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Abstract We prove the existence of boundary limits of ratios of positive harmonic functions
for a wide class of Markov processes with jumps and irregular (possibly disconnected)
domains of harmonicity, in the context of general metric measure spaces. As a corollary,
we prove the uniqueness of the Martin kernel at each boundary point, that is, we identify
the Martin boundary with the topological boundary. We also prove a Martin representation
theorem for harmonic functions. Examples covered by our results include: strictly stable
Lévy processes in Rd with positive continuous density of the Lévy measure; stable-like
processes in Rd and in domains; and stable-like subordinate diffusions in metric measure
spaces.

Keywords Markov process · Jump process · Killed process · Boundary Harnack
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1 Introduction

The purpose of this article is to study boundary limits of ratios of positive functions which
are harmonic in an arbitrary open set with respect to a Markov process with jumps. The
proof of our main result, Theorem 2, relies on the boundary Harnack inequality for Markov
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processes with jumps, proved recently in [12], and the oscillation reduction argument,
developed in [6] and [11]. As an application, we obtain Martin representation of harmonic
functions in Theorem 3.

To explain the motivation for our research, we begin with a discussion of the classical
case, where harmonicity has its usual meaning: f is harmonic in an open set D if Δf = 0
in D. The boundary Harnack inequality is a statement about positive harmonic functions in
an open set, which are equal to zero on a part of the boundary. The result states that if D is
regular enough (for example, a Lipschitz domain), x0 is a boundary point of D, f and g are
positive and harmonic in D ∩ B(x0, R), and both f and g converge to 0 on ∂D ∩ B(x0, R),
then for every r ∈ (0, R) the ratio f/g has bounded relative oscillation in D ∩ B(x0, r):

sup
x∈D∩B(x0,r)

f (x)

g(x)
≤ c inf

x∈D∩B(x0,r)

f (x)

g(x)
. (1)

Here c = c(D, x0, r, R)−1 is a constant that depends only on the local geometric properties
of D near x0, and B(x0, r) denotes the ball of radius r , centred at x0. The boundary Harnack
inequality was first proved independently by A. Ancona ([5]), B. Dahlberg ([17]) and J.-
M. Wu ([35]) for Lipschitz domains, and then extended by numerous authors to a wider
class of domains and elliptic operators. We refer to [1–4, 31] for further discussion and
references.

Under appropriate assumptions on the regularity of D, the estimate (1) turns out to be
self-improving as r → 0+, in the sense that the constant c in Eq. 1 converges to 1 as
r → 0+. Equivalently, the boundary limit

lim
x→x0
x∈D

f (x)

g(x)
(2)

exists. When D is a Lipschitz domain, then in fact c(D, x0, r, R) is of order rβ as r → 0+
for some β > 0, which means that f/g extends to a Hölder continuous function at x0.

A closely related concept of Martin representation of positive harmonic functions was
introduced by R. S. Martin in his beautiful article [32], more than three decades before
the boundary Harnack inequality became available. Given the existence of limits (2) (for
example, if D is a Lipschitz domain), Martin’s result asserts that there is a one-to-one cor-
respondence between positive harmonic functions f in D and finite positive measures μ on
the boundary of D. The two objects are linked by the formula

f (x) =
∫

∂D

MD(x, z)μ(dz),

where the Martin kernel is defined as the boundary limit of the ratio of Green functions:

MD(x, z) = lim
y→z
x∈D

GD(x, y)

GD(x̃, y)
. (3)

Here x̃ ∈ D is an arbitrarily fixed reference point.
One of numerous equivalent definitions of harmonicity links harmonic functions with

the Brownian motion: f is harmonic in D if and only if f has the mean-value property with
respect to the distributions of the Brownian motion Xt at first exit times:

f (x) = Exf (X(τU )) (4)
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for all bounded open sets U such that the closure of U is contained in D. Here Ex denotes
the expectation (and Px will denote the probability) corresponding to the Brownian motion
process Xt that starts at x, and τU is the time of first exit from U :

τU = inf{t ≥ 0 : Xt /∈ U}.
This probabilistic definition has a number of advantages: it extends immediately to general
Markov processes Xt , and it captures easily boundary conditions imposed on harmonic
functions. More precisely, in the general statement of the boundary Harnack inequality one
requires that positive harmonic functions f and g converge to zero at each boundary point in
∂D∩B(x0, R) that is regular for the Dirichlet problem. This condition translates to requiring
that Eq. 4 holds for all bounded open sets U such that U ⊆ D ∪ (∂D ∩ B(x0, R)), with no
reference to the notion of regular boundary points. Here we understand that f = g = 0 in
∂D ∩ B(x0, R).

In this article we are interested in Markov processes with jumps, and from now on by
saying that a function is harmonic we understand that it has the mean-value property (4)
with respect to a Markov process Xt with jumps. In this case in order to evaluate f (X(τU ))

in Eq. 4 the function f needs to be defined everywhere, not just in D. For this reason one
needs to replace the boundary condition f = g = 0 in ∂D ∩ B(x0, R) in the statement of
the boundary Harnack inequality with the exterior condition f = g = 0 in Dc ∩ B(x0, R).

The history of the boundary Harnack inequality for Markov processes with jumps starts
with the article by K. Bogdan ([6]), where he proved the result for the isotropic stable
Lévy process (equivalently: for the fractional Laplace operator −(−Δ)α/2) and Lipschitz
domains. Later this was extended to more general sets ([11, 34]) and processes ([8, 13, 21–
26]). Recently, a rather general result for Markov processes with jumps was proved in [12],
and this is our starting point in the study of boundary limits (2).

The existence of the boundary limit (2) in this context was first proved independently
by K. Bogdan ([7]) and by Z.-Q. Chen and R. Song ([14]) for the isotropic stable Lévy
process and Lipschitz domains. This required an appropriate modification of the classical
reasoning due to the presence of jumps. Since then essentially every time the boundary
Harnack inequality was established for a given Markov process with jumps in a given class
of domains, the existence of boundary limits (2) followed; see [27] for the most recent result
of this kind. With two exceptions, however, the class of open sets under consideration was
always limited to certain disconnected analogues of non-tangentially accessible domains,
typically called fat sets. The first more general result is proved in [11] for the isotropic
stable Lévy process, where completely arbitrary open sets are allowed. An extension to
more general Markov processes with jumps, which in fact further extends the results of the
present article, was obtained independently by P. Kim, R. Song and Z. Vondraček ([28–30])
soon after the present article has been submitted.

For the existence of boundary limits, we follow the approach of [11] using the boundary
Harnack inequality of [12], and prove in our main results, Theorems 2 and 3, the exis-
tence of boundary limits of ratios of harmonic functions for arbitrary open sets and rather
general Markov processes with jumps, as well as Martin representation of such functions.
The application of the method developed in [11] in the present setting requires significant
modifications. Further changes are introduced in order to make the description of the proof
more accessible; for example, we first give a simpler argument which does not assert uni-
form convergence with respect to the domain of harmonicity, and only then explain how one
improves it to get a domain-uniform version.

The proof of the Martin representation theorem for the isotropic stable Lévy processes
in [11] is self-contained. It is possible to extend the method of [11] to our general setting, but
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that would require rather lengthy and technical arguments. For this reason, unlike in [11],
we refer to the general theory of Martin boundary. Our argument still requires extension of
some elements of [11] for more general Markov processes, but the most involved part of the
proof is avoided. For an excellent exposition of the general theory of Martin boundary, we
refer to Chapter 14 of [16].

We conclude the introduction with a description of the structure of this article. The
assumptions for the boundary Harnack inequality of [12] are briefly recalled in Section 2.
We omit a detailed discussion of these conditions and refer the interested reader to the origi-
nal paper. Instead, we present a number of examples right after the statement of Theorems 2
and 3 in Section 3. We also provide a counter-example, which shows that the boundary
limits (2) typically fail to exist in irregular domains when the process Xt has a non-trivial
diffusion part. Finally, in Section 4 we prove Theorems 2 and 3.

