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Abstract We give necessary and sufficient conditions that show that both the group of
isometries and the group of measure-preserving isometries are Lie groups for a large class
of metric measure spaces. In addition we study, among other examples, whether spaces
having a generalized lower Ricci curvature bound fulfill these requirements. The conditions
are satisfied by RCD*-spaces and, under extra assumptions, by CD-spaces, CD*-spaces, and
MCP-spaces. However, we show that the MCP-condition by itself is not enough to guarantee
a smooth behavior of these automorphism groups.
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1 Introduction

We give necessary and sufficient conditions to assure that the group of isometries and the
group of measure-preserving isometries are Lie groups for a certain class of metric measure
spaces. Additionally we analyze spaces that fulfill these assumptions, for example spaces
that satisfy a particular curvature-dimension condition. Such is the case of RCD*-spaces,
and of CD/CD*-spaces, and MCP-spaces satisfying mild hypotheses. More generally we
show that spaces with good optimal transport properties meet as well the hypotheses.

In certain classes of spaces the full group of isometries, ISO(X), is known to be a Lie
group. For example, Myers and Steenrod proved this fact for Riemannian Manifolds in [26],
Fukaya and Yamaguchi for Alexandrov spaces with curvature bounded by above and by
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below in [12, 36], and Cheeger, Colding, and Naber in the case of Ricci Limit spaces in
[4, 6]. In contrast, there exist metric spaces for which ISO(X) is not a Lie group, see for
instance Examples 5.1 and 5.2.

To state the results let (X, d) be a complete, separable metric space and assume that m
is a fully supported Borel measure on X which is finite on every bounded set. We call the
triple (X, d, m) a metric measure space, mms for short, and let G € {ISO(X), ISOn (X)}
denote either the group of isometries or the group of measure-preserving isometries of X.
The fixed point set of an isomorphism f € G is denoted by Fix(f).

Theorem 1.1 (mms with smooth automorphism groups) Let (X, d, m) be a locally compact
mms where every closed ball coincides with the closure of its respective open ball. Assume
that X has m-a.e. unique tangent cones which are Euclidean. Then G is a Lie group if and
only if:

(@) There exist x € X and constants 0 < s, 0 < FIX < m(Bs(x)) such that for every
I#geG

m(Fix(g) N Bs(x)) < FIX.

Moreover if 1ISO(X) is a Lie group then ISOy (X) is so as well.

Furthermore, by a theorem of van Danzig and van der Waerden [8] and Lemma 4.5 we
can conclude that ISO(X) and ISOy, (X) are compact if X is compact.

As a matter of fact Theorem 1.1 remains valid when considering mms in which the
tangent cones are well-behaved m-almost everywhere yet might fail to be Euclidean, see
Remark 4.6 for the precise statement. For example, such situation arises when X has m-
almost everywhere unique tangent cones and the set of spaces appearing as unique tangents
is a finite union of Euclidean spaces, normed spaces, and Carnot groups. Accordingly, we
are also able to study spaces with Finsler-like geometries rather than only Riemannian ones.
We recall a result of relevance in this direction due to Le Donne [7] that states that geodesic
spaces with a doubling measure that have m-a.e. unique tangents have m-a.e. Carnot groups
as tangents.

In view of the remark the following are examples of mms satisfying condition (a) and the
hypotheses of Theorem 1.1: Weighted Riemannian manifolds and Finsler manifolds with the
Holmes-Thompson or Busemann-Hausdorff volume measure; correspondingly, Alexandrov
spaces with curvature bounded below and a class of their Finsler counterpart, Busemann
concave spaces [19], both endowed with the Hausdorff measure. One may ask whether
these hypotheses are also granted by weaker curvature bounds. For example by curvature-
dimension conditions which use optimal mass transport theory to generalize the notion of
a lower Ricci curvature bound to metric measure spaces. These conditions are variations
that developed from an initial condition introduced independently by Lott and Villani and
by Sturm in [24, 32, 33]. Important contributors to these developments are L. Ambrosio, K.
Bacher, M. Erbar, K. Kuwada, N. Gigli, A. Mondino, T. Rajala, G. Savaré, and K.T. Sturm.
For a historical recount one can consult for example the introductions of [9, 25].

We consider spaces satisfying the Riemannian curvature-dimension condition, the
(reduced) curvature-dimension condition, and the measure contraction property, and write
RCD*, (CD*)CD, and MCP, for short. The relation between these spaces can be written as
RCD*spaces C (CD)CD*spaces C MCPspaces, where all inclusions are proper. It turns out
that RCD*-spaces have smooth isomorphism groups.

Corollary 1.2 (Automorphisms of RCD*-spaces) Let K € R, N € [1, 00), and (X, d, m)
be an RCD* (K, N)-space. Then the groups ISOy (X) and ISO(X) are Lie groups.
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The Isometry Group of an RCD*-Space is Lie 269

Examples of RCD*-spaces are Alexandrov and Ricci limit spaces with the Hausdorff
measure, generalized cone constructions over RCD*-spaces, and limits of weighted mani-
folds with a lower bound on the Bakry-Emery Ricci tensor [20, 24, 28, 32, 33]. However, it
is not known whether the class of RCD*-spaces is strictly bigger than that of weighted Ricci
limit spaces.

We study as well spaces satisfying different curvature-dimension conditions. Recall that
an mms is essentially non-branching and satisfies the (CD-)CD*-condition if and only if it
satisfies the strong (CD-)CD*-condition; for these results and definitions see [5, 30].

Corollary 1.3 (Automorphisms of CD-, CD*-, and MCP-spaces) Let K and N be as above.
The groups ISO(X) and 1SOw (X) are Lie groups for strong CD/CD*(K, N)-spaces and
essentially non-branching MCP (K, N)-spaces that have m-a.e. Euclidean tangents.

The CD-, CD*-, and MCP-conditions allow for non-Riemannian geometries which
include, but are not restricted to, Finsler manifolds. Consistently with the remark following
Theorem 1.1, the above corollary is still valid in spaces with these kind of metrics granted
that the tangent cones are well-behaved, see Remark 4.6. For example, any corank 1 Carnot
group of dimension (k 4+ 1) equipped with a left-invariant measure is an essentially non-
branching MCP-space with unique non-Euclidean tangents by Rizzi [29], it follows from
our results that their automorphism groups are Lie groups.

The above corollaries are particular examples of a larger class of spaces for which
condition (a) holds.

Theorem 1.4 Let (X, d, m) be a locally compact, length metric measure space. Assume that
for all probability measures (< m), 1 € P2(X) any optimal transport plan between i
and vy is induced by a map. Then condition (a) is satisfied.

In particular, if X has well-behaved tangent cones then G is a Lie group.

