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Abstract
Let σ and ω be locally finite Borel measures on Rd , and let p ∈ (1,∞) and q ∈ (0, ∞). We
study the two-weight norm inequality ‖T (f σ)‖Lq(ω) ≤ C‖f ‖Lp(σ), for all f ∈ Lp(σ),

for both the positive summation operators T = Tλ( · σ) and positive maximal opera-
tors T = Mλ( · σ). Here, for a family {λQ} of non-negative reals indexed by the dyadic
cubes Q, these operators are defined by Tλ(f σ) := ∑

Q λQ〈f 〉σQ1Q and Mλ(f σ) :=
supQ λQ〈f 〉σQ1Q, where 〈f 〉σQ := 1

σ(Q)

∫
Q

|f |dσ . We obtain new characterizations of the
two-weight norm inequalities in the following cases: (1) For T = Tλ( · σ) in the subrange
q < p. Under the additional assumption that σ satisfies the A∞ condition with respect
to ω, we characterize the inequality in terms of a simple integral condition. The proof is
based on characterizing the multipliers between certain classes of Carleson measures. (2)
For T = Mλ( · σ) in the subrange q < p. We introduce a scale of simple conditions
that depends on an integrability parameter and show that, on this scale, the sufficiency and
necessity are separated only by an arbitrarily small integrability gap. (3) For the summa-
tion operators T = Tλ( · σ) in the subrange 1 < q < p. We characterize the inequality for
summation operators by means of related inequalities for maximal operators T = Mλ( · σ).
This maximal-type characterization is an alternative to the known potential-type characteri-
zation. The subrange of the exponents q < p appeared recently in applications to nonlinear
elliptic PDE with λQ = σ(Q) |Q| α

d
−1, α ∈ (0, d). In this important special case Tλ is a

discrete analogue of the Riesz potential Iα = (−�)− α
2 , and Mλ is the dyadic fractional

maximal operator.
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1 Introduction

Let σ and ω be locally finite Borel measures on Rd , and let λ = {λQ}Q∈D be a sequence
of non-negative reals indexed by the dyadic cubes Q ∈ D. We study the two-weight
inequalities

‖T (f σ)‖Lq(ω) ≤ C‖f ‖Lp(σ), for all f ∈ Lp(σ), (1.1)

in the range of the exponents 0 < q < p and p > 1. It is a standing assumption throughout
this article that the exponents are in this range and hence only further restrictions on the
exponents are mentioned. (Here, T is either the dyadic summation operator Tλ( · σ), or the
dyadic maximal operator Mλ( · σ), both of which are defined in Sec 2.1.)

This range of exponents appeared recently in applications to nonlinear elliptic PDE [2,
17], [22]; in this case λQ = σ(Q) |Q| α

d
−1 with α ∈ (0, d) and so Tλ(f σ) = IDα (f σ) is the

dyadic Riesz potential, a discrete analogue of the classical Riesz potential Iα = (−�)− α
2 ,

and Mλ(f σ) = MD
α (f σ) is the dyadic fractional maximal operator (see [1, 5, 18, 20]).

Nevertheless, this range of exponents is still insufficiently understood, especially in the
range 0 < q < 1 < p for the summation operator. (The characterization in the case
1 < q < p was completed recently by Tanaka [19, Theorem 1.3].)

For the two-weight inequality (1.1) in its full generality, the known sufficient and neces-
sary conditions are complicated. The conditions that characterize the inequality for maximal
operators in this range are, in essence, conditions that are required to hold uniformly over
all linearizations of maximal operators (see [20, Theorem 2] by Verbitsky, [12, Theorem
7.8] by Hänninen, and [13, Theorem 5.2]) by Hänninen, Hytönen, and Li). These condi-
tions are described in Section 2.2. Similarly, the conditions that characterize the inequality
for summation operators in the subrange 0 < q < 1 are required to hold over all pos-
sible factorizations (see [14, Theorem 1.1. and Theorem 1.2] by the authors). Although
these characterizations provide us with alternative viewpoints at these inequalities and
offer an alternative starting point for their study, such conditions are difficult to verify in
applications.

To ameliorate this problem in the case of summation operators, we introduced earlier a
scale of conditions that depends on an integrability parameter and showed that, on this scale,
the sufficiency and necessity conditions are separated by a certain integrability gap (see
[14, Theorem 1.3] by the authors). In this article, we now introduce an analogous scale of
conditions for maximal operators and show that, on this scale, the sufficiency and necessity
conditions are separated only by an arbitrarily small integrability gap (see Proposition 2.1
for the precise statement).

Under the additional assumption that the measures σ and ω satisfy the A∞ condition
with respect to each other, simple conditions for both summation and maximal operators
are known in many ranges of exponents p and q. In this article, we complete this picture by
addressing the remaining case: the case of summation operators and the range p ∈ (1, ∞),
q ∈ (0, ∞), and q < p (see Proposition 2.2 for the precise statement). The proof is based on
a characterization of multipliers of Carleson coefficients (see Proposition 3.7 for the precise
statement).

Although the summation operator and supremum operator can both be viewed on the
scale of vector-valued operators

Tr(f σ) :=
( ∑

Q∈D
(λQ〈f 〉σQ1Q)r

) 1
r

r ∈ (0, ∞],
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the characterizations of them, both the statements and the proofs, seem to be very different
from each other and, to the best of the authors’ knowledge, no explicit connections between
the inequalities for summation and maximal operators are known. In this article, we find
that, in the range q ∈ (1, ∞), the inequality for summation operators can be characterized
in terms of inequalities for related maximal operators (see Proposition 2.3 for the precise
statement). This maximal-type condition can also be regarded as an alternative to the known
potential-type condition (see [5, Theorem A] by Cascante, Ortega, and Verbitsky, and [19,
Theorem 1.3] by Tanaka). The known potential-type condition is described in Section 2.4.

Next, we present in more detail each of our results and how they are related to the earlier
results in the literature.

2 Statements of Results

2.1 Notation

D The collection of all the dyadic cubes Q in Rd .
Lp(μ) The Lebesgue space with respect to a measure μ, equipped with the norm

‖f ‖Lp(μ) := (
∫ |f |pdμ)

1
p .

f p,q(μ) The discrete Littlewood–Paley space, equipped with the norm

‖a‖f p,q (μ) := ( ∫ ( ∑
Q|aQ|q1Q

) p
q dμ

) 1
p , when 0 < p < ∞, 0 < q ≤ ∞,

‖a‖f ∞,q (μ) :=
(

supQ
1

μ(Q)

∑
R⊆Q|aR|q μ(R)

) 1
q
, when p = ∞, 0 < q < ∞.

〈f 〉μQ The average of the function |f | on a cube Q,
〈f 〉μQ := 1

μ(Q)

∫
Q

|f |dμ.
p′ The Hölder conjugate p′ ∈ [1, ∞] of an exponent p ∈ [1, ∞],

p′ := p
p−1 .

