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Abstract
We show that given a domain � ⊆ R

d+1 with uniformly non-flat Ahlfors s-regular
boundary with s ≥ d , the dimension of its harmonic measure is strictly less than s.
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1 Introduction

The purpose of this note is to study the dimension of harmonic measure ω� for a connected
domain � ⊆ R

d+1. Naturally, dimω� ≤ dim ∂�, but the inequality can be strict. For
example, it is a classical result of Jones and Wolff [22] that if � ⊆ C, then the dimension
is always at most 1, even if dim ∂� > 1 (which improves on an earlier result of Makarov
for simply connected planar domains [25]). In higher dimensions, the analogous property is
no longer true: there are domains calledWolff snowflakes in Rd+1 whose harmonic measure
can be strictly larger or strictly less than d; the d = 2 case is due to Wolff [34], and the
general case is Lewis, Verchota and Vogel in [24] (note that even though the dimension can
be above d , a result of Bourgain says that the dimension harmonic measure for any domain
in R

d+1 can’t get too close to d + 1 [14], and it is an open problem to determine what
the supremal dimension can be). While these are all very non-trivial results, these Wolff
snowflakes actually have some nice geometry. In particular, they are two-sided uniform
domains. We say a domain � is C-uniform if for all x, y ∈ � there is a curve γ ⊆ � so that

H 1(γ ) ≤ C|x − y|
and

dist(z,�c) ≥ C−1 min{�(x, z), �(y, z)}
where �(a, b) denotes the length of the subarc of γ between a and b. A domain is two-sided
uniform if both � and �

c
are C-uniform domains for some C.
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Since two-sided uniform domains have boundaries with dimension at least d and a Wolff
snowflake can have dimension less than d , this example also shows that a dimension drop
for harmonic measure can occur for a domain that is quite nice in terms of its connectivity
and boundary properties. Hence, it is an interesting problem to identify some general criteria
for when a whole class of domains � satisfy dimω� < dim ∂�.

A dimension drop for harmonic measure occurs for some domains whose boundaries
have some self-similar structure. This phenomenon was first observed by Carleson [15] for
complements of planar Cantor sets whose boundaries have dimension at least 1 (rather, he
showed for a particular class of Cantor sets C, dimω� < 1). Later, Jones and Wolff showed
the same result but for uniformly perfect sets satisfying a certain uniform disconnectedness
property (see [22] or [18, Section X.I.2]). Makarov and Volberg showed dimω� < dim ∂�

when ∂� belongs to a more general class of Cantor sets (with dim ∂� possibly below 1)
[28] and then to Cantor repellers of any dimension [32], that is, sets K for which there are
smooth disjoint domains Ui ⊆ C compactly contained in a domain U ⊆ C and univalent
maps fi : Ui → U for which K is the unique compact set such that K = ⋃

fi(U) (and in
Volberg’s result, two of the maps need to be linear). Urba’nski and Zdunik have also shown
that the attractors of conformal iterated function systems (IFS) have a dimension drop when
either the limit set is contained in a real-analytic curve, if the IFS consists of similarities
only, or if the IFS is irregular (see [31]). See also [27, 29].

A common thread to many of these results is etiher some uniform disconnectivity prop-
erty (see equations (XI.2.1)-(XI.2.3) in [18, 22], [10, Lemma 2.5], and [15, Lemma 5]), or
some self-similar or “dynamically defined” structure [28, 32, 33]. In the latter case, self-
similarity allowed authors to exploit some ergodic theory, except the work of Batakis [10]
which gave a non-ergodic proof of dimension drop for a wide class of Cantor sets that also
works in higher dimensions, and later studied how the dimension is continuous with respect
to the parameters defining the Cantor set [11, 12].

In the present paper, we develop a different sufficient condition for when the harmonic
measure is strictly less than the dimension of the boundary. Though it assumes some strong
conditions on the Hausdorff measure on the boundary, it requires no self-similar structure or
uniform-disconnectedness. Instead, it assumes some uniform non-flatness condition (which
will hold for any self-similar set in R

d+1 of dimension at least d that isn’t a d-dimensional
plane), and also holds in higher dimensions.

Main Theorem Given d ∈ N, C1 > 0, and β > 0, there are constants s0 < d and
κ ∈ (0, 1) so that the following holds. Let s0 < s ≤ d + 1 and � ⊆ R

d+1 be a connected
domain whose boundary is C1-Ahlfors s-regular, meaning if σ = H s |∂�, then

C−1
1 rs ≤ σ(B(x, r)) ≤ C1r

s for all x ∈ ∂�, 0 < r < diam ∂�. (1.1)

Also suppose there is β > 0 so that

bβω�(x, r) := inf
V

[

sup
y∈B(x,r)∩∂�

dist(x, V )

r
+ sup

y∈V ∩B(x,r)

dist(y, ∂�)

r

]

≥ β > 0 (1.2)

where the infimum is over all d-dimensional planes V ⊆ R
d+1. Then dimω� < κs,

meaning there is a set K with dimK < κs so that ω�(Kc) = 0.

