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Abstract
We study strongly harmonic functions in Carnot–Carathéodory groups defined via the mean
value property with respect to the Lebesgue measure. For such functions we show their
Sobolev regularity and smoothness. Moreover, we prove that strongly harmonic functions
satisfy the sub-Laplace equation for the appropriate gauge norm and that the inclusion is
sharp. We observe that appropriate spherical harmonic polynomials in H1 are both strongly
harmonic and satisfy the sub-Laplace equation. Our presentation is illustrated by examples.
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1 Introduction

The main subject of our studies are harmonic functions on Carnot-Carathéodory groups
with emphasis on the setting of Heisenberg groups since in this case the pseudodistance
induced by the fundamental solution of the sub-Laplacian is in fact a metric (see below
for relevant definitions). Following works [1, 11] we define harmonic functions via the
mean value property with respect to the underlying measure, i.e. we call a locally integrable
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function f : � → R strongly harmonic in �, if the following inequality holds for all balls
B(p, r) � � with p ∈ � and r > 0:

f (p) =
∫

B(p,r)

f (q)dq. (1)

Here, � stands for a domain in a given Carnot–Carathéodory group, dq denotes the cor-
responding Lebesgue measure, and the balls B(p, r) are defined with respect to a given
metric on �. We refer to Section 3.2 for further definitions and more on motivations for our
investigations.

Harmonic functions considered in [1] in general metric measure spaces are only Hölder
regular, e.g., on geodesic spaces equipped with doubling measures or measures satisfying
the annular decay condition, see [1, Theorems 4.1, 4.2], or locally Lipschitz regular for
uniform measures or doubling measures on spaces supporting a (1, p)-Poincaré inequality,
see [1, Proposition 5.2, Theorem 5.1]. In the setting of Carnot groups, the group structure
and the presence of the Euclidean coordinates allow us to expect that harmonic functions
exhibit higher regularity properties. Indeed, in Section 4.1 we show that functions satisfying
(1) belong to the horizontal Sobolev spaces HW

1,s
loc for any s > 1, see Theorem 4.1. The

proof relies on measure theoretic properties of harmonic functions. Furthermore, by using
the convolution and scaling techniques available in Carnot groups, we show in Theorem 4.2
the smoothness of harmonic functions. It turns out that for the proof of smoothness, one
needs (1) to hold only for balls defined by a pseudodistance, i.e. the triangle inequality for
d in Eq. 1 can be relaxed.

Another topic we are especially interested in, is the interplay between harmonic functions
and solutions to the subelliptic Laplace equation on a Carnot group (called the L-harmonic
equation). In Theorem 4.3 we show that functions possessing property (1) satisfy the sub-
Laplace equation provided that the balls in the mean value property are considered with
respect to the pseudonorm given by the fundamental solution of the sub-Laplace operator.
As a corollary of Theorem 4.3 we obtain a variant of the Hadamard three-spheres theorem
for strongly harmonic functions. Let us also mention that a counterpart of Theorem 4.3 in
more general metric spaces is not known and is a subject of an ongoing investigation to
determine the relation between strongly harmonic functions and the p-harmonic functions
defined as local minima of the p-Dirichlet energy with respect to weak upper gradients.

Another aspect of harmonicity studied in our work relates to the fact that the subelliptic
harmonic functions are known to satisfy the kernel-type mean value property, see Formula
(25) in Theorem 4.4 below and Appendix for its proof. Thus, we are also interested in
studying the relation between this type of property and Eq. 1, see Section 4.4.

In Section 5 we show that the intersection of the class of L-harmonic and strongly har-
monic functions, considered with respect to the L-gauge distance, contains a subclass of
spherical harmonic polynomials, called for short, spherical harmonics. At the first glance it
might be surprising that such a class exists, taking into account that a spherical harmonic
must satisfy two types of mean value properties, namely the one given in Definition 3.2 and
the one defined by Eq. 25. Moreover, we discuss an example of a spherical harmonic func-
tion (and thus an L-harmonic function) which fails to be strongly harmonic, see Example 6.
Finally, in Section 5 we also propose two open questions on finding all spherical harmonics
which are strongly harmonic.

In the last section of our work we briefly discuss a notion of determining set and prove
that under additional assumptions, a dense subset of a domain in H1 is determining for a
strongly harmonic function, see Section 6 for details.
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Our presentation is largely self contained and for the readers convenience in Sections 2
and 3 we recall the necessary definitions and observations regarding Carnot-Carathéodory
groups, pseudonorms, subelliptic Laplacians and their fundamental solutions.

2 Preliminaries

In this section we recall some rudimentary properties of the geometry of Carnot-
Carathéodory groups (CC-groups or Carnot groups, for short). Upon recalling the definition
of a CC-group, we illustrate the notions with examples of groups playing an important
role in our studies, namely the H -type groups and the Heisenberg groups Hn. Then in
Section 2.2 we provide basic information about pseudonorms and pseudodistances. Defini-
tions and results presented in that section will be used in our studies of the strongly harmonic
functions, cf. Definition 3.2, and their relations to the L-harmonic operator, see Section 4.
Finally, in Section 2.3 we recall the notion of convolution and provide its properties needed
in our further presentation.

2.1 Carnot–Carathéodory Groups

A Lie algebra g is said to be stratified if g = g1 ⊕ · · · ⊕ gs , where the bracket generating
property gi+1 = [g1, gi] holds, and [g1, gs] = {0}. The group G = exp(g) is also said to be
stratified and we adopt the notation τp(q) = pq for the left translation of q ∈ G by p ∈ G.
The left translates of g1 define the horizontal subbundle H ⊂ T G, which can naturally be
equipped with a left invariant positive definite inner product, defined by the left translation
of a scalar product given on g1. The bracket generating property ensures that G is path
connected by absolutely continuous curves with horizontal tangents at almost every point.
The sub-Riemannian distance between two points, denoted by ds , is then the infimum of
lengths of all horizontal curves joining them.

The Carnot–Carathéodory distance on G, or CC-distance for short, relative to an
orthonormal left invariant horizontal frame {Xi}, is constructed as follows: Every absolutely
continuous horizontal curve γ joining two points p and q, can be normalised by a change of
parameter so that γ : [0, T ] → G and

∑
i〈γ̇ , Xi〉2 ≤ 1. The Carnot–Carathéodory distance

between two points, denoted by dcc, is the infimum of those T > 0 such that there exists a
normalised curve γ : [0, T ] → G joining the two points.

The Carnot–Carathéodory metric is in fact the sub-Riemannian distance. Indeed the hor-
izontal curves parametrised by the sub-Riemannian arc length form a subfamily of the
normalised curves such that T = �(γ ), and so the sub-Riemannian distance is bounded
below by the Carnot–Carathéodory distance. Let γn : [0, Tn] → G be a sequence of
normalised curves such that Tn converges to the CC-distance. Since

dcc(p, q) ≤ ds(p, q) ≤ �(γn) =
∫ Tn

0
|γ̇n(t)| dt ≤ Tn,

we must therefore have dcc(p, q) = ds(p, q). We remark that the discussion above applies
to the more general setting where G is simply a manifold with a bracket generating
subbundle of the tangent bundle.

Hence we will call a stratified Lie group G with a sub-Riemannian distance a Carnot–
Carathéodory group. The normal model of G is denoted (g, ∗) where ∗ is given by the
Baker–Campbell–Hausdorff formula, i.e., the exponential is an isomorphism. Dilation δλ

of g by λ > 0 is given by δλ(X) = ∑
i λiXi where Xi is the projection of X onto gi . An
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immediate consequence of the definition is that δλ ∈ aut(g) (=the automorphism group of
the Lie algebra). Conjugating δλ with the exponential map defines dilation of G which is
again in aut(G), since for the normal model we have aut(G) and aut(g) are one and the
same.

We illustrate the above discussion with two main examples of the Carnot-Carathéodory
groups. In what follows we will frequently appeal to these examples and assume that the
reader is familiar with them. In both cases, the orthonormal basis for g1 is extended to g,
then the associated scalar product defines a length on g, which we denote by |X| for each
X ∈ g.

Example 1 The n-dimensional Heisenberg group G = Hn is the Carnot group with a 2-step
Lie algebra and orthonormal basis {X1, . . . , X2n, Z} such that

g1 = Span {X1, . . . , X2n}, g2 = Span {Z}
and the nontrivial brackets are [Xi, Xn+i] = Z for i = 1, . . . , n.

In particular, if n = 1, then a natural basis for the left invariant vector fields is given by
the following vector fields:

X̃ = ∂

∂x
+ 2y

∂

∂t
, Ỹ = ∂

∂y
− 2x

∂

∂t
and T̃ = ∂

∂t
,

where [X̃, Ỹ ] = −4T̃ . Note that these fields are defined with respect to the multiplication
given by V ∗ W = V + W − 4[V,W ] for V, W ∈ g, which is not the Baker–Campbell–
Hausdorff formula. The reason for choosing this slightly less orthodox multiplication is
that it leads to a simpler expression for the Folland-Kaplan pseudonorm derived from the
fundamental solution of L = X̃2 + Ỹ 2 (see Example 4 below).

Example 2 An H -type group is a connected, simply connected 2-step Carnot group whose
Lie algebra satisfies the following additional property: For each Z ∈ g2 the homomorphism
JZ : g1 → g1 defined by

〈JZX, Y 〉 = 〈Z, [X, Y ]〉, for all X, Y ∈ g1

satisfies J 2
Z = −〈Z, Z〉I .

Definition 2.1 (Change of Basis) A basis E of g is said to be adapted, if it has the form

E =
{
E1
1 , . . . , E

1
N1

, . . . , Es
1, . . . , E

s
Ns

}
,

where gk = span
{
Ek
1 , . . . , E

k
Nk

}
. Moreover, we define N := N1 + N2 + . . . + Ns .

