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Abstract
It is shown in quantitative terms that the maximal Bergman projection

PEN@ = | FOIB©)lo(c)aA()
is bounded from LY to LY if and only if
1
P
r 1 P
sup f%ds—kl J ﬂ ds < 00,
O<r<l 0 (Sla)(t)dt> r V(S);

provided w, v, n are radial regular weights. A radial weight o is regular if it satisfies
o(r)= Sio(t)dt/(l —r)forall 0 < r < 1.1t is also shown that under an appro-

priate additional hypothesis involving @ and 7, the Bergman projection P, and P, are
simultaneously bounded.
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1 Introduction and Main Results

A functionw : D — [O, oo), integrable over the unit disc D, is called a weight. It is radial
if w(z) = w(|z|) for all z € D. For 0 < p < oo and a weight w, the Lebesgue space LY,
consists of complex-valued measurable functions f in D such that

Il = ([, lr@ P an) )" <.

where dA(z) = @ denotes the element of the normalized Lebesgue area measure on ID.
The weighted Bergman space A’ is the space of analytic functions in L%, and is equipped
with the corresponding L% -norm. If the norm convergence in the Hilbert space Ai implies
the uniform convergence on compact subsets of D, the point evaluations are bounded linear
functionals on Aczl). Therefore there exist reproducing Bergman kernels BY € Ai such that

F(2) = (. B fo<:>Bf<;>w<¢>dA<z>, ceD, feal

The Hilbert space Af) is a closed subspace of Lz), and hence the orthogonal projection from
L2 to A2 is given by

0= ij@)B;o(c)w(:)dA(;), €D

The operator P, is the Bergman projection.
In this paper we will characterize the radial two-weight inequality

1Py (e <Clflpp. feL], (1.1)

for the maximal Bergman projection P} ( f = §p £ (2)IB?(¢)|w(¢) dA(g) under cer-
tain smoothness requirements on the three rad1al welghts involved. The question of when
(1.1) is satisfied is an open problem even in the very particular case @ = v = n if no
preliminary hypotheses is imposed on the radial weight.

Two weight inequalities for classical operators have attracted a considerable amount of
attention in Complex and Harmonic Analysis, and are closely connected to other interesting
questions in the area [2, 5-7, 10, 11]. The most commonly known result on Bergman projec-
tion is due to Bekollé and Bonami [3, 4], and concerns the case when v = 7 is an arbitrary
weight and the inducing weight w is standard, that is, of the form w(z) = (1 — |z|?)¥ for
some o > —1; see [1, 11, 13] for recent extensions of this result. In this classical case, the
Bergman reproducing kernel B (¢) is given by the neat formula (1 —z¢)~ (2+9) However,
for a general radial weight w such explicit formulas for the kernels do not necessarily exist,
and that is one of the main obstacles in tackling (1.1). Moreover, kernels induced by radial
weights may have zeros, and that of course does not make things any easier. Nonetheless,
(1.1) has been recently characterized in the particular case v = 7 provided w and v are
regular weights [10].

For a radial weight w, we assume throughout the paper that &(z S| | s)ds > 0 for

all z € D, for otherwise the Bergman space A% would contain all analytlc functlons in D.
A radial weight o belongs to the class D if there exists a constant C = C(w) > 1 such
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that &(r) < Co(L) for all 0 < r < 1. Moreover, if there exist K = K (w) > 1 and
C = C(w) > 1 such that

1—r

Z&(r);CcT)(l— ) 0<r<l, (1.2)

then we write w € D. The intersection D n D is denoted by D. A radial weight w is regular
if ©(r) = w(r)(1 —r) forall 0 < r < 1. The class of regular weights is denoted by R,
and R < D. For basic properties of these classes of weights and more, see [8, 9, 12] and
the references therein.

The main result of this study is the following theorem, which provides a quantitative
description of the boundedness of P, : LY — LI in terms of a Muckenhoupt-type
condition related to weighted Hardy operators.

Theorem 1 Let1 < p < o0, w,v € Randn € D. Then P} . LY — LY is bounded if and

only if
1
1 4 rd
r ? 1
My(w,v,n) = sup (J 1) ds+l> J ) ) 4] <w a3
0<r<1 \Jo @(s)? r \v(s)?
Moreover, PJHL5—>L§ =My(w,v,n).