Some remarks are in order. Firstly, this theorem does not cover all the fractals considered
by Batakis, which may or may not satisfy (1.1). Secondly, nor does it tackle sets all sets
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with dimension s < d. However, the domains Batakis and others considered need their
boundaries to be totally disconnected or be defined in some recursive way, whereas the
domains we consider can be connected and quite random. Also notice that if s > d , then
Eq. 1.1 implies there is β > 0 depending on s so that (1.2) holds, so Eq. 1.2 is not needed
in this case to guarantee a dimension drop; however, if Eq. 1.2 holds for some β and s > d

is close enough to d depending on β, we can have that dimω� < d.
Some domains with 2-dimensional boundaries in R3 not covered by previous results that

are admissible for the above theorem are the complements of the tetrahedral Sierpinski Gas-
ket and C × [0, 1] where C is the 1-dimensional 4-corner Cantor set. Note their boundaries
are either connected or have large connected components. Some boundaries with no self-
similar structure include bi-Lipschitz images of these sets, or a snowflaked image of R2 in
R
3 (that is, the image of a map f : R2 → R

3 satisfying |f (x) − f (y)| ∼ |x − y|1/s with
s > 1).

The proof of the Main Theorem is modelled after that of [10] and relies on a trick intro-
duced by Bourgain in [14]. Similar to those papers, the first step we need to take is to
show that inside any “cube” on the boundary of our domain, the s-dimensional density of
harmonic measure dips (or increases) inside a sub-cube of comparable size (compare the
bottom of page 480 in [14] or [10, Lemma 2.7]). After showing this, the proof is similar
to those above: this dip causes harmonic measure to concentrate elsewhere in the cube (see
[14, Lemma 2] or [10, Lemma 2.8]) and one can iterate this to show that harmonic measure
is in fact supported on a set of dimension less than s.

This density drop is easier to show when s > d using a touching-point argument, and is
more quantitative. To prove the density drop allowing for s = d (or slightly smaller than d)
assuming non-flatness, we use a compactness argument to show that, if this weren’t true,
then we could find a domain with d-regular boundary such that the density of its harmonic
measure was uniformly bounded over all small balls on the boundary, but then harmonic
measure would be absolutely continuous with respect to d-dimensional Hausdorff measure.
This gives us a lot of structural information by the following result:

Theorem 1.1 [5, Theorem 1.1] Let d ≥ 1 and � � R
d+1 be an open connected set and let

ω := ωp be the harmonic measure in � where p is a fixed point in �. Let E ⊂ ∂� be a
subset with Hausdorff measure H d(E) < ∞. Then:

(a) If ω is absolutely continuous with respect to H d on E, then ω|E is d-rectifiable, in
the sense that ω-almost all ofE can be covered by a countable union of n-dimensional
Lipschitz graphs.

(b) If H d is absolutely continuous with respect to ω on E, then E is a d-rectifiable
set, in the sense that H d -almost all of E can be covered by a countable union of
d-dimensional Lipschitz graphs.

Thus, the boundary of our domain has tangents, but this violates (1.2).
Using compactness arguments for harmonic measure is quite common, and the author

first learned of it from the work of Kenig and Toro [23]. For more recent applications, see
[21, Section 3], [13], and [7], and the references therein, which are primarily concerned
with uniform domains. See also [8] for an example of compactness arguments used in non-
uniform domains.

We don’t know whether our result holds for all s ∈ (d −1, d +1]. If s < d , the answer to
this question relies on knowing whether harmonic measure is always singular with respect
to H s-measure if the boundary is Ahlfors s-regular. As far as the author knows ,this is an
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open question. An answer in the affirmative would mean that the arguments here could be
used again to obtain the whole range (d − 1, d + 1].

We would like to thank Mihalis Mourgoglou and Xavier Tolsa for their comments on the
manuscript, and for the anonymous referee for spotting several errors and to whom we are
indebted for making the paper much clearer.

2 Preliminaries

We will let B(x, r) = {y : |x − y| ≤ r} and B = B(0, 1). If B = B(x, r), we
let λB = B(x, λr), xB = x, and rB = r . We will denote by H s and H s∞ the s-
dimensional Hausdorff measure and Hausdorff content respectively. For a reference on
geometric measure theory and Hausdorff measure, see [26].

We will write a � b if there is a constantC > 0 so that a ≤ Cb and a �t b if the constant
depends on the parameter t . As usual we write a ∼ b and a ∼t b to mean a � b � a and
a �t b �t a respectively. We will assume all implied constants depend on d and hence
write ∼ instead of ∼d .

Whenever A, B ⊂ R
d+1 we define

dist(A,B) = inf{|x − y|; x ∈ A, y ∈ B}, and dist(x,A) = dist({x}, A).

Let diamA denote the diameter of A defined as

diamA = sup{|x − y|; x, y ∈ A}.
For a domain � and x ∈ �, we let ωx

� denote the harmonic measure for � with pole at
x and G�(·, ·) the associated Green function. For a reference on harmonic measure and the
Green function, see [4].

Given a domain � and a ball B centered on ∂�, we say x is a c-corkscrew point for
B ∩ � if B(xB, crB) ⊆ B ∩ �.

We will say a domain � has lower s-content regular complement with constant c1 if for
all B centered on ∂� and 0 < rB < diam ∂�,

H d∞(B\�) ≥ c1r
d
B (2.1)

The following lemma is due to Bourgain for R3 in [14, Lemma 1]. The proof in R
d+1 is

identical and shown in [5, Lemma 3.4].

Lemma 2.1 If � ⊆ R
d+1 has lower s-content regular complement with constant c1 and

s > d − 1, then there is b ∈ (0, 1) so that

ωx
�(B(ξ, r)) � c1 for ξ ∈ ∂�, 0 < r < diam ∂�, and x ∈ B(ξ, br). (2.2)

A domain � satisfies the capacity density condition (CDC) if, for all x ∈ ∂� and 0 <

r < diam ∂�,

Cap(B(x, r) ∩ �c,B(x, 2r)) � rn−1,

where Cap(·, ·) stands for the variational 2-capacity of the condenser (·, ·) (see [19, p. 27]
for the definition).