Note that if Ẽ is also adapted to g, and A is the transition matrix defined by πE (X) =
πẼ (AX) where πE and πẼ are the coordinate projections, then A is a strata-preserving
automorphism of g and a strata-preserving isomorphism of (g, ∗).

The left translates of g1 define the horizontal subbundle H ⊂ T G which is naturally
equipped with a left invariant sub-Riemannian metric ds , defined by the left translation of
the scalar product restricted to g1. It is easy to see using normal coordinates, that a left Haar
measure on G is also a right Haar measure, and is simply the Lebesgue measure, up to scale,
defined by the ambient Euclidean structure of the normal model.
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If we choose a basis
{
E1
1 , . . . , E

1
N1

}
of g1, then the left and right invariant vector fields

corresponding to E1
i are defined as follows:

X̃l
iu(p) = d

dt
u(petE1

i )|t=0 X̃r
i u(p) = d

dt
u(etE1

i p)|t=0.

The corresponding left and right invariant sub-Laplacians are

LLu(p) =
∑

i

X̃l
i X̃

l
iu(p) LRu(p) =

∑
i

X̃r
i X̃

r
i u(p). (2)

We present our results in terms of left invariant fields and adopt the convention that unless
otherwise stated, X̃i and L will be left invariant.

We emphasize the role of the sub-Laplacians among the sub-elliptic operators in the
following remark.

Remark 1 Let us consider a generalized sub-Laplacian, namely a left invariant operator of
the form:

LAu =
∑
ij

aij X̃iX̃j u, (3)

where A = (aij ) is a symmetric and positive definite matrix with constant real coefficients.
Set B := A1/2, then by the bracket generating property, B extends to a strata preserving
automorphism of g such that LA = ∑

k Ỹ 2
k , where Ỹk = ∑

l bklX̃l . In other words, operator
(3) can be reduced to a sub-Laplacian by a strata preserving automorphism, see [3] page 64
for more details.

2.2 Pseudonorm and Pseudodistance

The following definitions and remarks are crucial for our considerations and are largely
applied in Sections 3 and 4. For further studies of pseudonorms and pseudodistances we
refer, for instance, to the book of Bonfiglioli–Lanconelli–Uguzzoni [3].

Definition 2.2 A continuous function N : G → [0, ∞) is said to be a symmetric
pseudonorm on a Carnot group G, ifN satisfies the following conditions:

1. N (δr (p)) = rN (p) for every r > 0 and p ∈ G,
2. N (p) > 0 if and only if p �= 0,
3. N is symmetric, i.e.,N (p−1) = N (p) for every p ∈ G.

All pseudonorms of interest here will be symmetric, and so their symmetry will not be
emphasized in their reference.

Example 3 Let G be a group expressed in coordinates by choosing an orthonormal basis of
g. Let us further write any point p ∈ G as p = ∑s

i=1 Pi , where Pi ∈ gi . Then it follows
that for every α ≥ 1, a function

N (p) =
(

s∑
i=1

|Pi(p)|α/i

)1/α

(4)

501



T. Adamowicz, B. Warhurst

defines a pseudonorm on G. For an appropriate choice of α, N is C∞ on G \ {0}, e.g.,
α = 2s!.

Example 4 Let G = H1 be the first Heisenberg group. Then, the Folland-Kaplan
pseudonorm derived from the fundamental solution of L = X̃2 + Ỹ 2 is given by

N (z, t) = (|z|4 + t2)1/4,

where coordinates of any point p ∈ H1 are p = (z, t) with z ∈ C and t ∈ R. It follows that
the horizontal gradient ofN (see Eq. 5 below) satisfies

|∇0N (z, t)|2 = |z|2√|z|4 + t2
.

It turns out that a pseudonorm defines a pseudodistance on a group.

Definition 2.3 We say that a left invariant pseudodistance is induced by a pseudonormN , if

d(p, q) := N (p−1q), for any p, q ∈ G.

In particular:

(i) d(p, q) ≥ 0 with equality if and only if p = q,
(ii) there exists a constant c > 0, such that

d(p1, p2) ≤ c(d(p1, p0) + d(p0, p2)) for all p0, p1, p2 ∈ G.

Although pseudodistances are not metrics, they still define a reasonable family of sets
that play the role of balls.

Definition 2.4 Let d be a given pseudometric on G. The ball centered at p ∈ G, of radius
r with respect to d , is denoted B(p, r). Since left translation are isometries and are 1-
homogeneous with respect to dilation, we have

B(p, r) = pδr(B(0, 1)).

where B(0, 1) is the unit ball centered at the origin.
Note that it follows that the Lebesgue measure of the ball B(p, r) satisfies |B(p, r)| =

rQ|B(0, 1)|, where Q = ∑
i i dim gi is the Hausdorff dimension of G.

We finish the presentation of basic properties of pseudonorms and pseudodistances with
the observation that all pseudonorms on a given group G are equivalent.

Remark 2 (cf. Proposition 5.1.4 in [3]) For any pair of pseudo-normsN andN ′ on G, there
exists c > 0 such that

1

c
N (p) ≤ N ′(p) ≤ cN (p).

Moreover, if ds stands for a sub-Riemannian distance in G, then N ′(p) = ds(0, p) is a
pseudonorm and so d and ds are equivalent pseudodistances.

2.3 Convolution

Below we recall the notion of the convolution and some of its integrability and regularity
properties. The section is based on presentation in Chapter 1 in Folland–Stein [10].
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Let G be a stratified group. The convolution of two measurable functions g and h on G

is defined as follows:

g ∗ h(p) =
∫

G

g(q)h(q−1p)dq =
∫

G

g(pq−1)h(q)dq,

provided the integrals converge. In contrast with Euclidean spaces, the convolution is not
commutative. The basic properties are as follows, cf. Propositions 1.19, 1.20 and pg. 22
in [10]:

1. Let 1 ≤ r, s, t < ∞ such that r−1 + s−1 = t−1 + 1. If g ∈ Lr(G) and h ∈ Ls(G), then
g ∗ h ∈ Lt(G) and ‖g ∗ h‖t ≤ c(r, s)‖g‖r ‖h‖s .

2. If L is a left invariant vector field, then L(g ∗ h) = g ∗ (Lh) provided that h is C2-
smooth.

3. If R is a right invariant vector field, then R(g ∗ h) = (Rg) ∗ h provided that g is
C2-smooth.

4. If L and R are corresponding left and right invariant vector fields (i.e., they agree at the
identity), then (Lg) ∗ h = g ∗ (Rh) when g and h are suitably smooth.

5. If ψ ∈ L1(G) and ψε = ε−Qψ ◦ δ1/ε , then
∫
G

ψε(q)dq = ∫
G

ψ(q)dq.
6. If h ∈ Lr(G), 1 ≤ r < ∞ and

∫
G

ψ(q)dq = c, then ‖h ∗ ψε − ch‖r → 0 as ε → 0.
7. If h is continuous and bounded on �, then h ∗ ψε → ch locally uniformly on � as

ε → 0.

For the sake of completeness of the discussion, we further recall that convolutions can
be defined also in the setting of distributions. Namely, we set (
 ∗ g, φ) = (
, φ ∗ g̃) and
(g ∗ 
,φ) = (
, g̃ ∗ φ) for any φ ∈ C∞

0 (G), where g̃(p) := g(p−1). Therefore, it then
follows that if 
u is a distribution defined as (
u, φ) = ∫

G
uφ, then

(
u ∗ g, φ) = (
u∗g, φ) and (g ∗ 
u, φ) = (
g∗u, φ).

3 Sub-Laplacians, Fundamental Solutions andMean Value Property

The first goal of this section is to recall the weak formulation of the sub-Laplacian together
with a notion of the fundamental solution and its relation with pseudonorms. Then, in
Section 3.2 we give the definition of strongly harmonic functions, one of the main objects
studied in this work. Such functions are defined originally in [1, 11] in the setting of metric
measure spaces.

We begin our discussion by recalling the horizontal Sobolev spaces and the weak
formulation of the L-harmonic equation, cf. Eqs. 2 and 3.

Let � ⊂ G be open. Recall that a C2(�)-smooth function u is said to be L-harmonic on
�, if Lu(p) = 0 for all p ∈ �, cf. Eq. 2. In order to weaken the C2-regularity assumption
one considers L on an appropriate Sobolev space.

Recall that N1 denotes the dimension of g1, cf. Definition 2.1. For 1 < s < ∞, we say
that a function u : � → R belongs to the horizontal Sobolev spaceHW 1,s (�), if u ∈ Ls(�)

and for all i = 1, . . . , N1, the horizontal derivatives X̃iu exist in the distributional sense and
are represented by elements of Ls(�). The space HW 1,s (�) is a Banach space with respect
to the norm

‖u‖HW 1,s (�) = ‖u‖Ls(�) + ‖(X̃1u, . . . , X̃N1u)‖Ls(�).

In the similar way we define the local spaces HW
1,s
loc(�). Moreover, we define HW

1,s
0 (�)

as the closure of C∞
0 (�) in the HW 1,s (�)-norm. Recall, that C∞

0 (�) stands for a set of
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smooth compactly supported functions in �. The horizontal gradient ∇0u of an element
u ∈ HW

1,s
loc(�) is defined by

∇0u =
N1∑
i=1

(X̃iu)X̃i . (5)

If u ∈ HW
1,2
loc(�), then u is said to be weakly L-harmonic on � if

(L
u, φ) :=
∫

�

u(q)Lφ(q)dq = −
∫

�

〈∇0u(q),∇0φ(q)〉dq = 0

for all φ ∈ C∞
0 (�).

3.1 Fundamental Solutions

The notion of the fundamental solution of the Laplace operator L = � is well known in
the setting of domains in R

n. Among many applications, fundamental solutions are used to
solve the related Poisson equation �u = f via the Newtonian potentials of f when f is
sufficiently regular, see e.g. Chapter 4 in Gilbarg–Trudinger [12] for the discussion of this
classical topic.