Indeed, from the results of Gigli-Rajala-Sturm [16], and Cavalletti-Mondino [5] it’s
known that transport plans starting from absolutely continuous measures in RCD*-, strong
CD/CD*-, and essentially non-branching MCP-spaces are given by maps. Moreover it was
proved in Mondino-Naber [25] that RCD*(K, N)-spaces have m-a.e. unique Euclidean
tangents for finite V.

On the other hand we show that a weak curvature-dimension condition by itself might
not be restrictive enough to guarantee smooth automorphism groups.

Proposition 1.5 There exists an MCP(2, 3)-space for which neither ISOp (X) nor ISO(X)
are Lie groups.

We describe now the idea of the proof of the main theorem. A remarkable result of
Gleason and Yamabe in the early 1950’s asserts that a locally compact, topological group
is not a Lie group if and only if every neighborhood of the identity has a non-trivial sub-
group.! If a group has this property we say that it has the small subgroup property, ssp, for
short. The strategy is to show the contrapositive statement in Theorem 1.1. Supposing that
ISO(X) is not a Lie group, by using a blow up argument, we show that the assumption of the

1See Theorem 2.6 and the remarks below.
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m-a.e. infinitesimal Euclideanity and the ssp imply the existence of non-trivial isometries
with arbitrarily big measure of their fixed point set. Moreover, we can verify that isome-
tries with this property generate small subgroups. This is shown in Propositions 3.1 and 3.6
which contain most of the work needed for the proof of Theorem 1.1. Subsequently we show
that the existence of a single non-trivial isometry with a fixed point set of positive measure
implicates that optimal plans are not unique, thus we can conclude Theorem 1.4.

The use of blow-up arguments is common in the proofs done for Alexandrov and Ricci
limit spaces. However the delicate point is to guarantee, relying simply on the tools at hand,
a non-trivial convergence of subgroups of isometries acting on sequences of scaled spaces.
For Alexandrov spaces one uses the fact that geodesics do not branch, whereas in the case
of Ricci limit spaces, a crucial step depends on the connectedness properties of the regular
set. There exist examples in the setting of Theorem 1.1 where these properties simply do
not hold. Therefore we must give new arguments; we make use of optimal transport tools
and measure properties of the regular set.

During the completion of this manuscript Guijarro and Santos-Rodriguez proved in
[17, Theorem 1] that ISO, (X) is a Lie group for RCD*-spaces, compare with Corollary 1.2
above. The proof of Theorem 1 of [17] and that of our Theorem 1.1 both rely on the afore-
mentioned result due to Gleason and Yamabe, however the approaches to the problem are
different. Guijarro and Santos-Rodriguez adapted the approach of [12] in which the exis-
tence of a splitting theorem is indispensable, thus only RCD*-spaces are contemplated. In
contrast, besides considering independently the groups ISO(X) and ISOy, (X),? we present
a more general and direct method, which allows us to achieve the characterization stated
in Theorem 1.1. Consequently, the major practical advantage is that our results are valid in
a larger class of metric measure spaces: we are not restricted to work with spaces having
solely Eulcidean tangents or in which a splitting theorem holds, see Remark 4.6. For exam-
ple, we study spaces with weaker curvature-dimension conditions and, with more generality,
spaces with good optimal transport behavior.

In the next section we give definitions and background results that will be used. In
Section 3 we find Propositions 3.1 and 3.6. The rest of the work needed to conclude the
proofs, and the proofs themselves, of Theorems 1.1 and 1.4, are in Section 4. At the end of
the manuscript we present an example of an MCP-space where ISO,, (X) is not a Lie group.

2 Preliminaries

We set notation and compile definitions and results used in the paper. The text is mainly self-
contained, however, we provide references for some more elaborate definitions to maintain
brevity.

2.1 Metric Measure Spaces

A metric measure space, (X, d, m), is a triple where

(X, d) is acomplete, separable metric space and,
m # 0 is a non-negative Borel measure finite on every bounded set.

2 A discussion on the relevance of considering these groups independently is found in Remark 4.7.
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The Isometry Group of an RCD*-Space is Lie 271

We write mms for short. A pointed metric measure space, (X, d, m, x), is a mms together
with a base point x € X. In the text a geodesics is a map, y : [0, 1] — X, such that:

d(yr, ¥5) = (r — s)d(yo, ¥1) forall0 <s <r <1

where y; = y(t). We write Geo(X) for the space of all geodesics on X endowed with
topology of uniform convergence. A metric space is called a geodesic space if for every
given pair of points x, y € (X, d) there exists a geodesic that joins x and y. For t € [0, 1]
define the evaluation map, e; : Geo(X) — X, as e;(y) := y; for y € Geo(X). The
restriction map, rest, : Geo(X) — Geo(X), is defined as rest{(y) := y o f! fors,t €
[0, 11, ¥ € Geo(X) and the real function f](x) := (r — s)x + .

Two mms (X1, d;, my), (X3, d2, mp) are isomorphic if there exists an isometry

f supp(my) — Xo such that
(flamy = my, 2.1)

where we have denoted the pushforward of a measure v under a map g by (g)#v. We use
the word isometry to make reference to usual metric isometries. In contrast, we refer to
maps satisfying (2.1) as measure-preserving isometries. Particularly, we note that an isom-
etry is defined on the whole space X and does not necessarily satisfy (2.1). By definition
(X, d, m) is always isomorphic to (supp(m), d, m). This induces a canonical equivalence
class of isometric metric measure spaces where only the support of the measure is
relevant. We assume that supp(m) = X, which is a natural restriction in the class of
isomorphisms of mms. We endow the groups ISO(X) and ISOy, (X) with the compact-
open topology making them topological groups, see [22] pp.46. We write in the remainder
G € {ISO(X), ISOn (X)} to denote one of these two groups.

Remark 2.2 (Topology on ISOy (X)) We explain and motivate our choice of topology
on ISOn (X). For locally compact metric spaces it’s natural to endow ISO(X) with the
compact-open topology since the structure under study is of pure metric nature. In addition,
in this context, the rigidity of the isometries assures that pointwise convergence implies
convergence w.r.t. the compact-open topology.> Alternatively, on mms there is additional
structure of interest, namely, the measure structure. However, as we explain below, the rigid-
ity of the measure-preserving isometries guarantee that a reasonable choice of topology on
ISOn (X) coincides with the compact-open topology.

We first observe that topology that only considers the measure structure is too coarse for
our purposes because it doesn’t see metric properties. A logical way to proceed would be
to couple a measure-wise and a metric-wise topology. However, the weakest metric con-
vergence, the pointwise convergence, coincides with the compact-open convergence. On
the other hand, in Lemma 4.5 we show that the compact-open convergence of a sequence
of measure-preserving isometries, (f;;), implies the weak convergence of the pushforward
measures (f,)#(m) in a locally compact mms.