Remark 2.2 We will state some lemmas below that assume the CDC, but keep in mind
the CDC is implied by Eq. 2.1 for s > d − 1. This can be seen from [19, Lemma 2.31]).
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Alternatively, Ancona showed in [9, Lemma 3] that the CDC is equivalent to the property
that, for some α > 0,

ωx
�∩B(∂B ∩ �) �

( |x − xB |
r

)α

for x ∈ B ∩ �

for all balls B centered on ∂� with rB < diam ∂�. This property is implied by Bourgain’s
lemma (see for example [6, Lemma 2.3]). In particular, the maximum principle implies the
following lemma.

Lemma 2.3 Let � � R
d+1 be an open set that satisfies the CDC and let x ∈ ∂�. Then

there is α > 0 so that for all 0 < r < diam(�),

ω
y
�(B(x, r)c) �

( |x − y|
r

)α

, for all y ∈ � ∩ B(x, r), (2.3)

where α and the implicit constant depend on n and the CDC constant.

Lemma 2.4 [1, Lemma 1] For x ∈ � ⊆ R
d+1 and φ ∈ C∞

c (Rd+1),
∫

φωx
� = φ(x) +

∫

�

�φ(y)G�(x, y)dy. (2.4)

We will typically use the above lemma when φ(x) = 0.

Lemma 2.5 Let � ⊆ R
d+1 be a CDC domain. Let B be a ball centered on ∂� with 0 <

rB < diam ∂�. Then

G�(x, y) � ωx
�(4B)

rd−1
B

for all x ∈ �\2B and y ∈ B (2.5)

The above lemma has evolved over many years and this isn’t the most general statement,
but it will suit our purposes. It follows from the proof of Lemma 3.5 in [2]: it is assumed
there that the domain is John (and so in particular bounded) but is not necessary for the
above statement. A version of this is also shown in [5] that works for general bounded
domains without the CDC (and implies the above inequality), but it is only for d > 1.

Recall that a Harnack chain between two points x, y ∈ � is a sequence of ballsB1, ..., Bn

for which 2Bi ⊆ �. By Harnack’s inequality, there is M > 0 so that for any non-negative
harmonic function u on �,

u(x) ≤ Mnu(y). (2.6)

Lemma 2.6 [8, Lemma 2.9] Let�j ⊂ R
d+1 be a sequence of domains with lower s-content

regular complements, s > d − 1, 0 ∈ ∂�j , inf diam ∂�j > 0, and suppose there is a ball
B0 = B(x0, r0) ⊂ �j for all j ≥ 1. Then there is a connected open set �

x0∞ containing B

so that, after passing to a subsequence,

(1) G�j
(x0, ·) → G

�
x0∞ (x0, ·) uniformly on compact subsets of {x0}c,

(2) ω
x0
�j

⇀ ω
x0

�
x0∞
, and

(3) �
x0∞ also has lower s-content regular complement with the same constant.

This is not how it is stated in [8], but it follows from the proof. Indeed, the lemma is stated
for CDC domains, but they use the fact that CDC domains have lower s-content regular
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complements for a particular dimension and constant, and then use that characterization to
prove the lemma.

3 Rectifiability

Definition 3.1 A set E ⊆ R
n is d-rectifiable if H d(E) < ∞ and it may be covered up to

H d -measure zero by a countable union of rotated Lipschitz graphs.

For two measures μ and ν and a ball B, let

FB(μ, ν) = sup
f

∣
∣
∣
∣

∫

f dμ −
∫

f dν

∣
∣
∣
∣

where the supremum is over all nonnegative 1-Lipschitz functions supported in B.
For x ∈ R

n, r > 0, μ a Radon measure, and an affine d-dimensional plane V , let

αμ(x, r, V ) = r−d−1 inf
c>0

FB(x,r)(μ, cH d |V )

and let
αμ(x, r) = inf

V
αμ(x, r, V )

where the infimum is over all d-dimensional affine planes V .

Lemma 3.2 [30, Lemma 2.1] If μ is a Radon measure and � is a Lipschitz graph, then
∫ 1

0
αμ(x, r)2

dr

r
< ∞ for H d -a.e. x ∈ �. (3.1)

As a corollary, if we let αE := αH d |E , we get the following.

Corollary 3.3 If E is a Borel set and F ⊆ E is d-rectifiable, then

lim
r→0

αE(x, r) = 0 for H d -a.e. x ∈ F .

This follows from Lemma 3.2 since F may be covered by countably many d-dimensional
Lipschitz graphs and since αμ(x, r) ≤ (s/r)d+1αμ(x, s) for r < s.

Remark 3.4 The proof of the corollary is much simpler than envoking Lemma 3.2, and is
quite standard, but we couldn’t find a short reference for it. It can actually be proven more
simply by the techniques in Chapters 14-16 of [26], although for the sake of brevity we
didn’t want to recall too much background in order to do this.

4 Non-Flatness or Big Dimension Implies Change in Density

For a Radon measure μ, s ≥ 0, and a ball B, we define

�s
μ(B) = μ(B)

rs
.

Throughout this section, we will work with a domain � ⊆ R
d+1 and we will let ω = ω�

for short.
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Lemma 4.1 Suppose s > d ∈ N, c, C1,M > 0, and � ⊆ R
d+1 has lower s-content

regular with constant C1. Let B be centered on ∂�, A > 4, A0 > 0, and x ∈ B\2A−1B a
c-corkscrew point in B (meaning x ∈ B ∩ � and B(x, 2crB) ⊆ �) so that

ωx(A−1B) ≥ A0.