Let us also recall the related notion of a hypoelliptic operator. We say that a differential
operator P with smooth coefficients, defined on an open subset � ⊂ R

n is called hypoellip-
tic, if for every distribution u defined on an open subset�′ ⊂ � satisfying Pu ∈ C∞(�′), it
holds that also u ∈ C∞(�′). The connection between the hypoellipticity and the fundamen-
tal solutions can be formulated as follows (see e.g. Hörmander [14]): Let {Ỹ , X̃1, . . . , X̃m}
be smooth vectors fields on � ⊂ R

n. Suppose

rank Lie {Ỹ , X̃1, . . . , X̃m}(x) = n, for all x ∈ �.

Then the operator

L = Ỹ +
m∑

j=1

X̃2
j

is C∞(�)-hypoelliptic. Thus, every distributional solution to Lu = f is represented by a
function in C∞(�) when f ∈ C∞(�).

We move now our discussion of fundamental solutions to the setting of CC-groups.

Definition 3.1 (Fundamental solution) Let G be a stratified Lie group and let L be a sub-
Laplacian on G. A function � : G \ {0} → R is called a fundamental solution for L
if:

(i) � ∈ C∞(G \ {0}),
(ii) � ∈ L1

loc(G) and �(q) → 0, when q → ∞,
(iii) L� = Dirac0, where Dirac0 is the Dirac measure supported on {0}. More explicitly∫

G

�(q)Lφ(q)dq = φ(0), for allφ ∈ C∞
0 (G). (6)

Note that in item (iii) we have chosen the convention L� = Dirac0, where as some texts,
e.g., [3], use the covention L� = −Dirac0. The effect is merely a change of sign on �. In
the latter case, � is strictly positive on G \ {0}, see Proposition 5.3.13 in [3], whereas in our
convention � is strictly negative on G \ {0}.

On the existence and uniqueness of fundamental solutions we have the following
theorem.
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Theorem 3.1 (Theorem 2.1 in Folland [9], Theorem 5.3.2 and Proposition 5.3.10 in [3])
Let L be a sub-Laplacian on G. Then there exists a unique fundamental solution � for L.

The relation between the L-harmonicity and the pseudodistances plays important role in
our discussion, see Section 4. For this reason, we now recall, following Definition 5.4.1 in
[3], that a homogeneous symmetric pseudonormN on G, is called an L − gauge if

L(N 2−Q) = 0 in G \ {0}. (7)

The fundamental solution defines an L − gauge:

Theorem 3.2 (Proposition 5.4.2 and Theorem 5.5.6 in [3]) Let � be the fundamental solu-
tion of a sub-Laplacian L defined on a group G of homogeneous dimension Q > 2.
Then,

N (p) =
{

(−�)1/(2−Q)(p) p ∈ G \ {0},
0 p = 0

(8)

is an L-gauge and defines a pseudodistance (see Definition 2.3). Conversely, any L-gauge
N satisfies � = CN 2−Q for some constant C.

We illustrate the above theorems with an example of the H -type groups.

Example 5 Basing on Example 2, we recall that a Lie algebra g of an H -type group decom-
poses as follows: g = g1 ⊕ g2. If πi : g → gi , i = 1, 2, are the natural projections, then the
Folland-Kaplan pseudonorm on the normal model (g, ∗) is given by the following formula:

N (X) := a(X)
1
4 :=

(
〈π1(X), π1(X)〉2 + 16〈π2(X), π2(X)〉

) 1
4
,

and so the fundamental solution for the L-Laplace operator takes a form:

−�(X) = cN (X)2−Q,

where c = c(Q) > 0.

Finally, we recall a representation formula for test functions in terms of the sub-
Laplacian, see Theorem 5.3.3 in [3]. Namely, by applying Formula (6) to a test function
G � q → φ(pq) defined for any given φ ∈ C∞

0 (G) and any p ∈ G, gives the following:∫
G

�(p−1q)Lφ(q)dq = −φ(p),

where � is a fundamental solution for L in G. A similar formula arises in the studies of the
non-homogeneous sub-Laplace equation Lu = f with f ∈ C∞

0 (G). Then, it holds:

u(p) = f ∗ �(p) =
∫

G

f (q)�(q−1p)dq.

For further studies about this equation and the associated linear potentials we refer, for
instance, to the book of Ricciotti [18].

3.2 Mean Value Property - Strongly andWeakly Harmonic Functions

In the previous sections we recalled and discussed the harmonicity from the point of view
of the subelliptic Laplacian L. Below we introduce a different approach based on the
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mean value property, the so-called strongly and weakly harmonic functions. Such func-
tions are defined in the general setting of metric measure spaces, and were introduced in
Gaczkowski–Górka [11] and studied further in [1], where several rudimentary properties of
such functions are proved. These results include the maximum and comparison principles,
various types of Harnack estimates, local Hölder and Lipschitz regularity, the Liouville type
theorems and the solvability of the Dirichlet problem based on the dynamical programming
method and the Perron method. The interplay between the underlying measure and metric
turns out to be crucial in such studies. Furthermore, the flexibility in choosing the distance
function and measures sheds new light on harmonic functions.

Following the discussion in Section 3 in [1], we recall the key definitions specialized to
the setting of Carnot-Carathéodory groups. In this section, by d , we denote a metric induced
by a left-invariant pseudonorm N on a Carnot-Carathéodory group G, cf. Section 2.2. A
ball B(p, r) in G centered at p ∈ G with radius r > 0 is defined as follows:

B(p, r) = {q ∈ G : d(p, q) ≤ r}.

Definition 3.2 Let � ⊂ G be an open set. A locally integrable function f : � → R is
called (strongly) harmonic in � if the following inequality holds for all balls B(p, r) � �

with p ∈ � and r > 0:

f (p) = 1

|B(p, r)|
∫

B(p,r)

f (q)dq. (9)

Here, dq stands for the Lebesgue measure. The set of all harmonic functions in � will be
denotedH(�).

Let us comment that in general the notion of strongly harmonic functions depends on the
underlying measure and the distance (see [1]). In what follows we consider the Lebesgue
measure only, but the balls are considered with respect to various different metrics. We
further remark that a similar notion of harmonicity has been considered in the probabilistic
setting in the context of the large-scale analysis on metric measure spaces, see Section 2.1
and Remark 2.5 in Tessera [19].

The following definition generalizes the previous one and strengthens the motivation for
studying harmonic functions defined via the mean value property, see the discussion below.

Definition 3.3 Let � ⊂ G be an open set. A locally integrable function f : � → R is
called weakly harmonic in � if for every p ∈ � there exists a non-empty set of positive
radii {rp,α}α∈I , for some indexing set I , such that the following inequality holds for all balls
B(p, rp,α) � �:

f (p) = 1

|B(p, rp,α)|
∫

B(p,rp,α)

f (q)dq.

As in the previous definition, dq denotes the Lebesgue measure. The set of all weakly
harmonic functions in � will be denoted wH(�).

Let us also remark that the above definitions are robust enough to allow us to study
the mean value property not only for various measures and distances but in fact for pseu-
dodistances as presented in Section 4.2 below. Indeed, it turns out that the C∞-regularity of
functions inH holds also if d is a pseudodistance.
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In the Euclidean setting, the relations between harmonicity and mean value property has
been a subject of research for two centuries, and it was Gauss who, perhaps first, showed that
harmonic functions have the mean value property (see e.g. Chapter VII.6 in Kellogg [15]).
The opposite question, whether all radii of balls contained in an underlying domain are
needed for the mean value property to hold has also been investigated by several prominent
mathematicians, such as Koebe, Volterra and Kellogg, Hansen and Nadirashvili, Blaschke,
Privaloff and Zaremba. Let us also remark, that several results in this direction of studies
are known as one radius (two radii) theorems. We refer to [1] for further historical com-
ments and references regarding the mean value property and harmonicity. The mean value
property continues to inspire studies in PDEs, leading for instance to results on probabilistic
characterizations of harmonicity in the metric setting (see Chen [7]), also to p-harmonious
functions and their stochastic tug-of-war games (see [1]).

4 Regularity of Weakly and Strongly Harmonic Functions
and Their Relations withL-Harmonic Functions

The main results of the paper are presented in this section. Among other topics, we study
regularity properties of weakly and strongly harmonic functions. First we show that the
familiar method of difference quotients applies to weakly and strongly harmonic functions
and obtain the local Sobolev regularity of such functions, see Theorem 4.1. We then prove
that functions satisfying Definition 3.2 in Carnot groups are smooth (see also Remark 4
commenting the lack of a similar property for weakly harmonic functions). This observation
is then used in our studies of relations between the strongly harmonic functions and the
canonical sub-LaplacianL. Namely, by using Theorem 4.2, we show that strongly harmonic
functions defined with respect to the pseudodistance induced by the fundamental solution
for L (which in the particular example of the Heisenberg group is a metric) satisfy the
L-harmonic equation, i.e., they are L-harmonic, see Theorem 4.3.

We present both Sobolev and C∞-regularity properties of strongly harmonic functions.
The reason for this is that techniques employed in these studies differ from each other.
The Sobolev type regularity is based on the measure theoretic properties of functions in the
class H, while the smoothness result relies on their analytic properties and the structure of
Carnot-Carathéodory groups, in particular with respect to convolutions. Furthermore, for
the smoothness of strongly harmonic functions we may weaken the assumptions on the
underlying distance and allow it to be merely a pseudodistance. This observation general-
izes definitions presented in [1] and is possible here as the more general definition of a
harmonic function is now compensated by the presence of group and Euclidean structures
as inHn. Therefore, the results of Sections 4.1 and 4.2 illustrate the richness of the structure
of functions inH and provide additional motivation for further investigation.