Tλ( · σ) The dyadic summation operator,
Tλ(f σ) := ∑

Q∈D λQ 〈f 〉σQ 1Q.
Mλ( · σ) The dyadic maximal operator,

Mλ(f σ) := supQ∈D λQ 〈f 〉σQ 1Q.
ρsum

Q The localized sum of the Tλ( · σ) coefficients,
ρsum

Q := ∑
R⊆Q λR1R .

ρ
sup
Q The localized supremum of the Mλ( · σ) coefficients,

ρ
sup
Q := supR⊆Q λR1R .

�sum
γ,Q The γ -average of ρsum

Q ,

�sum
γ,Q :=

(
1

ω(Q)

∫
Q

(ρsum
Q )γ dω

) 1
γ
, γ ∈ R \ {0}.

�Q The average of ρsum
Q ,

�Q := �sum
Q = 1

ω(Q)

∑
R⊆Q λRω(R).

�
sup
γ,Q The γ -average of ρ

sup
Q ,

�
sup
γ,Q :=

(
1

ω(Q)

∫
Q

(ρ
sup
Q )γ dω

) 1
γ
, γ ∈ R \ {0}.

a−1 For a family a := {aQ}, the family a−1 is defined by a−1 := {a−1
Q }.

The least constant in the Lp(σ) → Lq(ω) two-weight norm inequality (1.1) for the
operator T = Tλ( · σ) is denoted by ‖Tλ( · σ)‖Lp(σ)→Lq(ω), and the least constant for the
operator T = Mλ( · σ) by ‖Mλ( · σ)‖Lp(σ)→Lq(ω).
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The uppercase letters P,Q, R, S are reserved for dyadic cubes. The indexing ‘Q ∈ D’
is abbreviated as ‘Q’ in the indexing of summations, and omitted in the indexing of families
(and similarly for the cubes P,R, S).

The lowercase letters a, b, . . . are reserved for various families a := {aQ}, b := {bQ}, . . .
of non-negative reals, and λ := {λQ} for the fixed family of non-negative reals associated
with the operators Tλ( · σ) and Mλ( · σ).

We follow the usual convention 0
0 := 0.

The standing assumption is that p ∈ (1, ∞), q ∈ (0, ∞) and q < p. Hence only further
restrictions on the exponents are mentioned.

2.2 Scale of Conditions for Maximal Operators

Let 0 < q < p < ∞ and p > 1. We study the two-weight norm inequality

‖Mλ(f σ)‖Lq(ω) ≤ C‖f ‖Lp(σ), for all f ∈ Lp(σ). (2.1)

In the general case, the known sufficient and necessary conditions are complicated and
difficult to apply, whereas only in the limited particular cases simpler and more easily appli-
cable conditions are known. For general measures σ and ω and coefficients λ, the following
complicated conditions are known:

• For every sub-collection Q ⊆ D of dyadic cubes, we define the auxiliary function λQ
by

λQ(x) := inf
Q∈Q sup

R∈Q:
R⊆Q

λR 1R(x).

Inequality (2.1) holds if and only if there exists a constant C > 0 such that

∫
sup

x∈Q∈Q

(∫
Q

λ
q
Q(y)dω(y)

σ (Q)

) q
p−q

λ
q
Q(x)dω(x) ≤ C (2.2)

for all sub-collections Q ⊆ D of dyadic cubes. This characterization was obtained by
Verbitsky [20, Theorem 2].

• Inequality (2.1) holds if and only if there exists a constant C > 0 such that

∫ ⎛
⎝ ∑

Q∈D
λ

q
Q

ω(EQ)

σ(Q)
1Q

⎞
⎠

p
p−q

dσ ≤ C (2.3)

for all collections {EQ} of pairwise disjoint sets EQ such that EQ ⊆ Q. This character-
ization was observed by Hänninen [12, Theorem 7.8], and a variant of it by Hänninen,
Hytönen, and Li [13, Theorem 5.2].

For particular measures σ and ω, or for particular coefficients λ, from these conditions the
following simpler conditions follow:

• Assume that the coefficients λ satisfy

sup
R:R⊆Q

λR1R � λQ

for all dyadic cubes Q. This is an analogue of the so called dyadic logarithmic
bounded oscillation condition (DLBO) for summation operators (see, for example,
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[4]). Then inequality (2.1) holds if and only if there exists a constant C > 0 such
that ∫ (

sup
Q∈D

λQ

(ω(Q)

σ(Q)

) 1
p 1Q

) pq
p−q

dω ≤ C.

• Assume that the measures σ and ω satisfy the A∞ condition with respect to each other
and have no point masses. Then, by Corollary 3.9, for each collection {EQ} of disjoint
sets with EQ ⊆ Q there exists a collection {FQ} of disjoint sets with FQ ⊆ Q such that

σ(EQ)

σ(Q)
≤ [ω]A∞(σ )

ω(FQ)

ω(Q)

for all dyadic cubes Q, and conversely. From combining this with the condition (2.3) it
follows that the two-weight norm inequality holds if and only if there exists a constant
C > 0 such that ∫ (

sup
Q∈D

λQ

(ω(Q)

σ(Q)

) 1
q 1Q

) pq
p−q

dσ ≤ C.

In this paper, we introduce a scale of simple conditions that depend on an integrability
parameter, and prove that the necessity and sufficiency on this scale are separated only by
an arbitrarily small integrability gap. For each integrability parameter γ ∈ (−∞,∞), we
define the localized auxiliary quantity �

sup
γ,Q by

�
sup
γ,Q :=

(
1

ω(Q)

∫
Q

( sup
R:R⊆Q

λR1R)γ dω

) 1
γ

.

Our result reads as follows:

Proposition 2.1 (Scale of conditions for maximal operators) Let p ∈ (1, ∞), q ∈ (0, ∞),
and q < p. The following assertions hold:

1. (Sufficient condition) We have

‖Mλ( · σ)‖Lp(σ)→Lq(ω) �p,q

(∫
sup
Q

(ω(Q)

σ(Q)

) q
p−q

λ
q
Q(�

sup
q,Q)

q2

p−q 1Qdω

) p−q
pq

. (2.4)

2. (Necessary condition) Let ε > 0 be an arbitrarily small positive real. We have

(∫
sup
Q

(ω(Q)

σ(Q)

) q
p−q

(�
sup
(q−ε),Q)

pq
p−q 1Qdω

) p−q
pq

�ε,p,q ‖Mλ( · σ)‖Lp(σ)→Lq(ω).