Then there is δ = δ(d, c,M,C1, A0, A) > 0 and a ball B ′ ⊆ 5A−1B with rB ′ ≥ δrB so
that

�s
ωx (B

′) > Mr−s
B

Proof Without loss of generality, B = B. We first use a method of Aikawa and Hirata [2]
to show there is a Harnack chain from x to a point in 2A−1

B. Let φ be a smooth function
supported on 2A−1

B and equal to 1 on A−1
B. Then

A0 ≤
∫

φdωx (2.4)=
∫

G(x, y)�φ(y)dy � sup
y∈2A−1B

G(x, y).

Thus, there is a universal constant λ > 0 so that

y ∈ Eλ = {z : G(x, z) > λA0}.
Note that as G(x, z) � |x − z|1−d , Eλ is a bounded set with diameter depending on λ.
Moreover, Eλ is open and also contains x. By the maximum principle, it must also be
connected, so there is a curve γ ⊆ Eλ joining x to a point in 2A−1B. Note that if y ∈ γ

δ�(y) < ε, and ξ ∈ ∂� is closest to y, then x 
∈ B(ξ, c/2), and so

G(x, y)
(2.3)
� ||G(x, ·)||L∞(B(ξ,c/4))ε

α
(2.5)
� ωx(B(ξ, c))c1−dεα

and so y 
∈ Eλ for ε small enough (depending on A and d). Thus, dist(y, ∂�) ≥ ε > 0 for
all y ∈ γ . Thus, we can find a Harnack chain from x to a point y ∈ γ ∩2A−1

B of uniformly
bounded length (depending on ε, d, and A).

Again, let ξ be the closest point in ∂� to y. Let v = y−ξ
|y−ξ | and for t > 0 let Bt = B(ξ, t)

(see Fig. 1).
Recall that if d > 1, for any r > 0 and z ∈ B(y, r)\{y},

GB(y,r)(y, z) = c(|y − z|1−d − r1−d)

where c > 0 is some constant depending on d . (If d = 1, Green’s function is instead a
multiple of log r

|y−z| , and the estimates below are similar in this case). Thus, for t > 0 small,
and if d > 1,

ωx(4Bt)
(2.5)
� G(x, ξ + tv)td−1 (2.6)∼ ε G(y, ξ + tv)td−1

≥ GB(y,δ�(y))(y, ξ + tv)td−1

= c
(|y − (ξ + tv)|1−d − δ�(y)1−d

)
td−1

= c
(
(δ�(y) − t)1−d − δ�(y)1−d

)
td−1

= c
(
(1 − t/δ�(y))1−d − 1

)
td−1

δ�(y)d−1 � td

δ�(y)d
.

Note that as there is a Harnack chain of length depending on ε between x and y, and
because x is a c-corkscrew point in B, we have that

δ�(y) ∼ε δ�(x) ∼c rB = 1.

In particular, for s > d , the above estimates imply ωx(4Bt) � td . In particular,
�s

ωx (4Bt) � td−s , hence for t small (depending on M), �s
ωx (4Bt) > M . Since y ∈ 2A−1B
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and the center of B is in ∂�, |ξ − y| ≤ 2A−1, so for t small enough, we can also guarantee
that 4Bt ⊆ 5A−1

B, and so 4Bt is our desired ball.

Lemma 4.2 Given d ∈ N, M, c,C1 > 0, and β > 0, there is s0 < d so that the following
holds. Let s0 < s ≤ d + 1 and � ⊆ R

d+1 be a connected domain so that (1.1) and (1.2)
hold. Let A > 4, A0 > 0 and suppose x ∈ B\2A−1B is a c-corkscrew point in B so that

ωx(A−1B◦) ≥ A0.

Then there is δ = δ(d, c, C1, M, β, A0, A) > 0 and a ball B ′ ⊆ 5A−1B so that rB ′ ≥ δrB
and

�s
ωx (B

′) > Mr−s
B .

Proof Again, we can assume B = B. Suppose instead that for all j ∈ N we could find a
domain �j with C1-Ahlfors sj -regular boundary with d − 1

j
< sj ≤ d + 1 containing 0

and xj a c-corkscrew point in B\2A−1
B so that for all j ,

ω
xj

�j
(A−1

B
◦) ≥ A0

yet for all B ⊆ 1
2B with rB ≥ 1

j
,

ω
xj

�j
(B) ≤ Mr

sj
B .

Since the ∂�j are Ahlfors sj -regular with constant C1 and sj → s, for j large they all
uniformly have large (d − 1/2)-content regular complements. By Lemma 2.6, we may pass
to a subsequence so that sj → s ∈ [d, d + 1], xj → x0 ∈ B\2A−1

B a c-corkscrew point in
B for a domain �0 = �

x0∞ so that ω
xj

�j
⇀ ω

x0
�0

and also has lower (d − 1/2)-content regular
complement. In particular, one can show that

ω
x0
�0

(B) ≤ Mrd
B (4.1)

for all balls B centered on ∂�0 contained in 5A−1
B, and

ω
x0
�0

(A−1
B

◦) ≥ A0. (4.2)

Hence, by the previous lemma, Eq. 4.1 is impossible if s > d , thus we must have s = d .
In particular, ωx0

�0
� H d in 5A−1

B.
Since the ∂�j are Ahlfors sj -regular with constant C1 and sj → s, we can also pass to

a subsequence so that ∂�j ∩ 10B converges in the Hausdorff metric to a set � so that if
σ = H d |� , then σ(B) ∼ rs for all B ⊆ 10B centered on �.