4.1 Local Sobolev Regularity

Let Z be a vector field in a Carnot group G and u : � → R be a function from a domain
� ⊂ G. The difference quotient of u at p ∈ � is defined as follows:

DZ
h (p) = u(pehZ) − u(p)

h
= u(peδh(Z)) − u(p)

h
, when Z ∈ g1 and h �= 0.
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We mention that the second quotient above is the Pansu difference quotient and that in
general the second equality is false when Z �∈ g1. Recall that for any V ∈ g, the Pansu
derivative is given by

PDf (p)(V ) = lim
h→0

u(peδh(V )) − u(p)

h

and is in some sense the natural derivative to consider on Carnot groups. In Lemma 3.6
of Capogna-Cowling [6], it is shown that Q-harmonic functions are Pansu differentiable
almost everywhere. Note here that Q is the Hausdorff dimension of G and u is Q-harmonic
if and only if ∫

�

|∇0u(x)|Q−2〈∇0u(x),∇0φ(x)〉dx = 0

for every φ ∈ C∞
0 (�). Note that L-harmonic functions are 2-harmonic.

The following result holds in the Carnot group setting similarly to the Euclidean set-
ting, cf. Gilbarg–Trudinger [12, Chapter 7.11], Hörmander [14], Manfredi–Mingione [17],
Capogna [4] and Ricciotti [18].

Lemma 4.1 (cf. Lemma 1 in [17]) Let � ⊂ Hn be a domain and �′ � �. Furthermore, let
Z̃ be a left-invariant vector field corresponding to Z ∈ g1 and let u ∈ Ls

loc(�) for s > 1. If
there exist constants σ < dist(�′, ∂�) and C > 0 such that

sup
0<|h|<σ

∫
�′

|DZ
h u(q)|sdq ≤ Cs,

then Z̃u ∈ Ls(�′) and ‖Z̃u‖Ls(�′) ≤ C. Conversely, if Z̃u ∈ Ls(�′), then for some σ > 0
it holds that

sup
0<|h|<σ

∫
�′

|DZ
h u(q)|sdq ≤

(
2‖Z̃u‖Ls(�′)

)s

.

Moreover, if the first assertion holds, then DZ
h u converges strongly to Z̃u in Ls(�′), as

h → 0.

For another proof of the lemma, we refer to [18, Theorem 2.11], where it is stated and
proved for the Heisenberg group. However, one easily observes that the proof holds for
any Carnot group as well. We use the lemma to show the following result on the Sobolev
regularity of strongly harmonic functions. Recall that a metric space M is called geodesic, if
every pair of points in M can be joined by a curve whose length equals the distance between
the points.

Theorem 4.1 Let � ⊂ G be a domain and let �′ � � with dist(�′, ∂�) > 0. Suppose
that u is a harmonic function in H(�, dq), where dq stands for the Lebesgue measure on
G and the underlying metric d is such that G is a geodesic space in d . Let X ∈ g1, then
X̃u ∈ Ls(�′) for all s > 1 and u ∈ HW 1,s (�′).

In particular, if G = Hn, and X̃i for i = 1, 2, . . . , 2n are the left-invariant horizontal
vector fields, then X̃iu ∈ Ls(�′) for all s > 1 (see also the discussion following Definition
2.1 and Example 5).

In the proof below we appeal to a definition and some results from the general theory
of strongly harmonic functions on metric measure spaces, developed in [1]. For the readers
convenience we state them now.
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Let (X, d, μ) be a metric measure space. We say that a measure μ is continuous with
respect to a metric d if for all x ∈ X and all r > 0 it holds that

lim
��y→

d
x
μ(B(x, r)�B(y, r)) = 0, (10)

where � denotes the symmetric difference of two sets.

Proposition 4.1 (a) Let (X, d, μ) be a geodesic doubling metric measure space. Then μ is
continuous with respect to the metric d (see Proposition 2.1, [1]).
(b) Let (X, d, μ) be a metric measure space with measure μ continuous with respect to the
metric d . If f ∈ H(�,μ), then f is locally bounded in �. (Corollary 4.1 in [1]).

Proof of Theorem 4.1 The proof appeals to the method presented, for instance, in the proof
of Proposition 4.1 in [1]. Let us first observe that since (G, d, dq) is, by its properties, a
geodesic doubling space, then by Proposition 4.1(a), μ = dq is continuous with respect to
the sub-Riemmanian metric and therefore Proposition 4.1(b) implies the local boundedness
of u in �.

Let h ∈ R be such that |h| < dist(�′, ∂�). Note that since X ∈ g1 we have

d(p, pehX) = d(p, eδh(X)) = |h|N (X),

where the normN is such that d(p, q) = N (p−1q) for all p, q ∈ G. The invariance of the
measure implies that for any nontrivial X ∈ g1, and any r > 0 such that B(p, r) � �′ and
any |h| < r/N (X), we have

|u(pehX) −u(p)| =
∣∣∣∣ 1

|B(pehX, r)|
∫

B(pehX,r)

u(q)dq − 1

|B(p, r)|
∫

B(p,r)

u(q)dq

∣∣∣∣
=

∣∣∣∣ 1

|B(pehX, r)|
∫

B(pehX,r)

u(q)dq − 1

|B(pehX, r)|
∫

B(p,r)

u(q)dq

−|B(pehX, r)| − |B(p, r)|
|B(pehX, r)| |B(p, r)|

∫
B(p,r)

u(q)dq

∣∣∣∣
≤ 1

|B(pehX, r)|
∫

B(pehX,r)�B(p,r)

|u(q)|dq

+
∣∣|B(pehX, r)| − |B(p, r)|∣∣

|B(pehX, r)| |B(p, r)| ‖u‖L1(B(p,r))

≤ |B(pehX, r) � B(p, r)|
|B(pehX, r)| ‖u‖L∞(�′)+

∣∣|B(pehX, r)|−|B(p, r)|∣∣
|B(pehX, r)| |B(p, r)| ‖u‖L1(�′).

In the last step we use the local boundedness, see Proposition 4.1(b), and the local
integrability of u, see Definition 3.2. Hence,

∫
�′

∣∣∣∣u(pehX) − u(p)

h

∣∣∣∣
s

dq ≤ 2s |�′|
(
‖u‖s

L∞(�′) + ‖u‖s
L1(�′)

)

×
(∣∣∣∣ |B(pehX, r) � B(p, r)|

h|B(pehX, r)|
∣∣∣∣
s

+
∣∣∣∣∣
∣∣|B(pehX, r)| − |B(p, r)|∣∣
h|B(pehX, r)| |B(p, r)|

∣∣∣∣∣
s)

.
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Note that the left-invariance of the Lebesgue measure dq implies that the second term
above vanishes. Moreover, since d(p, pehX) = |h|N (X), then for sufficiently small |h| we
have: ∣∣∣B(pehX, r) � B(p, r)

∣∣∣ ≤
∣∣∣B(pehX, r + |h|N (X)) \ B(p, r − |h|N (X))

∣∣∣ .
In a consequence, we obtain

∣∣∣∣ |B(pehX, r)�B(p, r)|
h|B(pehX, r)|

∣∣∣∣≤
∣∣∣∣(r+|h|N (X))Q−(r−|h|N (X))Q

hrQ

∣∣∣∣≤2Q
(r+|h|)Q−1

rQ
≤ 2Q

3Q−1

r
,

where in the second estimate we use the mean value theorem applied to function tQ, for
t ∈ R+ on the interval [r−|h|N (X), r+|h|N (X)]. We choose radii of balls above such that
r = 1

2dist(�
′, ∂�). Therefore, for sufficiently small |h|, we have the following estimate:

∫
�′

∣∣∣∣u(pehX) − u(p)

h

∣∣∣∣
s

dq ≤ 4sQs |�′|
(
‖u‖s

L∞(�′) + ‖u‖s
L1(�′)

)(
(r + |h|)Q−1

rQ

)s

≤
(
2Q3Q−1

)s (1 + |�′|s)|�′| ‖u‖s
L∞(�′)

dists(�′, ∂�)
.

Lemma 4.1 implies that DX
h u → X̃(u) in Ls(�′).

In particular, if G = Hn, then the same convergence holds for Xi with i = 1, 2, . . . , 2n.
The proof is completed.

Remark 3 The assertion of Theorem 4. 1 holds as well if u is weakly harmonic function in
wH(�, dq), provided that for any p ∈ �′ the mean value property holds for u with respect
to the ball B(p, 1

2dist(�
′, ∂�)). Indeed, if u is weakly harmonic in �, then all the estimates

in the above proof hold provided that at the beginning of the proof we set r = 1
2dist(�

′, ∂�).

4.2 Strongly Harmonic Functions on Carnot-Carathéodory Groups are Smooth

The purpose of the following discussion is to show that the geometric definition of strongly
harmonic functions, cf. Definition 3.2, implies in the setting of Carnot–Carathéodory groups
that such functions are C∞ smooth. In fact, we can prove this assertion for a wider class of
functions, defined with respect to pseudodistances instead of metrics. Namely, suppose that
G is equipped with a pseudonorm N defining a pseudodistance d , cf. Definitions 2.2 and
2.3. Furthermore, let � ⊂ G be a domain and let B(p, r) � � denote any ball defined with
respect to d . We extend Definition 3.2 and call a function u : � → R strongly harmonic if,
under the above assumptions, u satisfies Definition 3.2:

u(p) = 1

|B(p, r)|
∫

B(p,r)

f (q)dq, for all p ∈ G. (11)

It turns out that strong harmonicity with respect to pseudoballs implies smoothness, see
Theorem 4.2. This illustrates that our notion of strong harmonicity is robust and allows some
degree of flexibility for the distance. Furthermore, we show that for the distance d defining
the fundamental solution of the L-harmonic operator on G, strongly harmonic functions are
a subset of L-harmonic functions, see Theorem 4.3.