We will study group actions on sequences of pointed metric spaces. In this framework the
pointed Gromov-Hausdorff (pGH) and pointed equivariant Gromov-Hausdorff convergence

3Rigorously we would have to justify the use of sequences to compare topologies. This can be done because
ISO(X) is second-countable which can be concluded from the fact that X is a locally compact metric space.
Consult for instance [22] pp. 46.
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272 G. Sosa

(peGH) provide canonical types of convergence. We racall rapidly these concepts and refer
to [3, 10, 11, 18] for more details.

Let us first denote the set of isometry classes of compact metric measure spaces by
ME. We also consider triples (X, d, H), where (X, d) is a compact metric space and H <
ISO(X) is a closed subgroup and say that two triples are equivalent if they are equivariantly
isomorphic up to automorphisms of the groups. We denote the equivalence classes of these
triples by Mg,

Definition 2.3 (e-(equivariant) Gromov-Hausdorff approximation) Let (X, dx), (Y,dy) €
ME€ be metric spaces. An e-Gromov-Hausdorff approximation is a function f : X —
Y such that, for all p,g € X it holds that |[dx(p, q) — dy(f(p), f(g))] < € and an e-
neighborhood of f(X) covers all of Y.

Let (X,dx,Hyx), (Y,dy,Hg) € ./\/lgq. An e-equivariant Gromov-Hausdorff approxima-
tion is a triple of functions (f, ¢, ¥) where f : X — Y, ¢ : Hxy — Hy and ¥ : Hy — Hy
such that

e fis a Gromov-Hausdorff e-approximation;
e ifhxy e Hy,andx € X, thend(f(hxx), ¢(hx)f(x)) < €; and
e ifhy € Hy and x € X, then d(f (¢ (hy)x), hy f(x)) < €.

The distances are defined as follow.

Definition 2.4 ((equivariant) Gromov-Hausdorff distance) The Gromov-Hausdorff dis-
tance dgn between two compact metric spaces (X, d,) and (Y, dy) is defined as the infimum
of all €’s such that there are e-Gromov-Hausdorff approximations from X — Y and from
Y - X.

The equivariant Gromov-Hausdorff distance between two triples (X, d,,Hyx) and
(Y, dy, Hy) is defined analogously using e-equivariant Gromov-Hausdorff approximations.

If lim; . oo dgH(X;, X) = 0, we say that the sequence of metric spaces {(X;, dx;)}ien
converges to the metric space (X, dx); equivariant Gromov-Hausdorff convergence for
sequences of triples in ng is defined analogously. Furthermore, convergence for non-
compact proper pointed spaces is defined by requiring the approximations to preserve the
base point. In this case we say that (X, dy, x) converges in the pointed Gromov-Hausdorff

topology to (Y, dy, y) if (B, (x), dx) ﬂ (B, (y), dy) for all radius r, under the require-
ment that f(x) = y for all Gromov-Hausdorff e-approximations. In order to keep track of
base points in the equivariant convergence, let us call ng,p the set of equivalence classes of
quadruples (M, d, H, x), for (M, d, H) € ng and x € M, under the equivalence given by
equivariant isomorphisms (up to group automorphisms) that fix the base point. The pointed
eGH-convergence is then defined in terms of eGH e-approximations that fix base points.

Lastly, in the framework of metric measure spaces the ad hoc convergence is given by
the pointed measured Gromov-Hausdorff convergence. This convergence requires pGH-
convergence of the underlying metric spaces and additionally weak convergence of the
pushforward measures under the ¢,-Gromov-Hausdorf approximations to the reference
measure of the limit space. An comprehensive reference for this topic is [15].

G
Any pGH-limit of a sequence of scaled spaces, (X, riid, x) p—>H (X, doo, Xo0) for r; —

0, is called a (metric) tangent cone of X at x. We denote the set of all tangent cones of X at
x by Tan(X, x) := {(Xco, doo, Xo0) is 2 pGH-limit as above}. The existence or uniqueness
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The Isometry Group of an RCD*-Space is Lie 273

of tangent cones is not guaranteed in a general setting. However, the set of points of X with
unique Euclidean tangent cones is called the regular set of X, written as R. In detail,

R = [x € X || 3k = k(x) € N such that Tan(X, x) = {(R, d, 6)}] .

We say that (X, d, m) has m-a.e. Euclidean tangents if the set of numbers {k(x) €
N x € R, Tan(X, x) = {(R*® dg, 0)}} is finite and if m(X \ R) = 0. For a fixed € > 0,
the e-regular set, R, is the set R := Us(R)e 5, where for a given § > 0 the set (R)¢ s is
defined as all points x € X for which there exists a k = k(x) such that

dgH (Br(x), Bf(ﬁ)) <e€r forall r < é.

Above dgh is the Gromov-Hausdorff distance and Bf (0) C R* is the ball of radius r around
0 € R¥. Note that R = N.R. and that for every ¢ > 0 the measure m(X \ R¢)=0 if X has
m-a.e. Euclidean tangents.

2.2 Lie Groups

Denote by Gy the identity component of G, that is, the largest connected set containing
the identity element I. As definition we say that G is a Lie group if and only if G/Gy is
discrete* and the identity component Gy is a Lie group in the usual smooth sense. We know
by Remark 2.8 that G looks, in the worst cases, as countable copies of a smooth Lie group
which do not accumulate.

Theorem 2.5 (van Dantzig and van der Waerden [8]) Let (X, d) be a connected, locally
compact metric space. Then ISO(X) is locally compact with respect to the compact-open
topology. Furthermore if X is compact, then 1SO(X) is compact.

A topological group G has the no small subgroup property if there exists a neigh-
borhood of the identity with no non-trivial subgroup. In this case we write nssp for short.
Below we cite an outstanding result that characterizes Lie groups in terms of the nssp.

Theorem 2.6 (Gleason [13], Yamabe [35]) Let G be a locally compact, topological group.
Then G is a Lie group if and only if it has the no small subgroups property.

Remark 2.7 In [35] Yamabe generalizes Gleason’s theorem to the infinite dimensional case,
however, G is assumed to be connected. We present an argument, due to an undisclosed
Russian mathematician, which shows that we can consider non-connected groups.

An equivalent way of stating Theorem 2.6 is: Assuming the same hypothesis, then there
exists an open subgroup G’ < G such that for every neighborhood of the identity U C G
there exists a normal subgroup (U D)K < G that makes G'/K a Lie Group [34]. If G has
the nssp the only small normal subgroup is I itself, thus making G” a Lie group which by
definition means that G’/ Gy is discrete. However, this implies that G/ G is discrete since
G /G’ is also discrete and G/ G’ = (G/Go)/(G’/ Go).

