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Abstract
We obtain two-sided estimates for the heat kernel (or the fundamental function) associated
with the following fractional Schrödinger operator with negative Hardy potential

�α/2 − λ|x|−α

on , where α ∈ (0, d ∧ 2) and λ > 0. The proof is purely analytical and elementary. In
particular, for upper bounds of heat kernel we use the Chapman-Kolmogorov equation and
adopt self-improving argument.
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1 Introduction

Let d ∈ N+ := {1, 2, · · · } and α ∈ (0, d ∧ 2). We consider the following Schrödinger
operator

L := �α/2 + q (1.1)
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on Rd , where �α/2 := −(−�)α/2 and q(x) = κ|x|−α with

κ = κδ := 2α�
(

α−δ
2

)
�

(
d+δ

2

)

�
(−δ

2

)
�

(
d+δ−α

2

) (1.2)

for any δ ∈ (0, α). Here, �(−δ/2) = ∫ ∞
0 r−1−δ/2(e−r − 1) dr < 0 for δ ∈ (0, α), and

�(z) = ∫ ∞
0 rz−1e−r dr for all z > 0. We note that κδ < 0, and so q(x) < 0 on Rd ; we also

note that the radial function |x|−α comes from the Hardy inequality for fractional Laplacian
�α/2 (see [7, 20] and the references therein for more details). Thus, the operator L given
by Eq. 1.1 is the fractional Schrödinger operator with negative Hardy potential. Denote by
p̃(t, x, y) the heat kernel associated with the operator L = �α/2 +q; see Section 2.2 below
for more details. Our main result is as follows.

Theorem 1.1 For any δ ∈ (0, α), the Schrödinger operator L given by Eq. 1.1 has the heat
kernel p̃(t, x, y), which is jointly continuous on (0,∞)×Rd ×Rd , and satisfies two-sided
estimates as follows

p̃(t, x, y) ≈
(

1 ∧ |x|
t1/α

)δ (
1 ∧ |y|

t1/α

)δ (
t−d/α ∧ t

|x − y|d+α

)
, x, y ∈ Rd , t > 0.

(1.3)

We note that the last expression in Eq. 1.3 may be replaced by the heat kernel p(t, x, y)

of �α/2 (see Section 2.1 and Eq. 2.2). As pointed out before Lemma 2.3 below, the function
δ �→ κδ is strictly decreasing on (0, α) with limδ→0 κδ = 0 and limδ→α κδ = −∞. Hence,
Theorem 1.1 essentially gives us two-sided estimates and the joint continuity of heat kernel
associated with the operator �α/2 −λ|x|−α for all λ > 0. It is well known that the fractional
Laplacian �α/2 is the infinitesimal generator of the rotationally symmetric α-stable process,
which now has attracted a lot of interests in the field of probability and potential theory
(see [6] and references therein). Recently there are also a few works concerning on gradient
perturbations and Schrödinger perturbations of fractional Laplacian (see e.g. [9–12, 15, 16,
24, 27, 28, 33, 34]). In particular, according to [33, Theorem 3.4], when the potential belongs
to the so-called Kato class, heat kernel estimates for Schrödinger perturbations of fractional
Laplacian are comparable with these for fractional Laplacian (at least for any fixed finite
time). Note that q(x) = −λ|x|−α does not belong to the Kato class. As shown in Theorem
1.1, the heat kernel p̃(t, x, y) associated with the Schrödinger operator L given by Eq. 1.1
exhibits behaviour which is different from that of the case that q(x) = −λ|x|−γ with γ ∈
(0, α), which is in the Kato class. The study of heat kernel estimates for Schrödinger-type
perturbations by the Hardy potential of fractional Laplacian is much more delicate.

In the classical case α = 2, the Schrödinger-type perturbations by the Hardy potential
were considered for the first time by Baras and Goldstein [4]. They proved the existence
of nontrivial nonnegative solutions of the classical heat equation ∂t = � + κ|x|−2 in Rd

for 0 ≤ κ ≤ (d − 2)2/4, and nonexistence of such solutions, that is explosion, for bigger
constants κ . Sharp upper and lower bounds for the heat kernel of the Schrödinger operator
� + κ|x|−2 were obtained by Liskevich and Sobol [29, p. 365 and Examples 3.8, 4.5 and
4.10] for 0 < κ < (d − 2)2/4. Milman and Semenov proved the upper and lower bounds
for κ ≤ (d − 2)2/4, see [30, Theorem 1] and [31]. In this paper, they also allowed κ < 0
and obtained the sharp upper and lower bounds for the perturbed kernel (see [30, Theorem
2 and Corollary 4]). See [23] and the references therein for the recent works of this topic.
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For α ∈ (0, d ∧ 2) the Schrödinger operator L with κ ≥ 0 attains recently more and

more interest. In [1, 2] for κ > κ∗ := 2α�((d+α)/4)2

�((d−α)/4)2 the phenomenon of instantaneous
blow up of heat kernel was proven. In [5], the author gives the upper bound for the heat
kernel of L with the Dirichlet conditions on bounded open subsets of Rd . In the recent
paper [8], the following sharp estimates for the heat kernel p̃(t, x, y) of L were obtained.
For 0 ≤ κ ≤ κ∗, there is a unique constant δ ∈ [0, (d − α)/2] such that for all t > 0 and
x, y ∈ Rd

0 := Rd\{0},
p̃(t, x, y) ≈ (

1 + tδ/α|x|−δ
) (

1 + tδ/α|y|−δ
)
p(t, x, y). (1.4)

Note that since the singularity of the function Rd � x �→ κ|x|−α at the origin is critical,
p̃(t, x, y) is not comparable with the unperturbed kernel p(t, x, y). Like in Theorem 1.1,
the choice of κ influences the growth rate or the decay rate of the heat kernel at the origin.
This rate is represented by the function |x|−δ , where δ is connected with κ via the formula

κ = 2α�
(

α+δ
2

)
�

(
d−δ

2

)

�
(

δ
2

)
�

(
d−δ−α

2

) (compared with Eq. 1.2).

Remark 1.2 Theorem 1.1 and [8, Theorem 1.1] (the main result of [8]) can be stated

together as follows. For any −∞ < κ ≤ κ∗ = 2α�((d+α)/4)2

�((d−α)/4)2 , the heat kernel p̃(t, x, y)

corresponding to the Schrödinger operator �α/2 + κ|x|−α satisfies

p̃(t, x, y) ≈
(

1 + t1/α

|x|α
)δ (

1 + t1/α

|y|α
)δ

p(t, x, y), t > 0, x, y ∈ Rd
0 ,

where δ ∈ (−α, d−α
2

]
is uniquely determined by

κ = 2α�
(

α+δ
2

)
�

(
d−δ

2

)

�
(

δ
2

)
�

(
d−δ−α

2

) .

In this setting, Theorem 1.1 may be treated as both a fractional counterpart of the result
obtained in [30] and the extension of Eq. 1.4 to negative values of κ . Here, we would like
to point out one difference between the cases α = 2 and α < 2 for κ < 0. The general form
of the estimate in both cases is similar, i.e., the perturbed kernel p̃(t, x, y) is comparable
with the unperturbed kernel p(t, x, y) multiplied by some weighted functions. However, in
[30, Theorem 2 and Corollary 4], for α = 2, the exponent of the weighted function is equal

to δ =
√

(d−2)2−4κ−(d−2)

2 and converges to infinity as κ → −∞. In our case α < 2, as it
was mentioned below the statement of Theorem 1.1, δ → α for κ → −∞. Since q(x) =
κ|x|−α is negative and does not belong to any Kato class on Rd , the construction and proofs
of the estimates of p̃(t, x, y) are very delicate. In particular, we cannot use the perturbation
series (at least for large values of −κ) to construct p̃(t, x, y) as used in [7–9]. That is why
we will consider the Dirichlet fractional Laplacian operator �α/2 on Rd

0 = Rd \ {0} and via
the Feyman-Kac formula, we construct p̃(t, x, y) on (0,∞)×Rd

0 ×Rd
0 . Hence, the operator

L with negative values of κ also enjoys some probabilistic meaning. Roughly speaking, it is
connected with a symmetric α-stable process with killing in terms of the negative potential
κ|x|−α , which strongly affects the behaviour of p̃(t, x, y) for x and y near 0. It turns out that
due to the strong singularity of q(x) at 0, the heat kernel (or the transition density function)
p̃(t, x, y) is equal to 0 when x = 0 or y = 0. In consequence, the kernel p̃(t, x, y) defined
on (0,∞) × Rd

0 × Rd
0 may be continuously extended to (0,∞) × Rd × Rd .
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We note that Theorem 1.1 was proved independently in a very recent paper [17]. In the
proofs, the authors use generally probabilistic tools. In our paper we propose a different
method. Although the perturbed kernel p̃(t, x, y) is defined by the Feyman-Kac formula, in
the proofs we apply only analytical tools. For upper bounds, we generally use the Chapman-
Kolmogorov equation and the method of “self-improving estimates” (see the proofs of
Proposition 3.1 and Theorem 3.5, see also the proof of [25, Theorem 1.1]). Roughly speak-
ing, to show the inequality f (x) ≤ CF(x), we first show that f (x) ≤ g1(x) + c1F(x),
where g1(x) is in some sense small. Next, by plugging this estimate to the proper functional
inequality on f , we get the improved estimate of the form f (x) ≤ gn(x) + cnF (x), where
gn(x) → 0 as n → ∞ and supn∈N+ cn < ∞. By passing with n to infinity we obtain the
desired estimate. To obtain lower bounds we use the generally well known estimate from
Lemma 3.8 and upper bound estimates. Although the estimate from Lemma 3.8 is generally
well known, we couldn’t find the proper reference with the assumptions on the potential
satisfied by q(x). We note that the setting of [17] is more general than the present paper.
From the other side, we give more details about the kernel p̃(t, x, y), see e.g. Theorem 2.4.
We also note that in our paper we show the straightforward dependence between the expo-
nent δ and the potential q(x), while in [17, Theorem 3.9] this dependence, given by double
integral, is much more complicated.