The key tools in the proof of Theorem 1 are the precise estimates for the L”-means and
AP -norms of the Bergman kernel By obtained in [10, Theorem 1]. A special case of the
said result is repeatedly used in the proof and it is stated for further reference as Theorem A
below. For a function f analyticinD and 0 < r < 1, write

1 21 ) %
Mp(r,f)=< f |f(re”)|1’dt> , 0<p<oo.

2 0
Theorem A Let0 < p < wand w, v € D. Then the following assertions hold:
|alr dt
: p ) — —.
@) Mp(r,Ba)AJO ORIENE rlal > 17;
la] (1)
(i) |BS HA5 AL FORUEN dt, la|—>1".

It is worth noticing that the upper estimate

()

lal
B?|?, < —————dt, 1, 1.4
H a”A‘l}’~J0 C’z\)([)p(lfl)p |a|4) ( )

holds for w € D and any radial weight v [10, p. 106].

The argument used to establish the one weight inequality [10, Theorem 3] for regular
weights does not carry over as such to the two weight case. The proof of the sufficiency in
Theorem 1 is much more involved due to the presence of the second weight 7.

The operators P, and P, are simultaneously bounded under a natural additional
hypothesis. This is the content of the other main result of this study.
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564 T.Korhonen et al.

Theorem 2 Let 1 < p < o0, w, v € R and n € D such that
’ p/ —p

p % p P
" w(s) U w() . U w(s)
oil:gl L (n(s);)> L (W;)L) dt ds + 1 fr (v(s)[ll> ds <oo. (1.5)

Then the following statements are equivalent:
(i) PJf:LY — L} is bounded;
(ii) Py : LY — LY is bounded;
n(r)s

(iii) Np(w,v,n) = sup —
p( ) 0<r<l w(r

~— s =

P o) <

Theorem 2 is a generalization of [10, Theorem 3] because the hypothesis (1.5) is sat-
isfied for v = 5. Although, the conditions N, (w, v, n) < 00 and M,(w, v, n) < oo are
equivalent for many weights, for example the standard weights have this property, the con-
dition Np(w,v,n) < 00 may be essentially weaker than M,(w,v,n) < o0 under the
hypothesis of Theorem 1. Indeed, if we pick up an arbitrary w € R, and define v(s) =

a)(s)cT)(s)PL’ (log ﬁ)zﬂl’ and n(s) = w(s)@(s)% (log %) 5 then v, n € R and one can
show by using Lemmas B and C below that N, (w, v, n) < o0 but M, (w, v, n) = co0. Now
of course (1.5) fails for these choices of weights.

It is readily seen that the methods used to prove Theorems 1 and 2 carry over to the case
p = 1. In fact, the proof in this case turns out much more simple for obvious reasons. To be
precise, one can show that in the case p = 1 the operators P, and P are simultaneously
bounded, and the uniform boundedness of the quantity

w(r)f1 n()
0

v(r) Jo @(tr)

(iv) Mp(w,v,n) < .

is the characterizing condition.

Throughout the paper % + ﬁ = 1for 1 < p < oo. Further, the letter C = C(-)
will denote an absolute constant whose value depends on the parameters indicated in the
parenthesis, and may change from one occurrence to another. We will use the notationa < b
if there exists a constant C = C(+) > 0 such that @ < Cb, and @ = b is understood in an
analogous manner. In particular, if a < b and a = b, then we will write a = b.

2 Proof of Theorem 1

Throughout the proofs we will repeatedly use several basic properties of weights in the
classes D and D gathered in the following two lemmas. For a proof of the first lemma,
see [8, Lemma 2.1]; the second one can be proved by similar arguments. For each radial

weight w and x > 1, we write @, = Sos o(s)ds.