2 Fundamental Assumptions for the Boundary Harnack Inequality

The formal statement of the assumptions for Theorem 2 requires some effort. We assume
that (X, d,m) is a locally compact metric measure space in which all bounded closed sets
are compact and m has full support, and that R0 > 0 (possibly R0 = ∞) is a localisation
radius such that X \ B(x, r) 
= ∅ if x ∈ X and 0 < r < 2R0.

In [12] the following four conditions are introduced. A detailed discussion of these
assumptions is beyond the scope of the present article, we refer the reader to [12] for more
information. Here we only state the conditions, without explaining in a formal way the
notions of semi-polar and polar sets, processes in duality Xt and X̂t , their generators A
and Â, densities ν(x, y) and ν̂(x, y) (with respect to the measure m) of the Lévy kernels of
Xt and X̂t , as well as their Green functions GD(x, y) = ĜD(y, x). We note that ν(x, y)

describes the intensity of jumps from x to y and it is commonly used throughout the article.
The Green function GD(x, y) is required for Theorem 3 only; informally, GD(x, y) is the
average amount of time spent near y by the process Xt , started at x, until τD .

Assumption 1 The Hunt processes Xt and X̂t are dual with respect to the measure m. The
transition semigroups of Xt and X̂t are both Feller and strong Feller. Every semi-polar set
of Xt is polar.

Assumption 2 There is a linear subspace D of D(A) ∩ D(Â) satisfying the following
condition. If K is compact, D is open, and K ⊆ D ⊆ X, then there is f ∈ D such that
f (x) = 1 for x ∈ K , f (x) = 0 for x ∈ X \ D, 0 ≤ f (x) ≤ 1 for x ∈ X, and the boundary
of the set {x : f (x) > 0} has measure m zero.

Assumption 3 We have ν(x, y) = ν̂(y, x) > 0 for all x, y ∈ X, x 
= y. If x0 ∈ X,
0 < r < R < R0, x ∈ B(x0, r) and y ∈ X \ B(x0, R), then

C−1
Lévyν(x0, y) ≤ ν(x, y) ≤ CLévyν(x0, y), C−1

Lévyν̂(x0, y) ≤ ν̂(x, y) ≤ CLévyν̂(x0, y), (5)

with CLévy = CLévy(x0, r, R).

Assumption 4 If x0 ∈ X, 0 < r < s < R < R0 and B = B(x0, R), then

CGreen = CGreen(x0, r, s, R) = sup
x∈B(x0,r)

sup
y∈X\B(x0,s)

max(GB(x, y), ĜB(x, y)) < ∞. (6)
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We denote

ρ(K,D) = inf
f

sup
x∈X

max(Af (x), Âf (x)), (7)

where the infimum is taken over all functions f described by the Assumption 2. If x0 ∈ X

and 0 < r < R < R0, then we denote

CLévy-inf(x0, r, R) = inf
y∈B(x0,R)\B(x0,r)

min(ν(x0, y), ν̂(x0, y)),

and

Cexit(x0, r) = sup
x∈B(x0,r)

max(ExτB(x0,r), Êx τ̂B(x0,r)).

Note that by Proposition 2.1 in [12], under Assumptions 1 through 3, Cexit(x0, r) is finite.
Following [6], we say that f is a regular harmonic function in an open set D if the mean-

value property (4) holds with U = D. By the strong Markov property, this implies that Eq. 4
holds for arbitrary open U ⊆ D, so in particular f is harmonic in D.

We use the short-hand notation f ≈ cg for the two inequalities c−1g ≤ f ≤ cg, where
c > 0 is a positive constant. The following theorem is a reformulation of the main result
of [12].

Theorem 1 (Lemma 3.2 and Theorems 3.4 and 3.5 in [12]) Suppose that x0 ∈ X, 0 <

r1 < r2 < r3 < r6 < R0 and a non-negative function f is a regular harmonic function in
D ∩ B(x0, r6), which is equal to zero in B(x0, r6) \ D. Then

f (x) ≈ CBHIExτD∩B(x0,r2)

∫
X\B(x0,r3)

f (y)ν(x0, y)m(dy)

for x ∈ D ∩ B(x0, r1), where CBHI = CBHI(x0, r1, r2, r3, r6) is defined as

CBHI = CLévy(x0, r2, r3) + 2ρ(B(x0, r3) \ B(x0, r2), B(x0, r8) \ B(x0, r1))

×
(

CGreen(x0, r3, r4, r6) + Cexit(x0, r6)(CLévy(x0, r4, r5))
2

m(B(x0, r4))

)

×
(

ρ(B(x0, r5), B(x0, r6))

CLévy-inf(x0, r5, r7)
+ CLévy(x0, r6, r7)m(B(x0, r6))

)

for some r4, r5, r7, r8 such that 0 < r1 < r2 < r3 < r4 < r5 < r6 < r7 < r8.

Note that it is important that f is non-negative everywhere, not just in D. Theorem 1
implies the more classical statement of the boundary Harnack inequality (Theorem 3.5
in [12]): if f and g satisfy the assumptions of Theorem 1, then

sup
x∈D∩B(x0,r1)

f (x)

g(x)
≤ C4

BHI inf
x∈D∩B(x0,r1)

f (x)

g(x)
, (8)

as in Eq. 1. We remark that although the original statement allows for an arbitrary sequence
of radii, it will be sufficient for us to consider r1 = r , r2 = 2r , r3 = 3r and r6 = 4r , and
we will commonly write CBHI = CBHI(x0, r) = CBHI(x0, r, 2r, 3r, 4r) in this case.
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3 Main Results and Examples

For the existence of limits, we introduce one more definition. If x0 ∈ X and 0 < r < R <

R0, we let

CLévy-int = CLévy-int(x0, r, R) =
∫
X\B(x0,r)

ν(x0, y)m(dy)∫
X\B(x0,R)

ν(x0, y)m(dy)
. (9)

Theorem 2 Let D ⊆ X be open, x0 ∈ ∂D and R > 0. Suppose that:

(i) Xt satisfies Assumptions 1 through 4;
(ii) lim

r→0+ CLévy(x0, r, R) = 1;

(iii) the constant CLévy(x0, r, 2r) is bounded in r , 0 < 2r < R0;
(iv) the constant CLévy-int(x0, r, 2r) is bounded in r , 0 < 2r < R0;
(v) the constant CBHI(x0, r, 2r, 3r, 4r) is bounded in r , 0 < 4r < R0.

Suppose furthermore that non-negative functions f and g are regular harmonic functions
in D ∩ B(x0, R) and are equal to zero in B(x0, R) \ D. Then either one of f and g is
zero everywhere in D, or the finite, positive boundary limit of f (x)/g(x) exists as x → x0,
x ∈ D. Furthermore,

lim
x→x0
x∈D

f (x)

g(x)
= lim

r→0+

∫
X\B(x0,r)

ν(x0, y)f (y)m(dy)∫
X\B(x0,r)

ν(x0, y)g(y)m(dy)
. (10)

Remark 1 Condition (ii) is required only for inaccessible boundary points x0, characterised
by the property

∫
D∩B(x0,R)

EyτD∩B(x0,R)m(dy) < ∞. The result for accessible boundary
points x0, for which the integral is infinite, holds under conditions (i) and (iii) through (v).

Remark 2 Theorem 2 also holds with g(x) = ExτD∩B(x0,R). This is formally shown in
Section 4.4, but the informal explanation is rather straightforward: g is essentially a regular
harmonic function in D ∩ B(x0, R) (in sharp contrast with the case of continuous Markov
processes).

Indeed, suppose that X is unbounded, D is a bounded open set and that CLévy(x0, r, R)

converges to 1 as R → ∞. By Dynkin’s formula (see Lemma 2 and estimate (14) below),

ExτD = lim
R→∞

Px(X(τD) ∈ X \ B(x0, R))∫
X\B(x0,R)

ν(x0, y)m(dy)

is the limit of regular harmonic functions in D. Since the estimates in Theorem 2 are uniform
in f and g, we obtain the desired result. (Note that the formal argument is completely
different and requires no further assumptions on X and Xt .)