The paper is organized as follows. In Section 2, we construct p̃(t, x, y) and prove some
basic properties of this kernel. In Section 3, we give the proof of Theorem 1.1. First, we
prove upper bounds in Theorem 3.5. Next, we show lower bounds in Theorem 3.13 and joint
continuity (Theorem 3.16). We end this section with short discussion on Dirichlet forms
associated with the Schrödinger operator L given by Eq. 1.1. Finally, in the Appendix, we
present the proof Lemma 3.8.

Throughout the paper, we write f ≈ g for f, g ≥ 0, if there is a constant c ≥ 1
such that c−1f ≤ g ≤ cf on their common domain. The constants c, C, ci , whose exact
values are unimportant, are changed in each statement and proof. Let B(x, r) be the open
ball with center x ∈ Rd and radius r > 0. As usual we write a ∧ b := min(a, b) and
a ∨ b := max(a, b).

2 Preliminary Estimates

2.1 Fractional Laplacian and Rotationally Symmetric α-Stable Lévy Process

Let

ν(z) = α2α−1�
(
(d + α)/2

)

πd/2�(1 − α/2)
|z|−d−α , z ∈ Rd . (2.1)

For (smooth and compactly supported) test function ϕ ∈ C∞
c (Rd), we define the fractional

Laplacian by

�α/2ϕ(x) = −(−�)α/2ϕ(x) := lim
ε↓0

∫

{|z|>ε}
[ϕ(x + z) − ϕ(x)] ν(z) dz , x ∈ Rd .

In terms of the Fourier transform (see [20, Section 1.1.2]), ̂�α/2ϕ(ξ) = −|ξ |αϕ̂(ξ). Denote
by p(t, x, y) the heat kernel (or the fundamental function) of �α/2 (or equivalently, the
transition density function of a (rotationally) symmetric α-stable Lévy process (Xt )t≥0). It

T. Jakubowski, J. Wang1000



is well known that p(t, x, y) is symmetric in the sense that p(t, x, y) = p(t, y, x) for any
t > 0 and x, y ∈ Rd , and enjoys the following scaling property

p(t, x, y) = t−d/αp(1, t−1/αx, t−1/αy), t > 0, x, y ∈ Rd .

Moreover,

p(t, x, y) ≈ t−d/α ∧ t

|x − y|d+α
, t > 0, x, y ∈ Rd . (2.2)

We also note that p(t, x, y) is a function of t and x − y, so sometimes we also write it as
p(t, x − y), i.e. p(t, x, y) = p(t, x − y). See [6] for more details.

2.2 Fractional Laplacian Schrödinger Operator and Feynman-Kac Formula

In this part, we apply some results from [19, Chapter 2] to the operator L = �α/2 +q given
by Eq. 1.1, where q(x) = κδ|x|−α < 0. Let Rd

0 := Rd\{0}. We first recall [19, Chapter 2,
Definition 2.1]. A nonnegative Borel measurable function V on Rd

0 is said to belong to the
Kato class Kα , if

lim
t→0

sup
x∈Rd

0

∫ t

0

∫

Rd
0

p(s, x, y)V (y) dy ds = 0.

A nonnegative Borel measurable function V on Rd
0 is said to belong to the local Kato class

Kα,loc, if V1D ∈ Kα for all compact subsets D of Rd
0 . A Borel measurable function V on

Rd
0 is said to belong to the Kato-Feller class, if its positive part V+ := max{V, 0} ∈ Kα and

its negative part V− := max{−V, 0} ∈ Kα,loc. (Different from [19], in the present setting
we start from the nonpositive definite operator �α/2 +q, and so we make the corresponding
changes in the definition of the Kato-Feller class.) It is easily seen from [8, Lemma 2.3] that
−q /∈ Kα , but always we have −q ∈ Kα,loc. In particular, q belongs to the Kato-Feller class.

In the following, we will restrict ourselves on the killed subprocess of the symmetric
α-stable Lévy process (Xt )t≥0 upon exiting Rd

0 (or hitting the origin), i.e.,

X
Rd

0
t :=

{
Xt, if t < τRd

0
,

0, if t ≥ τRd
0
,

where τRd
0

:= inf{t ≥ 0 : Xt /∈ Rd
0} = inf{t ≥ 0 : Xt = 0}. By the strong Markov property

of the process (Xt )t≥0, it is easy to see that the process (X
Rd

0
t )t≥0 has a transition density

(or Dirichlet heat kernel) pRd
0 (t, x, y), which enjoys the following relation with p(t, x, y):

pRd
0 (t, x, y) = p(t, x, y) − Ex

[
p(t − τRd

0
, Xτ

Rd
0
, y)1{t≥τ

Rd
0
}
]
, x, y ∈ Rd

0 .

According to [26, Theorem 1. c), p. 5–6; Theorem 3, p. 8] and the assumption that 0 < α <

d , Px(τRd
0

< ∞) = 0 for all x ∈ Rd
0 . Consequently,

pRd
0 (t, x, y) = p(t, x, y), t > 0, x, y ∈ Rd

0 . (2.3)

It is well known that for every t > 0 the function p(t, ·, ·) is continuous on Rd × Rd ,
and p(t, x, y) satisfies the following Chapman-Kolmogorov equation

p(t + s, x, y) =
∫

Rd

p(t, x, z)p(s, z, y) dz, t, s > 0, x, y ∈ Rd . (2.4)

A continuous function f on Rd
0 is said to belong to C∞

(
Rd

0

)
, if for every ε > 0 there is

a compact set K ⊂ Rd
0 such that |f (x)| ≤ ε for all x /∈ K . Regard L = �α/2 + q as the
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operator defined on C∞
(
Rd

0

)
; that is, we consider a negative perturbation of the fractional

Laplacian on Rd
0 (with the Dirichlet boundary condition at {0}). Therefore, according to

[19, Theorem 2.5], the operator L = �α/2+q generates a strongly continuous and positivity
preserving semigroup (P̃t )t≥0 on C∞(Rd

0), which is given by

P̃t f (x) =
∫

p̃(t, x, y)f (y) dy, f ∈ C∞
(
Rd

0

)
, x ∈ Rd

0 ,

where the kernel p̃(t, x, y) satisfies the Chapman-Kolmogorov equation too, i.e.,

p̃(t + s, x, y) =
∫

p̃(t, x, z)p̃(s, z, y) dz, t, s > 0, x, y ∈ Rd
0 . (2.5)

Additionally, for t > 0, we put p̃(t, x, y) = 0, whenever x = 0 or y = 0. Moreover,
(P̃t )t≥0 also acts as a strongly continuous semigroup in Lp(Rd

0 ; dx) for all 1 ≤ p < ∞,
and, in L2(Rd

0 ; dx) the semigroup (P̃t )t≥0 is self-adjoint. Meanwhile, (P̃t )t≥0 is given via
the Feynman-Kac formula:

P̃t f (x) = Ex

(

f
(
X

Rd
0

t

)
e
∫ t

0 q
(
X

Rd
0

s

)
ds

)

= Ex
(
f (Xt )e

∫ t
0 q(Xs) ds

)
, f ∈ C∞

(
Rd

0

)
, t > 0, x ∈ Rd

0 . (2.6)

We used here that Px(τRd
0

< ∞) = 0 for all x ∈ Rd
0 .

Due to q(x) < 0 on Rd
0 again, it follows from Eqs. 2.3 and 2.6 that

p̃(t, x, y) ≤ p(t, x, y), t > 0, x, y ∈ Rd .

Since (P̃t )t≥0 is self-adjoint in L2(Rd
0 ; dx),

p̃(t, x, y) = p̃(t, y, x), t > 0, x, y ∈ Rd .