Before proving Theorem 4.2 we need to recall the following auxiliary lemma on the
integration in the polar coordinates in G and bump functions.
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Lemma 4.2 (cf. Proposition 1.25 in Folland–Stein [10]) Let G be a Carnot group of the
Hausdorff dimension Q. For any homogeneous normN on G, there exists a unique Radon
measure dσ on the unit sphere S(0, 1) = {q ∈ G : N (q) = 1} giving the following polar
coordinate expression of the integral:∫

G

u(q) dq =
∫ ∞

0

∫
S(0,1)

u(δr (v)) rQ−1 dσ(v) dr . (12)

Next, for smoothing purposes we need some bump functions. If N is any fixed
pseudonorm on G and k ∈ N, then the function ψ : G → R defined by

ψ(q) =
{

Ce
− 1

1−N (q)k , N (q) < 1
0, N (q) ≥ 1,

(13)

where C−1 = ∫
G

ψ(q)dq, has the following properties:

(i) ψ is continuous and compactly supported in B(0, 1),
(ii) ψ is C∞ on G \ {0}, whenN ∈ C∞(G \ {0}),
(iii) ψ is constant on all spheres centered at 0,
(iv) ψ is C∞

0 , if k can be chosen so thatN k is C∞ at 0.

Note that item (iv) is fulfilled by the Folland-Kaplan pseudonorm with k = 4 and the
pseudonorms defined at Eq. 4 with k = 2s!.

Alternatively, we can also use the bump function given by:

ψ = 1

|B(0, 1)|χB(0,1). (14)

In this case we define ψε := ε−Qψ(δ 1
ε
) and observe that

u ∗ ψε =
∫

B(p,ε)

u(q)dq. (15)

Note that both ψ defined in Eqs. 13 and 14 are constant on spheres, i.e., ψ ◦ δr |S(0,1) is
constant.

Theorem 4.2 LetN be any pseudo-norm such that Eq. 13 is aC∞
0 bump for an appropriate

choice of k ∈ N. If u ∈ L1
loc(G), then

u(p) =
∫

B(p,R)

u(q)dq, for all p ∈ G (16)

is equivalent to

u(p)

∫
S(0,1)

dσ (v) =
∫

S(0,1)
u(pδr(v))dσ (v), for all p ∈ G, 0 < r ≤ R, (17)

where B(p,R) and S(p,R) are the balls and spheres, respectively, determined by N .
Furthermore, either of Eqs. 16 or 17 implies that u ∈ C∞(G).

Proof The implication (17) =⇒ (16) follows immediately from Eq. 12. To check that also
the opposite implication holds true, let us first observe that functions in H(G) are continu-
ous inG. Indeed, Proposition 4.1 in [1] stays that continuity of measureμwith respect to the
underlying metric d implies that functions in H(�,μ, d) are continuous, see also Eq. 10.
The proof of this observation relies on the estimate similar to the one in the beginning of
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Theorem 4.1. If d is a pseudodistance determined by N instead of a distance, then we
proceed as follows. Since group G equipped with the Lebesgue measure dq and the sub-
Riemannian distance ds is geodesic and doubling, then by Proposition 4.1(a) we get that dq

is continuous with respect to ds . Remark 2 enables us to conclude that dq is continuous also
with respect pseudodistance d and hence, Proposition 4.1 in [1] applies to d as well. Thus,
we conclude continuity of u in G.

Next, we observe that if Eq. 16 holds, then for p ∈ G we have∫ R

0

(
u(p)

∫
S(0,1)

dσ (v) −
∫

S(0,1)
u(pδr(v)) dσ (v)

)
rQ−1dr = 0

and so it follows that∫ R2

R1

(
u(p)

∫
S(0,1)

dσ (v) −
∫

S(0,1)
u(pδr(v)) dσ (v)

)
rQ−1dr = 0 (18)

for all admissible R1 and R2 satisfying 0 < R1 < R2. If h(r) denotes the expression within
the brackets in Eq. 18, then by the mean value theorem, we have h(r)rQ−1 = 0 for all
admissible r , and so h(r) = 0 for all such r .

To check the converse, we first note that since dq = dq−1, the mean value theorem also
implies that ∫

S(0,1)
u(δr (v)) dσ (v) =

∫
S(0,1)

u(δr (v
−1)) dσ (v).

We are now in a position to show that Eq. 17 results in u ∈ C∞. Let ψ be the C∞
0 bump

given by Eq. 13 and let u ∈ L1
loc(G). Then

u ∗ ψε(p) =
∫

G

u(pq−1)ψε(q)dq

=
∫

B(0,ε)
u(pq−1)ψ(δ1/ε(q))

1

εQ
dq

=
∫

B(0,1)
u(pδε(w

−1))ψ(w)dw (w := δ1/ε(q))

=
∫ 1

0

∫
S(0,1)

u(pδεr (v
−1))ψ(δr (v))rQ−1dσ(v)dr (v := δ1/r (w))

=
∫ 1

0

∫
S(0,1)

u(pδεr (v
−1))dσ (v) η(r)rQ−1dr (η(r) := ψ(δr(v)))

=
∫ 1

0

∫
S(0,1)

u(pδεr (v))dσ (v) η(r)rQ−1dr

= u(p)

∫ 1

0

∫
S(0,1)

η(r)rQ−1dσ(v)dr . (by (17)). (19)

Furthermore, we also have that

1 =
∫

B(0,1)
ψ(q)dq =

∫ 1

0

∫
S(0,1)

ψ(δr (v))rQ−1dσ(v)dr

=
∫ 1

0

∫
S(0,1)

η(r)rQ−1dσ(v)dr . (20)

Hence, it follows from Eqs. 19 and 20 that for any p ∈ G

u ∗ ψε(p) = u(p).
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This, by the smoothing properties of convolutions, implies that u is C∞ and completes
the proof of the theorem.

Remark 4 Let us observe that the technique used in the above proof does not give the C∞-
regularity for weakly harmonic functions. Indeed, the use of convolutions u ∗ ψε requires
the mean value property to hold for all radii in a given ball, a property that fails in general
for functions satisfying Definition 3.3.

4.3 Strongly Harmonic Functions areL-Harmonic

Recall, that in this section we allow d in Definition 3.2 to be any pseudodistance. In the
proof we appeal to the C∞-regularity of strongly harmonic functions, cf. Theorem 4.2.
However in fact C2-regularity is enough for the result to hold. Recall from the definition
that an L-gauge N is a pseudonorm derived from the fundamental solution of the operator
L (see Formula (7)).

Theorem 4.3 Let � be a domain in a Carnot-Carathéodory group G with the Hausdorff
dimension Q. Let further u : � → R be strongly harmonic with respect to the balls given
by an L-gaugeN . Then u is L-harmonic.

Proof By the definition, u ∈ L1
loc(�) and satisfies the mean-value property at every point

p ∈ � and any ball B(p, r) � �. Let d stand for a pseudometric defined by an L-gaugeN
as in Definition 2.3. For any s > 0 let us denote by �s := {p ∈ � : d(p, ∂�) > s}. Set

gt := 1

|B(0, t)|χB(0,t).

Then, formulas (11) and (15) imply that for all admissible radii 0 < r < s (i.e. such that
B(p, s) � �) we have the following equation:

u ∗ gr(p) = u ∗ gs(p) (21)

for all p ∈ �s .
Claim: Let LR be the right-invariant Laplacian corresponding to L, cf. Eq. 2. Then for

any 0 < r < s, the non-homogeneous equation

LRwr,s = gs − gr (22)

admits a C1 solution with compact support in B(0, s). In order to prove the claim we adopt
the proof of Lemma 4.1 in Gilbarg–Trudinger [12] and refer to Theorem 4.5 in Ricciotti
[18] on the growth estimates for the fundamental solution and its horizontal gradient. Since
both the result and the employed techniques are classical we restrict our discussion to sketch
only.

Let �R be a fundamental solution of LR as above (cf. Theorem 3.1). We define

wr,s(p) :=
∫

�

�R(pq−1)(gs − gr)(q) dq

= 1

|B(0, s)|
∫

B(0,s)\B(0,r)
�R(pq−1) dq+

(
1

|B(0, s)| −
1

|B(0, r)|
)∫

B(0,r)
�R(pq−1) dq.

(23)
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Since �R ∈ L1
loc(G) we have wr,s ∈ L1

loc(�). Notice also, that B(0, s) = suppwr,s .
Moreover, since for any s such that 0 < r < s, the set �s is compact, [18, Theorem
4.5] applies (cf. also Remark 6.18 in Capogna [5]). In particular, upon setting �R

p (q−1) :=
�R(pq−1) for any fixed p ∈ B(0, s) inequality [18, (4.71)] gives us the following estimate
for the horizontal gradient ∇0�

R
p (q−1) (∇H,q−1�R in the notation of [18]):

|∇0�
R
p (q−1)| ≤ C

d(p, q−1)

|Bd(p,q−1)(p)| .