Lemma B Let w be a radial weight. Then the following statements are equivalent:

(i) weD;

@ Springer



Radial two weight inequality for Maximal Bergman Projection... 565

(ii)  There exist constants C = C(w) > 0 and B = B(w) > 0 such that

~ 1—r ﬂA
o(r)<C &), 0<r<ir<I;

1—1t

(iii)  There exists a constant C = C(w) > 0 such that

~ 1
X<Ca)(1—>, 1<x <o
X

Lemma C Let w be a radial weight. Then w € D if and only if there exist C = C(w) > 0
andy = y(w) > 0 such that

1—1

v
aA)(z‘)SC(1 ) o(r), 0<r<r<l.
—r

Lemma B (ii) shows that if @ € D, then there exists 8 = B(w) > 0 such that i o(r ;5 is

essentially increasing on [0, 1). Similarly, by Lemma C, = o ; is essentially decreasing on

[0, 1) for y = y(w) > O sufficiently small if w € D.
2.1 Necessity

In this section we prove that M, (w, v, n) < 00 is a necessary condition for Pl LY — L,p]
to be bounded under the hypotheses of Theorem 1, and establish the desired lower estimate
for the operator norm. This is done in the following result under slightly weaker hypotheses
than those of the theorem, by using an appropriate family of test functions depending on the
weights w and v.

Proposition 3 Let | < p < o0, w € D and v, i radial weights. IfPf LY — LY is
bounded, then

/

1
1 P 4
r 7 1
sup (J Jo(s)Pn(s) sds + 1> f LS)I sds <|PFlp o <0,
0<r<1 \Jo r V(S); v

where Jo(s SOw for all0 < s < 1.

Proof Assume that PwJr (LY — Lﬁ is bounded, that is,

p

0B (6)|w(¢)dA )| n(z)dA(z) <[P} _,LpllfHLp, feLf, @n

with | P r Ly < o0.If v vanishes ona set E < ID of positive measure, then by choosing
f = xke the right side of (2.1) is zero. It follows that w vanishes (almost everywhere) on E
or else n = 0 (almost everywhere) on D. The latter option being unacceptable as 7(r) > 0
for all 0 < r < 1, we deduce that wd A is absolutely continuous with respect to vd A.
Therefore w/ v is well defined almost everywhere. Hence, foreachn € Nand 0 <t < 1, the

1
function f,, ; = min {n ( ) =T } XD\D(0,r) belongs to LY. A direct calculation shows that
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566 T.Korhonen et al.

f,f v < fn.ro almost everywhere on D. Moreover, by Theorem A (i), there is ro = ro(w)
such that My (r, B®) = J,(rs), for any r, s = ro. Hence

Mi(r, B®) < Ju(rs)+1, 0<rs<]l. (2.2)

Therefore (2.1) implies
1 1 p
151y gl = [ ( [ et <Jw<rs>+1>w<s>sds) () dr

J U Suals Sds>pn(r)rdr
J (J Fuals S‘“)pﬂ(r) (Jo(r®) + 1)7 rar

+||fnz||ij0 () dr.

If we ignore the first summand on the last expression and apply the monotone conver-
/

gence theorem, we deduce S(l) ( w(s)l ) sds < o0. This explains why in the statement
v(s)?P
the supremum over (0, rp) only, with a prefixed ro € (0, 1), is bounded by a constant

C = C(ro) > Otimes [P »_, 11~ Further, an application of Lemma B (i) to € D gives
Jo(r) + 1= J,(r?) + 1 forall 0 < r < 1. Therefore

I gy 2 [ (j funs sds>pn<r>uw<r>+1>prdr

(Jon()(f 1)+ 1) rar) (j fuls >sds)p

t
> (J n(r) (Jo(r) + ])prdr> Hf,,g,Hip, neN, 0<r<l,

0
because f,f v < fnro on D. This together with the monotone convergence theorem shows
that

\%

' T » v
1Pl r o 2 (f n(r) (Jo(r) + 1)7 rdr) ' f w(é). sds| , O<t<l,
b—L) b ot

and the proposition is proved. O

If o € D, then by Lemma B (ii) there exists (w) > 0 such that J,(r) = @&(r)~!(1 —
(1 —r)P) for all 0 < r < 1. Therefore, under the hypotheses of Theorem 1, we have
[P HLEHL{; 2 M,(w, v, n), and thus the necessity part is proved.