We will now show that for this new set we have

bβ�(x, r) ≥ β > 0 for all x ∈ � ∩ B, 0 < r < 1. (4.3)

We will prove by contrapositive. Suppose instead that there was x ∈ �∩B and 0 < r < 1
so that bβ�(x, r) < β, so there is a d-plane P so that

sup
y∈B(x,r)∩P

dist(y,�) + sup
y∈B(x,r)∩�

dist(y, P ) < β.
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Fig. 1 The balls 4Bt and B(y, δ�(y)). Observe that B(y, δ�(y) is tangent to ∂�

If zj ∈ B(x, r) ∩ ∂�j is farthest from P and yj ∈ P ∩ B(x, r) is farthest from ∂�j , then
we can pass to a subsequence so that zj → z ∈ B(x, r) ∩ � and yj → y ∈ P ∩ B(x, r),
and then

β ≤ lim supj→∞
(
supp∈∂�j ∩B(x,r) dist(p, P ) + supq∈P∩B(x,r) dist(q, ∂�j )

)

= lim supj→∞
(
dist(zj , P ) + dist(yj , ∂�j )

)

= dist(z, P ) + dist(y,�) < β,

which is a contradiction, and this proves (4.3).
Thus, ∂�0 ∩ 5A−1

B ⊆ �, so H d(∂�0 ∩ 5A−1
B) < ∞. By Eqs. 4.1 and 4.2,

and because ω
x0
�0

� H d on ∂�0 ∩ 5A−1
B, there is E ⊆ ∂�0 ∩ 5A−1

B with 0 <

H d(E) < ∞ so that H d � ω
x0
�0

� H d on E. To see this, just observe that if

f = dω
x0
� |5A−1B∩∂�0

/dH d |5A−1B∩∂�0
is the Radon-Nikodym derivative, then E = {x ∈

5A−1
B ∩ ∂�0 : f (x) > 0} is our desired set (see [26, Theorem 2.12]). Now Theorem 1.1

implies that E is a d-rectifiable set of positive H d -measure. Since E ⊆ �, Corollary 3.3
implies that

lim
r→0

α�(x, r) = 0.

for some x ∈ E. In particular, if ε > 0, there is r > 0 small enough and a plane V so that

α�(x, 4r, V ) < ε. (4.4)
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Without loss of generality, we can assume V ∩ B(x, 4r) 
= ∅. Indeed, suppose instead that
V ∩ B(x, 4r)∅. Let φ(z) = (4r − |x − z|)+, then φ(z) = 0 on V and φ ≥ 2r on B(x, 2r).
This and the fact that � is Ahlfors regular imply

ε > α�(x, 4r, V ) ≥ (4r)−d−1
∫

φ(z)dσ(z)

≥ (4r)−d−1σ(B(x, 2r))2r �C1 1. (4.5)

which is impossible for ε small enough depending on C1, and so V ∩B(x, r) 
= ∅ for ε > 0
small.

But by Eq. 4.3, for all r > 0 so that B(x, r) ⊆ B (since x ∈ 5A−1
B), there is either

y ∈ B(x, r)∩� so that dist(y, V ) ≥ δr , or there is y ∈ V ∩B(x, r) so that dist(y,�) ≥ δr .
In the former case, if we let 0 ≤ φ ≤ 1 be a 1

2r -Lipschitz function equal to 1 on B(x, 2r)
and zero outside B(x, 4r), then ψ(z) = φ(z) dist(z, V ) is a 6-Lipschitz function (recall
dist(z, V ) ≤ 8r for all z ∈ B(x, 4r) since V ∩ B(x, 4r) 
= ∅) and ψ(z) ≥ δr/2 on
B(y, δr/2). Hence,

C−1
1 δd+12−d ≤ r−dδσ (B(y, rδ/2)) ≤ 2r−d−1

∫

ψdσ
(4.4)
< � ε,

which is a contradiction for ε small enough. The case that there is y ∈ V ∩ B(x, r) so that
dist(y,�) ≥ δr has a similar proof and we omit it.

Lemma 4.3 Given d ∈ N, C1 > 0, and β > 0, there is s0 < d so that the following holds.
Let s0 < s ≤ d + 1 and � ⊆ R

d+1 be a connected domain so that (1.1) and (1.2) hold. Let
B0 be a ball centered on ∂� and p ∈ �\aB0 (where a = 2b−1 > b−1 > 1 and b is as in
Lemma 2.1). Set ω = ω

p
�. Then for all M1 > 0 there is δ > 0 and a ball B ⊆ 1

2B0 so that
rB ≥ δrB0 and

�s
ω(B) 
∈ [M−1

1 �s
ω(aB0),M1�

s
ω(aB0)].

Proof Without loss of generality, B0 = B. We can also assume that

ωp

(
1

10
B

)

≥ M−1
1 a−sωp(aB), (4.6)

otherwise we’d choose B = 1
10B.

Let ε > 0 and
E = {x ∈ ∂B ∩ � : δ�(x) > ε}.

Let ω̃ = ω�\B. By the Strong Markov property1 and for ε > 0 small enough,

ωp

(
1

10
B

)

= ∫
∂B∩�

ωx
(

1
10B

)
dω̃p(x) (4.7)

(2.3)≤ Cεαω̃p(∂B ∩ �) + ∫
E

ωx
(

1
10B

)
dω̃p(x).