This estimate, the definition of wr,s in Eq. 23 and standard telescopic argument imply that
∇0wr,s ∈ L1

loc(�). Indeed, let us fix any domain �′ � G and observe that if p ∈ B(0, s),
then B(0, s) ⊂ B(p, 2s). Furthermore, recall that dq = dq−1 and that domains B(0, s)
and B(0, s) \ B(0, r) are symmetric with respect to the origin, hence both q and q−1 are
contained in these domains. Therefore, for all p ∈ �′ we obtain the following estimate

|∇0wr,s(p)|
≤ 1

|B(0, s)|
∫

B(0,s)\B(0,r)
|∇0�

R
p (q−1)| dq +

(
1

|B(0, s)| − 1

|B(0, r)|
) ∫

B(0,r)
|∇0�

R
p (q−1)| dq

= 1

|B(0, s)|
∫

B(0,s)\B(0,r)
|∇0�

R
p (q)| dq +

(
1

|B(0, s)| − 1

|B(0, r)|
)∫

B(0,r)
|∇0�

R
p (q)| dq

≤ 1

|B(0, s)|
∫

B(0,s)\B(0,r)

d(p, q)

|Bd(p,q)(p)| dq +
(

1

|B(0, s)| − 1

|B(0, r)|
)∫

B(0,r)

d(p, q)

|Bd(p,q)(p)| dq

≤ 1

|B(0, 1)|
(

2

sQ
+ 1

rQ

) ∫
B(0,s)

d(p, q)

|Bd(p,q)(p)| dq

≤ 1

|B(0, 1)|
(

2

sQ
+ 1

rQ

) ∫
B(p,2s)

d(p, q)

|Bd(p,q)(p)| dq

≤ 1

|B(0, 1)|
(

2

sQ
+ 1

rQ

) ∞∑
k=−1

s

2k

∫
B(p, s

2k
)\B

(
p, s

2k+1

) 1

|Bd(p,q)(p)| dq

≤ 1

|B(0, 1)|
(

2

sQ
+ 1

rQ

) ∞∑
k=−1

s

2k

|B
(
p, s

2k

)
|

|B
(
p, s

2k+1

)
|

≤ 8Cs

|B(0, 1)|
(

2

sQ
+ 1

rQ

)

where in order to obtain the last estimate we employ the doubling property of the measure
(constant C > 0 depends on the doubling constant). From this we infer that

∫
B(0,s)

|∇0wr,s(p)| dp ≤ 4C

(
s +

( s

r

)Q
)
.

Hence, it follows that |∇0wr,s | ∈ L1
loc(G) since the domain �′ is arbitrary. In particular, if

r = s/2 the L1
loc-estimate is uniform in s for s → 0+. We appeal to this observation later

in this proof.
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In fact, as we now show, wr,s ∈ C1(�). This discussion allows us to compute LR(wr,s)

in a weak sense and obtain that wr,s is a solution to Eq. 22. By employing the reasoning
similar to [12, Lemma 4.1], for any ε > 0 we define

wε(p) =
∫

�

�R(p−1q)(gs − gr)η

(N (p−1q)

ε

)
dq,

where η ∈ C1(R), 0 ≤ η ≤ 1, 0 ≤ η′ ≤ 2 and η ≡ 0 for all t ≤ 1 whereas for all t ≥ 2
we require that η ≡ 1. Similarly to the Euclidean case one proves that wε ∈ C1(G) and,
furthermore, that

wε → wr,s and ∇0wε →
∫

�

(
∇0�

R(p−1q)
)

(gs − gr) dq,

as ε → 0 uniformly on compacta in �. This completes the proof of the claim.
It now follows from Property 4 in Section 2.3 and Eq. 21 that

(Lu) ∗ wr,s = u ∗ LRwr,s = u ∗ gs − u ∗ gr = 0

for all 0 < r < s. Next we show that Lu = 0 on �. In order to complete this goal, denote
φs := −ws/2,s . Then

LR(sQ−2φs ◦ δs) = 1

|B(0, 1)|
(
(2Q − 1)χB(0,1/2) − χB(0,1)\B(0,1/2)

)
= LR(φ1).

A similar argument to that in Proposition 5.3.12 of [3] shows that

�R(δs(pq−1)) = s2−Q�R(pq−1),

and so the following identity holds:∫
G

φs(p) dp

= 1

sQ−2

∫
G

sQ−2φs ◦ δs(p)sQdp

= s2
∫

B(0,s)
sQ−2

[
1

|B(0, s)|
∫

B(0,s)\B(0,s/2)|
�R(δs(p)q−1) dq

+
(

1

|B(0, s)| − 1

|B(0, s/2)|
) ∫

B(0,s/2)

�R(δs(p)q−1) dq

]
dp

= s2
∫

B(0,s)
sQ−2

[
1

|B(0, 1)|
∫

B(0,1)\B(0,1/2)

�R(δs(pq−1)) dq

+
(

1

|B(0, 1)| − 1

|B(0, 1/2)|
)∫

B(0,1/2)

�R(δs(pq−1)) dq

]
dp

= s2
∫

B(0,s)

[
1

|B(0, 1)|
∫

B(0,1)\B(0,1/2)

�R(pq−1) dq

+
(

1

|B(0, 1)| − 1

|B(0, 1/2)|
)∫

B(0,1/2)

�R(pq−1) dq

]
dp

= s2
∫

G

φ1(p) dp.
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Let us denote c := ∫
G

φ1(q)dq and let �′ ⊂ � be compact. We define the following
function:

Fq(p) =
{
Lu(pq−1), for p ∈ �′q
0, otherwise

and

F(p) =
{
Lu(p), for p ∈ �′
0, otherwise.

With this notation, we have

F ∗ 1

s2
φs(p) − F(p)

∫
G

φ1(q)dq = 1

s2

∫
G

(F(pq−1) − F(p))φs(q)dq

= 1

s2

∫
G

(Fq(p) − F(p))φs(q)dq

= 1

s2

∫
G

(F δs(q)(p) − F(p))φs ◦ δs(q)sQdq

=
∫

G

(F δs(q)(p) − F(p))φ1(q)dq.

By the Minkowski inequality applied to a fixed value of 1 ≤ α < ∞we get the following
estimate:

‖F ∗ 1

s2
φs − cF‖Lα(G) ≤

∫
G

‖Fδs(q) − F‖Lα(G)|φ1(q)|dq.

Recall that by Theorem 4.2 we have u ∈ C∞(G). This together with the definition of F

allows us to infer that F ∈ Lα(G) for all 1 ≤ α < ∞. Since for all p ∈ G it holds that
‖Fδs(q)(p) − F(p)‖Lα(G) ≤ 2‖F(p))‖Lα(G), the dominated convergence theorem implies
that

lim
s→0

‖F ∗ 1

s2
φs − cF‖Lα(G) = 0.

Since F ∗ 1
s2

φs(p) = 0 we conclude that Lu = 0 a.e. in �′. Therefore, we conclude that
Lu = 0 on � as �′ is an arbitrary compact subset of �.

Theorem 4.3 shows that in Carnot groups, the strongly harmonic functions are a sub-
family of the L-harmonic functions. The opposite relation does not hold in general as
demonstrated in Example 6 below, where a spherical harmonic polynomial, by definition
satisfying the L-harmonic equation, is shown not to be strongly harmonic. We postpone
this example till Section 5 and discuss the spherical harmonics in more detail there. More-
over, in Section 5 we identify a subclass of spherical harmonic polynomials in H1 which
are strongly harmonic.

We close this section with a consequence of Theorem 4.3, the so-called three spheres
theorem. This part of the presentation is based on [2]. There, we show several variants
of three-spheres theorems for sub-elliptic equations in Carnot groups of Heisenberg-type
(H -type groups).

The classical Hadamard three-circles theorem in R
2 asserts that given three concentric

circles with radii 0 < R1 < R < R2 and a subharmonic function u in the plane, the
maximum of u over a circle with radius R is a convex function of logR, with coefficients
depending on the ratios of R1, R and R2. The three-circles theorem has been generalized
in various settings, including subharmonic functions in R

n for n > 2, higher-dimensional
concentric surfaces (e.g. three-spheres theorems), more general linear and quasilinear ellip-
tic equations, the heat equation (three-parabolas theorem) and coupled elliptic systems of
equations, see [2] for further details and references.
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Let G be an H -type group and � ⊂ G. For a function u : � → R we define

M(r) = sup{u(X) : X ∈ �, N (X) = r}.
The following observation holds.

Corollary 4.1 Let G be an H -type group and � ⊂ G be a domain containing the identity
element of G. Assume that u : � → R is strongly harmonic in � with respect to the pseu-
dodistance d derived from a given L-gauge N . Moreover, let us consider three concentric
spheres in the pseudodistance derived fromN , with radii r1 < r < r2 contained in �. Then

M(r) ≤ M(r1)
r2−Q − r

2−Q
2

r
2−Q
1 − r

2−Q
2

+ M(r2)
r
2−Q
1 − r2−Q

r
2−Q
1 − r

2−Q
2

. (24)

Equality holds if and only if u(X) ≡ φ(r), where r = N (X) and φ is the function on the
right-hand side of Eq. 24.

The proof of the corollary is the direct consequence of Theorem 4.3 above and Theorem
4 in [2].

4.4 The Converse to Mean Value Property

In this section we consider the situation where a function obeys a mean value property with
respect to the underlying Lebesgue (Hausdorff) measure for balls in a given pseudodistance
d (not necessarily derived from an L-gauge), and consider if we can provide necessary and
sufficient conditions for such a function to be sub(super)harmonic with respect to L? We
restrict our discussion to the setting of the first Heisenberg group H1 due to complexity of
the corresponding computations in Hn for n ≥ 2.

First, let us motivate our studies with the following theorem. The most important conclu-
sion of this result, especially relevant from our point of view, is that L-harmonic functions
need not in general be strongly harmonic. We formulate Theorem 4.4 in a setting of CC-
groups, even though in what follows we will need this result only for the case G = H1. This
illustrates that a relation between L-harmonicity and harmonic functions as in Definitions
3.2 and 3.3 is involved for all CC-groups and requires further studies, see also discussion in
Section 5.

Theorem 4.4 Let G be a Carnot–Carathéodory group and u : � → R be an L-harmonic
function in a domain � ⊂ G. Furthermore, let N be a pseudonorm defined by the funda-
mental solution of L, cf. Eq. 8. Then, the following volume mean value property holds for
all p ∈ G and all balls B(p, r) � �:

u(p) =
∫
B(p,r)

u(q)|∇0N (p−1q)|2dq∫
B(p,r)

|∇0N (p−1q)|2dq
=

∫
B(0,r) u(pq)|∇0N (q)|2dq∫

B(0,r) |∇0N (q)|2dq
. (25)

In the Euclidean setting we have |∇0N |2 ≡ 1 and Eq. 25 reduces to the mean value over
Euclidean balls. In fact it is known, see [3, Chapter 5], that if |∇0N |2 is a constant then G

is commutative and thus the geometry is Euclidean. It follows that equivalence between L-
harmonicity and the strong harmonicity in noncommutative Carnot groups does not occur,
see the discussion following the proof of Theorem 4.3 and Example 6 below.