Remark 2.8 We make another observation regarding the cardinality of G/Gy. In principle
the group of components might be uncountable but fortunately, we can also discard this

“4For a comment on the cardinality of G/ G see Remark 2.8.
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274 G. Sosa

behavior. Assume that G is a second-countable Lie group. By definition G/ Gy is discrete
which is equivalent to G being open. In turn, this implies that the quotient map is open
and it follows that G/ Gy is second-countable since by assumption G is second-countable.
A second-countable space is separable, and discrete separable spaces are countable. Finally,
we recall that ISO(X) is second-countable for a locally compact, connected metric space.

2.3 Curvature Dimension Conditions

Curvature-dimension conditions require certain convexity behavior of an entropy functional
defined on the space of probability measures of an mms. Different choices of entropy
functional and different types of convexity conditions give rise to alternative versions of
curvature-dimension conditions. However, all conditions are compatible with lower Ricci
bounds in the smooth framework and are stable under pointed measured-Gromov-Hausdorff
convergence. Optimal transport theory provides an appropriate framework to define these
type of conditions.

We’ve decided not to include the definitions of the RCD*- or the CD*-conditions since
we don’t use them explicitly and are rather technical. Alternatively, we present the results
that show that these spaces satisfy the assumptions of Theorem 1.4. Nevertheless, let’s do
recall that the RCD*-condition condition was introduced in [2] and further developed in [1]
and [9] to which the reader is referred to for a comprehensive discussion on the subject.
The RCD*-condition itself couples a curvature-dimension condition with an infinitesimal
Riemannian behavior known as infinitesimally Hilbertianity.

Let P(X) be the space of probability measures on (X, d) and P>(X) C P(X) the
subspace of measures with finite second moments. For g, 1 € P2(X) the Wasserstein
squared distance is defined as

W30, ) = inf [

d(x, y)?do (x, y). (2.9)
XxX

The infimum taken over all measures 0 € P(X x X) with first and second marginals
equal to po and w; respectively. If there exists a measurable function G : X — X such that
the measure o = (I, G)#uo is a minimum we call o an optimal map. Given g, 1 € P(X)
the set OptGeo(uo, 1) C P(Geo(X)) is defined as the set of all measures 7w such that
the pushforward (eg, e;)#mr € P(X x X) realizes the minimum in Eq. 2.9. A measure
7w € OptGeo(uo, (1) is called an optimal geodesic plan and if such a measure 7 is the
lift of an optimal map we call it an optimal geodesic map. Note that the existence of opti-
mal maps is rare however, the next theorem shows their existence in mms that satisfy a
curvature-dimension condition and that do not branch too much. Recall that the essentially
non-branching condition says that geodesics do not branch too often, we refer to the cited
articles for a precise definition.

Theorem 2.10 (Existence of optimal maps. Cavalleti-Gigli-Mondino-Rajala-Sturm [5, 16])
Let K e R, N € [1, 00) and (X, d, m) be an essentially non-branching MCP(K, N) space.
Then, for every uo(<€ m), w1 € Pa(X), there exist a unique optimal geodesic plan & €
OptGeo(uo, (L1). Furthermore, such m is given by a map. In particular, there exists I' C
Geo(X) with w(I') = 1 such that the map e, : I' — X is injective for all t € [0, 1).

We recall that essentially non-branching MCP space include: RCD*-spaces, essentially
non-branching CD*-spaces, and essentially non-branching CD-spaces.
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The Isometry Group of an RCD*-Space is Lie 275

The existence of ma.e. Euclidean tangents in RCD*-spaces was proved in [14], and
later the uniqueness was shown by Mondino and Naber as a byproduct of the rectifiability
of RCD*(K, N)-spaces as metric spaces (compare with [21] for rectifiability as mms). A
weaker version of their result is enough for us.

Theorem 2.11 (m-a.e. Euclidean tangents in RCD*(K, N)-spaces. Mondino-Naber [25])
Let K, N € R, N > 1 and (X,d, m) be an RCD*(K, N) space. Then X has m-a.e.
Euclidean (metric) tangents, i.e. m(X \ R) = 0.

In the last section we will work with Ohta’s definition of the MCP(K, N)-condition.
Intuitively, it requires contraction properties of measures as the RCD*-condition but only
for starting § measures. The condition is stable w.r.t. to pmGH-convergence [27]. We give
the specific shape of the condition for the case we will study.

Definition 2.12 (MCP(2,3)-condition) A mms, (X, d, m), has the (2, 3)-measure contrac-
tion property, MCP(2, 3), if for every point x € X and a measurable set A C X with
0 < m(A) < ooand A C By (x) there exists a probability measure & € P(Geo(X)) such
that (eo)#m = 8y, (e1)4#m = m(A)"'m|4, and

22
(e)# twmm)dn(y) <dm t €[0,1]. (2.13)
sin“(I(y))

3 Metric Measure Spaces with G Containing Small Subgroups

We study mms where G has small subgroups. Granted that G has the small subgroup prop-
erty we show the existence of many automorphisms with a large fixed point set, and vice
versa: these type of automorphisms create small subgroups. After having shown this con-
nection, the proof of Theorem 1.1 will follow without much additional work, which we
present in the next section.

Define for r > 0, x € X, and a subgroup A < §ISO(X):

Dp(r,x) :=sup sup d(y,g()).
geA yEB%(x)

For fixed A, the function Dy (7, x) is continuous in r and x as long as every closed ball in
X is the closure of its interior [4]. This holds true when X is a length space, for example.
We do not assume a fully supported measure in the coming proposition.

Proposition 3.1 Let (X, d, m) be a mms where every closed ball coincides with the closure
of the open ball. Assume that X has m-a.e. Euclidean tangents. If G has the small subgroups
property, then for every x € X, 0 < s, and 0 < & < 1 there exists a non-trivial subgroup
A = Ay 5 ¢ C Gsuch that for every g € A

m(Fix(g) N Bs(x)) = § m(By(x)). (3.2

Proof We assume that m(Bs(x)) > 0 since the inequality above trivially holds true oth-
erwise. We argue by contradiction. The strategy is the following: assuming that inequality
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276 G. Sosa

(3.2) doesn’t hold we will find for every € > 0 a quadruple (8¢, re, xe, Ae) € (RT)Zx X x2C
with the following properties:

o 0<re <6

® Xc € (,R«)e,ée

e A <ISO(X) is a subgroup
re
% .
The existence of such a family of quadruples would lead to a contradiction and thus, would
prove the proposition. Indeed, observe that if for every € > 0O there exists a quadruple as
above, then for a sequence €, — 0 there exists a subsequence €, (denoted in the same way)
such that, in the eGH-sense, the scaled spaces below converge to

o Dp (re,xe) = (3.3)

(Brg (v, 4, As) =5 (B1® c R, di A)
€

where k € N, and Ay < ISO(R¥) is a non-trivial subgroup satisfying Dy (1, 0) = 21—0.5
This creates the contradiction, since every non-trivial subgroup of Euclidean isometries H
fulfills Dy(1, 0) > 55.°

We proceed to construct a family of quadruples satisfying conditions (3.3). Suppose that
(3.2) does not hold. That is, there exist x € X, 0 < s, and 0 < & < 1 such that for every
non-trivial subgroup H C G there exists an f € H where

m(Fix(f) N By (x)) < & m(By(x)).