Remark 3 As remarked in the introduction, the limit in Eq. 10 exists if and only if the
relative oscillation of f and g converges to one, that is,

lim
r→0+

supx∈D∩B(x0,r)
(f (x)/g(x))

infx∈D∩B(x0,r)(f (x)/g(x))
= 1.

By inspecting the proof of Theorem 2, one immediately sees that, given D and x0, the
boundary limits exist uniformly in f and g, in the sense that

lim
r→0+ sup

f,g

supx∈D∩B(x0,r)
(f (x)/g(x))

infx∈D∩B(x0,r)(f (x)/g(x))
= 1,
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with the supremum taken over all f and g satisfying the assumptions of the theorem. We
remark that in fact one can prove uniformity also in D, just as in [11], by appropriately
modifying the final part of the proof. More formally,

lim
r→0+ sup

D,f,g

supx∈D∩B(x0,r)
(f (x)/g(x))

infx∈D∩B(x0,r)(f (x)/g(x))
= 1, (11)

where the supremum is taken over all open sets D and f and g satisfying the assumptions
of the theorem (here we let the ratio sup / inf be equal to 1 if D ∩ B(x0, r) is empty). The
proof of this result is sketched in Section 4.4.

Remark 4 It is not necessary to assume that x0 ∈ ∂D in Theorem 2. For x0 /∈ D the state-
ment is void, but for x0 ∈ D we obtain relative continuity of positive harmonic functions: if
f and g are positive harmonic functions in D, then f/g is continuous in D. By Remark 3,
the family of functions f/g is in fact relatively equicontinuous at x0, in the sense that the
functions log(f/g) are equicontinuous at x0.

If the process is conservative, then the constant g(x) = 1 is harmonic. In the general case,
Px(X(τD) = ∂) is continuous (this is proved as in [15]; with the notation of that article,
Px(X(τD) = ∂) = Px(TX\D = ∞)), and so the harmonic function g(x) = Px(X(τD) ∈
X) = 1 − Px(X(τD) = ∂) is positive, continuous and harmonic in D.

Consequently, positive harmonic functions are relatively equicontinuous at x0. If in addi-
tion the characteristics of the process (that is, the constants in conditions (ii) through (v))
do not depend on x0, then positive functions harmonic in D are in fact uniformly relatively
equicontinuous in every compact subset of D.

Before we discuss examples, we provide one application. Recall that the Green function
GD(x, y) is the density of the mean occupation measure of Xt up to τD , that is,∫

A

GD(x, y)m(dy) = Ex

∫ τD

0
1A(Xs)ds.

Under Assumptions 1 and 4, there is a version of GD(x, y) which is a harmonic function
of x ∈ D \ {y}, and a co-harmonic (that is, harmonic for the dual process) function of y ∈
D \{x}. Hence, Theorem 2 (or, more precisely, its version for the dual process) immediately
implies the existence of the Martin kernel

MD(x, z) = lim
y→z
x∈D

GD(x, y)

GD(x̃, y)
.

for z = x0 (this is exactly the same as the classical definition (3)). Informally, the Martin
boundary ∂MD of a set D is the set of all possible ways a point y ∈ D approaches the
boundary in such a way that the ratio GD(x, y)/GD(x̃, y) converges for every x ∈ D

(with arbitrarily fixed x̃ ∈ D). More formally, D ∪ ∂MD is the Constantinescu–Cornea
compactification of D with respect to the family of functions {GD(x, ·)/GD(x̃, ·) : x ∈ D}:
the smallest compact space which contains D and on which these functions have continuous
extensions.

Theorem 3 Let D ⊆ X be bounded and open, and if X is compact, then assume in addition
that ExτD and Êx τ̂D are finite and bounded in x ∈ D. Suppose that the assumptions of
Theorem 2 are satisfied uniformly for all x0 ∈ D. Then the following assertions hold.

(a) The Martin boundary ∂MD coincides with the topological boundary ∂D.
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(b) The Martin kernel MD(x, z) is a harmonic function in D with respect to x if and only
if z is an accessible boundary point:

∫
D∩B(x0,R)

EyτD∩B(x0,R)m(dy) = ∞.
(c) If z is an accessible boundary point, then MD(x, z) is a minimal harmonic function: if

f is a harmonic function in D and 0 ≤ f (x) ≤ MD(x, z) for all x ∈ X, then f (x) is
a multiple of MD(x, z).

(d) Every non-negative function f which is a harmonic function in D has a unique
representation

f (x) =
∫
X\(D∪∂mD)

(∫
D

GD(x, y)ν(y, z)m(dy)

)
f (z)m(dz)

+
∫

∂mD

MD(x, z)μ(dz), (12)

where μ is a measure on ∂mD, the set of accessible boundary points of D.
(e) Conversely, given any non-negative function f and any measure μ on ∂mD, the right-

hand side of Eq. 12 is either a harmonic function in D or infinity everywhere in D.

Remark 5 The terms accessible and inaccessible correspond to the probabilistic theory of
Martin boundary. To be specific, the process Xt killed at the time of first exit from D and
conditioned in the sense of Doob by the Martin kernel MD(·, z) converges at its lifetime to
z when z is accessible, and dies out in D when z is inaccessible. We refer to [16] for more
information.

Remark 6 Unlike in the case of isotropic stable Lévy processes in [11], description of the
infinite part of the Martin boundary of D for unbounded open sets is a completely different
problem. This issue is addressed in a recent work of P. Kim, R. Song and Z. Vondraček ([28,
30]).

Remark 7 In order to apply the results of [16] about general theory of Martin representation,
one requires the dual of the Green operator ĜD to map bounded functions into bounded
continuous ones (a strong Feller property for the Green operator, Hypothesis 13.42 in [16]).
In particular, Êx τ̂D = ĜD1(x) needs to be bounded in D. If X is unbounded, then Êx τ̂D

is bounded (this follows, for example, by the argument used in the proof of Proposition 2.1
in [12]). If, however, X is bounded (and hence compact), then one needs to assume bounded-
ness of Êx τ̂D explicitly (indeed, when Xt is conservative and D = X, then clearly τ̂D = ∞
with probability one).

Boundedness of ExτD is assumed in order to keep perfect symmetry between Xt and X̂t

(which makes the proof easier to follow). Note, however, that this is a rather mild assump-
tion. Indeed, it is rather easy to see that if X is compact and X \ D is not a polar set, then
there is ε > 0 such that Px(τD < 1) > ε and P̂x(τ̂D < 1) > ε for all x ∈ X, and therefore
ExτD and Êx τ̂D are bounded.

The boundary Harnack inequality stated in Theorem 1 was applied to a variety of Markov
processes in Section 5 of [12]. The scale-invariant version of Theorem 1 under α-stable-like
scaling discussed therein already asserts conditions (i), (iii) and (v) in Theorem 2. Verifi-
cation of the remaining conditions (ii) and (iv) is typically straightforward, and we obtain
several classes of processes for which Theorems 2 and 3 apply.

In our first example, we use the result of Example 5.5 in [12], where the boundary Har-
nack inequality for Lévy processes is considered. In the asymmetric case, equality of the
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notions of semi-polar and polar sets (in Assumption 1) is not trivial, and this was appar-
ently overlooked in [12]. Fortunately, for all asymmetric Lévy processes listed therein, this
condition is satisfied by Theorem 2 in [33].

Example 1 (Strictly stable Lévy processes) Let m be the Lebesgue measure in Rd , R0 = ∞.
Suppose that Xt is a strictly α-stable Lévy process in Rd , where d ≥ 1 and 0 < α < 2.
Suppose, furthermore, that the Lévy measure of Xt has a density function of the form ν(z) =
ϕ(z/|z|)|z|−d−α , with ϕ continuous and positive on the unit sphere (for Lévy processes,
ν(x, y) = ν(y −x)). It is easy to see that CLévy(x0, r, R) converges to 1 as r → 0+ and that
CLévy-int(x0, r, R) = (R/r)α . By Example 5.5 in [12], Xt satisfies the other assumptions of
Theorem 2, and so we may use Theorems 2 and 3.