The proof of Theorem 4.4 is based on, nowadays, classical techniques employed in
the studies of the Carnot-Carathéodory groups. Nevertheless, in Appendix we present it
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for the sake of completeness of the presentation and in order to demonstrate some crucial
differences between the Euclidean and CC-settings.

Let� ⊂ H1\{0} and let u ∈ H(�,μ), where μ = dq is the 3-Lebesgue measure (equiv-
alently the 3-Hausdorff measure, denoted H3). Moreover, we assume that d is a metric on
H1. Therefore, it holds that

u(p) = 1

|Bd(p, r)|
∫

Bd(p,r)

u(q) dq, (26)

for all p ∈ � and every r > 0 such that Bd(p, r) � �. By Theorem 4.2 we know that
u ∈ C∞(�). On the other hand, by Theorem 5.6.1 in [3] we have that a C2 function satisfies
the following mean value property with respect to the pseudodistance dL derived from an
L-gaugeN :

u(p) = 1

r4
∫

BdL (0,1)
|∇0N |2dq

[ ∫

BdL (p,r)

u(q)|∇0N |2(p−1q)dq

−2
∫

BdL (p,r)

∫ r

0
�3

( ∫

BdL (p,r)

(
1

d2(p−1q)
− 1

�2

)
Lu(q)dq

)
d�

]
. (27)

Observe that the first expression on the right-hand side of Eq. 27 is the ratio in Eq. 25 for
N ≡ dL. (Since by the definition, N is determined up to a constant by �, we can assume
that N is as in Eq. 8). Furthermore, the direct computations, cf. [3, Chapter 5], give us that
in the standard notation p = (z, t) for coordinates of a point p ∈ H1 it holds that:

|∇0N (z, t)|2 = |z|2√|z|4 + t2
.

Next, let us assume that u is super (sub) solution, i.e. Lu ≥ (≤)0 in �, respectively. Then,
by combining Eqs. 25 and 26 together with Eq. 27 we obtain the following condition to be
satisfied by u:

u(p)= 1

|Bd(p, r)|
∫

Bd(p,r)

u(q) dq ≤(≥)
4

πr4

∫

BdL (p,r)

|z(p−1q)|2√|z(p−1q)|4 + |t (p−1q)|2 u(q)dq,

where z(·) and t (·) stand for, respectively, the z- and t-coordinates of a point in H1, see
Section 5. Moreover, note that

|BdL(p, r)|
|Bd(p, r)| = π/4

|Bd(0, 1)| := Cd,dL < ∞,

due to the left-invariance of the Hausdorff measure on H1. Hence, the necessary condition
for u to satisfy Lu ≥ (≤)0 in � is

Cd,dL‖u‖L1(Bd (p,r)) ≤ (≥)‖u|∇0N |2 ◦ τp−1‖L1(BdL (p,r)) for all p ∈ �.

5 Harmonicity onH1

The purpose of this section is to provide a large class of L-harmonic functions which in
the same time are also strongly harmonic with respect to the pseudodistance derived from
an L-gauge. Namely, a subset of the so-called spherical harmonic polynomials, called for
short, spherical harmonics. It is, perhaps, surprising that such a class exists, if one takes
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into account that a spherical harmonic function must satisfy two kinds of the mean value
property: the one in Definition 3.2 and Eq. 25. First, we recall the necessary definitions and
set up the stage for the main computations of the mean value property for a class of spherical
harmonics. Then, we present an example of a spherical harmonic function (and hence a L-
harmonic function) which fails to be strongly harmonic, see Example 6. Finally, we address
an open question about identifying all spherical harmonics which are strongly harmonic.

The discussion below is, in fact, valid for all the Heisenberg groups Hn, however for
simplicity we restrict to the case n = 1. Recall, that on H1 one introduces the coordinates
(z, t) where z = x + iy ∈ C, t ∈ R and the multiplication is defined by

(z1, t1)(z2, t2) = (z1 + z2, t1 + t2 + 2 Im (z1z̄2))

= (x1 + x2, y1 + y2, t1 + t2 + 2(x2y1 − x1y2)).

We observe that (z, t)−1 = (−z, −t).
Since the Dirichlet problem for L is solvable on B(0, 1), and L is analytically hypoel-

liptic (see [13] and the references therein), there is a family of L-harmonic polynomials
which play the same role in H1 as do the spherical harmonics in Rn. By analytic hypoellip-
ticity, any harmonic function on B(0, 1) is real analytic and the ”spherical harmonics” are
naturally defined in terms of their homogeneous degree.

Definition 5.1 An L-spherical harmonic of degree � = 0, 1, 2, . . . , is a polynomial in z, z̄
and t , which is L-harmonic and homogeneous of degree � with respect to the Heisenberg
dilation.

Using Korányi’s formula in [16], a basis for the L-harmonic polynomials of homoge-
neous degree 2m + k + l can be enumerated in the form

P m
k,l(z, t) = rm

k,l(t + i|z|2, t − i|z|2)zkz̄l ,

where the polynomial zkz̄l is L-harmonic and

rm
k,l(w, w̄) = m!

m∑
j=0

C(l, j)C(k,m − j)wm−j w̄j

with

C(l, j) =
{
1 if j = 0
1
j !

∏j−1
i=0

(
1
2 + l + i

)
if j > 0.

(28)

Hence, the L-harmonic functions u on B(0, 1) have the form

u(z, t) =
∑
k,l,m

ak,l,mP m
k,l(z, t).

OnH1, theL-harmonic polynomials of the form zkz̄l are precisely those for which k = 0
or l = 0, and so a basis for the L-harmonic polynomials of homogeneous degree 2m + k is
given by elements of the form

P m
0,k(z, t) = rm

0,k(t + i|z|2, t − i|z|2)z̄k or P m
k,0(z, t) = rm

k,0(t + i|z|2, t − i|z|2)zk .

We are now in a position to state the key observation, shown by direct calculation.

Observation 5.1 The following spherical harmonic polynomials on H1 are strongly
harmonic for all k ∈ N:

P 1
0,k(z, t) = ((1 + k)t + ik|z|2)zk and P 1

k,0(z, t) = ((1 + k)t − ik|z|2)z̄k .

519



T. Adamowicz, B. Warhurst

Proof The proof relies on using the cylindrical coordinates. Notice, that since P 1
k,0(z, t) =

P 1
0,k(z, t), it suffices to check that P 1

k,0(z, t) is strongly harmonic for all k.
If p = (z0, t0) and q = (z, t), then we have

P 1
0,k(pq) =

(
(1 + k)(t + t0 + 2Im(z0z̄)) + ik|z + z0|2

)
(z + z0)

k .

In cylindrical coordinates (z, t) = (reiθ , t) and the above function takes the following form:

P 1
0,k(p(reiθ , t)) = (

(1 + k)
(
t0 + t + 2r(y0 cos(θ) − x0 sin(θ))

)
(reiθ + z0)

k

+i k
(
r2 + 2r(x0 cos(θ) + y0 sin(θ)) + x2

0 + y2
0

)
(reiθ + z0)

k .(29)

Moreover, for any ball B(p,R) ⊂ G we have:

∫
B(p,R)

P 1
0,k(q)dq =

∫
B(0,R)

P 1
0,k(pq)dq =

∫ R

0

∫ √
R4−r4

−
√

R4−r4

∫ π

−π

P 1
0,k(p(reiθ , t)) dθ dt rdr .

In view of Eq. 29), inner integral
∫ π

−π
P 1
0,k(p(reiθ , t)) dθ requires the following integrals

which we evaluate with residues:∫ π

−π

(reiθ + z0)
kdθ =

∫
S(0,r)

(z + z0)
k dz

iz
= 2πzk

0,

∫ π

−π

cos(θ)(reiθ + z0)
kdθ = rk

∫ π

−π

cos(θ)
(
eiθ + z0

r

)k

dθ = rk

∫
S(0,1)

1

2
(z + z−1)(z + r−1z0)

k dz

iz
= kπrzk−1

0 ,

∫ π

−π

sin(θ)(reiθ + z0)
kdθ = rk

∫
S(0,1)

1

2i
(z − z−1)(z + r−1z0)

k dz

iz
= i kπrzk−1

0 .

It now follows from Eq. 29 that∫ π

−π

P 1
0,k(p(reiθ , t)) dθ = 2π

(
(1 + k)(t0 + t) + i k|z0|2

)
zk
0.

The remaining integrations are straight forward, as we have

∫ √
R4−r4

−
√

R4−r4

∫ π

−π

P 1
0,k(p(reiθ , t)) dθdt = 4π

(
(k + 1)t0 + i k|z0|2

)
zk
0

√
R4 − r4

and
∫ R

0

∫ √
R4−r4

−
√

R4−r4

∫ π

−π

P 1
0,k(p(reiθ , t)) dθdtrdr = 4π

(
(k+1)t0+i k|z0|2

)
zk
0

∫ R

0

√
R4−r4 rdr

= 4π
(
(k + 1)t0 + i k|z0|2

)
zk
0
π

8
R4.

Since ∫
B(p,R)

dq = π2

2
R4

we obtain that

P 1
0,k((z0, t0)) =

∫
B(p,R)

P 1
0,k(q)dq

and hence, P 1
0,k is strongly harmonic in H1.
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Example 6 The first spherical harmonic that is not strongly harmonic is

P 2
0,0(z, t) = 2t2 − |z|4.

Indeed, in this case computations similar to the one in the proof of the observation reveal
that ∫

B(p,R)

P 2
0,0(q)dq = P 2

0,0(p) + R4

4
.