Remark Our condition (2.4) is sufficient in the general case. In addition, it is also necessary
in the particular case where supR:R⊆Q λR1R � λQ, and also in the particular case where σ

and ω are A∞ measures with respect to each other. Thus, our condition includes the above-
listed earlier particular cases in which simple conditions were known. Furthermore, our
sufficient condition is close to being necessary even in the general case, since the sufficient
condition (2.4) becomes necessary once the integrability parameter q in the quantity �

sup
q,Q

is lowered by an arbitrarily small ε > 0.
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2.3 Characterization for Summation Operators Under the A∞ Assumption

In the case where the measure σ satisfies the A∞ condition with respect to ω, the two-weight
norm inequality

‖Tλ(f σ)‖Lq(ω) ≤ C‖f ‖Lp(σ), for all f ∈ Lp(σ), (2.5)

can be characterized by simple integral conditions. In this work, we use the Fujii–Wilson
A∞ condition. Since the Coifman–Fefferman A∞ condition is also used in related earlier
work, such as [20], we recall both of these conditions and their relations. The conditions are
as follows:

1. (Fujii–Wilson) A measure σ is said to satisfy the dyadic Fujii–Wilson A∞ condition
with respect to a measure ω if there exists a constant C such that, for every dyadic cube
Q, we have ∫

sup
R∈D:R⊆Q

(σ(R)

ω(R)
1R

)
dω ≤ Cσ(Q).

The least such constant C is called the Fujii–Wilson A∞ characteristic and denoted by
[σ ]A∞(ω).

2. (Coifman–Fefferman) A measure σ is said to satisfy the dyadic Coifman–Fefferman
A∞ condition with respect to a measure ω if there exist α, β ∈ (0, 1) such that for
every dyadic cube and every subset E ⊆ Q we have that ω(E) ≤ βω(Q) implies
σ(E) ≤ ασ(Q).

We observe, by contraposition and by taking complement, that the Coifman–Fefferman
condition is symmetric in the measures σ and ω. Some relations between the conditions are
as follows:

• For non-doubling measures, the Coifman–Fefferman condition is in general strictly
stronger than the Fujii–Wilson condition. For a proof that (2) implies (1), see, for exam-
ple, [10, Proof of Lemma 2.5]. To see that measures may satisfy the Fujii–Wilson
condition, but fail to satisfy the Coifman–Fefferman condition, notice that, by the
Lebesgue differentiation theorem, the Coifman–Fefferman condition requires that σ

is absolutely continuous with respect to ω, whereas the Fujii–Wilson condition does
not require this. Accordingly, the case with σ being Lebesgue measure and ω a Dirac
measure is an example of measures satisfying (1) but not (2).

• Nevertheless, the conditions are equivalent provided both ω and σ are doubling [9, The-
orem 1]. Moreover, the doubling properties of the measures were originally assumed in
the Coifman–Fefferman condition [7]. Furthermore, because the Coifman–Fefferman
condition is symmetric in the measures, in the case of doubling measures, σ satisfies
the Fujii–Wilson A∞ condition with respect to ω if and only if ω satisfies the same
condition with respect to σ .

Under the A∞ assumption, the following simpler (than in the general case) characteriza-
tions are known:

• The subrange 1 < p ≤ q < ∞ for maximal and summation operators. Hänninen
[10, Theorem 1.5] noticed that the two-weight norm inequality for the summation
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operators is characterized by testing the bilinear estimate against the indicator functions
of cubes:

sup
Q

∫
1QTλ(1Qσ)dω

ω(Q)
1
q′ σ ] = (Q)

1
p

� ‖Tλ( · σ)‖Lp(σ)→Lq(ω)

�p,q ([σ ]
1
p

A∞(ω) + [ω]
1
q′
A∞(σ )) sup

Q

∫
1QTλ(1Qσ)dω

ω(Q)
1
q′ σ(Q)

1
p

.

A similar characterization holds for the maximal operators as well, and it can be
proven, for example, by a parallel stopping cubes argument analogous to the argument
appearing in [10].

• The subrange 0 < q < p and p > 1 for maximal operators. Verbitsky [20] proved that
the two-weight norm inequality for the maximal operators is characterized by a simple
integral condition:

[ω]−
1
q

A∞(σ )

(∫ (
sup
Q

λQ

(ω(Q)

σ(Q)

) 1
q 1Q

) pq
p−q dσ

) p−q
pq

� ‖Mλ( · σ)‖Lp(σ)→Lq(ω)

�p,q [σ ]−
1
q

A∞(ω)

(∫ (
sup
Q

λQ

(ω(Q)

σ(Q)

) 1
q 1Q

) pq
p−q dσ

) p−q
pq

.

In this paper, we address the remaining case: The subrange 0 < q < p and p > 1 for
summation operators. For brevity, we write

Iσ,ω,p,q,λ :=
⎛
⎝∫ ( ∑

Q

λQ

(ω(Q)

σ(Q)

) 1
q

1Q

) pq
p−q dσ

⎞
⎠

p−q
pq

for the integral expression, whose finiteness is sufficient and necessary for inequality (2.5):

Proposition 2.2 (Characterization under the A∞ assumption) Let σ and ω be measures that
satisfy the A∞ condition with respect to each other. Let p ∈ (1,∞) and q ∈ (0, ∞) be such
that q < p. Then we have the following characterization by subranges:

• In the subrange q ∈ (0, 1], we have

[ω]−
1−q
q

A∞(σ )Iσ,ω,p,q,λ �p,q ‖Tλ( · σ)‖Lp(σ)→Lq(ω) �p,q [σ ]
1−q
q

A∞(ω)Iσ,ω,p,q,λ.

• In the subrange q ∈ (1, ∞), we have

[σ ]−
q−1
q

A∞(ω)Iσ,ω,p,q,λ �p,q ‖Tλ( · σ)‖Lp(σ)→Lq(ω) �p,q [ω]
q−1
q

A∞(σ )Iσ,ω,p,q,λ.

Remark In the subrange q ∈ (1, ∞), by the Lq(ω) − Lq ′
(ω) duality, we have

‖T{λQ}( · σ)‖Lp(σ)→Lq(ω) = ‖T{λQ
ω(Q)
σ(Q)

}( · ω)‖
Lq′

(ω)→Lp′
(σ )

.

Therefore, by Proposition 2.2, we also have

[ω]−
1
p

A∞(σ )I
∗
σ,ω,p,q,λ �p,q ‖Tλ( · σ)‖Lp(σ)→Lq(ω) �p,q [σ ]

1
p

A∞(ω)I
∗
σ,ω,p,q,λ,

(2.6)
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where the dual integral expression I ∗
σ,ω,p,q,λ is defined by

I ∗
σ,ω,p,q,λ :=

⎛
⎝∫ (∑

Q

λQ

(ω(Q)

σ(Q)

) 1
p

1Q

) pq
p−q dω

⎞
⎠

p−q
pq

,

and is related to the expression Iσ,ω,p,q,λ via interchanging λQ
ω(Q)
σ(Q)

and λQ, q ′ and p, and
ω and σ .

2.4 Inequality for Summation Operators via Maximal Operators

In this section, we show that the two-weight norm inequality (2.5) for the summation oper-
ator is equivalent to a pair of two-weight norm inequalities for certain related maximal
operators:

Proposition 2.3 Let 1 < q < p < ∞. Let {λQ} be non-negative reals. Then the following
assertions are equivalent:

(i) Inequality (2.5) holds, that is,

‖
∑
Q

λQ〈f 〉σQ1Q‖Lq(ω) �p,q ‖f ‖Lp(σ) for all functions f . (2.7)

(ii) The following two-weight norm inequalities hold for the related maximal operators:⎧⎪⎪⎨
⎪⎪⎩

‖sup
Q

�Q〈f 〉σQ1Q‖Lq(ω) �p,q ‖f ‖Lp(σ) for all functions f ,

‖sup
Q

ω(Q)

σ(Q)
�Q〈g〉ωQ1Q‖

Lp′
(σ )

�p,q ‖g‖
Lq′

(ω)
for all functions g,

where �Q = �sum
Q := 1

ω(Q)

∑
R⊆Q λRω(R).