According to [19, Propositions 5.2 and 5.3] and their proofs, p̃(t, x, y) will satisfy the
following Duhamel’s formula:

p̃(t, x, y) = p(t, x, y) +
∫ t

0

∫

Rd

p(t − s, x, z)q(z)p̃(s, z, y) dz ds

= p(t, x, y) +
∫ t

0

∫

Rd

p̃(t − s, x, z)q(z)p(s, z, y) dz ds (2.7)

for all t > 0 and x, y ∈ Rd
0 .

Next, we show that p̃(t, x, y) enjoys the same scaling property as p(t, x, y).

Lemma 2.1 For any t > 0 and x, y ∈ Rd ,

p̃(t, x, y) = t−d/αp̃(1, xt−1/α, yt−1/α).

Proof We only consider the case that x, y ∈ Rd
0 ; otherwise, the statement holds triv-

ially. Recall that for the symmetric α-stable process (Xt )t≥0, the processes (Xut )t≥0 and
(t1/αXu)t≥0 enjoy the same law for any fixed u > 0. For fixed t > 0, set X̂u = Xut for
u ≥ 0. Then, by Eq. 2.6, for any f ∈ C∞(Rd

0), t > 0 and x ∈ Rd
0 ,

P̃t f (x) = Ex
(
f (Xt )e

∫ t
0 q(Xs) ds

)
= Ex

(
f (X̂1)e

∫ t
0 q(X̂s/t ) ds

)
= Ex

(
f (X̂1)e

t
∫ 1

0 q(X̂u) du
)

= Et−1/αx
(
f (t1/αX1)e

t
∫ 1

0 q(t1/αXu) du
)

= Et−1/αx
(
f (t1/αX1)e

∫ 1
0 q(Xu) du

)
,
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where in the last equality we used the fact that q(x) = κδ|x|−α . Hence, the desired assertion
follows from the equality above.

2.3 Integral Analysis for Fractional Laplacian Schrödinger Operator

Lemma 2.2 Let β ∈ (0, 2). Then,

|x|β = 2d+βπd/2
�

(
d+β

2

)

�
(

d+β
α

) ∣
∣∣�

(−β
2

)∣
∣∣

∫ ∞

0
[p(t, 0) − p(t, x)]t d−α+β

α dt (2.8)

where �(−β/2) = ∫ ∞
0 t−1−β/2(e−t − 1) dt .

Proof We follow the method used in the proof of [7, Proposition 5]. First, let ηt (s) be the
density function of the distribution of the α/2-stable subordinator at time t . Let gt (x) =
(4πt)−d/2e−|x|2/(4t). Then,

p(t, x) =
∫ ∞

0
gs(x)ηt (s) ds.

By [7, (24)], for γ < d/2 − 1,
∫ ∞

0
gs(x)sγ ds = 4−γ−1π−d/2�(d/2 − γ − 1)|x|2γ−d+2.

Then, by integrating by parts, for d/2 − 1 < γ < d/2, we get
∫ ∞

0
(gs(0) − gs(x))sγ ds = (4π)−d/2

∫ ∞

0

(
1 − e− |x|2

4s

)
sγ−d/2 ds

= (4π)−d/2

γ + 1 − d/2

∫ ∞

0

|x|2
4s2

e− |x|2
4s sγ+1−d/2 ds

= |x|2
4(γ + 1 − d/2)

∫ ∞

0
gs(x)sγ−1 ds

= 4−γ−1π−d/2 �(d/2 − γ )

γ + 1 − d/2
|x|2γ−d+2.

Note that, for any γ > −1,
∫ ∞

0
tγ ηt (s) dt = �(γ + 1)

�
(

α(γ+1)
2

) s
α(γ+1)

2 −1,

see [7, (23)]. (Note that the condition that γ < d/α − 1 is not required in the proof of
[7, (23)].) We further obtain

∫ ∞

0
[p(t, 0) − p(t, x)]t d−α+β

α dt =
∫ ∞

0

∫ ∞

0
[gs(0) − gs(x)]ηt (s)t

d−α+β
α dt ds

=
�

(
d+β

α

)

�
(

d+β
2

)
∫ ∞

0
[gs(0) − gs(x)]s d+β−2

2 ds

= 2−d−βπ−d/2
�

(
d+β

α

)

�
(

d+β
2

)
�

(
2−β

2

)

β
2

|x|β .
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Since �
(

2−β
2

)
= −β

2 �
(
−β

2

)
, we get the assertion of the lemma.

We recall from [7, (25)] that for any β ∈ (0, d),

|x|−β = 2d−βπd/2
�

(
d−β

2

)

�
(

d−β
α

)
�

(
β
2

)
∫ ∞

0
p(t, x)t

d−α−β
α dt, x ∈ Rd . (2.9)

Thus, Eq. 2.8 may be treated as an extension of the formula (2.9) to negative β. Note that in
the proof of Eq. 2.8 we have to use a compensated kernel p(t, 0) to ensure convergence of
the integral involved.

Now, let β ∈ (0, α). By Eq. 2.9,

|x|β−α = 2d+β−απd/2
�

(
d+β−α

2

)

�
(

d+β−α
α

)
�

(
α−β

2

)
∫ ∞

0
p(t, x)t

d−2α+β
α dt .

On the other hand, let f (r) = cr(d−α+β)/α with

c = 2d+βπd/2
�

(
d+β

2

)

�
(

d+β
α

) ∣
∣∣�

(−β
2

)∣
∣∣
. (2.10)

Then, according to Eq. 2.8,

|x|β =
∫ ∞

0
[p(t, 0) − p(t, x)]f (t) dt . (2.11)

Combining two equations above together, we will find that

−κβ |x|−α =
∫ ∞

0 p(r, x)f ′(r) dr
∫ ∞

0 [p(r, 0) − p(r, x)]f (r) dr
,

where

κβ =
2α�

(
α−β

2

)
�

(
d+β

2

)

�
(−β

2

)
�

(
d+β−α

2

) .

In particular,

− κβ |x|β−α =
∫ ∞

0
p(r, x)f ′(r) dr . (2.12)

We note that κβ < 0 for any β ∈ (0, α) and limβ→α κβ = −∞. For convenience, let κ0 = 0.
Moreover, write

κβ = −
2α�

(
α−β

2

)
�

(
d+β

2

)
β
2

�
(

2−β
2

)
�

(
d+β−α

2

) ,

and let

r(t) = �
(

α
2 − t

)
�

(
d
2 + t

)

�
(

d−α
2 + t

)
�(1 − t)

, 0 < t < α/2.

Then, using the formula

�′(x)

�(x)
= −γ −

∞∑

k=0

(
1

x + k
− 1

1 + k

)
, x > 0
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with the Euler-Mascheroni constant γ (see [3, (1.2.13)]) and following the argument in the
end of the proof for [7, Proposition 5], one can check that r(t) is strictly increasing on
(0, α/2), and so β �→ κβ is strictly decreasing on (0, α).

Lemma 2.3 For β ∈ (0, α), t > 0 and x ∈ Rd , we have
∫

Rd

p(t, x, y)|y|β dy = |x|β − κβ

∫ t

0

∫

Rd

p(s, x, y)|y|β−α dy ds. (2.13)

Proof Let f (r) = cr(d−α+β)/α with the constant c given by Eq. 2.10. By Eqs. 2.12 and
2.11, for any t > 0 and x ∈ Rd ,

−κβ

∫ t

0

∫

Rd

p(s, x, y)|y|β−α dy ds =
∫ t

0

∫ ∞

0
p(s + r, x)f ′(r) dr ds

= −
∫ t

0

∫ ∞

0

∂

∂s
p(s + r, x)f (r) dr ds

=
∫ ∞

0
[p(r, x) − p(t + r, x)]f (r) dr

=
∫ ∞

0
[p(r, x) − p(r, 0) + p(r, 0)−p(t + r, x)]f (r) dr

= −|x|β +
∫ ∞

0

∫

Rd

p(t, x, y)[p(r, 0)−p(r, y)]f (r) dy dr

= −|x|β +
∫

Rd

p(t, x, y)|y|β dy,

where in the second equality we used the fact that

lim
r→∞ p(s + r, x)f (r) ≤ c1 lim

r→∞(s + r)−d/αf (r) = 0.

This completes the proof.

Set hβ(x) = |x|β . Letting t → 0 in Eq. 2.13, informally it holds that

(�α/2 + κβ |x|−α)hβ(x) = 0 (2.14)

for all x ∈ Rd . That is, the function hβ is harmonic with respect to the operator �α/2 +
κβ |x|−α .

From now, we will fix δ ∈ (0, α), and write κδ as κ for simplicity. The following theorem
is an analog of [8, Theorem 3.1]. Since there is no problem with convergence of the integrals
involved, the proof is much simpler than that of [8, Theorem 3.1].

Theorem 2.4 For β ∈ (0, α), t > 0 and x ∈ Rd , we have
∫

Rd

p̃(t, x, y)|y|β dy = |x|β + (κ − κβ)

∫ t

0

∫

Rd

p̃(s, x, y)|y|β−α dy ds. (2.15)

In particular, for any t > 0 and x ∈ Rd ,
∫

Rd

p̃(t, x, y)|y|δ dy = |x|δ . (2.16)
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The assertion (2.16) states that hδ(x) = |x|δ is an invariant function for the semigroup
(P̃t )t≥0 and so it is harmonic, which justifies (2.14) rigorously. On the other hand, note that
Eq. 2.14 implies that

[�α/2 + κ|x|−α]hβ(x) = (κ − κβ)|x|β−α, x ∈ Rd .