2.2 Sufficiency

The proof of the sufficiency of M, (w, v, n) < oo for P} : LY — Lﬁ; to be bounded is
more involved than that of the necessity. We begin with the following technical lemma.

@ Springer



Radial two weight inequality for Maximal Bergman Projection... 567

Lemma 4 Ler 1 <p<o®andw€Dandv€75suchthat

/

Jl o)\’ ds o
0 a(s)% 1—=s

1
/ v

4 ,,L/ » 2
r 1 (’[)(s) ds dt 1 (1\)(5) ds 1
Jo jt (ﬁ(ﬂ},) I—s o) (1 —1) < L (G(s)ll)) s 30) 0<r<l.

Proof Leta = a(w, v, p) € (0, 1) to be appropriately fixed later. Then Holder’s inequality
and Lemma C yield

f" f a6)\ as \" ar
o \Jr \5(5yp) 15 ) @@0—1)

as) \" ds dt T Rt
(G(S)[I’> 1—s Zz}(l)]’/ot(l—t) (J(; &\)([)p(l—a)(lt))

~ P )4
1
o) ds | ___di _ . 0<r<l1, 23)
1—s | ao(r)P'*(1—r1) o(r)-o)

N
S
- —

N
S
- —

<f as)=\" ds . Jl o)\’ ds 1
~Jo ﬁ(s)ll’ I—s r \o(s)r ) 1=s)a()re

for all 0 < r < 1. The latter term is of the desired form. To deal with the first term,
observe first that by Lemma C (ii) there exists a constant 8 = B(w) > 0 such that (]w _(f)) 5

is essentially increasing on [0, 1). Further, for each sufficiently small y = y(v) > 0 the

2.4)
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function (lﬁfirr))y is essentially decreasing on [0, 1) by Lemma C. Pick up such a y from the
interval (0, pB), and fix o € (1 — 73’ 1). Then

) o = (2a) L () o
4 YN\ P
( a>” (%;;2”)

N

f’ ds
. s)l-&-p’(%—ﬁ(l—a))

A

A
—
—
/N
= |
Z =
S=
~

~

&
\—/
2

S

o

N

<

A

—_

which together with (2.4) gives

J’ Jl c?)(v)l 3 ds _ ,dt < Jl cT)(s)] 3 ds _ 1/ C0<r<l
o f 9(3‘); 1—3s a)(l‘)po‘(lft) r ﬁ(s); 1—3s a)(r)l""

Finally, by combining the above inequality with (2.3) we obtain the claim. O

We are now ready to prove the sufficiency part of Theorem 1. To do this,
1

assume M,(w,v,n) < 00, and observe that then the function h(z) = v(z)?
1

1 w(s) v’ [ X . .
S\zl M6) v(s)ds is well defined for all z € . Hence an integration shows that

f (:g;)P o= (f (av)((:)))" ”(s)ds> i L 0<i<L @23

Holder’s inequality yields

Irso < [ ([rermerisrae)
,,/ p/p’
'<L)B?@)(Zg;) dA<n> N)dAG), 26

where, by (2.2), Fubini’s theorem and (2.5),

fD\B?(C)|<%>/ ao = [ (5 (jo 1_))ds+M,,(w,u,n)
- jo' ! ( | () ds) Tg’;_ﬂ Myl o)

IZ\ w(s)\?
<, (76 ‘“) S * M)

—Pﬂ%ﬁ@$Y“Wﬂlm£ﬂn+%@“”
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This together with (2.6), Fubini’s theorem and another application of Theorem A (i) gives

irz oy = [ ([ ir@raeriseeiaac)

1 2

O voa
. (j() (Jt (u(_s)) V(S)dS) &3(1‘)(1—1‘)) ﬂ(Z)dA(Z)

+M5 N w, v, )L (f)

s fm'f(“”h(“pul (L (JI <w((;>p ”(“)‘“);’ @(t)?],_t))"’

7| dx el
. j ———— | n(r)rdr|dA(¢) + M, (w,v, )1 (f) + L(f), 2.7)

b B )
where
nin - | (jD If(C)I’Jh(t)”IB?’(C)IdA(Z)) 2(2)dA(:)
and
1 1 » 4 o
b = [ 1@y (jo (L (j (49) v(s)ds) w(t)ff_,)) n(r)rdr) aA ()
By (1.4),
Iq -~
© (1)
|B¢ HA%S]JFL 300-0 dt, ¢eD. (2.8)