Note that necessarily f # I. Take € > 0 and choose small enough §. € Rsothat0 < §¢ < s,
and

& m(By(x)) < m((R)e,s. N Bs(x)). (34
The m-a.e. Euclidean tangents of X, together with the continuity from below of the measure
and the fact that R C (R)e = Us=0(R),s make possible the choice of such a §¢. Indeed,
since for 8" < §” it holds that (R)¢ s# C (R)¢,» we can write (R)e = Upen(R)e,1/n as a
countable union of sets. Now just notice that

m(Bs(x)) = m(Bs(x) NRe) = m(Bs(x) N (Unen(R)e,1/2))
= lim m(U;<u(Bs(x) N (R)e,1/7))
n—oo

— nll)néo m(B;(x) N (R)e,1/n)-

Choose n € N big enough and take 6 < min{s, 1/n}.

5In detail, the definition of the sets (R)e,5. and assumption about X having m-a.e. Euclidean tangents
guarantee the existence of a subsequence ¢, for which (B,, (xe)s 5 d) —> (BI(O) C R¥, dg) for some

k € N; thus, the claim is concluded using [11, Proposmon 3.6]. The continuity of D : MC ap > R
(Xy,dn, Ap,xp) = Dp, (1, x,) under (pointed) eGH-convergence, which follows from the definitions,
implies that Dp (1, 0) = 1/20. Details on equivariant GH-convergence are found in Section 2.

6The existence of a lower bound for Dy (1, 0) is a consequence of the nssp of the Lie group ISO(RM);
the number 1/20 simply serves as a bound. To corroborate this fact it’s sufficient to consider subgroups
which are generated by a non-trivial isometry g € ISO(RV). Since g is a composition of translations and
elements of O(N), and subgroups of translations have unbounded displacement, it’s enough to show the
bound for g € O(N). After recalling that (for some orthonormal frame) g has the matrix representation
DIAG(ay, - -+ , ak, £1, - -+, £1), where the «;’s are 2 x 2 rotation matrices, the claim is easily verified by
restricting the analysis to rotations in the plane and reflections along (N — 1)-hyperplanes.
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Inequality (3.4) combined with the reductio ad absurdum assumption imply that for
every non-trivial H < ISO(X) there exist f(3 I) € H such that the set By(x) N (R)es, \
Fix(f) is not empty.

In view of the small subgroups property of G, we can find a non-trivial small subgroup

é
AcCUc:=4geG| sup d(y,g(y) < zi
yEBk(x) 0

= {g € Gl g(y) € Bs,j20(y) forall y € By (x)}.
In particular, there exist g(# I) € A¢ and x. € B;(x) such that
Xe € Bs(x) N (R)es, \ Fix(g) and

)
0 < d(xe, g(xe)) < i.

Denote by 0 = 6(x¢) := 20 d(x¢, g(x¢)) < 8¢. By construction it follows that

1
707 = Dac®. xe)

1
DAG((SEaxE) =< DA5(4S»X) < %(Se-

Finally, the continuity of Dj_ (o, x¢) and the intermediate value theorem imply that there
exists 7e € R such that Dp_ (v, x¢) = 21—0rE for some 0 < r. < 8.. Hence for € > 0 there
exists a quadruple (8¢, 7e, xe, A¢) satisfying (3.3). (]

Remark 3.5 Note that the logical negation to the conclusion of Proposition 3.1 is equivalent
to condition (@) of Theorem 1.1.

Next, we see that we can generate small subgroups from the existence of automorphisms
with large fixed point sets.

Proposition 3.6 Ler (X, d, m) be a locally compact mms where every closed ball coincides
with the closure of its interior. Then G has the small subgroups property if for every x € X,
0 <s,and 0 < &' < 1 there exists a non-trivial subgroup A = Ay ¢ C G such that for
every g € A

m(X \ Fix(g) N Bs(x)) < & m(Bs(x)).

Proof We give a sequence {Ey}ven C (0, 1) which generates, according to the hypothesis,
a sequence of non-trivial subgroups {A v ¢y }nen < G suchthat Ay C Uy (3 I) for every
N € N, where {Un}nen C Gis local basis of the compact-open topology at I. Thus proving
the existence of small subgroups of G.

Accordingly we fix x € X, N € N, and define

gy i=m(By ()™ inf {m(Bin(y) N By(x))}.
yeBy (x)

We claim that 0 < &j,. Indeed, choose a converging sequence’ y, — Yoo € By(x)
such that liminfy,—, e m(By (x)) ~'m(B1/n () N By (x))) = &2 Since the measure m

7Using a subsequence if necessary.

8The existence of such subsequence is guarantee since locally compact, complete metric spaces for which
the closure of open balls coincides with closed balls are proper.
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has full support there exists a small ball, B; (ys), With m(B; (y0) N By (x)) > O which is
a lower bound of m(By,y (yn,) N By (x)) for large enough m, hence, validating the claim.
We take 0 < &y < &), and write Ay := Ay ng, for the non-trivial subgroup given by the
hypothesis for the triple (x, N, £€x). By construction we verify that

m(X \ Fix(f) N By (x)) < m(By/n(y) N By (x)) 3.7

forevery y € By(x) and f € Ay.
Observe now that if d(z, g(z)) > 2¢ then B;(z) N Br(x) C X \ Fix(g) N Bgr(x) for
g € G,z € X, and numbers 7, R € R™. Therefore, we conclude from (3.7) that for every

y € By(x) and f € An we have that d(y, f(y)) < 2/N. Hence Ay is contained in the
neighborhood of the identity:

Uy = {g e Gl d(y,g(y)) <3/N forevery y € EN(x)}.

Accordingly, the proof is complete considering that the choice of N was arbitrary. O

4 Proof of Theorem 1.1

We start this section with a lemma that shows that the uniqueness of optimal geodesic maps
is sufficient to guarantee that non-trivial isometries have fixed point sets of measure zero.
In particular, Theorem 1.4 is concluded from this result and Theorem 1.1 after taking into
consideration that locally compact, complete length spaces are geodesic.

Lemma 4.1 (Zero measure of the fixed point set) Let (X, d, m) be a mms such that for
every (o, b1 € Pa(X) with po < m there exists a unique optimal geodesic plan w €
OptGeo(uo, iL1). Furthermore, assume that w is concentrated on a set of geodesics, I' C
Geo(X), such that the map ey : I' — X is injective. Let f # 1 be an isometry of X. Then
m(Fix(f)) = 0.