We remark that the above example can be extended to more general Lévy processes,
including many subordinate Brownian motions and, more generally, unimodal isotropic
Lévy processes. This is based on estimates obtained recently in [9, 10, 18, 20] and will be
studied in detail in [19]. Other extensions can be obtained by allowing the Lévy kernel to
depend on x or restricting it to a domain, as described in the following two examples.

Example 2 (Stable-like processes) Let m be the Lebesgue measure in Rd , R0 = ∞.
Suppose that 0 < α < 2 and

ν(x, y) = ϕ(x, y)|x − y|−d−α,

where ϕ is symmetric (that is, ϕ(x, y) = ϕ(y, x)), bounded by positive constants, smooth,
and has bounded partial derivatives of all orders. As in Example 5.6 in [12], in this case
there is a pure-jump process Xt with the Lévy kernel ν(x, y)m(dy), and the assumptions of
Theorem 2 are satisfied.

Example 3 (Reflected stable processes) Let 0 < α < 2. Let X be the closure of either a
Lipschitz domain in Rd if α < 1 or a C1,α+ε domain in Rd if α ≥ 1 (with some ε > 0). Let
m be the Lebesgue measure on X, and ν(x, y) = c|x − y|−d−α for some c > 0. Again as in
Example 5.6 in [12], there is a pure-jump process Xt with the Lévy kernel ν(x, y)m(dy),
and the assumptions of Theorem 2 are satisfied for some R0 > 0.

The state space X need not be Euclidean.

Example 4 (Stable-like subordinate diffusions) Let X be a sufficiently regular metric mea-
sure space in which there exists a diffusion process. For a rigorous definition, we refer to
Example 5.7 in [12]; examples include Riemannian manifolds, Sierpiński gaskets or the
Sierpiński carpet. Suppose that 0 < α < dw, where dw is the walk dimension of X (that
is, an approximate scaling exponent for the diffusion process). Finally, let Xt be a process
subordinate to the diffusion process, corresponding to the (α/dw)-stable subordinator. In
Example 5.7 in [12] it is shown that Xt satisfies conditions (i), (iii) and (v) of Theorem 2,
and one easily proves that CLévy-int(x0, r, R) ≤ c(R/r)α for some c > 0. Verification of (ii)
requires some work, especially when X is unbounded. For this reason, we only sketch the
argument for compact X. For some c > 0 we have

ν(x, y) = c

∫ ∞

0
t−1−α/dwqt (x, y)dt,
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where qt (x, y) is the transition density of the diffusion process. Since for each t > 0, qt

is Hölder continuous, it is easy to see that ν(x, y) is positive and uniformly continuous
in x ∈ B(x0, r), y ∈ X \ B(x0, R), which clearly implies condition (ii). It follows that
Theorems 2 and 3 apply to stable-like subordinate diffusions in compact metric measure
spaces.

Surprisingly, Theorem 2 is not influenced by killing.

Example 5 (Processes with a multiplicative functional) Let Mt be a strong continuous mul-
tiplicative functional such that M0 = 1 with probability one for all starting points x ∈ X.
Such a functional describes gradual killing of the process Xt , and is typically obtained as
the Feynman–Kac functional Mt = exp(−∫ t

0 V (Xs)ds) for some non-negative function V .
A function f is said to be harmonic with respect to the pair (Xt , Mt ) if it has the mean-value
property

f (x) = Ex(f (X(τU ))M(τU ))

instead of Eq. 4. As in Theorem 5.10 in [12], if the assumptions of Theorem 2 are satisfied
by the process Xt , then the conclusion also holds for functions harmonic with respect to the
pair (Xt ,Mt ).

Our final example shows that when Xt has non-vanishing diffusion part, one cannot
expect the existence of boundary limits (2) unless some geometric restrictions on D are
imposed. For corresponding positive results in smooth domains, see [24].

Example 6 (Mixture of Brownian motion and stable process) Let X = R and let m be the
Lebesgue measure. Let Xt be a one-dimensional Lévy process which is the sum of two
independent Lévy processes: the Brownian motion and the symmetric α-stable Lévy process
for some α ∈ (1, 2). That is, the characteristic exponent of Xt is given by c1ξ

2 + c2|ξ |α for
some c1, c2 > 0. Denote D = (−1, 1) \ {0}. Let pt (y − x) be the continuous version of the
transition density of Xt . Then the three functions

u(x) = x, v(x) =
∫ ∞

0
(pt (0) − pt (x))dt, w(x) = Ex |X(τD)|

are regular harmonic in D: for u this is just the martingale property of Xt , for v (the com-
pensated potential kernel of Xt ) this is proved, for example, in [36], while for w it follows
directly from the definition. Furthermore, u(0) = v(0) = w(0) = 0 and v(x) = v(−x),
w(x) = w(−x). It is known that

v(x) ≈ c3 min(|x|, |x|α−1)

for x ∈ R, with c3 = c3(c1, c2, α) (see, for example, Lemma 2.14 in [20]). In particular,
v(x) ≈ c3|x| for x ∈ D. Finally, by the boundary Harnack inequality given in Theorem 1
(see Examples 5.5 and 5.13 in [12] for a detailed discussion), we have

w(x) ≈ c4v(x) ≈ c3c4|x|
for x ∈

(
− 1

2 , 1
2

)
, with c4 = c4(c1, c2, α). Let us define

f (x) = w(x) + u(x) = 2Ex(|X(τD)|1[1,∞)(X(τD))),

g(x) = w(x) − u(x) = 2Ex(|X(τD)|1(−∞,−1](X(τD))).
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Then f and g are non-negative, regular harmonic in D and equal to zero in (−1, 1) \ D =
{0}, so that they satisfy the assumptions of Theorem 2. On the other hand,

f (x)

g(x)
− f (−x)

g(−x)
= w(x) + x

w(x) − x
− w(x) − x

w(x) + x
= 4xw(x)

(w(x))2 − x2

for x ∈ D. Since t/(t2 − x2) is decreasing in t ∈ (x,∞), and w(x) ≤ c3c4x for x ∈ (0, 1
2 ),

we obtain
f (x)

g(x)
− f (−x)

g(−x)
≥ 4c3c4

(c3c4)2 − 1

for x ∈
(

0, 1
2

)
. In particular, the limit of f (x)/g(x) as x → 0 does not exist.

4 Proofs of Main Results

In this section we prove Theorem 2. We will always assume that x0, R and D are fixed,
where x0 ∈ X, 0 < 2R < R0 and D ⊆ B(x0, R) is an open set. It is also understood that
x0 ∈ ∂D, although, at least formally, the argument extends also to x0 ∈ D and x0 /∈ D.
Recall that the notation f ≈ cg stands for c−1g ≤ f ≤ cg with c > 0.

We denote Br = B(x0, r), Br,s = Bs \ Br , Dr = D ∩ Br and Dr,s = Ds \ Dr when
0 ≤ r ≤ s ≤ R. We furthermore define Dr,∞ = Dr,R ∪ (X \ BR). For a non-negative
function f we let

Mr,∞(f ) =
∫
X\Br

f (y)ν(x0, y)m(dy),Mr,s(f ) =
∫

Br,s

f (y)ν(x0, y)m(dy).

Finally, we let sD(x) = ExτD .
To simplify the notation, we drop D from the notation in subscripts whenever possible,

and we write τr = τDr , τr,s = τDr,s , sr (x) = sDr (x), 1r,s(x) = 1Dr,s (x) etc.
Our argument is based on the boundary Harnack inequality of [12], stated in Theorem 1.

Under the assumptions of Theorem 2, the constant CBHI(x0, r, 2r, 3r, 4r) can be chosen so
that it does not depend on r , as long as 0 < 4r ≤ R, and it will be denoted simply by
CBHI (recall that x0 and R are fixed). In a similar way, we denote CLévy = CLévy(x0, r, 2r)

(with 0 < 2r < R0) and CLévy-int = CLévy-int(x0, r, 2r) (with 0 < 2r < R0), chosen
independently of r . With one exception, we will only use constants CBHI, CLévy and CLévy-int
with these parameters.