In this range 1 < q < p, inequality (2.7) for the summation operator can also be
characterized by the following two potential-type conditions:∫ (

W
p′
λ,σ [ω]) (p−1)q

p−q dω < ∞ and
∫ (

W
q
λ,ω[σ ]) (q′−1)p′

q′−p′ dσ < ∞. (2.8)

The necessity of Eq. 2.8 for Eq. 2.7 follows from the results of Cascante, Ortega, and Ver-
bitsky [5, Theorem 2.1], and the sufficiency was established later by Tanaka [19, Theorem

1.3]. Here, the discrete Wolff potential W
p′
λ,σ [ω] associated with the summation operator

Tλ( · σ) : Lp(σ) → Lq(ω) is defined by

W
p′
λ,σ [ω] :=

∑
Q

1QλQ

(ω(Q)

σ(Q)

)p′−1
(�Q)p

′−1,

and the dual Wolff potential W
q
λ,ω[σ ] is the discrete Wolff potential associated with the

adjoint operator T{λQ
ω(Q)
σ(Q)

}( ·ω) : Lq ′
(ω) → Lp′

(σ ). (Hence, W
q
λ,ω[σ ] has an expression

similar to W
p′
λ,σ [ω], but with λQ replaced by λQ

σ(Q)
ω(Q)

, p by q ′, q by p′, respectively, and
with σ and ω swapped.)

Whereas in the range 1 < q < p the potential-type condition (2.8) is both sufficient
and necessary, in the more difficult range 0 < q < 1 and p > 1 no explicit necessary and
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sufficient condition is known. The authors hope that the connection between the two-weight
norm inequality for the summation operator and the two-weight inequalities for the related
maximal operators (Proposition 2.3) may be extended from the range 1 < q < ∞ to the
range 0 < q < 1, which would be useful in finding a concrete necessary and sufficient
condition for summation operators.

3 Preliminaries

3.1 Discrete Littlewood–Paley Spaces

We recall the definition of discrete Littlewood–Paley spaces f p,q(μ) for exponents p ∈
(0, +∞], q ∈ R \ {0}, and a locally finite Borel measure μ on Rd . Essentially this scale of
spaces was introduced by Frazier and Jawerth [8] in the case of Lebesgue measure (see [6]
in the general case). The discrete Littlewood–Paley norm ‖a‖f p,q (μ) of a family {aQ}Q∈D
of nonnegative reals is defined by cases as follows:

• For p ∈ (0, ∞) and q ∈ R \ {0},

‖a‖f p,q (μ) :=
( ∫ (∑

Q

a
q
Q1Q

) p
q dμ

) 1
p

.

• For p ∈ (0, ∞) and q = ∞,

‖a‖f p,∞(μ) :=
( ∫ (

sup
Q

aQ1Q

)pdμ
) 1

p
.

• For p = ∞ and q ∈ R \ {0},

‖a‖f ∞,q (μ) := sup
Q

( 1

μ(Q)

∑
R⊆Q

a
q
Rμ(R)

) 1
q

.

• For p = ∞ and q = ∞,

‖a‖f ∞,∞(μ) := sup
Q

aQ.

The discrete Littlewood–Paley norm can be computed via duality as follows [21, Theorem
4 and Remark 5]:

Proposition 3.1 (Computing norm by duality in discrete Littlewood–Paley spaces) Let
p, q ∈ [1, ∞]. Let μ be a locally finite Borel measure. Then, we have

‖a‖f p,q (μ) �p,q sup
‖b‖

f p′,q′
(μ)

≤1

∑
Q

aQbQμ(Q)

for every family {aQ}Q∈D.

Remark In particular, in the case p = ∞, q = 1, the dual norm formula reads that the dual
estimate ∑

Q∈D
aQbQμ(Q) ≤ C‖ sup

Q∈D
bQ1Q‖L1(μ) for all families b
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holds if and only if the Carleson condition

sup
Q∈D

1

μ(Q)

∑
R∈D:R⊆Q

aRμ(R) ≤ C

holds, which is a dyadic form of the Carleson imbedding theorem.

In the Littlewood–Paley spaces the following factorization holds ([6, Theorem 2.4]):

Proposition 3.2 (Factorization in discrete Littlewood–Paley spaces) Let μ be a locally
finite Borel measure on Rd . Let p, p1, p2 ∈ (0,∞] and q, q1, q2 ∈ (0, ∞] be exponents
that satisfy the Hölder relations:

1

p
= 1

p1
+ 1

p2
and

1

q
= 1

q1
+ 1

q2
.

Then, the following assertions hold:

1. Every a ∈ f p1,q1 and b ∈ f p2,q2 satisfy the estimate

‖ab‖f p,q (μ) �q,p ‖a‖f p1,q1 (μ)‖b‖f p2,q2 (μ).

2. For each c ∈ f p,q(μ) there exist a ∈ f p1,q1(μ) and b ∈ f p2,q2(μ) such that c = ab

and

‖a‖f p1,q1 (μ) ‖b‖f p2,q2 (μ) �p,q ‖c‖f p,q (μ).

3.2 Dyadic Hardy–LittlewoodMaximal Inequality

We recall the dyadic Hardy–Littlewood maximal inequality. The dyadic Hardy–Littlewood
maximal operator Mμ( · ) is defined by

Mμ(f ) := sup
Q∈D

〈f 〉μQ1Q.

Lemma 3.3 (Dyadic Hardy–Littlewood maximal inequality) Let p ∈ (1, ∞], and let μ be
a locally finite Borel measure on Rd . Then

‖Mμ(f )‖Lp(μ) �p ‖f ‖Lp(μ)

for every f ∈ Lp(μ).

3.3 Equivalent Expressions

Lemma 3.4 (Equivalent expressions; Proposition 2.2 in [4]) Let p ∈ (1, ∞). Then the
following expressions are comparable:∫ (∑

Q

aQ1Q

)p

dμ

�p

∑
Q

aQμ(Q)

(
1

μ(Q)

∑
R⊆Q

aRμ(R)

)p−1

(3.1)

�p

∫ (
sup
Q

1Q

μ(Q)

∑
R⊆Q

aRμ(R)

)p

dμ.
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3.4 Reformulations of the Two-Weight Norm Inequalities

We reformulate the two-weight norm inequalities in terms of coefficients in place of
functions. These reformulations are used in Section 4.3 to pass between the two-weight
norm inequality for summation operators and the related inequalities for related maximal
operators.