Proof We proceed by contradiction. Suppose that there exist I # f € ISO(X), and a set
A C Fix(f) with positive measure. Let x € X \ Fix(f) and define the probability measures
wo :=m(A) " 'm|, and p; = %(8x+8f(x)). We denote by # € OptGeo(uo, (1) the unique
geodesic plan between o and 1. Let I' C Geo(X) be the set where 7 is concentrated and
where e is injective. Set:

Fii={y el | ei(y) =x}

[:={y el | eily) = f(x)}

A,‘ = eo(ri) i = 1,2.
I'1 (I'2) is the subset of geodesics of I' that end in x (f(x)) and A; is the projec-
tion of I'; onto the set A. We have that none of these sets are empty, that the measures

7 (C\T1UlZ) =0 =m(A\(A]UA)) and that A N Ay = @. The last fact is a
consequence of the injectivity of eg. We define now the measure 7’ € P(Geo(X)) as

7'[, = (f)#ﬂh“l +(J7:1)#7T|F2» (42)

where the bijection of Geo(X), y + g o v, induced by some g € ISO(X) is written as
g : Geo(X) — Geo(X). The measure 7’ is a symmetric analog of 7 but 7’ # 7. Indeed,
note that n’(f(Fl)) =1/2#0= n(f(Fl)) because by construction f(Fl) NIy =40,
for i = 1, 2. To verify the latter claim it is sufficient to observe that geodesics contained in
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f(I'1) have distinct starting points than geodesics contained in ' and moreover, different
terminal points than geodesics in I'y.

We claim that 7" € OptGeo(ug, 1) is also a dynamical plan. This would contradict the
hypothesis of the uniqueness of 7 and finish the proof of the lemma. We proceed to verify
the claim.

We need to show that 77/ minimizes cho(X) lz(y)d,o, where we have written lz(y) for
the squared length of y. The minimum taken over all measures p € P(Geo(X)) such that
(ei)u#p = w; fori = 0, 1. We check that the pushforwards of 7’ under the evaluation map
are as above. For this we observe that for g € ISO(X), B C X, and ¢ € [0, 1]

goe;'(B) = g({y € Geo(X) | e(y) € B))
= {y € Geo(X) | e/(y) € g(B)} =¢; ' 0 g(B),

and that §~! = g—!. Next we compute the pushforward of 7z’ under e;:

(ensn’ = (er 0 Pamlr, + (e o f~ Dl
= (Haewmir, + (fF Dalewr|r,.
Then (eg)sm’ = o since flg = I|a. As for the other pushforward we have that
ey’ = (f)#(%fsx) + (f_l)#(%fsf(x)) = %(BX + 8fx)) = wm1. To finish we see that

7" € OptGeo(ug, (1) by showing that the value of -[Geo(X) 12(y)d71’ is the minimum of the
functional.

/ P(y)dn'(y) = f 2(y)d ((f)#?flr. +(]:?1)#7T|r2> )
Geo(X) Geo(X)
= /G o0 o f(y) xr,()dr(y) + 1o f=1(y) - xr,(¥)dn(y)

_ / P(y) - (e, + 1) (0)dr(y) = / P(y)dn ().
Geo(X)

Geo(X)
O

Remark 4.3 The hypothesis in Lemma 4.1 can be we weakened. We may require the exis-
tence of the unique geodesic plan only for final measures satisfying ;4 < m rather than for
an arbitrary ) € P2(X). We can repeat the proof choosing as final measure

1
1 = 5(m<Br<x)>”m|B,<x> +m(f (B ()~ m| )

where B, (x) C Fix(f)¢ is a sufficiently small ball.
Consistently with Theorem 2.10 we obtain

Corollary 4.4 Let (X, d, m) be an essentially non-branching MCP(K, N)-space and f €
ISO(X). If m(Fix(f)) > O then f =L

In particular, this holds true for RCD*-spaces, essentially non-branching CD*-spaces,
and essentially non-branching CD-spaces.

In order to use Gleason and Yamabe’s characterization Theorem 2.6 we need to show that
G is a locally compact topological group. Recall that van Dantzig and van der Waerden have
proved that ISO(X) is locally compact, granted that X is locally compact and connected,
see Theorem 2.5. Below we prove that ISOy, (X) is a closed subgroup of ISO(X).
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Lemmad4.5 Let (X, d, m) be a connected, locally compact mms. Then ISOw (X) is a locally
compact closed subgroup of ISO(X) with respect to the compact-open topology.

Proof We show that ISOy, (X) is closed. The local compactness of ISOy, (X) follows from
the fact that ISOy, (X) is a closed subgroup of a locally compact group. Let (f;)nen C
ISOw (X) be a converging sequence w.r.t. the compact-open topology with limit f :=
lim,  fp. It is easy to see that f is an isometry. Thus, to finish the proof, it remains to
check that ( f)#m = m. This follows from the regularity of the measure, as we argue below.

Indeed, since the measures (f,)#m = m are all equal, they trivially converge weakly to
m. On the other hand we will show that the pushforward of m under f, weakly converges
to the measure (f)gm. Therefore, ( f)ym = m by the uniqueness of the limit. By using the
definition of the pushforward and the continuity of g o f;,, it is enough to verify that for
every bounded continuous function with bounded support, g : X — R, it holds that

lim gofndm=/gofdm,
n—o0 X X

to show that (f;,)sm 5 (f)sm. After the following observation it is clear that this last
equality holds.

Assuming that g is as above we can construct an m-integrable function, G, such that
|g o fu(x)] < G(x) for all x € X and make use of the dominated convergence theorem.
Take for example the multiple of the characteristic function G := kg x|, (y), Where kg is a
bound on g and r € R and y € X are such that U, cnsupp(g o f,) C B-(y). The existence
of such a pair {r, y} is guaranteed because g has bounded support, and because f, — f
converges uniformly in compact subsets. The integrability of G follows from m being finite
on bounded sets. O

We have now done all the work needed to prove Theorem 1.1. Compare Theorem 1.1 to
Theorem 4.5 in [4].

Proof of Theorem 1.1 Being the groups of isometries and of measure-preserving isometries
locally compact spaces (Theorem 2.5, and Lemma 4.5) we can rely on Gleason and Yam-
abe’s characterization of Lie groups. That is to say, G € {ISO(X), ISOn (X)} is a Lie group
if and only if G does not have the small subgroup property. Note that the contrapositive
statements to Propositions 3.1 and 3.6 show that G not having the ssp is equivalent to:

@) There exist x € X, 0 < s, 0 < & < 1 such that for every non-trivial subgroup
A C ISO(X) there exists an isometry g € A with

m(Fix(g) N Bs(x)) < § m(Bs(x)).