We prove Theorem 2 by considering separately two types of boundary points, which
are called accessible and inaccessible in [11]. First, however, we introduce some further
notation and prove preliminary estimates.

4.1 Decomposition of Harmonic Functions

From now on f and g are functions satisfying the assumptions of Theorem 2, and we assume
that neither f nor g is equal to zero almost everywhere. Note that this implies that f and g

are strictly positive in D. Whenever 0 < r < s ≤ R, we decompose f into the sum of two
functions, fr,s and f̃r,s , which correspond to the process Xt exiting Dr near its boundary
(into Dr,s) and away of its boundary (into Ds,∞):

fr,s(x) = Ex((f 1r,s)(X(τr ))), f̃r,s(x) = Ex((f 1s,∞)(X(τr ))).
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Not unexpectedly, a similar notation is used for the function g. Clearly, f = fr,s + f̃r,s , and
both fr,s and f̃r,s are non-negative regular harmonic functions in Dr which are equal to zero
in Br \Dr . Therefore, we can apply Theorem 1 to f4r,s and f̃4r,s whenever 0 < 4r < s ≤ R.

Note that by Theorem 1
(
with r = R

4

)
, we have

f (x) ≈ CBHIM3R/4,∞(f )Exτ2R/4

for x ∈ DR/4. Therefore,

Mr,s(f ) ≈ CBHIM3R/4,∞(f )Mr,s(sR/2) (13)

whenever 0 ≤ r ≤ s ≤ R
4 . The next result states, in particular, that there is little difference

whether we write sR/2 or sR in the above estimate.

Lemma 1 If 0 < 8r ≤ R, then

Exτ4r ≤ Exτ8r ≤ (1 + CBHICLévyC
3
Lévy-int)Exτ4r

for x ∈ Dr .

Proof The first inequality is clear. For the other one, we use the strong Markov property
and Theorem 1:

Exτ8r − Exτ4r = Exs8r (X(τ4r ))

≤ CBHIExτ2r

∫
X\B3r

Eys8r (X(τ4r ))ν(x0, y)m(dy)

≤ CBHIExτ4r

∫
X\B2r

Eyτ8rν(x0, y)m(dy).

Furthermore, by Proposition 2.1 in [12] (combined with the last displayed formula in the
proof of this result),

∫
X\B2r

Eyτ8rν(x0, y)m(dy) ≤
(

sup
x∈X

ExτB8r

)∫
X\B2r

ν(x0, y)m(dy)

≤ CLévy

∫
X\B2r

ν(x0, y)m(dy)∫
X\B16r

ν(x0, y)m(dy)
.

It remains to use (9).

For convenience, we denote

Cτ = 1 + CBHICLévyC
3
Lévy-int,

so that s4r (x) ≈ Cτ s8r (x) if 0 < 8r ≤ R and x ∈ Dr .
Our next result compares f8r,s with f̃8r,s . For f8r,s , we will use Theorem 1, which states

that in D2r we have f8r,s ≈ CBHIM6r,∞(f8r,s)Exτ4r . The same estimate can be writ-
ten down for f̃8r,s . However, M6r,∞(f̃8r,s) involves an integral of f̃8r,s over D6r,8r , which
is often problematic. A much better estimate for f̃8r,s can be easily obtained from the
following corollary of Dynkin’s formula for Xt .
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Lemma 2 (formula (2.12) in [12]) Let D ⊆ X be open and bounded, and let f be a
non-negative function equal to zero in D. Then

Exf (X(τD)) = Ex

∫ τD

0

∫
X\D

ν(Xt , y)f (y)m(dy)dt (14)

for x ∈ D.

Using the definition of f̃8r,s and Eq. 5 to substitute ν(x0, y) for ν(Xt , y) in Eq. 14, we
have

f̃8r,s(x) ≈ CLévy(x0, 8r, s)Ms,∞(f )Exτ8r . (15)

Note that not only we have Ms,∞(f ) instead of M6r,∞(f̃8r,s), but also the constant
CLévy(x0, 8r, s) tends to 1 as r → 0+.

Lemma 3 If 0 < 8r ≤ s ≤ R
4 , then

f8r,s(x)

f̃8r,s(x)
≤ C4

BHI
M6r,s(sR/2)

1 + Ms,R/4(sR/2)

for x ∈ D2r . If 0 < 16r ≤ s ≤ R
24 , then

f8r,s(x)

f̃8r,s(x)
≥ C−3

BHIC
−1
LévyC

−3
τ

M8r,s(sR/2)

1 + Ms,R/4(sR/2)

for x ∈ Dr .

Proof By Theorem 1,

f8r,s(x) ≤ CBHIM6r,∞(f8r,s)Exτ4r ,

f̃8r,s(x) ≥ C−1
BHIM6r,∞(f̃8r,s)Exτ4r .

Furthermore,

M6r,∞(f8r,s) = M6r,s(f8r,s) ≤ M6r,s(f ),

M6r,∞(f̃8r,s) ≥ Ms,∞(f̃8r,s) = Ms,∞(f ) ≥ M3R/4,∞(f ) + Ms,R/4(f ).

Finally, by Eq. 13,

M6r,s(f ) ≤ CBHIM3R/4,∞(f )M6r,s(sR/2),

Ms,R/4(f ) ≥ C−1
BHIM3R/4,∞(f )Ms,R/4(sR/2).

We conclude that
f8r,s(x)

f̃8r,s(x)
≤ C4

BHI
M6r,s(sR/2)

1 + Ms,R/4(sR/2)
,

which is the desired upper bound. The lower bound is proved in a somewhat more
complicated way. By Theorem 1 and estimate (15),

f8r,s(x) ≥ C−1
BHIM6r,∞(f8r,s)Exτ4r ,

f̃8r,s(x) ≤ CLévyMs,∞(f )Exτ8r
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(we can write CLévy = CLévy(x0, 8r, 16r) in the second inequality because s ≥ 16r). By
Lemma 1, Exτ8r ≤ CτExτ4r . Furthermore, by Theorem 1 (as in Eq. 13, but with R replaced
by R/3) and again Lemma 1,

M6r,∞(f8r,s) = M6r,s(f8r,s) ≥ M8r,s(f8r,s) = M8r,s(f )

≥ C−1
BHIMR/4,∞(f )M8r,s(sR/6)

≥ C−1
BHIC

−2
τ MR/4,∞(f )M8r,s(s2R/3).

On the other hand, by Eq. 13,

Ms,∞(f ) = Ms,R/4(f ) + MR/4,∞(f )

≤ CBHIM3R/4,∞(f )Ms,R/4(sR/2) + MR/4,∞(f )

≤ MR/4,∞(f )(1 + CBHIMs,R/4(sR/2)).

We conclude that

f8r,s(x)

f̃8r,s(x)
≥ C−3

BHIC
−1
LévyC

−3
τ

M8r,s(sR/2)

1 + Ms,R/4(sR/2)
,

as desired.

4.2 Inaccessible Boundary Points

Throughout this part we assume that x0 is inaccessible, that is,

M0,∞(sR) =
∫

DR

EyτR ν(x0, y)m(dy) < ∞.

In this case f8r,s and g8r,s turn out to be negligible compared to f̃8r,s and g̃8r,s for
sufficiently small r and s.

Clearly, M0,∞(sR/2) ≤ M0,∞(sR) < ∞. We remark that by Eq. 13,

M0,∞(f ) = M0,R/4(f ) + MR/4,∞(f )

≤ CBHIM3R/4,∞(f )M0,R/4(sR/2) + MR/4,∞(f ) < ∞,

and M0,∞(g) < ∞ by the same argument, and hence one can pass to the limit separately in
the numerator and the denominator of Eq. 10.