This together with Fubini’s theorem and Holder’s inequality, implies

0 = fD (jD \f(c)\”h(é)”IB?’(C)\dA(C)) 1(2)dA(2)

1 a)(s) P % ] ﬁ(l‘)
< fD|f<c>|Pv(c>(L(v(s)) u(s)ds) (L a)(t)(l_t)dt>dA(§)
+ My(.v )l fI,
6N o) ([0
S fD|f<;>|Pv<c><L(v(s)) v(s)ds> (L @(,)p(l_t)df> (©)
+ Mp(w.v. )| f]7, (2.9)

because 7(¢)/(1—|¢|) is a weight by the hypothesis 7 € D and Lemma C. Fubini’s theorem
and Lemma C for w € D give
e n(t 0 <] t
J = (1) dtgf({) +f An()dt, ¢ eD.
o a()r(l—1) o) Jo @(1)P
But since n € D by the hypothesis, there exists a constant K = K(n) > 1 such that
satisfies (1.2). Hence, by using Lemma B (ii) for w € D, we deduce

r 7](5) 7 n(s) SrlﬁfK(lfr) 7’)(5) ds ;]‘(r)
JO (s)? = J;—K(l—r) a(s)P o= o(l—=K(1—r))r < a(r)p’

r=1—-K!,
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570 T.Korhonen et al.

1
~ % 1 17/ o
sup 17) f G L R R g (2.10)
0<r<l w(r) r V(S)F

It follows that [; (f) < Mp(w, v, ”)Hf”i';'

To deal with the remaining terms, we split the integral over (0, 1) in (2.7) into two parts
at |¢|. On one hand, since w, n € D, Lemma C and (2.10) yield

/ 5 p/p ) )
Jm (Jo (L <Cvo((~:))> U(s)ds> amflf—z)) (J “Ad> n(r)dr

o o(x)(1-x)

and hence

n(
=~ , D. 2.11
oy 50

Therefore, by using (2.10) again we deduce

/ L /v’ . i
v ([ () w0m) stizs) ([ sy v

'} PO ﬁ’\ 7
< Mf (@, v)(c) (L“;) v(s)ds> KL < wp(ouvn(@). ce.

On the other hand, since w, v € R, Lemma 4, Lemma C and the hypothesis M » (a) v, n) <
o0 yield

[ (L ) 0) i) ([ ais) e

P _

<f (J (55 ) ”(‘Y)dS) " ai (L awi ) e

0

1
1Z] LA tq »
< M) (w,v, r))f n(r) —dr = M} (w,v, 1) (J j((s)p ds) , CeD.
N S L IORE AN 0 @(s)
a(r) So a)r 48
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This together with the hypothesis M, (w, v, ) < oo gives

i p/r’
o rr (0 [ w(s) p’ 4 dt rl¢| dx
e, (Jo (f (%) ”“””) @(r)(lr)) (fo a(x)(1x>>"(””"

2 U o)\ P pi’ 1l p(s 3
< M (0.0, (@) (Ll((())) v(s)ds> (jo 5((s)’pds> S MP(.v.9)v(0). £ eD.

Consequently, by combining the previous estimates, we deduce that the third to last term
in (2.7) is bounded by a constant times M}, (w, v, n)| f|7,. In order to bound L (f), let
us observe that that the third to last term in (2.7) differs from I>(f) only by the extra

factor (Som w(x)d(’j x)) which has been bounded by a constant times max{% ﬁ}
in the calculations above. Since max{ @('r), 0D } is uniformly bounded away from zero
on D, the same reasoning shows that (f) < M} (w,v, n)HfHZV These inequalities,
together with (2.7) and (2.9) give ||ch(f)||L5 < Mp(w, v, n)| f]l,r as claimed.

3 Proof of Theorem 2

To prove Theorem 2, we first show that N (w, v, 1) < || Pol 2, Ly under the hypotheses
of the theorem.