Lemma 3.5 (Reformulations for summation operators) Let p, q ∈ (1,∞). Then the
following estimates are equivalent:

(i) We have

‖
∑
P

λP 〈f 〉σP 1P ‖Lq(ω) �p,q C‖f ‖Lp(σ)

for all functions f .
(ii) We have ∑

P

λP ω(P )〈f 〉σP 〈g〉ωP �p,q C‖f ‖Lp(σ)‖g‖
Lq′

(ω)

for all functions f and g.
(iii) We have ∑

P

λP ω(P )aP bP �p,q C‖sup
Q

aQ1Q‖Lp(σ)‖sup
R

bR1R‖
Lq′

(ω)

for all families a and b.
(iv) We have∑

P

λP ω(P )
( ∑

Q⊇P

ãQ

)( ∑
R⊇P

b̃R

)
�p,q C‖

∑
Q

ãQ1Q‖Lp(σ)‖
∑
R

b̃R1R‖
Lq′

(ω)

for all families ã and b̃.

Proof The equivalence between estimates (i) and (ii) follows from the Lq(ω) − Lq ′
(ω)

duality.
Estimate (ii) implies estimate (iii) via the substitutions f := supQ aQ1Q and g :=

supR bR1R , and, conversely, estimate (iii) implies estimate (ii) via the substitutions aQ :=
〈f 〉σQ and bR := 〈g〉ωR together with the Hardy–Littlewood maximal inequality.

Estimate (iii) implies estimate (iv) via the substitutions aQ := ∑
S⊇Q ãS and bR :=∑

S⊇R b̃R . We next check that, conversely, estimate (iv) implies estimate (iii) via the
substitutions

ãQ := ( sup
S⊇Q

aS − sup
S⊇Q̂

aS) and b̃R := (sup
S⊇R

bS − sup
S⊇R̂

bS),

where Q̂ and R̂ denote the dyadic parents of the cubes Q and R.
By the monotone converge theorem, we may assume without loss of generality that the

families a and b are supported on finitely many cubes. Now, in the expression appearing on
the right-hand side of estimate (iv), by a telescoping summation, we have

∑
Q

ãQ1Q = sup
Q

∑
R⊇Q

ãR1Q = sup
Q

( ∑
R⊇Q

(
sup
S⊇R

aS − sup
S⊇R̂

aS

))
1Q = sup

Q

sup
S⊇Q

aS1Q = sup
Q

aQ1Q,

(3.2)
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and, in the expression appearing on the left-hand side of estimate (iv), again by a telescoping
summation, we have( ∑

Q⊇P

ãQ

)
=

( ∑
Q⊇P

(
sup
S⊇Q

aS − sup
S⊇Q̂

aS

)) = sup
S⊇P

aS ≥ aP . (3.3)

Combining the inequalities (3.2) and (3.3) for the family a and the same inequalities for the
family b with estimate (iv) yields estimate (iii). The proof is complete.

Similarly, using the same substitutions as in the proof of Lemma 3.5, we obtain the
following reformulations of the two-weight norm inequality for maximal operators:

Lemma 3.6 (Reformulations for maximal operators) Let q ∈ (0, ∞) and p ∈ (1, ∞). Then
the following estimates are equivalent:

i We have
‖sup

P

λP 〈f 〉σP 1P ‖Lq(ω) �p ‖f ‖Lp(σ)

for all functions f .
ii We have

‖sup
P

λP aP 1P ‖Lq(ω) �p ‖sup
Q

aQ1Q‖Lp(σ)

for all families a.
iii We have

‖sup
P

λP

( ∑
Q⊇P

ãQ

)
1P ‖Lq(ω) �p ‖

∑
Q

ãQ1Q‖Lp(σ)

for all families ã.

3.5 Characterization of Multipliers Between Carleson Coefficients

We characterize the two-weight norm inequality for multipliers of Carleson coefficients. In
addition to being interesting in its own right, this characterization is applied to characterize
the two-weight norm inequality for summation operators under the A∞ assumption (see
Proposition 2.2).

Proposition 3.7 (Characterization of multipliers of Carleson coefficients) Let σ and ω be
locally finite Borel measures. Let {μQ}Q∈D be a family of non-negative reals (the multiplier
of Carleson coefficients). Then the following assertions are equivalent:

(i) We have ∫
sup
R⊆Q

(
μR1R

)
dω ≤ Cσ(Q) for every cube Q ∈ D.

(ii) We have

‖{μQaQ}‖f 1,∞(ω) ≤ C‖a‖f 1,∞(σ ) for every family {aQ}.
(iii) We have

‖{ω(Q)

σ(Q)
μQbQ}‖f ∞,1(σ ) ≤ C‖b‖f ∞,1(ω) for every family {bQ}.

Furthermore, the constants in the assertions are comparable.
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Proof The equivalence of assertions (ii) and (iii) follows from the duality in the discrete
Littlewood–Paley spaces by using Proposition 3.1. The equivalence of assertions (i) and (ii)
can be checked using essentially a standard proof of Sawyer’s two-weight norm inequality
for maximal operators. For the reader’s convenience, we write out the proof. Assertion (ii)
implies assertion (i) by substituting the family {aR} with aR = 1 when R ⊆ Q and aR = 0
when R � Q. Assertion (i) implies assertion (ii) as follows.

Let a = {aQ} be a family of non-negative reals. By the monotone convergence theorem,
we may assume without loss of generality that the family a is supported on finitely many
cubes. We linearize the supremum (which now is a maximum) by writing

max
Q

μQaQ1Q =
∑
Q

μQaQ1E(Q)

for the pairwise disjoint sets E(Q), which can be defined, for example, as follows: We
define Ẽ(Q) := {x ∈ Q : max μRaR1R(x) = μQaQ} and E(Q) := Ẽ(Q) \ ⋃

R�Q Ẽ(R).
By using this linearization, we have∫

sup
Q

μQaQ1Qdω =
∑
Q

μQaQω(E(Q)) (3.4)

and hence we need to prove the estimate∑
Q

μQaQω(E(Q)) ≤ C‖sup
Q

aQ1Q‖L1(σ ).

By the dual estimate for the Carleson coefficients (see the remark after Proposition 3.1),
this estimate holds if and only if the Carleson condition∑

R⊆Q

μRω(E(R)) ≤ Cσ(Q)

holds. This condition holds because, by the assumption, we have∑
R⊆Q

μRω(E(R)) ≤
∫

sup
R⊆Q

μR1Rdω ≤ Cσ(Q).

The proof of the equivalence of assertions (i) and (ii) is complete.

We recall that the dyadic Fujii–Wilson A∞ characteristic [σ ]A∞(ω) (of a measure σ with
respect to a measure ω) is defined by

[σ ]A∞(ω) := sup
Q∈D

1

σ(Q)

∫
sup

R∈D:R⊆Q

(σ(R)

ω(R)
1R

)
dω.

Accordingly, the measure σ is said to satisfy the A∞ condition with respect to the measure
ω if

[σ ]A∞(ω) < ∞.