Let 0 < ε < 1. By the upper bound in Lemma 3, there is s = s(ε) ≤ εR such that if
0 < 8r ≤ s, then

f8r,s(x) ≤ εf̃8r,s(x), g8r,s(x) ≤ εg̃8r,s(x) (16)

for x ∈ D2r . Furthermore, estimate (15) and the assumption lim
r→0+ CLévy(x0, r, R) = 1

imply that there is r = r(ε) ≤ s/8 such that

f̃8r,s(x) ≈ (1 + ε)Exτ8rMs,∞(f ), g̃8r,s(x) ≈ (1 + ε)Exτ8rMs,∞(g) (17)

for x ∈ D8r . It follows that

f (x)

g(x)
≤ (1 + ε)f̃8r,s(x)

g̃8r,s(x)
≤ (1 + ε)3 Ms,∞(f )

Ms,∞(g)

for x ∈ D2r . The lower bound is proved in a similar manner, and we obtain

(1 + ε)−3 Ms,∞(f )

Ms,∞(g)
≤ f (x)

g(x)
≤ (1 + ε)3 Ms,∞(f )

Ms,∞(g)
(18)
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for x ∈ D2r . Since ε was arbitrary and s converges to 0 as ε → 0+, we have

lim
x→x0
x∈D

f (x)

g(x)
= lim

s→0+
Ms,∞(f )

Ms,∞(g)
,

and Theorem 2 for inaccessible boundary points is proved.

4.3 Accessible Boundary Points

In the second part of the proof we assume that x0 is accessible, that is,

M0,∞(sR) =
∫

DR

EyτRν(x0, y)m(dy) = ∞.

In this case f8r,s and g8r,s dominate f̃8r,s and g̃8r,s for all sufficiently small r .
We remark that by Eq. 13 and Lemma 1,

M0,∞(f ) ≥ M0,R/4(f ) ≥ C−1
BHIM3R/4,∞(f )M0,R/4(sR/2) = ∞,

and M0,∞(g) = ∞ by the same argument. In other words, the numerator and the denom-
inator of the right-hand side of Eq. 10 diverge to infinity as r → 0+. In particular, if the
limit of f (x)/g(x) in Eq. 10 exists, then it is automatically equal to the right-hand side.

Our argument is based on the following standard oscillation reduction lemma.

Lemma 4 If 0 < 8r < s < R0, then(
sup

y∈D2r

− inf
y∈D2r

)
f8r,s(y)

g8r,s(y)
≤ C4

BHI − 1

C4
BHI + 1

(
sup
y∈Ds

− inf
y∈Ds

)
f (y)

g(y)
.

Proof For simplicity, we denote

A = sup
y∈Ds

f (y)

g(y)
, B = sup

y∈D2r

f8r,s(y)

g8r,s(y)
,

a = inf
y∈Ds

f (y)

g(y)
, b = inf

y∈D2r

f8r,s(y)

g8r,s(y)
.

Since

ag18r,s ≤ f 18r,s ≤ Ag18r,s ,

we clearly have

ag8r,s ≤ f8r,s ≤ Ag8r,s . (19)

In particular, a ≤ b ≤ B ≤ A, and Theorem 1 applies to everywhere non-negative functions
f8r,s − ag8r,s , Ag8r,s − f8r,s and g8r,s (note that f − ag and Ag − f typically fail to be
non-negative everywhere). By Eq. 8,

sup
y∈D2r

f8r,s(y) − ag8r,s(y)

g8r,s(y)
≤ C4

BHI inf
y∈D2r

f8r,s(y) − ag8r,s(y)

g8r,s(y)
,

sup
y∈D2r

Ag8r,s(y) − f8r,s(y)

g8r,s(y)
≤ C4

BHI inf
y∈D2r

Ag8r,s(y) − f8r,s(y)

g8r,s(y)
.
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This translates to B − a ≤ C4
BHI(b − a) and A − b ≤ C4

BHI(A − B), and adding the sides
of these inequalities leads to the desired inequality(

C4
BHI + 1

)
(B − b) ≤

(
C4

BHI − 1
)

(A − a).

For continuous processes (in sufficiently regular domains), the above lemma easily yields
the assertion of Theorem 2. For processes with jumps one needs to incorporate the non-
local parts f̃8r,s and g̃8r,s using Lemma 3. As it was remarked in the introduction, this
modification was developed in [7], and extended in [11].

Let 0 < ε < 1 and 0 < s < R
24 . By the lower bound in Lemma 3, there is r = r(ε, s) ≤ s

8
such that

f̃8r,s(x) ≤ εf8r,s(x), g̃8r,s(x) ≤ εg8r,s(x) (20)

for x ∈ Dr . It follows that(
sup
x∈Dr

− inf
x∈Dr

)
f (x)

g(x)
≤ (1 + ε) sup

x∈Dr

f8r,s(x)

g8r,s(x)
− 1

1 + ε
inf

x∈Dr

f8r,s(x)

g8r,s(x)
.

By Lemma 4 and the inequality 1 − (1 + ε)−1 ≤ ε,(
sup
x∈Dr

− inf
x∈Dr

)
f (x)

g(x)
≤ C4

BHI − 1

C4
BHI + 1

(
sup
x∈Ds

− inf
x∈Ds

)
f (x)

g(x)
+ ε

(
sup
x∈Dr

+ inf
x∈Dr

)
f8r,s(x)

g8r,s(x)
.

(21)
Denote by Q the upper limit of the expression in the left-hand side as r → 0+. Using Eq. 19
and taking the upper limit of both sides as s → 0+ leads to

Q ≤ C4
BHI − 1

C4
BHI + 1

Q + 2ε sup
x∈DR/4

f (x)

g(x)
,

that is,

Q ≤ ε
(

1 + C4
BHI

)
sup

x∈DR/4

f (x)

g(x)

Since ε is arbitrary, we conclude that Q = 0, and the proof of Theorem 2 is complete.

4.4 Extensions

We first prove the statement contained in Remark 2. Denote g(x) = ExτR . Then g is not a
regular harmonic function in DR , but for every open U ⊆ DR ,

g(x) = ExτU + Exg(X(τU )).

We interpret ExτU as if it originated from a jump to a distant point (a point at infinity), and
we define

Mr,∞(g) = 1 +
∫
X\Br

g(y)ν(x0, y)m(dy), g̃r,s(x) = Exτr + Ex((g1s,∞)(X(τr )));

the definitions of Mr,s(g) and gr,s(x) for finite s remain unaltered. One can then follow
carefully the proof of Theorem 2 and see that no changes are required. This shows validity
of Remark 2.

In the remaining part of this section we argue that an extension stated in Remark 3 is
true: the limit in Theorem 2 converges uniformly in f and g, and also in D, in the sense of
Eq. 11.
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We claim that if 0 < q < R0 and η > 0, then there is p, which depends only on q, η and
the characteristics of the process Xt , such that 0 < p < q and

supx∈Dp
(f (x)/g(x))

infx∈Dp(f (x)/g(x))
− 1 ≤ η + C4

BHI − 1

C4
BHI + 1

(
supx∈Dq

(f (x)/g(x))

infx∈Dq (f (x)/g(x))
− 1

)
(22)

for all open sets D and all functions f and g as in Theorem 2 (this estimate is very similar
to Eq. 21). By considering the supremum of both sides of Eq. 22 over all f , g and D, and
then taking the upper limit as q → 0+, we obtain the desired result:

lim sup
r→0+

sup
D,f,g

(
supx∈Dr

(f (x)/g(x))

infx∈Dr (f (x)/g(x))
− 1

)
≤ η

(
1 + C4

BHI

)
2

for arbitrary η > 0. Therefore, it remains to prove (22).
Let 0 < q < 1

24R0 and η > 0. We consider two additional parameters δ, N > 0; the
actual values of δ (small real) and N (large integer) are to be specified at the end of the
argument. By the assumption limr→0+ CLévy(x0, r, R) = 1 one can construct a decreas-
ing sequence of radii a0, a1, . . . , aN so that a0 is the input radius q, 1

8aN will be the
output radius p, and we have 16an+1 < an and CLévy(x0, 8an+1, an) ≤ 1 + δ for all
n = 0, 1, . . . , N − 1.

