (tn))| ≤ 0,

which completes the proof of the lemma.

Clearly, u is weakly continuous as an H 0
p-valued function. Hence applying Lemma 5.5

with V = Hm
p and U = H 0

p , by using (5.20) with s = m, we obtain that u is weakly
continuous as an Hm

p -valued function. Thus by virtue of Eq. 5.20 we have

sup
t∈[0,T ]

|u(t)|Hs
p

≤ N(|ψ |Hs
p

+ |f |Hs
p
) (5.21)

for all s ∈ [0,m] and p ≥ 2 with a constant N = N(m,p, d, K,Kξ̄ , Kη̄, T ).
To show that u is strongly continuous as an Hs

p-valued function for any s < m, notice
that by the multiplicative inequality (iv) we have a constant c such that for any sequence
tn → t in [0, T ] we have

|u(t) − u(tn)|Hs
p

≤ c|u(t) − u(tn)|(m−s)/m
Lp

|u(t) − u(tn)|s/m
Hm

p
. (5.22)

Letting here n → ∞ we get limn→∞ |u(t) − u(tn)|Hs
p

= 0 by using (5.21) and the strong
continuity of u as an Lp-valued function. This shows that u ∈ C([0, T ], H s

p) for every
s < m and finishes the proof of the existence of solutions in Theorem 2.1 for V m

p := Hm
p .

Consider now the case V m
p := Wm

p . Since for integers m ≥ 0 the spaces Hm
p and Wm

p

are the same as vector spaces equipped with equivalent norms for any p ≥ 1, we need only
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consider the case when m is not an integer and p ≥ 2 is a real number. We will make use
of the following facts about the interpolation spaces (A0, A1)θ,q with parameters θ ∈ (0, 1)

and q ∈ [1, ∞], obtained by real interpolation methods from an interpolation couple of
Banach spaces A0 and A1 (see 1.3.3 in [43]).

(a) If A0, A1 and B1, B2 are two interpolation couples and S : A0 + A1 → B0 + B1
is a linear operator such that its restriction onto Ai is a continuous operator into Bi

with operator norm Ci for i = 0, 1, then its restriction onto Aθ,q = (A0, A1)θ,q is a
continuous operator into Bθ,q = (B0, B1)θ,q with operator norm C1−θ

0 Cθ
1 for every

θ ∈ (0, 1) and q ∈ [1, ∞].
(b) For a σ -finite measure space M for p0, p1 ∈ (1, ∞) we have

(Lp0(M, A0), Lp1(M, A1))θ,p = Lp(M, (A0, A1)θ,p)

for every θ ∈ (0, 1), where 1/p = (1 − θ)/p0 + θ/p1.
(c) For s0, s1 ∈ (0, ∞), s0 �= s1

(Ws0
p ,Ws1

p )θ,p = Ws
p for θ ∈ (0, 1) and p ∈ (1,∞)

when s := (1 − θ)s0 + θs1 is not an integer.
(d) For θ ∈ (0, 1) and q ∈ [1, ∞] there is a constant cθ,q such that

|v|Aθ,q ≤ cθ,q |v|1−θ
A0

|v|θA1

for all v ∈ A0 ∩ A1.

For a fixed t ∈ [0, T ] consider the operator S(t) mapping (ψ, f ) ∈ Wn
p ×L([0, T ],Wn

p)

to u(t) ∈ Wn
p , the solution of Eq. 1.1 at time t . We already know that S(t) is a bounded

operator for p ≥ 2 and integers n ∈ [0, m], and its norm can be estimated by the right-hand
side of Eq. 5.21 in this case. When n = s ≥ 0 is not an integer, then we set θ = s − 	s
,
and using (b) and (c) we have

[W 	s

p , W �s�

p ]θ,p = Ws
p, [Lp([0, T ], W 	s


p ), Lp([0, T ], W �s�
p )]θ,p = Lp([0, T ], Ws

p),

Moreover by (a) we get that u(t) ∈ Ws
p for every t ∈ [0, T ] and s ∈ [0, m], and we have

sup
t∈[0,T ]

|u(t)|pWs
p

≤ N |ψ |pWs
p

+ N

∫ T

0
|f (t)|pWs

p
dt

for every s ∈ [0, m] and p ≥ 2. Hence taking into account that u is strongly continuous in
t as an Lp-valued function, by (c) and (d) we get that it is (strongly) continuous as a Ws

p-
valued function for every s < m. Moreover, using Lemma 5.5 with V = Wm

p and U = Lp

it follows that u is weakly continuous as a Wm
p -valued function.
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1. Applebaum, D.: Lévy processes and stochastic calculus. Cambridge University Press, Cambridge (2009)
2. Barndorff-Nielsen, O.E., Mikosch, T., Resnick, S.I. (eds.): Lévy Processes. Theory and Applications.
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32. Mikulevičius, R., Xu, F.: On the Cauchy proble for parabolic integro-differential equations in generalised
Hölder spaces, arXiv:1806.07019v1 (2018)

33. Murray, J.D. Mathematical biology: I. An Introduction, 3rd edn. Springer, New York (2007)
34. Oleı̆nik, O.A.: Alcuni risultati sulle equazioni lineari e quasi lineari ellittico-paraboliche a derivate

parziali del secondo ordine, (Italian). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat Natur. 40(8),
775–784 (1966)

35. Oleı̆nik, O.A.: On the smoothness of solutions of degenerating elliptic and parabolic equations. Dokl
Akad. Nauk SSSR 163, 577–580 (1965). in Russian; English translation in Soviet Mat. Dokl. Vol, 6
(1965), No. 3, 972–976
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