Proposition 5 Let1 < p <0, w € D, n € D and v a radial weight. If P,, : LY — L} is

bounded, then
1 / -7
n(r)r J] (w(f)>p !
sup v(t)tdt S Powlpr_pr-
0<r<1 @(r) ( F \v(t) () | wHLV by

Proof The adjoint of P, is defined by

(Po(f).8)13 = {f. P3(g)z. feLb. gelLl.

Now [10, Theorem 1(i)] and Lemma C, applied to n € 73 yield

[ ([ @) nears [[aonos & ar = [ 1 ar <.

If f and g are bounded functions, then (3.1) shows that we may apply Fubini’s theorem to
deduce

Pulf) )13 = f Po(f)(2)2@n() dA)

J <J & )dA(;“)> 2(@)n(z)dA(z)

- JD £(2) (JD@B?(Z)”(Z)‘{A(Z)) w(¢)dA(Z)

- [ 10245 [ s@Brnt aa@ )0 aaw) = <. Pz,
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572 T.Korhonen et al.

Since the simple functions are dense in LY for each 1 < p < o0 and radial o, this shows
that

P00 = 2 [ sBen(aA@). cep, gerf.

The adjoint operator P} : Lp — L” is bounded by the hypothesis, and || P} HL » =

||P(UHL{})*>L{I7' Thus

[ (w(:) ) !
D \v(¢)

By considering the standard orthonormal basis {z/ /1 /2w2j41}, j € NU {0}, of the Hilbert
space A2, one deduces

pl
ng(mB?(z)n(z) dA(2)

v(¢)dA() < HPwH‘Zg_,Lg HgHZ,,u geLy. (2
n

7}’[

.
, z,LeD.
g 2w2n+1

By testing (3.2) with monomials g, (¢) = ¢" we obtain

() [ 3 s

It

* 4 4 P’
1P3(en)lZy < 1Pl pglienl?y

/
ZHP(U”i‘I)’HLgnnp/-}—]y neNu {0},
(3.3)

’ 1 Y
! M1 ’ a)(t)
||Pw|\£5ﬁ”; 2 sup (”Lt"” (v(t)) v(t)tdt)
ne

w2n+1n"17 +1

sup Wfolt’”’/ (w(t)>p v(r) tdt

¢

It

neN ol(l— %)p v t)
/1 ’
(1 — 1 1 O\?
Z  sup ’]A(")p,f (w())) v(t) tdt
e} \ @ (1-1) AN
Let % < r < 1 andfix n € Nsuch that 1 — % <r<l1-— n+1 By applying Lemma B (ii)

again we finally deduce

n r % 1 w p, ﬁ
HPwHLgﬁL{; e na)((r)) (L (v((zt))) v(t)tdt) ,

The assertion follows from this inequality because the last integral converges for » = 0 by
(3.3) withn = 0. O

<r<l.

N\*—‘
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Proof of Theorem 2. By Theorem 1 and Proposition 5, it suffices to show that (iii) implies
(iv) under the hypothesis (1.5). To see this, first observe that an integration by parts and
Holder’s inequality give

[ 29 o < JO, [(T0D0t),

o @(s)? »(0)?

/

_ ) (G
- 35 )y 20y o)F 90

<20 ([ (2 =0 ") ([ 222 0 s

50 "\ o \a0r ) ) o(s)
Moreover, since Np(w, v, 1) < 00, we have
~ 14 »
[ (2o e,
= 1 s
0 a)(s)/’ n(s)F
1
/ / P -
r p 1 p P
t
< N2(w, v, ) f o) f O I S I
0 \n(s)? s \v(t)r
By combining (3.4) and (3.5), we deduce
J" n(s)
b (s)P
—p £
<O [ o(s) \’ Jl ZORNR T (f n(s) >
&\)(0) (] 77(5) s U(t)% w(s)
Therefore
1
. 1 , s AN P
n(s r ' (s o(t
<J A(( ))p ds) < NJ (w,v, 1) J ( )l f ( )L dt ds
o wis 0 r](s)[’ s v(t)l’
for all 1 < r < 1. This together with the hypothesis (1.5) completes the proof. O
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