Applying Proposition 3.7 to the family μ := { σ(Q)
ω(Q)

} of multipliers, we record the
following corollary:

Corollary 3.8 (A∞ condition: Characterization in terms of Carleson condition) Let σ and ω

be locally finite Borel measures. Then the measure σ satisfies the Fujii-Wilson A∞ condition
with respect to the measure ω if and only if every family of coefficients that is ω-Carleson
is also σ -Carleson. Furthermore, quantitatively,

‖b‖f ∞,1(σ ) ≤ [σ ]A∞(ω)‖b‖f ∞,1(ω) for every family b := {bQ}.
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Assume that the measure μ has no point masses. Under this assumption, the coefficients
{bQ} are μ-Carleson, which means (in our normalization) that

1

μ(Q)

∑
R∈D:R⊆Q

bRμ(R) ≤ C for all dyadic cubes Q,

if and only if they are μ-sparse, which means that there exist pairwise disjoint sets EQ ⊆ Q,
Q ∈ D, such that

bR ≤ C
μ(EQ)

μ(Q)
for all dyadic cubes Q.

This equivalence was originally proven by Verbitsky [21, Corollary 2]. An alternative proof
was given by Lerner and Nazarov [16, Lemma 6.3] (for the most important particular type
of coefficients) and Cascante and Ortega [3, Theorem 4.3] (for general type of coefficients).
Furthermore, it was noticed by Hänninen [11] that the equivalence holds for not only dyadic
cubes but for general sets (for example, for dyadic rectangles).

Combining the equivalence with Corollary 3.8 yields the following corollary:

Corollary 3.9 (A∞ condition: Characterization in terms of disjoint sets) Let σ and ω be
locally finite Borel measures. Assume that neither σ nor ω has point masses. Then the
measure σ satisfies the Fujii-Wilson A∞ condition with respect to the measure ω if and only
if the following holds: For each collection {FQ} of disjoint sets with FQ ⊆ Q there exists a
collection {EQ} of disjoint sets with EQ ⊆ Q such that

ω(FQ)

ω(Q)
≤ [σ ]A∞(ω)

σ (EQ)

σ(Q)
.

4 Proofs of Results

4.1 Scale of Conditions for Maximal Operators

We recall that, for γ ∈ (0, ∞), the auxiliary quantity �
sup
γ,Q is defined by

�
sup
γ,Q :=

(
1

ω(Q)

∫
Q

( sup
R⊆Q

λQ1Q)γ dω

) 1
γ

.

In this section, we prove the following result:

Proposition 4.1 (Scale of conditions for maximal operators) The following assertions hold:

(i) (Sufficient condition) We have

‖Mλ( · σ)‖Lp(σ)→Lq(ω) �p,q

( ∫
sup
Q

λ
q
Q

(ω(Q)

σ(Q)

) q
p−q

(�
sup
q,Q)

q2

p−q 1Qdω
) p−q

pq .

(ii) (Necessary condition) Let γ ∈ (0, q). Then we have(∫
sup
Q

(ω(Q)

σ(Q)

) q
p−q

(�
sup
γ,Q)

pq
p−q 1Qdω

) p−q
pq

�γ,p,q ‖Mλ( · σ)‖Lp(σ)→Lq(ω).

First, we prove two lemmas, which combined yield the necessary condition.
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Lemma 4.2 (Replacing the coefficients by their averages for maximal operators) Let p, q ∈
(0, ∞), and γ ∈ (0, q). Then the following assertions are equivalent:

(i) We have

‖sup
Q

λQaQ1Q‖Lq(ω) ≤ C‖sup
Q

aQ1Q‖Lp(σ) for every family a. (4.1)

(ii) We have

‖sup
Q

�
sup
γ,QaQ1Q‖Lq(ω) �γ C‖sup

Q

aQ1Q‖Lp(σ) for every family a.

Proof Since λQ ≤ �
sup
γ,Q := (〈(supQ⊆S λQ1Q)γ 〉ωS )

1
γ , assertion (ii) implies assertion (i)

trivially. We next prove the converse. We substitute the monotonous rearrangement ãQ :=
supR⊇Q aR into estimate (4.1). Under this substitution, the right-hand side of the estimate
remains unchanged,

‖sup
Q

ãQ1Q‖Lp(σ) = ‖sup
Q

( sup
R⊇Q

aR)1Q‖Lp(σ) = ‖sup
Q

aQ1Q‖Lp(σ),

and, by interchanging the order of the suprema, the left-hand side of the estimate becomes

‖sup
Q

λQãQ1Q‖Lq(ω) = ‖sup
Q

λQ( sup
R⊇Q

aR)1Q‖Lq(ω) = ‖sup
R

( sup
Q⊆R

λQ1Q)aR‖Lq(ω).

By the scaling of the Lp norms, and by the Hardy–Littlewood maximal inequality, we
estimate this from below as

‖sup
R

( sup
Q⊆R

λQ1Q)aR‖Lq(ω) = ‖(sup
R

( sup
Q⊆R

λQ1Q)aR)γ ‖
1
γ

L
q
γ (ω)

�γ ‖sup
S

〈(sup
R

( sup
Q⊆R

λQ1Q)aR)γ 〉ωS 1S‖
1
γ

L
q
γ (ω)

≥ ‖sup
S

(〈( sup
Q⊆S

λQ1Q)γ 〉ωS )
1
γ aS1S‖Lq(ω)

=: ‖sup
S

�
sup
γ,SaS1S‖Lq(ω).

The proof is complete.

Lemma 4.3 (Necessary condition for maximal operators) We have(∫
sup
Q

λ

pq
p−q

Q

(ω(Q)

σ(Q)

) q
p−q

1Qdω

) p−q
pq

�p,q ‖Mλ( · )‖Lp(σ)→Lq(ω).

Proof By the duality in the Littlewood–Paley spaces, the two-weight norm inequality for
maximal operators is equivalent to the estimate∫ (∑

Q

λ
q
Q

(ω(Q)

σ(Q)

)
bQ1Q

) p
p−q

dω ≤ C
pq

p−q ‖b‖
p

p−q

f ∞,1(ω)
.

By the comparison of the �p norms, we have∫ (∑
Q

λ
q
Q

(ω(Q)

σ(Q)

)
bQ1Q

) p
p−q

dω ≥
∫ ( ∑

Q

λ

pq
p−q

Q

(ω(Q)

σ(Q)

) p
p−q

b

p
p−q

Q 1Q

)
dω

=
∑
Q

b

p
p−q

Q λ

pq
p−q

Q

(ω(Q)

σ(Q)

) q
p−q

ω(Q).
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By the scaling of the discrete Littlewood–Paley norms, and by renaming b̃ := b
p

p−q , we
have

‖b‖
p

p−q

f ∞,1(ω)
= ‖b p

p−q ‖
f

∞,
p−q

p (ω)
= ‖b̃‖

f
∞,

p−q
p (ω)

.

Therefore, altogether, we have∑
Q

b̃Qλ

pq
p−q

Q

(ω(Q)

σ(Q)

) q
p−q

ω(Q) ≤ C
pq

p−q ‖b̃‖
f

∞,
p−q

p (ω)
.