From this one can deduce (2.15) informally (but directly) via the Feynman-Kac semigroup
associated with �α/2 + κ|x|−α .

Proof of Theorem 2.4 When x = 0, both sides of Eqs. 2.15 and 2.16 are equal to zero, since
p̃(t, 0, y) = 0 for all t > 0 and y ∈ Rd . Below, we consider the case that x ∈ Rd

0 . By
Eqs. 2.7 and 2.13, for any t > 0 and x ∈ Rd

0 ,

−κβ

∫ t

0

∫

Rd

p̃(s, x, y)|y|β−α dy ds

= −κβ

∫ t

0

∫

Rd

p(s, x, y)|y|β−α dy ds

−κβ

∫ t

0

∫

Rd

∫ t

u

∫

Rd

p̃(u, x, z)q(z)p(s − u, z, y)|y|β−α dz du dy ds

= −|x|β +
∫

Rd

p(t, x, y)|y|β dy

−
∫ t

0

∫

Rd

p̃(u, x, z)q(z)

(
|z|β −

∫

Rd

p(t − u, z, y)|y|βdy

)
dz du.

Hence, according to Eq. 2.7 again, for any t > 0 and x ∈ Rd
0 ,

−(κβ − κ)

∫ t

0

∫

Rd

p̃(s, x, y)|y|β−α dy ds = −|x|β +
∫

Rd

p(t, x, y)|y|β dy

+
∫

Rd

(p̃(t, x, y) − p(t, x, y))|y|β dy

= −|x|β +
∫

Rd

p̃(t, x, y)|y|β dy,

which proves (2.15). Now, Eq. 2.16 follows by taking β = δ. The proof is complete.

Although the following lemma is not used in the proofs, we state it as one of the results.
From this lemma we see that the right-hand side of Eq. 2.17 behaves near 0 as − log |x|.

Lemma 2.5 For any t > 0 and x ∈ Rd , it holds that

C

∫

Rd

p̃(t, x, y)|y|δ(log |y| − log |x|) dy =
∫ t

0

∫

Rd

p̃(s, x, y)|y|δ−α dy ds, (2.17)

where

C := lim
β→δ

δ − β

κβ − κ
> 0.
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Proof By Eq. 2.15, Eq. 2.16 and the dominated convergence theorem,
∫ t

0

∫

Rd

p̃(s, x, y)|y|δ−α dy ds = lim
β→δ

1

κβ − κ

∫

Rd

p̃(t, x, y)|y|δ(|x|β−δ − |y|β−δ) dy

= C

∫

Rd

p̃(t, x, y)|y|δ(log |y| − log |x|) dy,

proving the desired assertion.

3 Two-Sided Estimates and Joint Continuity of p̃(t, x, y)

3.1 Upper Bounds of p̃(1, x, y)

For any t > 0 and x ∈ Rd , define

H(t, x) =
∫

Rd

p̃(t, x, y) dy.

Note that, by Lemma 2.1, for all t > 0 and x ∈ Rd , we have

H(t, x) =
∫

Rd

t−d/αp̃(1, t−1/αx, t−1/αy) dy = H(1, t−1/αx). (3.1)

On the other hand, by the fact 0 ≤ p̃(t, x, y) ≤ p(t, x, y) for any t > 0 and x, y ∈ Rd , it
also holds that

0 ≤ H(t, x) ≤
∫

Rd

p(t, x, y) dy = 1, t > 0, x ∈ Rd . (3.2)

Proposition 3.1 There is a constant C > 0 such that for all x ∈ Rd ,

H(1, x) ≤ C(1 ∧ |x|δ).

Proof By the Chapman-Kolmogorov Eq. 2.5 (which holds true for all x, y ∈ Rd ) and
Eq. 3.1, for any x, y ∈ Rd ,

p̃(1, x, y) =
∫

Rd

∫

Rd

p̃(1/3, x, z)p̃(1/3, z, w)p̃(1/3, w, y) dw dz

≤
∫

Rd

∫

Rd

p̃(1/3, x, z) · c · p̃(1/3, w, y) dw dz

= cH(1/3, x)H(1/3, y) = cH(1, 31/αx)H(1, 31/αy), (3.3)

where the constant c comes from the estimate p̃(1/3, x, y) ≤ p(1/3, x, y) ≤ c.
Denote by |B(0, r)| the Lebesgue measure of B(0, r). Fix r > 0 small enough such that

η := c|B(0, r)| < 3−δ/α . According to Eqs. 2.16, 3.3 and 3.2, for any x ∈ Rd , we have

H(1, x) ≤
∫

B(0,r)

p̃(1, x, y) dy + 1

rδ

∫

B(0,r)c
p̃(1, x, y)|y|δ dy

≤
∫

B(0,r)

p̃(1, x, y) dy + M|x|δ ≤
∫

B(0,r)

cH(1, 31/αx) dy + M|x|δ,

= ηH(1, 31/αx) + M|x|δ, (3.4)
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where M = r−δ . Now, we can iterate the inequality (3.4) to obtain that for all x ∈ Rd ,

H(1, x) ≤ ηH(1, 31/αx) + M|x|δ
≤ η

[
ηH(1, 32/αx) + M|31/αx|δ

]
+ M|x|δ

≤ η2
[
ηH(1, 33/αx) + M|32/αx|δ

]
+ M(1 + η3δ/α)|x|δ

≤ · · ·
≤ ηnH(1, 3n/αx) + M[1 + η3δ/α + · · · + (η3δ/α)n−1]|x|δ .

By Eq. 3.2, taking n → ∞ in the inequality above, we get that for any x ∈ Rd ,

H(1, x) ≤ M

1 − η3δ/α
|x|δ,

yielding the desired assertion.

Applying Proposition 3.1 to Eq.3.3, we immediately get

Corollary 3.2 There is a constant C > 0 such that

p̃(1, x, y) ≤ C(1 ∧ |x|δ)(1 ∧ |y|δ), x, y ∈ Rd .

Next, we further refine upper bounds for p̃(t, x, y).

Lemma 3.3 For any t > 0 and x, y ∈ Rd , we have
∫

B(y,|x−y|/2)

p(t, x, z)p(t, z, y) dz ≤ p(2t, x, y)

2
.

Proof Fix t > 0 and x, y ∈ Rd . By symmetry,
∫

B(y,|x−y|/2)

p(t, x, z)p(t, z, y) dz =
∫

B(x,|x−y|/2)

p(t, x, z)p(t, z, y) dz.

Hence, by Eq. 2.4,

2
∫

B(y,|x−y|/2)

p(t, x, z)p(t, z, y) dz

=
∫

B(y,|x−y|/2)

p(t, x, z)p(t, z, y) dz +
∫

B(x,|x−y|/2)

p(t, x, z)p(t, z, y) dz

≤
∫

Rd

p(t, x, z)p(t, z, y) dz = p(2t, x, y).

This completes the proof.

Lemma 3.4 There exists a constant M > 0 such that for any t > 0 and x, y ∈ Rd , we have

p̃(t, x, y) ≤
∫

B(y,|x−y|/2)

p̃(t/2, x, z)p̃(t/2, z, y) dz + Mh(t, x)p(t, x, y),

where h(t, x) = t−δ/α|x|δ .
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Proof By Eq. 2.5, for any t > 0 and x, y ∈ Rd , we have

p̃(t, x, y) =
∫

B(y,|x−y|/2)

p̃(t/2, x, z)p̃(t/2, z, y) dz

+
∫

B(y,|x−y|/2)c
p̃(t/2, x, z)p̃(t/2, z, y) dz.

Note that, according to Eq. 3.1 and Proposition 3.1,
∫

Rd

p̃(t, x, y) dy = H(t, x) = H(1, t−1/αx) ≤ ch(t, x), t > 0, x ∈ Rd .

For t > 0 and x, y, z ∈ Rd with z ∈ B(y, |x − y|/2)c, we have

p̃(t/2, z, y) ≤ p(t/2, z, y) ≤ c1p(t, x, y).

Hence, for any t > 0 and x, y ∈ Rd ,
∫

B(y,|x−y|/2)c
p̃(t/2, x, z)p̃(t/2, z, y) dz ≤ c1p(t, x, y)

∫

B(y,|x−y|/2)c
p̃(t/2, x, z) dz

≤ cc1h(t/2, x)p(t, x, y)

≤ Mh(t, x)p(t, x, y),

thus we get the assertion of the lemma.