As already observed in Remark 2.2, conditions (a) of Theorem 1.1 and (') are equivalent.
Indeed, it is clear that (a) implies (a’). The other implication follows after observing that
the existence of an isomorphism I # g € G with m(Fix(g) N Bs(x)) > & m(B;(x)) = Fix
implies that the measure of the fix point set of every element in the generated subgroup
(g) # L is greater than or equal to Fix. This proves the first part of the theorem.

Finally, note that granted that ISO(X) has the no small subgroup property, then ISOy, (X)
has the same property since they both are endowed with the compact-open topology. This
shows that ISO, (X) is a Lie group if ISO(X) is a Lie group. O

@ Springer



The Isometry Group of an RCD*-Space is Lie 281

Remark 4.6 The conclusion of Theorem 1.1 remains valid under a weaker assumption on
tangent cones. We say that X has well-behaved tangents if it has m-almost everywhere
unique tangent cones and the following holds:

e The set of all metric spaces that appear as unique tangent cones, Tan(R), is compact.
e There exist a constant 0 < ko such that Dy (1, y*°) > ko for every non-trivial
subgroup H*® < ISO(Y ) for all (Y°°, dy~, y*°) € Tan(R).

Indeed, if X has well-behaved tangents then the only part of the argument which depends on
the hypothesis on the behavior of tangent cones, the proof of Proposition 3.1, can be repeated
verbatim. However, in hope of a clearer exposition we opted not to present Theorem 1.1 in
full generality since the alternative proof does not contribute with new ideas. A complete
exposition can be found in the author’s doctoral thesis [31].

This observation becomes relevant in the study of metric measure spaces which have
well-behaved tangents which might not be Euclidean. Metric measure spaces with a unique
space appearing m-almost everywhere as tangent cone have well-behaved tangents. More
examples are presented by metric measure spaces for which Tan(R) is a finite union of
Euclidean spaces, normed spaces, and Carnot groups. For example, it is known that any
corank 1 Carnot group of dimension (k + 1) equipped with a left-invariant measure is an
essentially non-branching MCP-space with unique non-Euclidean tangents by work of Rizzi
[29], thus their automorphism groups are Lie groups. More generally, Le Donne proved in
[7] that geodesic spaces equipped with a doubling measure that have m-a.e. unique tangents
have m-a.e. Carnot groups as tangents.

Remark 4.7 In general the implications
ISO(X)isaLie Group (<) =  ISOn(X) is a Lie Group.

need not hold in any direction. In Theorem 1.1 the implication to the right side can be shown
relying on regularity properties of the measure. While the other direction is more drastic.
There exist spaces, even with “very” regular measures, for which ISOy, (X) is a Lie group
but ISO(X) is not.

5 Metric Measure Spaces with ISO,, (X) Not a Lie Group

We show that the MCP-condition is not strong enough to guarantee that the group of
measure-preserving isometries is a Lie group. We also see that for a geodesic and compact
mms with finite measure ISOy, (X) might fail to be a Lie group. We start by presenting a
well-known example to develop intuition about the connection between ISOy, (X) not being
a Lie group, ISOy, (X) having small subgroups, and the branching of geodesics.

Example 5.1 Denote the circle of radius r by S,. The Hawaiian earring, H, is the space we
obtain after gluing the circles {S_1_ 3 |n € N} by identifying one point of every circle, see

Fig. 1. Endow H with the arc- length distance dp and the 1-dimensional Hausdorff measure
H!. This makes (H, dg, H!) a compact, geodesic metric measure space with finite mea-
sure. Observe that ISO(H) = ISOn (H) = I1°°{%1} where the compact-open topology
coincides with the product topology. Hence ISO(X) is totally disconnected but not discrete.
By definition, ISO(X) is not a Lie group since ISO(X)/ISO(X)y is not discrete.
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DR - - -

Fig. 1 Hawaiian earring H and fancy necklace FN

Example 5.2 (The fancy necklace) Given n € N, an n-necklace (N, d,, m,) C R?is a
mms with n diamond-shaped figures, whose definition is inspired by a construction done by
Ketterer and Rajala in [23]. A fancy necklace (FN', drar, mx) is then a measured GH-
limit of a sequence of n-necklaces {(N", d,, m,)},en. We begin by defining inductively
the sets N C R? and then endowing them with a metric measure structure.

Given a sequence {(7, X»)}nen C R2 (consistency conditions will be specified below),

for k € N, we write I} = [xk — % Tk, Xk + %rk] and the diamond-shaped sets:

1 /1
Dy ::{<x,y>eR2 I |y|§§<Z rk—|x—xk|>}.

Set N0 := [0, /2] x {0} C R?. Forn € N, construct the n-necklace N by replacing,
in the (n — 1)-necklace N1, the segment I, x {0} c N"~! with the diamond D,,. (See
Fig. 1.) To have a consistent construction we require that the sequence {(ry,, X,)}nen C R?
satisfies:

1 b3 1
O<r, <1, Zrnfxnfz—zrn, and

LNIj=¢fork < j. (5.3)

The first condition assures that we have the correct size and scaling of our figures, while the
second condition assures that different diamonds do not intersect.

We proceed now to give the n-necklace A/ a metric measure structure. For n € NU {0},
endow N/ with the distance, d,, = dj.~, induced from the L*>-norm in R2. To set a measure
on the n-necklace we start by defining mp, < L? on D, by

dm D,

dL?

-1
(x) == [% <%rn —|x = x,,|)] cos’(x) x|p,(x)  forn €N,

and x |4 the characteristic function of the set A. Denote by D" = Uj<k<, Di the union of
all diamonds Dy C N, by L := N™ \ D" its complement, and we write L° := A0, We
set on N/”* the measure m,, defined as

dm, = dmps + cosz(x) dH |, where
mpn = Z mpy.-
I<k<n

In words, the measure m,, has a 2-dimensional contribution coming from D", which has
constant density for fixed x-coordinate, and a 1-dimensional contribution coming from L”,
which is absolutely continuous w.r.t. the 1-dimensional Hausdorff measure. Finally, we
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define the fancy necklace as the measured Gromov-Hausdorff limit (FA, drpr, mzepr) 1=
mGH lim,,_, o (N", d,,, m,). Since in Lemma 5.4 we will show that n-necklaces satisfy
the MCP(2, 3)-condition, for all n € N, the existence of the limit is guaranteed by the
compactness of MCP-spaces.