The following duality formula obtained by Verbitsky [21] holds: For every measure μ

and every s ∈ (0, 1], we have

‖a‖f 1,∞(μ) �s sup{
∑
Q

aQbQμ(Q) : b ∈ f ∞,s (μ) with ‖b‖f ∞,s (μ) ≤ 1}. (4.2)

(For s = 1, this is the usual duality in the discrete Littlewood–Paley spaces.) Applying this
formula completes the proof.

Proof of Proposition 4.1 We observe that the necessary condition follows by combining
Lemma 4.2 and Lemma 4.3. We next prove the sufficient condition.

By the duality in the Littlewood–Paley spaces, the two-weight norm inequality (2.1) for
the maximal operator is equivalent to the estimate∫ (∑

Q

λ
q
Q

(ω(Q)

σ(Q)

)
bQ1Q

) p
p−q

dω ≤ C
pq

p−q ‖b‖
p

p−q

f ∞,1(ω)
.

By the using an equivalent expression (Lemma 3.4), we have∫ (∑
Q

λ
q
Q

(ω(Q)

σ(Q)

)
bQ1Q

) p
p−q

dω �p,q

∑
Q

λ
q
QbQω(Q)

( 1

σ(Q)

∑
R⊆Q

λ
q
RbRω(R)

) q
p−q

.

By using twice the dual estimate
∑

Q cQdQμ(Q) ≤ ‖c‖f 1,∞(μ)‖d‖f ∞,1(μ) for the discrete
Littlewood–Paley spaces (see Proposition 3.1), we obtain

∑
Q

λ
q
QbQω(Q)

(
1

σ(Q)

∑
R⊆Q

λ
q
RbRω(R)

) q
p−q

≤ ‖b‖
q

p−q

f ∞,1(ω)

∑
Q

λ
q
QbQω(Q)

(
1

σ(Q)

∫
( sup
R⊆Q

λ
q
R1R)dω

) q
p−q

≤ ‖b‖
q

p−q

f ∞,1(ω)
‖b‖f ∞,1(ω)

∫
sup
Q

λ
q
Q

(
1

σ(Q)

∫
( sup
R⊆Q

λ
q
R1R)dω

) q
p−q

1Qdω.

The proof is complete.

4.2 Characterization for Summation Operators Under the A∞ Assumption

Let p ∈ (1, ∞), q ∈ (0, ∞), and q < p. We recall that the integral expression Iσ,ω,p,q,λ is
defined by

Iσ,ω,p,q,λ :=
⎛
⎝∫ (∑

Q

λQ

(ω(Q)

σ(Q)

) 1
q

1Q

) pq
p−q

dσ

⎞
⎠

p−q
pq

. (4.3)
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In this section, we prove the following result:

Proposition 4.4 (Characterization under the A∞ assumption) Let σ and ω be measures that
satisfy the A∞ condition with respect to each other. Let p ∈ (1,∞) and q ∈ (0, ∞) be such
that q < p. Then we have the following characterization by subranges:

• In the subrange q ∈ (0, 1], we have

[ω]−
1−q
q

A∞(σ )Iσ,ω,p,q,λ

�p,q ‖Tλ( · σ)‖Lp(σ)→Lq(ω)

�p,q [σ ]
1−q
q

A∞(ω)Iσ,ω,p,q,λ.

(4.4)

• In the subrange q ∈ (1, ∞), we have

max
{
[σ ]−

q−1
q

A∞(ω)Iσ,ω,p,q,λ, [ω]−
1
p

A∞(σ )I
∗
σ,ω,p,q,λ

}
�p,q ‖Tλ( · σ)‖Lp(σ)→Lq(ω)

�p,q min
{
[ω]

q−1
q

A∞(σ )Iσ,ω,p,q,λ, [σ ]
1
p

A∞(ω)I
∗
σ,ω,p,q,λ

}
.

(4.5)

Remark We recall that, in contrast to the subrange q ∈ (0, 1), in the subrange q ∈ [1, ∞)

the Lq(ω) − Lq ′
(ω) duality is available and hence

‖T{λQ}( · σ)‖Lp(σ)→Lq(ω) = ‖T{λQ
ω(Q)
σ(Q)

}( · ω)‖
Lq′

(ω)→Lp′
(σ )

.

Therefore, in this subrange, the characterization can be stated equivalently in terms of the
dual integral expression I ∗

σ,ω,p,q,λ defined by

I ∗
σ,ω,p,q,λ :=

⎛
⎝∫ (∑

Q

λQ

(ω(Q)

σ(Q)

) 1
p

1Q

) pq
p−q

dω

⎞
⎠

p−q
pq

and hence we can include both of the expressions Iσ,ω,p,q,λ and I ∗
σ,ω,p,q,λ in the statement

in this subrange.

Proof of Proposition 4.4 First, we consider the range 0 < q ≤ 1 < p < ∞. The case
q = 1 is trivial: the two-weight norm inequality is written out as∫ (∑

Q

λQ

ω(Q)

σ(Q)
1Q

)
f dσ ≤ C‖f ‖Lp(σ),

which by the Lp(σ) − Lp′
(σ ) duality is equivalent to ‖∑Q λQ

ω(Q)
σ(Q)

1Q‖
Lp′

(σ )
≤ C. We

now assume that q ∈ (0, 1). We give a proof only for the estimate

Iσ,ω,p,q,λ �p,q [ω]
1−q
q

A∞(σ )‖Tλ( · σ)‖Lp(σ)→Lq(ω),

since the reverse estimate can be proven in a similar way.
By duality in the discrete Littlewood–Paley norms, the two-weight norm estimate

‖Tλ(f σ)‖Lq(ω) ≤ C‖f ‖Lp(σ) for all functions f
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is equivalent to the bilinear estimate∑
Q

λ
q
QaQbQω(Q) �p,q Cq‖a‖

f
p
q ,∞

(σ )
‖b‖

f
∞, 1

1−q (ω)
for all families a and b. (4.6)

By the scaling of the Littlewood–Paley norms, and by the A∞ assumption together with
Proposition 3.7, we have

‖b‖
f

∞, 1
1−q (ω)

= ‖b 1
1−q ‖1−q

f ∞,1(ω)
≤ [ω]1−q

A∞(σ )‖b
1

1−q ‖1−q

f ∞,1(σ )
= [ω]1−q

A∞(σ )‖b‖
f

∞, 1
1−q (σ )

.

(4.7)
Substituting this estimate (4.7) into estimate (4.6), we obtain∑

Q

λ
q
QaQbQω(Q) �p,q [ω]1−q

A∞(σ )C
q‖a‖

f
p
q ,∞

(σ )
‖b‖

f
∞, 1

1−q (σ )
for all a and b. (4.8)

By the factorization f
p
q
,∞

(σ ) · f
∞, 1

1−q (σ ) = f
p
q
, 1

1−q (σ ) (see Proposition 3.2), the
following assertions hold:

• For every a and b,

‖ab‖
f

p
q , 1

1−q (σ )
�p,q ‖a‖

f
p
q ,∞

(σ )
‖b‖

f
∞, 1

1−q (σ )
.