Following [11], we consider two scenarios. Suppose first that for some n we have

Man+1,an(sR/2) ≤ δ(1 + Man,R/4(sR/2)). (23)

Then the argument is fairly simple: as in Section 4.2, by Lemma 3 we have the inequal-
ity (16) with r = an+1, s = an and ε = C4

BHIδ. Since CLévy(x0, 8an+1, an) ≤ 1 + δ, the
estimate (17) holds with r = an+1, s = an and ε = δ. This implies (18) (with s = an,
x ∈ D2an+1 and ε = C4

BHIδ), and in particular the left-hand side of Eq. 22 does not exceed
(1+C4

BHIδ)
6 −1. Estimate (22) follows with p = an+1, provided that (1+C4

BHIδ)
6 −1 ≤ η.

We choose δ small enough, so that this inequality is satisfied.
In the other scenario, for each n the converse of Eq. 23 holds. Summing up these

inequalities for n = 0, 1, . . . , N − 1 we obtain

MaN,a0(sR/2) ≥ Nδ(1 + Ma0,R/4(sR/2)),

and we argue as in Section 4.3. Again by Lemma 3, we have Eq. 20 with r = 1
8aN , s =

a0 and ε = C3
BHICLévyC

3
τ (Nδ)−1. Inequality (21) follows. Dividing both sides of it by

infx∈Dr (f (x)/g(x)) and using monotonicity of this expression in r , we obtain (22) for p =
1
8aN , provided that ε(CBHI + 1) ≤ η. Since δ is now fixed, we may choose N large enough,
so that this condition is satisfied. This completes the proof of the extension described in
Remark 3.

4.5 Martin Representation

In this section we prove Theorem 3. We assume that the assumptions of Theorem 2 are
satisfied in a uniform way for all x0 ∈ D.

We note one important property of the Green function: if U is an open subset of D and
y /∈ ∂U , then

GD(x, y) = ExGD(X(τU ), y) + GU(x, y) (24)

(where, as usual, we assume that GU(x, y) = 0 whenever x /∈ U or y /∈ U ). In particular,
GD(x, y) is a regular harmonic function in D \ B(y, r) for every r > 0. By a duality
argument, GD(x, y) is a regular co-harmonic function in D \ B(x, r) for every r > 0.
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Furthermore, by the strong Markov property,∫
D

GD(x, y)f (y)m(dy)=Ex

∫ τD

0
f (Xs)ds

=Ex

∫ τD−τU

0
f (XτU +s)ds + Ex

∫ τU

0
f (Xs)ds

=Ex

∫
D

GD(X(τU), y)f(y)m(dy)y+
∫

U

GU(x, y)f (y)m(dy) (25)

for any nonnegative function f . Note that if m(∂U) = 0, then Eq. 25 follows from Eq. 24
and Fubini.

Proof of Theorem 3(a) The assumptions are completely symmetric under duality, and hence
we may apply Theorem 2 to both harmonic and co-harmonic functions. In particular, as
already remarked before the statement of Theorem 3, the Martin kernel, defined as the
boundary limit of co-harmonic functions

MD(x, z) = lim
y→z
x∈D

GD(x, y)

GD(x̃, y)
,

exists for all boundary points z ∈ D (here and below x̃ ∈ D is a fixed reference point). In
other words, the Martin boundary coincides with the Euclidean boundary.

The representation given in part (d) essentially follows now from the general theory
of Martin boundary, together with some ideas developed in [11]. For simplicity, in the
remaining part of the proof we simply write that a function is harmonic when we refer to
harmonicity in D.

Proof of Theorem 3(b) Following the proof of Theorem 2 in [11], we find that MD(x, x0)

is a harmonic function with respect to x if and only if x0 is accessible. Indeed, for an
inaccessible boundary point x0 we have, by Eq. 10 in Theorem 2,

MD(x, x0) = C

∫
D

ν(y, x0)GD(x, y)m(dy)

for C = (
∫
D

ν(y, x0)GD(x̃, y)m(dy))−1 > 0, and so the Martin kernel is not harmonic (to
see this, simply use (25)). On the other hand, if x0 is accessible and R > 0, then

ExMD(X(τD\B(x0,R)), x0) = Ex lim
y→x0
y∈D

GD(X(τD\B(x0,R)), y)

GD(x̃, y)
. (26)

Recall that GD(x, y) is a regular harmonic function of x ∈ D \ B(x0, R) when y ∈
B(x0, R). By Fatou’s lemma,

ExMD(X(τD\B(x0,R)), x0) ≤ MD(x, x0), (27)

and we claim that in fact equality holds, that is, we can exchange the limit with the expec-
tation in Eq. 26. By Vitali’s convergence theorem, it suffices to prove that that the ratio
in the right-hand side of Eq. 26 is a uniformly integrable family of random variables for
y ∈ D ∩ B(x0, r) for some r > 0. The argument is exactly the same as in the proof of
formula (77) in [11]; for the convenience of the reader, we repeat it below.
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Assume that 0 < 8r < R and that x, x̃ /∈ D ∩ B(x0, R). We will first prove that

sup
y∈D∩B(x0,r)
z∈D\B(x0,4r)

GD(z, y)

GD(x̃, y)
< ∞. (28)

By the boundary Harnack inequality (Theorem 1) applied to GD(z, ·) and GD(x̃, ·), it suf-
fices to consider a fixed y ∈ D ∩ B(x0, r), that is, to show that GD(·, y) is bounded in
D\B(x0, 4r). This is relatively simple, but somewhat technical. Denote D1 = D∩B(x0, r),
D2 = D ∩ B(x0, 2r), D4 = D ∩ B(x0, 4r) and D′ = D \ B(x0, 4r). By Dynkin’s
formula (14),

Ez

(
GD(X(τD′), y)1D2(X(τD′))

)

≤
(

sup
v∈D′
w∈D2

ν(v, w)

)∫
D′

GD′(z, v)m(dv)

∫
D2

GD(w, y)m(dw).

The supremum is finite by Assumption 3 and boundedness of D, and the integrals in the
right-hand side are bounded by supu∈D EuτD and supu∈D Êuτ̂D , respectively. Furthermore,

Ez

(
GD(X(τD′), y)1D4\D2(X(τD′))

) ≤ sup
v∈D4\D2

w∈D1

GD(v,w),

and the right-hand side is finite by Assumption 4. By adding the sides of these two bounds
and using harmonicity of the Green function, we complete the proof of Eq. 28.

On the other hand, if we denote D′′ = D \ B(x0, 8r) and D′′′ = D \ B(x0, R), then,
again by Lemma 2,

Ex

(
GD(X(τD′′′), y)1D4(X(τD′′′))

)

≤ CLévy

(∫
D′′′

ν(x0, v)GD′′′(x, v)m(dv)

)(∫
D4

GD(w, y)m(dw)

)
,

and, in a similar way,

GD(x̃, y) ≥ Ex̃

(
GD(X(τD′′), y)1D4(X(τD′′))

)

≥ C−1
Lévy

(∫
D′′

ν(x0, v)GD′′(x̃, v)m(dv)

) (∫
D4

GD(w, y)m(dw)

)
.

It follows that

Ex

(
GD(X(τD\B(x0,R)), y)

GD(x̃, y)
1D∩B(x0,4r)(X(τD\B(x0,R)))

)

≤ C

(∫
D\B(x0,8r)

ν(x0, v)GD\B(x0,8r)(x̃, v)m(dv)

)−1

,

where C does not depend on (sufficiently small) r > 0 and y ∈ D ∩ B(x0, r). Recall that
GD\B(x0,8r)(x̃, v) increases to GD(x̃, v) (because the corresponding exit times τD\B(x0,8r)

increase to τD). By monotone convergence, the right-hand side converges to zero as r →
0+. Together with Eq. 28, this completes the proof of uniform integrability of the right-hand
side of Eq. 26.