Theorem 3.5 (Upper bounds) There is a constant C > 0 such that for all x, y ∈ Rd ,

p̃(1, x, y) ≤ C(1 ∧ |x|δ)(1 ∧ |y|δ)p(1, x, y). (3.5)

Proof Let η = 1/2 and ν = 2(δ−α)/α < 1. As in Lemma 3.4, denote h(t, x) = t−δ/α|x|δ .
Note that

ηh(t/2, x) = 1
2 |(t/2)−1/αx|δ = 2(δ−α)/α|t−1/αx|δ = νh(t, x), t > 0, x ∈ Rd . (3.6)

Let M be the constant from Lemma 3.4. We will claim that for n ≥ 0,

p̃(t, x, y) ≤ [ηn+1 + (1 + ν + . . . + νn)Mh(t, x)]p(t, x, y), t > 0, x, y ∈ Rd . (3.7)

Indeed, for t ∈ (0, 1] and x, y ∈ Rd , by Lemmas 3.3 and 3.4,

p̃(t, x, y) ≤ [η + Mh(t, x)]p(t, x, y),

where we used the fact p̃(t, x, y) ≤ p(t, x, y) for any t > 0 and x, y ∈ Rd . Next, we use
induction. Suppose that

p̃(t, x, y) ≤ [ηn + (1 + ν + . . . + νn−1)Mh(t, x)]p(t, x, y), t > 0, x, y ∈ Rd .

Then, for any t > 0 and x, y ∈ Rd , by Lemmas 3.4, 3.3 and Eq. 3.6,

p̃(t, x, y) ≤
∫

B(y,|x−y|/2)

p̃(t/2, x, z)p(t/2, z, y) dz + Mh(t, x)p(t, x, y)

≤
∫

B(y,|x−y|/2)

[ηn + (1 + ν + . . .+ νn−1)Mh(t/2, x)]p(t/2, x, z)p(t/2, z, y) dz

+Mh(t, x)p(t, x, y)

≤ [ηn + (1 + ν + . . . + νn−1)Mh(t/2, x)]ηp(t, x, y) + Mh(t, x)p(t, x, y)

≤ [ηn+1 + (ν + . . . + νn)Mh(t, x)]p(t, x, y) + Mh(t, x)p(t, x, y)

= [ηn+1 + (1 + ν + . . . + νn)Mh(t, x)]p(t, x, y),
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and Eq. 3.7 follows. Since h(1, x) = |x|δ , by letting n to infinity in Eq. 3.7, we get

p̃(1, x, y) ≤ M

1 − ν
|x|δp(1, x, y), x, y ∈ Rd . (3.8)

In the following, we pass to the proof of Eq. 3.5. By symmetry, we may and do assume
that |x| ≤ |y|. For x, y ∈ Rd with |y| ≥ |x| ≥ 1, Eq. 3.5 follows by the estimate
p̃(1, x, y) ≤ p(1, x, y). For |x| ≤ |y| ≤ 1, we use Corollary 3.2 and the estimate that
p(1, x, y) ≥ c. Finally, for |x| < 1 ≤ |y|, Eq. 3.5 follows by Eq. 3.8.

3.2 Lower Bounds of p̃(1, x, y)

We first begin with the following lemma, which is a consequence of Theorem 3.5.

Lemma 3.6 There is a constant C > 0 such that

H(1, x) ≥ C(1 ∧ |x|δ), x ∈ Rd .

Proof Let R > 0 and x ∈ B(0, R/2). Then
∫

B(0,R)c
|y|δp(1, x, y) dy ≤ c1

∫

B(0,R)c

|y|δ
|y|d+α

dy = c2R
δ−α → 0 as R → ∞.

Choose R ≥ 1 be such that c2CRδ−α ≤ 1/2, where C is the constant given in Eq. 3.5.
Then, by Eq. 2.16, for r ≥ R ≥ 1 and x ∈ B(0, r/2), we have

∫

Rd

p̃(1, x, y) dy ≥ r−δ

∫

B(0,r)

p̃(1, x, y)|y|δ dy

= r−δ

(
|x|δ −

∫

B(0,r)c
p̃(1, x, y)|y|δ dy

)

≥ r−δ

(
|x|δ − C

∫

B(0,r)c
|x|δp(1, x, y)|y|δ dy

)
≥ |x|δ

2rδ
. (3.9)

Hence, for x ∈ B(0, R/2), by Eq. 3.9,
∫

Rd

p̃(1, x, y) dy ≥ |x|δ
2Rδ

≥ |x|δ ∧ 1

2Rδ
;

for x ∈ B(0, R/2)c, taking r = 2|x| + 1 in Eq. 3.9, we can get that
∫

Rd

p̃(1, x, y)dy ≥ |x|δ
2(2|x| + 1)δ

≥ |x|δ
2(4|x|)δ ≥ 1

4δ+1
.

Combining both estimates above, we can prove the desired assertion.

To obtain lower bounds of p̃(t, x, y), we need to consider the difference between
p(t, x, y) and p̃(t, x, y). Motivated by Duhamel’s formula (2.7), we define

p1(t, x, y) =
∫ t

0

∫

Rd

p(t − s, x, z)|z|−αp(s, z, y) dz ds, t > 0, x, y ∈ Rd
0 .

It is easy to see that p1(t, x, y) also enjoys the same scaling property as p(t, x, y), i.e.,

p1(t, x, y) = t−d/αp1(1, xt−1/α, yt−1/α), t > 0, x, y ∈ Rd
0 . (3.10)
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Let

G(t, x) =
∫ t

0

∫

Rd

p(s, x, z)|z|−α dz ds, t > 0, x ∈ Rd
0 .

By [8, Lemma 2.3],

G(t, x) ≈ log(1 + t |x|−α), t > 0, x ∈ Rd
0 . (3.11)

Lemma 3.7 For all x, y ∈ Rd
0 , we have

p1(1, x, y) ≈ [G(1, x) + G(1, y)]p(1, x, y).

Proof By the 3P inequality (see [10, (9)] or [16, (2.11)]), for any x, y ∈ Rd
0 ,

∫ 1

0

∫

Rd

p(1 − s, x, z)|z|−αp(s, z, y) dz ds

≤ c1p(1, x, y)

∫ 1

0

∫

Rd

(p(1 − s, x, z) + p(s, z, y))|z|−α dz ds

= c1(G(1, x) + G(1, y))p(1, x, y) ,

thus we get the upper bound.
Now, we pass to the lower bound. Since the function |x| �→ log(1 + |x|−α) is decreasing

in |x|, by Eq. 3.11 and the symmetry of p(t, x, y) and p1(t, x, y), it suffices to prove

p1(1, x, y) ≥ c2G(1, x)p(1, x, y), 0 < |x| ≤ |y|.
First, let |x| < 2. Then, by Eq. 2.2,

∫ 1/2

0

∫

B(0,3)

p(s, x, z)
1

|z|α dz ds ≥
∫ 1/2

0

∫

B(x,s1/α)

p(s, x, z)
1

|z|α dz ds

≥ c0 ≥ c0

∫ 1/2

0

∫

B(0,3)c
p(s, x, z)

1

|z|α dz ds

and so
∫ 1/2

0

∫

Rd

p(s, x, z)
1

|z|α dz ds ≈
∫ 1/2

0

∫

B(0,3)

p(s, x, z)
1

|z|α dz ds.

Hence, for any |x| < 2 and |y| > 4,

p1(1, x, y) ≥
∫ 1/2

0

∫

B(0,3)

p(s, x, z)
1

|z|α p(1 − s, z, y) dz ds

≈
∫ 1/2

0

∫

B(0,3)

p(s, x, z)
1

|z|α p(1, x, y) dz ds

≈
∫ 1/2

0

∫

Rd

p(s, x, z)
1

|z|α p(1, x, y) dz ds

= G(1/2, x)p(1, x, y) ≈ G(1, x)p(1, x, y), (3.12)

where in the second step we used the fact that

p(1 − s, z, y) ≈ p(1, x, y), 0 < s ≤ 1/2, |x| < 2, |z| ≤ 3, |y| > 4.

Heat Kernel Estimates of Fractional Schrödinger Operators... 1011



Next, suppose that |x| ≤ 1 and |x| ≤ |y| ≤ 4. Then, p(1, x, y) ≈ c. Note that
∫

Rd

p1(t, x, z)p(r, z, y) dz =
∫

Rd

∫ t

0

∫

Rd

p(s, x,w)|w|−αp(t − s, w, z)p(r, z, y) dw ds dz

=
∫ t

0

∫

Rd

p(s, x,w)|w|−αp(t + r − s, w, y) dw ds

≤ p1(t + r, x, y) .

Hence, by the scaling property of p1(t, x, y) and Eq. 3.12,

p1(1, x, y) ≥
∫

B(0,8)c
p1(1/2α, x, z)p(1 − 1/2α, z, y) dz

=
∫

B(0,8)c
2dp1(1, 2x, 2z)p(1 − 1/2α, z, y) dz

≥ c3G(1, 2x)

∫

B(0,8)c
p(1, 2x, 2z)p(1 − 1/2α, z, y) dz

≥ c4G(1, x) ≥ c5G(1, x)p(1, x, y),

where in the third inequality we used the fact that
∫

B(0,8)c
p(1, 2x, 2z)p(1 − 1/2α, z, y) dz ≥ c6

∫

B(0,8)c

1

|z − x|d+α|z − y|d+α
dz

≥ c7

∫

B(0,8)c

1

|z|2d+2α
dz ≥ c8.