• For every c ∈ f
p
q
, 1

1−q (σ ) there exist a ∈ f
p
q
,∞

(σ ) and b ∈ f
∞, 1

1−q (σ ) such that
c = ab and

‖a‖
f

p
q ,∞

(σ )
‖b‖

f
∞, 1

1−q (σ )
�p,q ‖c‖

f
p
q , 1

1−q (σ )
.

By these assertions, estimate (4.7) is equivalent to the estimate∑
Q

λ
q
QcQω(Q) �p,q [ω]1−q

A∞(σ )C
q‖c‖

f
p
q , 1

1−q (σ )
for all families c. (4.9)

By the duality (f
p
q
, 1

1−q (σ ))∗ = f
p

p−q
, 1
q (σ ) in the discrete Littlewood–Paley spaces,

estimate (4.9) is equivalent to the estimate

(∫
Q

(
λQ

(ω(Q)

σ(Q)

) 1
q

1Q

) pq
p−q

dσ

) p−q
p

�p,q [ω]1−q

A∞(σ )C
q .

Next, we consider the range 1 < q < p < ∞. We write the proof only for the estimate

Iσ,ω,p,q,λ �p,q [σ ]
q−1
q

A∞(ω)‖Tλ( · σ)‖Lp(σ)→Lq(ω),

as the reverse estimate and the dual estimates (with q ′ and p, ω(Q)
σ(Q)

λQ and λQ, and ω and σ

interchanged) can be proven similarly.
The two-weight norm inequality (2.5) is equivalent (see Lemma 3.5 for the proof of this)

to the bilinear estimate∑
Q

λQaQbQω(Q) ≤ C‖a‖f p,∞(σ )‖b‖
f q′,∞(ω)

. (4.10)
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By the scaling of the Littlewood–Paley norms, and by the A∞ assumption together with
Proposition 3.7, we have

‖b‖
f q′,∞(ω)

= ‖{bq ′
Q}‖

1
q′
f 1,∞(ω)

= ‖
{
b

q ′
Q

ω(Q)

σ(Q)
· σ(Q)

ω(Q)

}
‖

1
q′
f 1,∞(ω)

(4.11)

≤ [σ ]
1
q′
A∞(ω)‖

{
b

q ′
Q

ω(Q)

σ(Q)

}
‖

1
q′
f 1,∞(σ )

= [σ ]
1
q′
A∞(ω)‖

{
bQ

(ω(Q)

σ(Q)

) 1
q′

}
‖f y,∞(σ ).

Combining estimate (4.11) with estimate (4.10) and writing b̃Q := bQ

(
ω(Q)
σ(Q)

) 1
q′ , we obtain

∑
Q

λQaQb̃Q

(ω(Q)

σ(Q)

) 1
q
σ (Q) ≤ C[σ ]

1
q′
A∞(ω)‖a‖f p,∞(σ )‖b̃‖

f q′,∞(σ )
. (4.12)

We define the exponent r ∈ (1, ∞) by setting 1
r ′ := 1

p
+ 1

q ′ . Thus r = pq
p−q

. By the

factorization f p,∞(σ ) · f q ′,∞(σ ) = f r ′,∞(σ ), the following assertions hold:

• For every a and b,

‖ab‖
f r′,∞(σ )

�p,q ‖a‖f p,∞(σ )‖b‖
f q′,∞(σ )

.

• For every c ∈ f r ′,∞(σ ) there exist a ∈ f p,∞(σ ) and b ∈ f q ′,∞(σ ) such that c = ab

and
‖a‖f p,∞(σ )‖b‖

f q′,∞(σ )
�p,q ‖c‖

f r′,∞(σ )
.

By these assertions, estimate (4.12) is equivalent to the estimate

∑
Q

λQ

(
ω(Q)

σ(Q)

) 1
q

cQσ(Q) ≤ C[σ ]
1
q′
A∞(ω)‖c‖f r′,∞(σ )

.

By the f r ′,∞(σ ) − f r,1(σ ) duality, this estimate is equivalent to the estimate

‖
{
λQ

(
ω(Q)

σ(Q)

) 1
q
}
‖f r,∞(σ ) ≤ C[σ ]

1
q′
A∞(ω).

The proof is complete.

4.3 Inequality for Summation Operators via Maximal Operators

We recall that the auxiliary quantity �Q = �sum
Q is defined by

�sum
Q := 1

ω(Q)

∑
R⊆Q

λRω(R).

In this section, we prove the following result:

Proposition 4.5 (Characterization for summation operators in terms of maximal operators)
Let 1 < q < p < ∞. Then

‖T{λQ}( · σ)‖Lp(σ)→Lq(ω)

�p,q ‖M{�sum
Q }( · σ)‖Lp(σ)→Lq(ω) + ‖M{

ω(Q)
σ(Q)

�sum
Q

}( ·ω)‖
Lq′

(ω)→Lp′
(σ )

.
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Proof By Lemma 3.5, the two-weight norm inequality

‖
∑
P

λP 〈f 〉σP 1P ‖Lq(ω) �p,q C‖f ‖Lp(σ)

is equivalent to the estimate∑
P

λP ω(P )

( ∑
Q⊇P

aQ

)( ∑
R⊇P

bR

)
� ‖

∑
Q

aQ1Q‖Lp(σ)‖
∑
R

bR1R‖
Lq′

(ω)
. (4.13)

Since Q ∩ R ⊇ P , by dyadic nestedness, we have either R ⊆ Q or Q ⊆ R. Hence,
the summation splits into the cases P ⊆ R ⊆ Q and P ⊆ Q ⊆ R. (This splitting of
the summation resembles the splitting in the technique of parallel stopping cubes [15].)
Therefore, estimate (4.13) is equivalent to the pair of estimates∑

R

bR

( ∑
Q⊇R

aR

)( ∑
P⊆R

λP ω(P )

)
� ‖

∑
Q

aQ1Q‖Lp(σ)‖
∑
R

bR1R‖
Lq′

(ω)
,(4.14a)

∑
Q

aQ

( ∑
R⊇Q

bR

)( ∑
P⊆Q

λP ω(P )

)
� ‖

∑
Q

aQ1Q‖Lp(σ)‖
∑
R

bR1R‖
Lq′

(ω)
.(4.14b)

We handle only subestimate (4.14a), as the other subestimate (4.14b) can be handled
similarly. By the f q ′,1(ω) − f q,∞(ω) duality in the discrete Littlewood–Paley spaces,
subestimate (4.14a) is equivalent to the estimate

‖sup
R

( ∑
Q⊇R

aR

)(
1

ω(R)

∑
P⊆R

λP ω(P )

)
‖Lq(ω) �q ‖

∑
Q

aQ1Q‖Lp(σ).

By Lemma 3.6, this estimate is equivalent to the two-weight norm inequality

‖sup
Q

�Q〈f 〉σQ1Q‖Lq(ω) �p,q ‖f ‖Lp(σ).

The proof is complete.
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