It will be convenient to fix some notation before presenting our next Lemma. Given a
sequence {(r;, X;)}nen consider the m-necklace (N, d,,, m,,) constructed from it. We will
call “projected (m —1)-necklace”, denoted by (P/\/k'”_1 , A1, m;nf 1) the (m—1)-necklace
constructed from the sequence {(7;, x;)}izx for 1 < k < m. Thatis, P./\/'k’"fl is the necklace
with (m — 1) diamonds obtained by removing the kth-diamond from N The x-coordinate
of vertices of diamonds D, will be denoted by xnﬂE = x, £ 1/4r,, and for x € N" and
B C N'™, we define the height as h(w, B) := H!'(B N {x = w}). Moreover, we define the
following set of geodesics,

Y (Bg, By) := {y € Geo(N™) || y is a line segment with y; € B;,i =0, 1}.

The set Y (By, B) consists of Euclidean geodesics that go from By to B;. (Take into con-
sideration that there exist many non-Euclidean geodesics in (N, d,,, m,,).) Lastly, for
ly] < rx/36 and k € N define y*¥ € Geo(N") as the geodesic obtained after glu-
ing Y((x; , 0), (xg, y)) with T ((xg, y), (x]:r, 0)) and reparametrizing. The image of ykY is
the union of a line segment going from the left vertex of Dg, (x; , 0), to (xg, y) with its
reflection over {x = x;}. Define M* as the set of all such geodesics for |y| < r/36.

We are ready to prove our next lemma.

Lemma 5.4 The mms (FN, dzpn, mzy) satisfies the MCP(2, 3)-condition.

Proof The stability of the MCP-condition assures that it’s enough to show that (N, d,,, m,,)
€ MCP(2, 3) for every n € N and every sequence {(xg, r¢)}xen C R? that satisfies (5.3).
Accordingly, we fix n € N and such sequence. We proceed using key ideas from a proof in
[23].

Definition 2.12 of the MCP condition requires that, for every 7 = (¥, %) and A C N
with 0 < m,(A) < oo, we give a measure 7 € P(Geo(N™)) such that (ep)ywr = &,
(ep)smr = m, (A)_lmn| 4, and inequality (2.13) is valid. Given z and A we will choose a
set of geodesics I' = I'; 4 C Geo(N™) and define 7 as the optimal geodesic plan arising
from the lift of the induced to the optimal transport going along geodesics in I'. However,
we reduce before the number of transports that we need to study.

To begin with, note that we can analyze separately the sets A,y = AN {x = x'} for a
fixed x’. The simplification can be made because we will assure that the first coordinate
contributes to the dilatation of the measure n; := (e,)#7 a factor equal to . We will achieve
this by picking geodesics with projection p1(y (1)) = (1 — 1) ¥ + ¢ x’ for (x', y') = 7' € A.
Therefore the analysis reduces to estimating separately the dilatation of the sets A,/ for
every x’ € p1(A). Accordingly, to verify the MCP(2, 3)-condition, it is enough to provide a
set ' C Geo(N™) such that eq(I") = Z, e;(I") € A, and

dn < _sin’((y)) dny
dm, = fsint (1 1(y)) dm,

(y1) forallt € [0,1], x e p1(A), y eT. (5.5)

Claim 1 It’s sufficient to check that (N™, d,,, m,,) € MCP(2, 3) form =0, 1, 2.
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Proof First note that if 7,z ¢ Dy for some k € {1, ...,n} then we can choose ' in a

way that makes the density of d“’ independent of y € pa(Dy), that is, éin‘l’ ((x,y)) =
dn,

((x 0)) for (x,y) € Dxg. We can do this by choosing geodesics whose restriction to

Dk is exactly the set M*. This choice of I" grants that the analysis of the transport of the
measure inside (N, d,,, m,) is equivalent to the analysis of the transport of the measure
inside the projected (n — 1)-necklace (PJ\/}f*l, d,—1, m;l_l). Furthermore, observe that if
n > 2 there exist at least (n — 2) such diamonds, Dy, , for every z, 7/ € N". Thus, for every
transport inside A/ we can project at least (n — 2) times, reducing the task to checking the
MCP(2, 3)-condition in the m-necklaces, form = 0, 1, 2. O

In [33] and [23] it is shown that the 0-necklace and 1-necklace satisfy the MCP(2, 3)-
condition, this covers the cases of m = 0, 1 so we move to m = 2.2 We assume, because
of symmetry, that ¥ < x and fix Z € N? and A,y C N2, We conclude from the preceding
claim that the only situation left to check is that of ¥ € D; and x” € D;. Let’s first explain
intuitively the way we transport the measure in this case. We start by expanding the measure
uniformly from X to a set A with the same relative height as A,/. Then we transport the
measure from A to xl without changing the relative height of the set A; := e;(I") with
respect to D N {x = y;}. We continue through L? and expand again keeping the heights
ratio constant from x, to A,/. The image of a transporting geodesic is the union of segments
of straight lines described below, see Fig. 1. In detail, to define I" first choose any set A 3 C
D N {x = x} such that

h(x,Dy)  h(x', Dy)

= , (5.6)
h(x, Ay h(x', Ay)

for ¥ = % (4 +4(x —x1)) + x1. Write 7 := X 4= @’ and 1 = %7 for the
X—X X—X X—X
times at which the x-coordinate of any geodesic y € Y (X, Ay/) is equal to %, xf', and
x; . Geodesics in Y (¥, D1 N {x = X}) have the same length. Now define I as the set of
all geodesics satisfying the following: rest! (y) € (£, Ay), rest! (y) € M', resti(y) €
Y (x;, x5 ), and resttl2 (y) € M2|A,w where MZIAX, is the subset of geodesics of M? that
cross through A, .
We now estimate the density of the corresponding measure, for y () = (x;, y;) we have
that
dn, 1 h(x;, D1) 1 h(x;, Dy) h(x, Dy) 1 h(x;, Dy) dny

" = ThGn. Ay 2 . Ay h(GE D) 12 hix, Dy) dm !

1202

for0 <t < f. The shape of the diamond D; allows to estimate ’,’1((’;’[[;1‘)) < (% — 7> We

can bound the time when the geodesics reach £ by f < r1/5 < 1/5, and the length of the

geodesics is necessarily I < 7/2. Moreover in [23] the estimate % —i =t 3;“ (5‘2) for

all (¢,d) € [0,1/5] x (0, /2 + 1/4) is proved. Putting inequalities together we obtain
inequality (5.5) for ¢ € [0, 7].

To finish, note that for r € [f, 1], the relative density of n; is independent of the y-
coordinate. Thus, its density is equal to the one of the transport in the 0-necklace, which is
a MCP(2, 3)-space. This shows that inequality (5.5) is satisfied also for ¢ € [f, 1], hence, in
the complete interval ¢ € [0, 1]. O

9More precisely, the proof in [23] can be repeated verbatim by doing minor modifications.
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Observe that the automorphism groups of (FN, dryx, mzar) are G = I1%°{%£1}. This
proves Proposition 1.5 and confirms that the measure contraction property, without extra
assumptions, does not guarantee smoothness of the automorphism groups.
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