At last, suppose that 1 ≤ |x| ≤ |y|. Then G(1, x) ≈ |x|−α . Hence,

p1(1, x, y) ≥
∫ 1/2

0

∫

B(|x|,1/2)

p(s, x, z)
1

|z|α p(1 − s, z, y) dz ds

≥ c9

∫ 1/2

0

∫

B(|x|,1/2)

p(s, x, z)
1

|x|α p(1 − s, z, y) dz ds

≥ c10G(1, x)p(1, x, y),

where the last inequality follows from the facts that

p(1 − s, z, y) ≈ p(1, x, y), 0 < s < 1/2, z ∈ B(x, 1/2), 1 ≤ |x| ≤ |y|
and ∫ 1/2

0

∫

B(|x|,1/2)

p(s, x, z) dz ds ≥ c11.

The proof is complete.

The following estimate is generally well known (see e.g. [9, Section 6] for further
background).

Lemma 3.8 For all t > 0 and x, y ∈ Rd
0 , we have

p̃(t, x, y) ≥ p(t, x, y) exp

[
κ

p1(t, x, y)

p(t, x, y)

]
.

Proof Since the proof is a little long, we will postpone it to the Appendix.
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We note that the estimate in Lemma 3.8 is not sharp. More precisely, one may show

that lim
s→0+

p1(1,sx,y)
− log(s|x|)p(1,sx,y)

= �
(

d−α
2

)

2α−1�( α
2 )�

(
d
2

) . Hence, by Eq. 1.3, for fixed y �= 0,

p̃(1, x, y)e
−κ

p1(1,x,y)

p(1,x,y) → ∞ as x → 0. However, we still can get the following useful
estimate.

Corollary 3.9 There are constants c, γ > 0 such that for all t > 0 and x, y ∈ Rd
0 , we have

p̃(t, x, y) ≥ c
[
1 ∧ (t−1/α|x|)γ

] [
1 ∧ (t−1/α|y|)γ

]
p(t, x, y) (3.13)

Proof Lemmas 3.7 and 3.8 along with Eq. 3.11 yield that for any x, y ∈ Rd
0 ,

p̃(t, x, y) ≥ p(t, x, y) exp

[
κ

p1(t, x, y)

p(t, x, y)

]

≥ p(t, x, y) exp [−c(G(t, x) + G(t, y))]

≥ p(t, x, y) exp
[−C(log(1 + t |x|−α) + log(1 + t |y|−α))

]

= p(t, x, y)
[
(1 + t |x|−α)−C

] [
(1 + t |y|−α)−C

]

≥ p(t, x, y)
[
2−C(1 ∨ t |x|−α)−C

] [
2−C(1 ∨ t |y|−α)−C

]
,

thus we get Eq. 3.13 with γ = αC and c = 4−C .

Lemma 3.10 For any r > 0, there is a constant Cr > 0 such that for all x, y ∈ Rd with
|x| ∧ |y| ≥ r ,

p̃(1, x, y) ≥ Crp(1, x, y).

Proof For r > 0 and x, y ∈ Rd with |x| ∧ |y| ≥ r , by Eq. 3.13, we get

p̃(1, x, y) ≥ c(1 ∧ r)2γ p(1, x, y),

where c and γ are the constants from Corollary 3.9.

Lemma 3.11 For any R > 0, there is a constant CR > 0 such that for any x, y ∈ Rd with
|x| ∨ |y| ≤ R,

p̃(1, x, y) ≥ CR|x|δ|y|δ .

Proof By Eq. 3.9, there exists a constant R0 ≥ 2 · 31/α large enough such that for all
x ∈ B(0, R0/2),

∫

B(0,R0)

p̃(1, x, y) dy ≥ R−δ
0

∫

B(0,R0)

p̃(1, x, y)|y|δ dy ≥ |x|δ
2Rδ

0

.

On the other hand, by Eq. 3.5, for all r0 > 0 and x ∈ Rd ,
∫

B(0,r0)

p̃(1, x, y) dy ≤ C1|x|δ
∫

B(0,r0)

p(1, x, y)|y|δ dy ≤ C1|x|δrδ
0 .
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We take r0 = 1
(4C1)

1/δR0
. For 0 < a < b < ∞, let D(a, b) = B(0, b) \ B(0, a). Then, for

|x| < R0/2,
∫

D(r0,R0)

p̃(1, x, z)dz ≥ |x|δ
(

1

2Rδ
0

− C1r
δ
0

)

= |x|δ
4Rδ

0

. (3.14)

Therefore, by Eqs. 2.5 and 3.14, for all x, y ∈ Rd with |x| ∨ |y| ≤ R0/2,

p̃(3, x, y) ≥
∫

D(r0,R0)

∫

D(r0,R0)

p̃(1, x, z)p̃(1, z, w)p̃(1, w, y) dz dw

≥ |x|δ|y|δ
16R2δ

0

inf
z,w∈D(r0,R0)

p̃(1, z, w).

Next, by Lemma 3.10,

inf
z,w∈D(r0,R0)

p̃(1, z, w) ≥ Cr0 inf
z,w∈D(r0,R0)

p(1, z, w) ≥ cCr0

(2R0)d+α
> 0, (3.15)

where Cr0 > 0 is a constant given in Lemma 3.10. Hence,

p̃(3, x, y) ≥ c0|x|δ|y|δ, |x| ∨ |y| < R0/2.

Now, by the scaling property of p̃, we obtain

p̃(1, x, y) = 3−d/αp̃(3, 3−1/αx, 3−1/αy) ≥ c03−(d+2δ)/α|x|δ|y|δ, |x| ∨ |y| ≤ R0

2 · 31/α
.

This completes the proof.

Remark 3.12 Instead of applying Lemma 3.10, we can make use of the Feynman-Kac for-
mula (2.6) for the semigroup (P̃t )t≥0 and Dirichlet heat kernel estimates for fractional
Laplacian obtained in [14] to achieve (3.15).

Theorem 3.13 (Lower bounds) There is a constant C > 0 such that for all x, y ∈ Rd ,

p̃(1, x, y) ≥ C(1 ∧ |x|δ)(1 ∧ |y|δ)p(1, x, y).

Proof By symmetry, we will consider only |x| ≤ |y|. For |w1| ≤ 1/4, |w2| > 1 and
1/4 ≤ |z| ≤ 1/2, by Lemmas 3.10 and 3.11, we have

p̃(1, w1, z) ≥ c1|w1|δ
and

p̃(1, w2, z) ≥ c2p(1, w2, z) ≈ p(2, w2, z) ≈ p(2, w2, w1).

Hence, for any |w1| ≤ 1/4 and |w2| > 1,

p̃(2, w1, w2) ≥
∫

B(0,1/2)\B(0,1/4)

p̃(1, w1, z)p̃(1, z, w2) dz ≥ c|w1|δp(2, w1, w2).

(3.16)
Therefore, for |x| ≤ 2−1/α/4 and |y| > 2−1/α , by Eq. 3.16,

p̃(1, x, y) = 2d/αp̃(2, 21/αx, 21/αy) ≥ c2d/α|21/αx|δp(2, 21/αx, 21/αy)

= c2δ/α|x|δp(1, x, y).

Next, for |x| ∧ |y| ≥ 2−1/α/4, we use Lemma 3.10. Finally, for |x| ∨ |y| ≤ 2−1/α , we apply
Lemma 3.11.
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Two-sided estimates for p̃(t, x, y) stated in Theorem 1.1 is a direct consequence of the
scaling property of p̃(t, x, y) and Theorems 3.5 and 3.13.

3.3 Joint Continuity of p̃(t , x, y)

To prove the joint continuity of p̃(t, x, y), we just follow the same argument of [8, Subsec-
tion 4.3]. For the sake of completeness, we present the proof here.

Lemma 3.14 For any fixed x ∈ Rd
0 , the function Rd

0 � y �→ p̃(t, x, y) is continuous.

Proof Fix x, y, z ∈ Rd
0 with z → y. Then, by Eq. 2.7,

p̃(1, x, y) − p̃(1, x, z) = p(1, x, y) − p(1, x, z)

+
∫ 1

0

∫

Rd

p̃(1 − s, x,w)q(w)(p(s,w, y) − p(s,w, z)) dw ds.

For any ε > 0 small enough, by Eq. 3.11,

−
∫ ε

0

∫

Rd

p̃(1 − s, x,w)q(w)p(s,w, y) dw ds

≤ −
∫ ε

0

∫

Rd

p(1 − s, x,w)q(w)p(s,w, y) dw ds

≤ −c1

∫ ε

0

∫

Rd

p(s, w, y)q(w) dw ds

= −κc1G(ε, y) ≤ c2ε|y|−α . (3.17)

Similarly, we have

−
∫ ε

0

∫

Rd

p̃(1 − s, x, w)q(w)p(s,w, z) dw ds ≤ c2ε|z|−α .