By Lemma 2.1, ωx(aB) � 1 on ∂B ∩ �, so by the maximum principle,

ω̃p(∂B ∩ �) � ωp(aB)
(4.6)≤ M1a

sωp(
1

10
B). (4.8)

1This follows from the Brownian motion definition of harmonic measure, but for a direct proof, see the
appendix in [3].
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So for ε > 0 small enough depending on M1 and a, by Eqs. 4.7 and 4.8,

ωp

(
1

10
B

)

≤ 2
∫

E

ωx

(
1

10
B

)

dω̃p(x). (4.9)

LetBj be a covering ofE by boundedly many balls centered onE of radius ε/4 (whose total
number depends only on ε and d), so 2Bj ⊆ �. We claim we there are t > 0 (depending
on ε and M1) and j so that if B ′ = Bj , then

ω̃p(B ′) ≥ tωp

(
1

10
B

)

and ωxB′
(

1

10
B

)

≥ t .

If not, then for each j either ω̃p(Bj ) < tωp( 1
10B) (let J1 denote the set of these j ) or

ω
xBj ( 1

10B) < t (let J2 denote the set of these j ). For j ∈ J2, Harnack’s principle implies
ωx( 1

10B) � t for all x ∈ Bj . These alternatives and the fact that harmonic measure is at
most 1 imply

ωp

(
1

10
B

)
(4.9)
�

(∑
j∈J1

+ ∑
j∈J2

) ∫
Bj ∩dB

ωx
(

1
10B

)
dω̃p(x)

�ε

∑
j∈J1

1 · ω̃p(Bj ∩ ∂B) + ∑
j∈J2

t · ω̃p(Bj ∩ ∂B)

�ε tω
(

1
10B

)
+ tω̃p(∂B ∩ �)

which contradicts (4.8) for t small enough.
Thus, we have a ball B ′ centered on ∂B with 2B ′ ⊆ � and rB = ε/2, and such that

ω̃p(B ′) �ε,M1 ωp

(
1

10
B

)
(4.6)≥ M−1

1 a−sωp(aB). (4.10)

and ωxB′ ( 1
10B) ≥ t . Let M > 0. Now since B ′ ⊆ B ⊆ aB, xB ′ is a ε

2a -corkscrew point for
aB, and so Lemma 4.2 (applied with aB in place of B, A = 10a, asM in place of M , and
A0 = t) implies there is δ > 0 depending on M,d, C1, and β and B ⊆ 5A−1(aB) = 1

2B

with rB ≥ δ so that �s
ω

x
B′ (B) > M . By Harnack’s inequality, �s

ωx (B) � M for all x ∈ B ′.
Thus,

ωp(B) =
∫

∂B∩�

ωx(B)dω̃p(x) ≥
∫

B ′∩∂B

ωx(B)dω̃p(x)

� ω̃p(B ′)Mrs
B

(4.10)
� ε,M1,a

ωp(aB)Mrs
B .

Thus, for M large enough (depending on ε and M1), we have

�s
ωp (B) = ωp(B)r−s

B > M1a
−sωp(aB) = M1�

s
ωp (aB),

which proves the lemma.

5 Proof of theMain Theorem

Let C1, β, s, d, β, and � ⊆ R
d+1 be as in the Main Theorem where s0 is the constant from

Lemma 4.3, and set ω = ω
p
� for some p ∈ �.

We recall the following version of “dyadic cubes” for metric spaces, first introduced by
David [17] but generalized in [16] and [20].
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Theorem 5.1 Let X be a doubling metric space. Let Xk be a nested sequence of maximal
ρk-nets for X where ρ < 1/1000 and let c0 = 1/500. For each n ∈ Z there is a collection
Dk of “cubes,” which are Borel subsets of X such that the following hold.

(1) For every integer k, X = ⋃
Q∈Dk

Q.
(2) If Q,Q′ ∈ D = ⋃

Dk and Q ∩ Q′ 
= ∅, then Q ⊆ Q′ or Q′ ⊆ Q.
(3) For Q ∈ D , let k(Q) be the unique integer so that Q ∈ Dk and set �(Q) = 5ρk(Q).

Then there is ζQ ∈ Xk so that

BX(ζQ, c0�(Q)) ⊆ Q ⊆ BX(ζQ, �(Q)) (5.1)

and Xk = {ζQ : Q ∈ Dk}.

Let D be the Christ-David cubes for ∂�. Fix n0 so that x0 
∈ aBQ for all Q ∈ Dn0 . By
rescaling, we can assume without loss of generality that n0 = 0.

Let

�s
ω(Q) = ω(Q)

σ(Q)
.

Lemma 5.2 Let n ≥ 0, M2 > 0, and Q ∈ Dn. There is NQ ∈ N so that NQ �M2,C1,β,d 1
and such that there is Q′ ∈ Dn+NQ

contained in c0
2 BQ so that

�s
ω(Q′) 
∈ [M−1

2 �s
ω(Q),M2�

s
ω(Q)].