Part (b) follows, and in addition we see that for accessible boundary points z, the Martin
kernel MD(x, z) is a regular harmonic function in D \ B(z, r) for every r > 0.

In order to apply the general theory of Martin boundary, we need to prove that the Green
operator, which maps a measurable function f (x) to GDf (x) = ∫

D
GD(x, y)f (y)m(dy),
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takes bounded functions into continuous ones. Let f be a bounded function on D, x0 ∈ D

and ε > 0. Clearly, |GDf (x)| ≤ ‖f ‖ExτD for x ∈ D, so that GDf is bounded. Let r > 0
be small enough, so that ExτB(x0,r) < ε for x ∈ B(x0, r). By Eq. 25,

GDf (x) = ExGDf (X(τB(x0,r))) + GB(x0,r)f (x).

The first term is continuous in B(x0, r) by Theorem 2 (see Remark 4). The other one is
bounded by ε‖f ‖, an arbitrarily small number. Therefore, GDf is continuous at x0.

The general theory of Martin boundary tells us now that if f satisfies the assumptions of
Theorem 3 and f is equal to zero in the complement of D, then

f (x) =
∫

∂mD

MD(x, z)μ(dz) (29)

for some measure μ on the set of accessible boundary points ∂mD, see Theorem 14.8 in [16].
Furthermore, if we show that for every z ∈ ∂mD, MD(x, z) is a minimal harmonic function
with respect to x, then the measure μ in the above representation is unique. Minimality of
MD(x, z) is proved as in the final part of the proof of Lemma 14 in [11].

Proof of Theorem 3(c) Suppose that f is harmonic, 0 ≤ f (x) ≤ MD(x, x0) for all x ∈ X

(in particular, f (x) = 0 for x ∈ X\D) and that the measure μ in representation (29) is zero
on ∂mD ∩ B(x0, 4r) for some r > 0. Our goal is to prove that f is identically zero. This
will imply that if f is harmonic and 0 ≤ f (x) ≤ MD(x, x0) for all x ∈ X, then the measure
μ in representation (29) is concentrated in {x0}, and thus MD(x, x0) is a minimal harmonic
function.

For every z ∈ ∂mD\B(x0, 4r), MD(x, z) is a regular harmonic function in D∩B(x0, 3r).
Hence, by Fubini, f also has this property. Furthermore, by the boundary Harnack
inequality (Theorem 1), f is bounded on D ∩ B(x0, 2r).

On the other hand, since f (x) ≤ MD(x, x0), one easily finds that f is also a regular har-
monic function in D\B(x0, r). This is exactly the same argument as in Lemma 9 in [11]; for
the convenience of the reader, we provide the details at the end of this section. In particular,
since f is bounded in D ∩ B(x0, 2r), it is bounded on D.

A sweeping argument, which is a simplified version of Lemma 10 in [11], proves then
that f is a regular harmonic function in D: Let σn be the sequence of consecutive exit times
from alternately D ∩B(x0, 4r) and D \B(x0, r). That is, σ0 = 0 and σn+1 = σn + τV ◦ϑσn ,
where V = D ∩ B(x0, 4r) when n is even and V = D \ B(x0, r) when n is odd (and ϑτ is
the shift operator).

Clearly, σn ≤ τD < ∞. Since σn is increasing, by quasi-left continuity, X(σn) has a
limit as n → ∞. Therefore, it is impossible that σn < τD for infinitely many n. It follows
that with probability one, eventually σn = τD .

Since f (x) = Exf (X(σn)) and f is bounded, by dominated convergence we have
f (x) = Exf (X(τD)) = 0, as desired.

We have thus proved the representation (29) for harmonic functions f which are zero in
the complement of D. The general case is handled as in Lemma 13 in [11].

Proof of Theorem 3(d) Let Dn be an ascending sequence of open sets such that Dn ⊆ D

and
⋃∞

n=1 Dn = D. Then, by Lemma 2,

f (x) = Exf (X(τDn)) ≥
∫
X\D

(∫
Dn

GDn(x, y)ν(y, z)m(dy)

)
f (z)m(dz).
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The integrand in the right-hand side increases as n → ∞, and therefore by monotone
convergence,

f (x) ≥
∫
X\D

(∫
D

GD(x, y)ν(y, z)m(dy)

)
f (z)m(dz). (30)

Let g(x) be equal to the right-hand side of Eq. 30 for x ∈ D, and to f (x) for x ∈ X\D. From
Lemma 2 and the property (25) of the Green function it follows easily that g is harmonic: if
U is open and U ⊆ D, then

Exg(X(τU )) = Ex(f 1X\D)(X(τU ))

+Ex

∫
X\D

(∫
D

GD(X(τU ), y)ν(y, z)m(dy)

)
f (z)m(dz)

=
∫
X\D

(∫
D

(
GU(x, y) + ExGD(X(τU ), y)

)
ν(y, z)m(dy)

)
f (z)m(dz)

= g(x).

Therefore, f − g is a non-negative harmonic function which is equal to zero in X \ D, and
so it has a unique representation (29).

Finally, the outer integral in Eq. 30 is finite, and so points at which the inner integral is
infinite cannot contribute to the integral. It follows that we can change the outer integral to
an integral over X \ (D ∪ ∂mD). The proof of Eq. 12 is complete.

Proof of Theorem 3(e) By the boundary Harnack inequality, if the right-hand side of Eq. 12
is finite at some x ∈ D, it is finite everywhere in D. Indeed, let f be given by Eq. 12. If
f (x) = ∞ for some x ∈ D, by Theorem 1 f is infinite at every point of a ball B(x, r)

contained in D. If y ∈ D, then again using Theorem 1 (for a ball centred at y), f is infinite
at y.

Finally, harmonicity of the right-hand side of Eq. 12, whenever it is finite, follows from
property (25) of the Green function, harmonicity of the Martin kernel and Fubini.

At the end of this section, we present the proof of Lemma 9 in [11], adapted to our
setting. This result was used in the proof of Theorem 3(c).

Lemma 5 (Lemma 9 in [11]) Let U and D be open subsets of X such that U ⊆ D. If
0 ≤ f (x) ≤ g(x) for all x ∈ X, f and g are harmonic in D, g is a regular harmonic
function in U and g(x) = 0 for x ∈ X \ D, then f is a regular harmonic function in U .

Proof Let Dn be an ascending sequence of open sets such that Dn ⊆ D and
⋃∞

n=1 Dn = D,
and let Un = U ∩ Dn. Then τUn increases to τU , and, by quasi-left continuity, X(τUn)

converges to X(τU ) with probability one. It follows that if X(τU ) ∈ D \ U , then eventually
τUn = τU for n large enough up to an event of probability zero. Hence,

lim
n→∞Ex(g1D\U)(X(τUn)) = Ex(g1D\U)(X(τU )) = g(x).

Therefore,

Ex(f 1U\Un)(X(τUn)) ≤ Ex(g1U\Un)(X(τUn)) = g(x) − Ex(g1D\U)X(τUn))
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converges to zero as n → ∞. It follows that

f (x) = lim
n→∞Exf (X(τUn)) = lim

n→∞Ex(f 1D\U)(X(τUn))

= Ex(f 1D\U)(X(τU )) = Exf (X(τU )),

as desired.
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un domaine lipschitzien. Ann. Inst. Fourier 28(4), 169–213 (1978)

6. Bogdan, K.: The boundary Harnack principle for the fractional Laplacian. Studia Math. 123(1), 43–80
(1997)

7. Bogdan, K.: Representation of α-harmonic functions in Lipschitz domains. Hiroshima Math. J. 29(2),
227–243 (1999)

8. Bogdan, K., Burdzy, K., Chen, Z.-Q.: Censored stable processes. Probab. Theory Relat. Fields 127(1),
89–152 (2003)

9. Bogdan, K., Grzywny, T., Ryznar, M.: Density and tails of unimodal convolution semigroups. J. Funct.
Anal. 266(6), 3543–3571 (2014)

10. Bogdan, K., Grzywny, T., Ryznar, M.: Barriers, exit time and survival probability for unimodal Lévy
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