Computation with MAPLE up to homogenous degree 40 revealed no strongly harmonic
spherical harmonics with the order of t greater than 1. Thus, one might suspect that strongly
harmonic spherical harmonics are precisely those with the order of t is less or equal to 1
and a computational proof similar to the above might reveal it to be true. However, the
computations become cumbersome due to the combinatorics arising from the coefficients
C(l, j) at Eq. 28 and repeated use of the binomial formula. Considering the mean values at
0 does not simplify the task, indeed all the spherical harmonics are strongly harmonic at 0.

For example let us consider

P m
k,0(z, t) = rm

k,0

(
t + ir2, t − ir2

)
zk .

As above, let us apply the cylindrical coordinates (reiθ , t) and denote z := rw for w ∈
S(0, 1). Upon considering the mean value of P m

k,0 at p = 0, it follows that
∫ π

−π

P m
k,0(re

iθ , t)dθ =
∫

S(0,1)
P m

k,0(rw, t)
dw

iw
= −irkrm

k,0

(
t + ir2, t − ir2

)
∫

S(0,1)
wk−1 dw = 0, for k ≥ 1.

Therefore, the mean value property for P m
k,0 holds at the origin.

It is interesting to note that if the strongly harmonic spherical harmonics are exactly
the spherical harmonics of t degree less or equal to one, then strongly harmonic spherical
harmonics are solutions to the Beltrami–Laplace equation

X̃2u + Ỹ 2u + ∂2u

∂t2
= 0.

Moreover, by analytic hypoellipticity, the same can be said for strongly harmonic functions
on B(0, 1).

In view of results of this section we pose the following problems.

Open Problems

(1) Identify all spherical harmonic polynomials P m
k,0 that are strongly harmonic.

(2) Describe other classes of functions in Carnot-Carathéodory groups that are both L-
harmonic and strongly harmonic.

6 Determining Set

Let � ⊂ H1. We say that S ⊂ � is the determining set if for any u : � → R strongly
harmonic in the set S, it follows that u ∈ H(�). For the studies of determining sets for
harmonic functions in the Euclidean setting we refer to Flatto [8]. In this section we show
that for continuous functions it is enough to assume the mean value property on a dense
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subset of� in order to infer the harmonicity in the whole domain�. The additional technical
assumption is that H1 must be a geodesic space with respect to the underlying metric d .

Observation 6.1 Let S ⊂ � be dense in �. Furthermore, let us suppose that metric d on
H1 is such that H1 is geodesic space with respect to d . Then it holds that, if u ∈ C(�) and
satisfies the mean-value property (9) at points of S, then u ∈ H(�).

Proof Let p ∈ � \ S and (pn) be a sequence of points in S such that pn → p, as n → ∞
with respect to the given metric d . Let ε > 0 and N be such that for all n > N it holds that

−ε + u(pn) ≤ u(p) ≤ ε + u(pn),

by continuity of u at p. Then, the following estimate holds for any r > 0 and all balls
B(pn, r) � �, B(p, r) � �:

u(p) ≤ ε + u(pn) = ε + 1

|Bd(p, r)|
|Bd(p, r)|
|Bd(pn, r)|

(∫
Bd(p,r)

u(q) +
∫

Bd(p,r)\Bd(pn,r)

u(q)

)

≤ ε + |Bd(p, r)|
|Bd(pn, r)|uBd(p,r) +

∫
Bd(p,r)�Bd(pn,r)

u(q), (30)

where Bd(p, r)�Bd(pn, r) stands for the symmetric difference between balls. Observe that
|Bd(p,r)|
|Bd(pn,r)| → 1, as n → ∞. Moreover, since H1, equipped with metric d , is a geodesic
space, then by Proposition 4.1, the Lebesgue measure is metrically continuous with respect
to d , cf. Eq. 10 above, see also Definition 2.1 and the discussion in [1, Section 2] for further
details. In particular, the following symmetric difference satisfies condition (10):

|Bd(p, r) �Bd(pn, r)| → 0, as n → ∞.

By applying the Lebesgue convergence theorem we conclude that the second integral in
Eq. 30 converges to 0, while the first one to mean value of u at p. Note that, since u ∈
L1

loc(�), then by invoking again the metric continuity of the measure with respect to d , one
obtains that ∣∣∣∣

∫
Bd(p,r)�Bd(pn,r)

u(q)

∣∣∣∣ → 0, as n → ∞.

Thus, we also get that u(p) ≥ −ε + uBd(p,r) and the arbitrary choice of ε allows us to
conclude that u(p) = uBd(p,r). Hence, the proof is completed.
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Appendix: The Proof of Theorem 4.4

In the Appendix we prove Theorem 4.4, which states that L-harmonic functions sat-
isfy a variant of the mean value property with respect to kernels defined via gradient of
pseudonorm given by the fundamental solution of L. We begin with preliminaries regarding
the representation of L in the divergence form.
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Fix an orthonormal basis {Ei}Ni=1 such that g
1 = span {Ei | i = 1, . . . , N1} and

X̃iu(p) = d

dt
u(p exp(tEi))|t=0 for i = 1, 2, . . . , N .

Recall that N = N1 + . . . + Ns , cf. Definition 2.1. If xi , for i = 1, 2, . . . , N denote the
coordinates on G induced by the chosen basis of g via the exponential map, then

X̃iu =
N∑

j=1

dxj (X̃i)
∂

∂xj

.

In coordinates we have

Lu =
N1∑

i=i0

X̃2
i u =

N∑
j=1

N∑
k=1

N1∑
i=1

dxj (X̃i)
∂

∂xj

(
dxk(X̃i)

∂u

∂xk

)

=
N∑

j=1

N∑
k=1

N1∑
i=1

∂

∂xj

(
dxj (X̃i)dxk(X̃i)

∂u

∂xk

)
(31)

= divA∇u,

where the coefficients of matrix A are given by the formula Aj,k = ∑N1
i=1 dxj (X̃i)dxk(X̃i)

for j, k = 1, . . . , N . Note that the third equality (31) uses the identity ∂
∂xj

(
dxj (X̃i)

)
= 0

for each i = 1, . . . , N1 which follows from the nilpotency of G.
Expanding in coordinates as above we also get 〈∇0u,∇0u〉G = 〈A∇u∇u〉RN and note

that a mapping (p, q) → 〈∇0u,∇0u〉(p−1q) is left invariant and homogeneous of degree 0
with respect to dilation since ∇0u has degree 0.

Proof of Theorem 4.4 By direct calculation, it is easy to check that the following Green’s
identity holds:

vLu − uLv = div (vA∇u − uA∇v) .

Since u is L-harmonic in � ⊂ G and v = N 2−Q ◦ τp−1 = −� ◦ τp−1 , then v is
L-harmonic on G \ {p} and∫

B(p,r)\B(p,ε)

div (vA∇u − uA∇v) (q)dq = 0.

Applying Stokes theorem gives∫
∂B(p,r)

uA∇v(ν) · n(p, ν)dS(ν) =
∫

∂B(p,ε)

uA∇v(ν) · n(p, ν)dS(ν), (32)

where dS is defined via the Gramm determinant. Note that we have used the following
consequences of the choice of u and v:∫

∂B(p,ρ)

vA∇u(ν) · n(p, ν)dS(ν) = ρ2−Q

∫
∂B(p,ρ)

A∇u(ν) · n(p, ν)dS(ν)

= ρ2−Q

∫
∂B(p,ρ)

divA∇u(q)dq

= ρ2−Q

∫
∂B(p,ρ)

Lu(q)dq = 0.
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We define the following kernel K(p, q), cf. Definition 5.5.1 and the proof of Theorem 5.5.4
in [3]:

K(p, q) := (2−Q)N (p−1q)1−Q 〈∇0N (p−1q), ∇0N (p−1q)〉
‖∇(N ◦ τp−1)(q)‖ :=(2−Q)N (p−1q)1−QK(p, q),

where p, q ∈ G and p �= q. Next, we define

Tr(u)(p) :=
∫

∂B(p,r)

u(q)K(p, q)dS(q) for any p ∈ G,

where r > 0 is such that B(p, r) � �. It turns out that transform Tr satisfies the mean
value property. Namely, by Eq. 32 we have Tr(u)(p) = Tε(u)(p) for all 0 < ε < r . It then
follows that

|Tr(u)(p) − u(p)Tr(χ�)(p)| ≤
∫

∂B(p,ε)

|u(q) − u(p)||K(p, q)|dS(q)

≤ 1

Q − 2
sup

∂B(p,ε)

|u(q) − u(p)||Tr(χ�)(p)|.

The continuity of u implies the following:

Tr(u)(p) = u(p)Tr(χ�)(p). (33)

Furthermore, since Tr(u)(p) = Tt (u)(p) for all t < r , we have

Tr(u)(p)rQ = Tr(u)(p)

∫ r

0
QtQ−1dt =

∫ r

0
Tt (u)(p)QtQ−1dt

=
∫ r

0

∫
∂B(p,t)

u(ν)K(p, ν)dS(ν)QtQ−1dt

= Q(2 − Q)

∫ r

0

∫
∂B(p,t)

u(ν)K(p, ν)dS(ν)dt

= Q(2 − Q)

∫
B(p,r)

u(q)K(p, q)‖∇(N ◦ τp−1)(q)‖dq

= Q(2 − Q)

∫
B(p,r)

u(q)〈∇0N (p−1q),∇0N (p−1q)〉dq.

Finally, from Eq. 33 we get the assertion of Theorem 4.4 for all p ∈ G and all balls
B(p, r) � �:

u(p) =
∫
B(p,r)

u(q)|∇0N (p−1q)|2dq∫
B(p,r)

|∇0N (p−1q)|2dq
=

∫
B(0,r) u(pq)|∇0N (q)|2dq∫

B(0,r) |∇0N (q)|2dq
.

As mentioned in Section 4, these computations indicate that L-harmonic functions need
not necessarily be strongly harmonic.
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