Proof Fix N ∈ N large enough so that if Q̃ ∈ Dn+N is the cube with same center as Q, then

aB
Q̃

⊆ c0

2
BQ (5.2)

where a is as in Lemma 4.3. Since N is fixed and only depends on some fixed universal
constants, we will not indicate when constants depend on it below. Clearly we can assume

�s
ω(Q̃) ≥ M−1

2 �ω(Q), (5.3)

otherwise we’d pick Q′ = Q̃. Thus,

�s
ω(B

Q̃
)

(5.1)
� C1

�s
ω(Q̃)

(5.3)≥ M−1
2 �s

ω(Q)
(5.2)
� N,C1

M−1
2 �s

ω(aB
Q̃

), (5.4)

so by Lemma 4.3, for M1 > 0 there is δ depending on M1,M2, d, C1, β and N , and there
is B ⊆ 1

2BQ̃
centered on ∂� (and thus also centered on Q̃) with rB ≥ δ�(Q̃) for which

�s
ω(B) 
∈ [M−1

1 �s
ω(aB

Q̃
),M1�

s
ω(aB

Q̃
)].

Suppose first that �s
ω(B) < M−1

1 �s
ω(aB

Q̃
). Then we take Q′ to be the largest cube

containing the center of B that is also contained in B, so

�(Q′) ∼ rB � δ�(Q̃) (5.5)

Furthermore,

�s
ω(Q′)

(5.1)
(5.5)

� C1
�s

ω(B) < M−1
1 �s

ω(aB
Q̃

)
(5.4)
� C1

M2

M1
�s

ω(Q̃)

and the lemma follows in this case by picking M1 � M2
2 .

Now suppose that �s
ω(B) ≥ M1�

s
ω(aB

Q̃
). Let N ′ be the largest integer for which

5ρN ′
< �(Q̃)/4. Then there are at most boundedly many cubes in DN ′ which cover
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B ∩ ∂�, and one of them, call it Q′, must have ω(Q′) � ω(B). Since Q′ ∩ B 
= ∅ and
�(Q′) = 5ρN ′

< �(Q̃)/4, and B ⊆ 1
2BQ̃

, we have

Q′ ⊆ B
Q̃

(5.1)⊆ c0

2
BQ.

Also, we have �(Q′) ∼δ �(Q̃) ∼N �(Q) and

�s
ω(Q′) � �s

ω(B) ≥ M1�
s
ω(aB

Q̃
) �C1 M1�

s
ω(Q̃)

(5.4)≥ M1

M2
�s

ω(Q).

Again, the lemma follows by picking M1 � M2
2 . In either case, since δ always depends

on d, β, C1, M1 and M2 (and because M1 depends on d, β, C1, and M2), we have
�(Q′) �d,β,C1,M2 �(Q), so if NQ is such that Q′ ∈ Dn+NQ

, then NQ �d,β,C1,M2 1, and
we’re done.

We now let ε > 0 be small and let NQ denote the integer from the previous lemma
applied when M2 = ε−1. Fix a cube Q0 ∈ D0 and define families of sub-cubes of Q0 in
D ′

n inductively as follows. First let D ′
0 = {Q0}, then if D ′

n has been defined and R ∈ D ′
n,

and nR is so that R ∈ DnR
, let

Ch(R) = {Q ∈ DnR+NR
: Q ⊆ R}

and

D ′
n+1 =

⋃

R∈D ′
n

Ch(R), D ′ =
⋃

D ′
n.

Lemma 5.3 There is λ = λ(d, C1, β) ∈ (0, 1) so that for all R ∈ D ′,
∑

Q∈Ch(R)

ω(Q)
1
2 σ(Q)

1
2 < λω(R)

1
2 σ(R)

1
2 . (5.6)

Proof Let R′ be the cube obtained in Lemma 5.2 applied to Q = R with M2 = 16. Suppose
first that

�s
ω(R′) <

1

16
�s

ω(R). (5.7)

By the Cauchy-Schwartz inequality,

∑

Q∈Ch(R)

Q
=R′

ω(Q)
1
2 σ(Q)

1
2 ≤

(∑
Q∈Ch(R) ω(Q)

) 1
2
(

∑
Q∈Ch(R)

Q
=R′
σ(Q)

) 1
2

= ω(R)
1
2 (σ (R) − σ(R′)) 1

2 .

Also, by Eq. 5.7,

ω(R′)
1
2 σ(R′)

1
2 =

(
ω(R′)
σ (R′)

) 1
2
σ(R′) <

(
1
16

) 1
2
(

ω(R)
σ(R)

) 1
2
σ(R′)

= 1
4ω(R)

1
2 σ(R)

1
2

σ(R′)
σ (R)

.
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These two estimates and the fact that (1− x)
1
2 ≤ 1− x

2 for all x ≤ 1 imply that for ε small,
∑

Q∈Ch(R)

ω(Q)
1
2 σ(Q)

1
2 ≤ ω(R)

1
2 (σ (R) − σ(R′)) 1

2 + 1
4ω(R)

1
2 σ(R)

1
2

σ(R′)
σ (R)

= ω(R)
1
2 σ(R)

1
2

((
1 − σ(R′)

σ (R)

) 1
2 + 1

4
σ(R′)
σ (R)

)

≤ ω(R)
1
2 σ(R)

1
2

(
1 − 1

4
σ(R′)
σ (R)

)

Now (5.6) follows since, for R ∈ D ′
n, since NR′ �β,C1,d 1, we have

σ(R′)
σ (R)

�C1

�(R′)s

�(R)s
=

(
�(R′)
�(R)

)s

≥
(

�(R′)
�(R)

)d

�C1,β,d 1. (5.8)

Hence, there is t = t (C1, β, d) > 0 so that

1 − 1

4

σ(R′)
σ (R)

≤ 1 − t

4
=: λ < 1

and the lemma follows in this case.
Now suppose that

�s
ω(R′) > 16�s

ω(R). (5.9)

By the Cauchy-Schwartz inequality,

∑

Q∈Ch(R)

Q
=R′

ω(Q)
1
2 σ(Q)

1
2 ≤

(
∑

Q∈Ch(R)

Q
=R′
ω(Q)

) 1
2 (∑

Q∈Ch(R) σ (Q)
) 1

2

= (ω(R) − ω(R′)) 1
2 σ(R)

1
2 .