For any ε ≤ s ≤ 1 and w, y, z ∈ Rd with z → y, we have p(s,w, y) � p(s,w, z). By
the dominated convergence theorem, it holds that

∫ 1

ε

∫

Rd

p̃(1 − s, x,w)q(w)(p(s,w, y) − p(s,w, z)) dw ds → 0, z → y.

Combining with all the estimates above, we prove the desired assertion.

Proposition 3.15 The function p̃(t, x, y) is jointly continuous with respect to t > 0 and
x, y ∈ Rd

0 .

Proof By the scaling property of p̃(t, x, y), it suffices to show the continuity of p̃(1, x, y)

with respect to x, y ∈ Rd
0 . As indicated in the proof of Lemma 3.14, we only need to verify

that

−
∫ 1

0

∫

Rd

|p̃(1 − s, x̃, w)p(s,w, ỹ) − p̃(1 − s, x,w)p(s,w, y)|q(w) dw ds → 0

for any x, y, x̃, ỹ ∈ Rd
0 with x̃ → x and ỹ → y.
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In addition to Eq. 3.17, we have

−
∫ 1

1−ε

∫

Rd

p̃(1 − s, x,w)q(w)p(s,w, y) dw ds

= −
∫ ε

0

∫

Rd

p̃(s, x,w)q(w)p(1 − s, w, y) dw ds

≤ −
∫ ε

0

∫

Rd

p(s, x,w)q(w)p(1 − s, w, y) dw ds

≤ c1ε|x|−α .

For any ε < s < 1 − ε and x, y, z, x̃, ỹ ∈ Rd
0 with x → x̃ and y → ỹ,

p(s, z, ỹ) ≈ p(s, z, y), and p̃(1 − s, x̃, z) ≈ p(1 − s, x, z), thanks to Lemma 3.14. Then,
by the dominated convergence theorem, it holds that

−
∫ 1−ε

ε

∫

Rd

|p̃(1 − s, x̃, w)p(s,w, ỹ) − p̃(1 − s, x,w)p(s,w, y)|q(w) dw ds → 0

for any x, y, x̃, ỹ ∈ Rd
0 with x̃ → x and ỹ → y.

Hence, according to all the estimates above, we prove the desired assertion.

Theorem 3.16 (Joint continuity) The function p̃(t, x, y) is jointly continuous with respect
to t > 0 and x, y ∈ Rd .

Proof According to Proposition 3.15 and the scaling property of p̃(t, x, y), we only need to
verify that p(1, x, y) is jointly continuous with respect to x, y ∈ Rd when x = 0 or y = 0.
Since p̃(1, x, y) = 0 when x = 0 or y = 0, the desired assertion for the joint continuity is
a direct consequence of the fact that p̃(1, x, y) ≥ 0 and two-sided estimates for p̃(1, x, y)

on Rd
0 × Rd

0 .

3.4 Dirichlet Forms

Finally, we discuss the Dirichlet form associated with the Schrödinger operator L given
by Eq. 1.1; see [21] for the theory of Dirichlet forms. According to [19, Theorem
2.5], the Feynman-Kac semigroup (P̃t )t≥0 in L2(Rd

0 ; dx) coincides with the semigroup

corresponding to Ẽ with the domain

D(Ẽ ) =
{
f ∈ L2(Rd

0 ; dx) :
∫∫

Rd
0 ×Rd

0

(f (x) − f (y))2

|x − y|d+α
dx dy +

∫

Rd
0

f 2(x)|q(x)| dx < ∞
}

and defined by

Ẽ (f, g) = 1

2

∫∫

Rd
0×Rd

0

(f (x) − f (y))(g(x) − g(y))ν(x − y) dx dy

+
∫

Rd
0

f (x)g(x)|q(x)| dx
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for any f, g ∈ D(Ẽ ), where ν is defined by Eq. 2.1. Clearly, the quadratic form (Ẽ ,D(Ẽ ))

is equivalently given by

Ẽ (f, g) = 1

2

∫∫

Rd×Rd

(f (x) − f (y))(g(x) − g(y))ν(x − y) dx dy

+
∫

Rd

f (x)g(x)|q(x)| dx,

D(Ẽ ) =
{
f ∈ L2(Rd ; dx) : Ẽ (f, f ) < ∞

}
,

which are extended to be defined on L2(Rd ; dx).

Proposition 3.17 (Ẽ ,D(Ẽ )) is a symmetric regular Dirichlet form on L2(Rd ; dx) with
core C∞

c (Rd).

Proof Define

E (f, g) = 1

2

∫∫

Rd×Rd

(f (x) − f (y))(g(x) − g(y))ν(x − y) dx dy, f, g ∈ D(E )

and
D(E ) =

{
f ∈ L2(Rd ; dx) : E (f, f ) < ∞

}
.

Then, (E ,D(E )) is a symmetric Dirichlet form on L2(Rd ; dx) associated with fractional
Laplacian; moreover, C∞

c (Rd) ⊂ D(�α/2) (here D(�α/2) denotes the L2-domain of �α/2

on L2(Rd ; dx)) and (E ,D(E )) is regular with core C∞
c (Rd); see [13, Section 2.2.2] for

more details. On the other hand, due to α < d , we can verify that
∫

Rd

f (x)2|q(x)| dx < ∞, f ∈ C∞
c (Rd).

In particular, C∞
c (Rd) ⊂ D(�α/2) ∩ L2(Rd ; |q(x)| dx) ⊂ D(Ẽ ).

It is easy to prove that (Ẽ ,D(Ẽ )) is a symmetric Dirichlet form on L2(Rd ; dx). Next,

we claim that C∞
c (Rd) is dense in D(Ẽ ) with the norm

√
Ẽ + ‖ · ‖L2(Rd ;dx). According

to the Hardy inequality for fractional Laplacian (see [7, Proposition 5]), there is a constant
C0 > 0 such that for all f ∈ L2(Rd ; dx),

∫

Rd

f 2(x)|q(x)| dx ≤ C0E (f, f ).

Thus, the norms
√

Ẽ +‖ · ‖L2(Rd ;dx) and
√

E +‖ · ‖L2(Rd ;dx) are equivalent. Therefore, the
desired assertion above immediately follows from the fact that (E ,D(E )) is regular with
core C∞

c (Rd).

Let h(x) = |x|δ , and define

Ē (f, f ) = 1

2

∫∫

Rd×Rd

(
f (x)

h(x)
− f (y)

h(y)

)2

h(x)h(y)ν(x − y) dx dy, f ∈ D(Ē ),

where D(Ē ) = {f ∈ L2(Rd ; dx) : Ē (f, f ) < ∞}.

Proposition 3.18 We have D(Ẽ ) = D(Ē ) and

Ẽ (f, f ) = Ē (f, f ), f ∈ D(Ẽ ).
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Proof Denote by 〈·, ·〉 the inner product of L2(Rd ; dx). Recall that (P̃t )t≥0 is well defined
on L2(Rd ; dx) by setting P̃t f (0) = 0 for any f ∈ L2(Rd ; dx). According to Eq. 2.16,

〈f − P̃t f, f 〉 =
∫

Rd

(
f (x) −

∫

Rd

p̃(t, x, y)f (y) dy

)
f (x) dx

=
∫

Rd

(
f (x)

h(x)

∫

Rd

p̃(t, x, y)h(y) dy−
∫

Rd

p̃(t, x, y)h(y)
f (y)

h(y)
dy

)
f (x) dx

=
∫∫

Rd×Rd

p̃(t, x, y)

(
f (x)

h(x)
− f (y)

h(y)

)
f (x)

h(x)
h(x)h(y) dx dy.

Hence, by the symmetry,

〈f − P̃t f, f 〉 = 1

2

∫∫

Rd×Rd

p̃(t, x, y)

(
f (x)

h(x)
− f (y)

h(y)

)2

h(x)h(y) dx dy.

Note that

lim
t→0+

p̃(t, x, y)

t
= ν(x − y), x, y ∈ Rd

0 . (3.18)

Indeed, by the Duhamel formula (2.7), for any x, y ∈ Rd
0 ,

lim
t→0+

p̃(t, x, y)

t
= lim

t→0+
p(t, x, y)

t
+ lim

t→0+
1

t

∫ t

0

∫

Rd

p̃(t − s, x, z)q(z)p(s, z, y) dz ds

= ν(x − y) + lim
t→0+

1

t

∫ t

0

∫

Rd

p̃(t − s, x, z)q(z)p(s, z, y) dz ds.