By Eq. 5.9,

ω(R′)
1
2 σ(R′)

1
2 = ω(R′)

(
σ(R′)
ω(R′)

) 1
2

<
(

1
16

) 1
2
ω(R′)

(
σ(R)
ω(R)

) 1
2

= 1
4ω(R)

1
2 σ(R)

1
2

ω(R′)
ω(R)

.

Just as earlier, we have
∑

Q∈Ch(R)

ω(Q)
1
2 σ(Q)

1
2 ≤ (ω(R) − ω(R′)) 1

2 σ(R)
1
2 + 1

4ω(R)
1
2 σ(R)

1
2

ω(R′)
ω(R)

≤ ω(R)
1
2 σ(R)

1
2

((
1 − ω(R′)

ω(R)

) 1
2 + 1

4
ω(R′)
ω(R)

)

≤ ω(R)
1
2 σ(R)

1
2

(
1 − 1

4
ω(R′)
ω(R)

)

Now we use the fact that

ω(R′)
ω(R)

(5.8)∼ C1,β,d

�s
ω(R′)

�s
ω(R)

(5.9)≥ 1.

Thus, there is t = t (C1, β, d) > 0 so that ω(R′)
ω(R)

> t . Hence, we again have

1 − 1

4

ω(R′)
ω(R)

≤ 1 − t

4
=: λ < 1

and again the lemma follows.
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Let R ∈ D ′. Then for Q ∈ Ch(R) and for some c = c(β, d, C1),

σ(Q) ≥ cσ (R).

Let τ ∈ (0, 1) be small, we will fix its value later. Then
∑

Q∈Ch(R)

ω(Q)
1
2 σ(Q)

1−τ
2 ≤ σ(R)− τ

2 c− τ
2
∑

Q∈Ch(R) ω(Q)
1
2 σ(Q)

1
2

(5.6)
< c− τ

2 λω(R)
1
2 σ(R)

1−τ
2 := γω(R)

1
2 σ(R)

1−τ
2

Pick τ > 0 small enough so we still have that γ := c− τ
2 λ < 1.

Let
En = {Q ∈ D ′

n : ω(Q) ≤ σ(Q)1−τ }.
Then

∑

Q∈En

ω(Q) ≤
∑

Q∈D ′
n

ω(Q)
1
2 σ(Q)

1−τ
2 ≤ γ

∑

R∈D ′
n−1

ω(R)
1
2 σ(R)

1−τ
2 < · · ·

· · · < γ nω(Q0)
1
2 σ(Q0)

1−τ
2 .

In particular, if

E :=
⎧
⎨

⎩
x ∈ Q0 : lim

r→0
sup
x∈Q

�(Q)<r

ω(Q)

σ(Q)1−τ
≤ 1

⎫
⎬

⎭
⊆

⋂

n≥0

⋃

Q∈En

Q,

then

ω(E) ≤ lim
k→∞

∞∑

n=k

γ nω(Q0)
1
2 σ(Q0)

1−τ
2 = 0.

Thus, if

FQ0 := lim
r→0

sup
x∈Q

�(Q)<r

ω(Q)

σ(Q)1−τ
≥ 1,

then
ω(Q0\FQ0) = 0.

Let � > 0. Since the Christ-David cubes partition Q0, for each x ∈ FQ0 we may find
Qx � x contained in Q0 with �(Qx) < � so that ω(Qx)

σ(Qx)1−τ > 1/2. Let Qj be the collection
of maximal cubes from {Qx : x ∈ FQ0}. Then because the Qj are disjoint and diamQj ≤
diamBQj

= 2�(Qj ) < 2�,

H s(1−τ)
2� (FQ0) ≤ ∑

j (diamQj)
s(1−τ) ∼C1,τ

∑
j σ (Qj )

1−τ

< 2
∑

j ω(Qj ) ≤ 2ω(Q0).

Letting � → 0 gives H s(1−τ)(FQ0) < ∞.
Since our choice of Q0 ∈ D0 was arbitrary and D0 partitions ∂�, this implies dimω ≤

s(1 − τ). This finishes the proof of the Main Theorem.
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31. Urbański, M., Zdunik, A.: Hausdorff dimension of harmonic measure for self-conformal sets. Adv. Math.
171(1), 1–58 (2002)

32. Volberg, A.L.: On the harmonic measure of self-similar sets on the plane. In: Harmonic Analysis and
Discrete Potential Theory, pp. 267–280. Springer (1992)

33. Volberg, A.L.: On the dimension of harmonic measure of Cantor repellers. Michigan Math. J. 40(2),
239–258 (1993)

34. Wolff, T.H.: Counterexamples with harmonic gradients in R3. In: Essays on Fourier Analysis in Honor
of Elias M. Stein (Princeton, NJ, 1991), Volume 42 of Princeton Math. Ser., pp. 321–384. Princeton
Univ. Press, Princeton (1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Dimension Drop for Harmonic Measure on Ahlfors Regular Boundaries 1041


	Dimension Drop for Harmonic Measure on Ahlfors Regular Boundaries
	Abstract
	Introduction
	Preliminaries
	Rectifiability
	Non-Flatness or Big Dimension Implies Change in Density
	Proof of the Main Theorem 
	References