Next, by the fact that p̃(t, x, y) ≤ p(t, x, y) for all t > 0 and x, y ∈ Rd , Lemma 3.7,
Eqs. 3.10 and 3.11, for any x, y ∈ Rd

0 ,

1

t

∫ t

0

∫

Rd

p̃(t − s, x, z)|z|−αp(s, z, y) dz ds ≤ c1t
−1p(t, x, y)[G(t, x) + G(t, y)] t→0−→ 0,

and so we get Eq. 3.18.
Now, for f ∈ D(Ẽ ), by Fatou’s Lemma and Eq. 3.18, we have

Ẽ (f, f ) = lim
t→0

1

t
〈f − P̃t f, f 〉

= lim
t→0

1

2

∫∫

Rd×Rd

p̃(t, x, y)

t

(
f (x)

h(x)
− f (y)

h(y)

)2

h(x)h(y) dy dx

≥ 1

2

∫∫

Rd
0×Rd

0

lim inf
t→0

p̃(t, x, y)

t

(
f (x)

h(x)
− f (y)

h(y)

)2

h(x)h(y) dy dx

= 1

2

∫∫

Rd
0×Rd

0

(
f (x)

h(x)
− f (y)

h(y)

)2

h(x)h(y)ν(x − y) dy dx = Ē (f, f ).
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Hence, D(Ẽ ) ⊂ D(Ē ). On the other hand, we take f ∈ D(Ē ). Since p̃(t, x, y) ≤
p(t, x, y) ≤ c2tν(x − y) for all t > 0 and x, y ∈ Rd , according to the dominated
convergence theorem and Eq. 3.18 again, we have

Ẽ (f, f ) = lim
t→0

1

t
〈f − P̃t f, f 〉

= lim
t→0

1

2

∫∫

Rd×Rd

p̃(t, x, y)

t

(
f (x)

h(x)
− f (y)

h(y)

)2

h(x)h(y) dy dx

= 1

2

∫∫

Rd×Rd

(
f (x)

h(x)
− f (y)

h(y)

)2

h(x)h(y)ν(x − y) dy dx = Ē (f, f ).

Combining with both inequalities, we prove the desired assertion.

Remark 3.19 The construction of (Ē ,D(Ē )) can be deduced from Doob’s theory of h-
transformations; see [18, Chapter 11] for more details. Indeed, as shown by Eq. 2.14, the
function h = |x|δ is harmonic with respect to the operator L given by Eq. 1.1. Define
Lhf (x) := h(x)−1L(f h)(x) for all f ∈ L2(Rd ; h(x)2 dx). It is easy to see that the oper-
ator Lh is symmetric on L2(Rd ; h(x)2 dx), and the associated symmetric regular Dirichlet
form (Eh,D(Eh)) on L2(Rd ; h(x)2 dx) is given by

Eh(f, f ) = −〈Lhf, f 〉L2(Rd ;h(x)2 dx)

= −
∫∫

Rd×Rd

(f (y)h(y) − f (x)h(x)) f (x)h(x)ν(x − y) dy dx

−κ

∫

Rd

|x|−αf (x)2h2(x) dx

= −
∫∫

Rd×Rd

(f (y) − f (x)) f (x)h(y)h(x)ν(x − y) dy dx

−
∫∫

Rd×Rd

(h(y) − h(x)) f (x)2h(x)ν(x − y) dy dx

−κ

∫

Rd

|x|−αf (x)2h2(x) dx

= −
∫∫

Rd×Rd

(f (y) − f (x)) f (x)h(y)h(x)ν(x − y) dy dx

= 1

2

∫∫

Rd×Rd

(f (y) − f (x))2 h(y)h(x)ν(x − y) dy dx

for all f ∈ D(Eh), where in the fourth equality we used Eq. 2.14 and the last equality
follows form the property that ν(x − y) = ν(y − x). Note that

Eh(f, f ) = −〈Lhf, f 〉L2(Rd ;h(x)2 dx) = −〈L(hf ), hf 〉L2(Rd ;dx) = Ẽ (hf, hf ).

Combining both equalities above together, we arrive at

Ẽ (f, f ) = Eh(f h−1, f h−1) = 1

2

∫∫

Rd×Rd

(
f (y)

h(y)
− f (x)

h(x)

)2

h(y)h(x)ν(x − y) dy dx.

The right side of the equality above coincides with the expression of (Ē ,D(Ē )).
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Appendix: Proof of Lemma 3.8

Let q0(x) = −|x|−α . For any λ ≥ 0, denote by pλ(t, x, y) the heat kernel associated with
the generator �α/2 + λq0(x). Hence, by Duhamel’s formula (see [19, Propositions 5.2 and
5.3] and their proofs), we have

for any t > 0 and . Noting that q0(x) < 0 for all , we can rewrite the
equality above as

For any λ ≥ 0, t > 0 and , we set

Then, by [9, Lemma 1 and the proof of Theorem 2],

and

pη−λ(t, x, y) =
∞∑

n=0

λnpη
n(t, x, y), η > λ > 0.

Furthermore, we have

Lemma A.1 Let 0 < λ < η < ∞. For all and t > 0,

∞∑

n=k

(
n

k

)
λn−kpη

n(t, x, y) = p
η−λ
k (t, x, y) , k = 0, 1, 2, · · · . (1)
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Proof We use induction. When k = 0, Eq. 1 holds trivially. For k = 1,

Next, we assume that Eq. 1 holds for some . We get

where in the last equality we used the fact proved in the proof of [9, Lemma 6] (cf. [22,
(5.26)]). The proof is complete.

Next, we consider some properties of the function λ �→ pλ(t, x, y).

Lemma A.2 For fixed and t > 0, the function

h(λ) = pλ(t, x, y), λ > 0

is completely monotone, i.e., (−1)kh(k)(λ) ≥ 0 for all λ > 0 and k = 0, 1, 2, · · · .

Proof For λ > 0, we take η > λ. Choosing k = 0 in Eq. 1, we get

h(λ) =
∞∑

n=0

(η − λ)npη
n(t, x, y) .

By Eq. 1, we get

dk

dλk
h(λ) = k!

∞∑

n=k

(−1)k
(

n

k

)
(η − λ)n−kpη

n(t, x, y) = (−1)k k! pλ
k (t, x, y). (2)

Since pλ
k (t, x, y) ≥ 0, we conclude that h is completely monotone on (0,∞).

By the Bernstein theorem (see [32, Theorem 1.4]), we get
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Corollary A.3 For fixed and t > 0, there exists a nonnegative Borel measure
μt,x,y(du) on [0, ∞) such that

pλ(t, x, y) =
∫ ∞

0
e−λu μt,x,y(du).

The next lemma will yield the monotonicity of the function λ �→ pλ
1 (t,x,y)

pλ(t,x,y)
.

Lemma A.4 For every n ≥ 1, λ ≥ 0, t > 0 and , we have

(n + 1)pλ
n+1(t, x, y)pλ

n−1(t, x, y) ≥ npλ
n(t, x, y)2.

Proof Fix and t > 0, and let μ = μt,x,y be the nonnegative measure from
Corollary A.3. Then, by Eq. 2,

n! pλ
n(t, x, y) = (−1)n

dn

dλn
pλ(t, x, y) =

∫ ∞

0
e−λuun μ(du) .

According to the Cauchy-Schwarz inequality,
[∫ ∞

0
e−λuun μ(du)

]2

=
[∫ ∞

0
e−λu/2u(n+1)/2 · e−λu/2u(n−1)/2 μ(du)

]2

≤
(∫ ∞

0
e−λuun+1 μ(du)

)(∫ ∞

0
e−λuun−1 μ(du)

)
.

Hence,

(n!pλ
n(t, x, y))2 ≤ (n + 1)!pλ

n+1(t, x, y) · (n − 1)!pλ
n−1(t, x, y),

and so the desired assertion follows.

Lemma A.5 For fixed and t > 0, the function λ �→ pλ
1 (t, x, y)

pλ(t, x, y)
is decreasing

on (0,∞).

Proof Let H(λ) = −h′(λ)
h(λ)

= pλ
1 (t, x, y)

pλ(t, x, y)
for λ > 0, where in the second equality we used

Eq. 2. Combining Eq. 2 again with Lemma A.4, we find that

H ′(λ) = −h′′(λ)h(λ) + h′(λ)2

h2(λ)
= −2pλ

2 (t, x, y)pλ(t, x, y) + pλ
1 (t, x, y)2

pλ(t, x, y)2
≤ 0,

which yields the desired assertion.

We now present the main result in this appendix, which immediately gives us Lemma
3.8.

Theorem A.6 For every λ > 0, t > 0 and , we have

pλ(t, x, y) ≥ p(t, x, y) exp

[
λp1(t, x, y)

p(t, x, y)

]
.
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Proof Fix and t > 0, and let h(λ) = pλ(t, x, y). Since h ≥ 0,

h(λ) = h(0) exp

[∫ λ

0
(log h(u))′ du

]
= h(0) exp

[∫ λ

0

h′(u)

h(u)
du

]
.

By Eq. 2 and Lemma A.5, we get

pλ(t, x, y) = p(t, x, y) exp

[
−

∫ λ

0

pu
1 (t, x, y)

pu(t, x, y)
du

]
≥ p(t, x, y) exp

[
−λp1(t, x, y)

p(t, x, y)

]
.

The proof is complete.
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