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Abstract For one-dimensional symmetric Lévy processes, which hit every point with posi-
tive probability, we give sharp bounds for the tail function Px(TB > t), where TB is the first
hitting time of B which is either a single point or an interval. The estimates are obtained
under some weak type scaling assumptions on the characteristic exponent of the process.
We apply these results to prove sharp two-sided estimates of the transition density of the
process killed after hitting B.
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1 Introduction

The purpose of this paper is to investigate the distribution of the first hitting time of a point
or an interval by a symmetric Lévy process such that {0} is regular for itself. Such processes
hit points with positive probability. Our main results, under certain regularity assumptions,
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provide sharp estimates of the tail function P
x(T0 > t), t > 0, where T0 is the first hitting

time of the point 0 by the process starting from x. We further derive similar estimates for
the first hitting time of an interval of a given width, under some weak scaling assumption on
the characteristic exponent ψ of the process. We also find the asymptotic behaviour of the
tail function either for the first hitting time of a point or a compact set under the assumption
that the characteristic exponent is regularly varying at zero with index δ ≥ 1. The estimates
or asymptotics obtained in the paper are expressed in terms of the generalized inverse ψ−1

of the characteristic exponent and the compensated potential kernel

K(x) =
∫ ∞

0
(ps(0) − ps(x))ds, x ∈ R.

Here ps(x), s > 0, x ∈ R, is the transition density of the process, which must exist for pro-
cesses we study. If ψ is comparable with a non-decreasing function we are able to provide
sharp estimates of K in terms of the characteristic exponent, so in these cases the estimates
become quite explicit and are given in terms of the characteristic exponent and its general-
ized inverse. For example we show that if ψ has the weak lower scaling property with index
α > 1 (see Preliminaries for the definition) then

P
x(T0 > t) ≈ 1

tψ−1(1/t)|x|ψ(1/x)
∧ 1, x ∈ R, t > 0.

Moreover, we find a similar estimate in the case when P
x(T0 > t) is replaced by the tail

function of the first hitting time of an interval (see Theorem 5.3). While in principle, for
starting points x far away from the interval, such estimates should follow from the estimates
of Px(T0 > t), but for points close to the boundary of the interval the behaviour of the tail
function is not clear. In order to overcome this difficulty we proved and then applied the
global Harnack inequality under the weak scaling assumption for ψ (see Theorem 4.5). The
Harnack inequality is one of the central topics in the potential theory and the present paper
contributes to these studies. Usually the Harnack inequality for Lévy or generally Markov
processes is proved under the assumptions which enforce the transience of the process and
absolute continuity of its Lévy measure [1, 9, 12, 21, 38]. In our case the process is not only
recurrent but point recurrent.

Finally, under the assumption the process is unimodal and ψ has the lower and upper
weak scaling property we apply the estimates of the hitting times and derive sharp estimates
of pD , the transition density (heat kernel) of the process killed after hitting an interval. We
show that for D = (−∞,−R) ∪ (R,∞), R > 0 we have

pD
t (x, y) ≈ P

x(τD > t)Py(τD > t)pt (x − y), t > 0, x, y ∈ D,

with the comparability constant independent of R and where τD denotes the first exit
time from D. The problem of estimating the heat kernel for symmetric Lévy processes
has brought a lot of attention recently; see e.g. [6, 8, 14, 15, 27]. Most of the results for
unbounded open sets are derived under the assumptions implying the transience of the pro-
cess. The recurrent processes, except isotropic stable [6], were not explored with regard to
heat kernel estimates for exterior sets, and to the best of our knowledge our result is the first
one with such generality.

Our approach follows general framework used in most of the works on this subject and
requires some exit time estimates. While in the transient case some needed hitting or exit
time estimates are quite obvious, here they present the main difficulty. This is done in Propo-
sitions 6.1, 6.2 and 6.4, by applying the results from Sections 4 and 5. To see the main
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difference between the transient and recurrent case note that, for D = (−∞,−R)∪ (R,∞)

and |x|, |y| > 2R, we have

pD
t (x, y) ≈ pt (x − y), t > 0,

in the stable transient case [6, 16]. See also [8, 26] for further generalizations if the weak
scaling properties imply transience. In the case studied in this paper it is certainly not true
since P

x(τD > t) decays to 0 while t → ∞.
One of the drawbacks is that we deal with one-dimensional processes which are

point recurrent. It would be desirable to provide such optimal estimates for one or two-
dimensional recurrent symmetric Lévy processes, which do not hit points. Unfortunately
our approach, based on the nice behaviour of the compensated kernel K , will not work in
this case.

The distribution of the hitting time of points or compact sets for one-dimensional α-stable
processes was the subject of studies in several papers [18, 25, 28, 29, 31, 32, 37, 42]. Let TB

be the first hitting time of a set B. Port in [32] found the asymptotics of Px(TB > t), t → ∞
for a compact set B if 1 < α < 2, and for not necessarily symmetric stable processes. The
density fx(t) of Tx for the symmetric α-stable process, 1 < α < 2, was found in [42]. For
spectrally positive (no negative jumps) α-stable process, 1 < α < 2, Peskir [31] and Simon
[37] found the density fx(t), x > 0,in a form of a series from which one can derive the
asymptotics of fx(t) as t → 0+ or t → ∞. In a recent paper [28] this type of result was
extended to α-stable processes, 1 < α < 2, having both negative and positive jumps. In
[28] the authors derived the Mellin transform of the distribution of Tx and then successfully
inverted it to obtain the series representation of the density of Tx .

Relatively little is known about the distribution of hitting times of single points for gen-
eral Lévy processes. To our best knowledge such explicit results as mentioned above do not
exist. Only recently Kwaśnicki [29] studied the distribution of Tx for symmetric Lévy pro-
cesses under certain regularity assumptions on the characteristic exponent of the process.
The main result of [29] provides an integral representation of the distribution function of Tx

in terms of generalized eigenfunctions for the killed semigroup upon hitting {0}. This repre-
sentation was then successfully applied in [25] to obtain various asymptotics and estimates
of the tail function of Tx and its derivatives under further additional regularity assumptions
on characteristic exponent and the Lévy measure. Namely it is assumed that the process has
completely monotone Lévy density. Comparing our results with those obtained in [25] we
remark that our assumptions are much less restrictive, however our approach does not allow
to treat the estimates of the density or the higher derivatives of the distribution functions.
In a forthcoming paper we provide sharp estimates of the density under the weak upper
and lower scaling property for the characteristic exponent for unimodal Lévy processes.
Moreover we also treat the hitting distribution of intervals and provide sharp estimates and
asymptotics of the tail function, which was not investigated in [25]. We also mention that
our methods are more elementary and are based on the estimates of the Laplace transforms
of the hitting distributions and various estimates of exit probabilities.

The paper is composed as follows. In Section 2 we recall some basic material regarding
one-dimensional symmetric Lévy processes and present some auxiliary results which we
use in the sequel. In Section 3 we obtain estimates and asymptotics of the tail function
P

x(T0 > t). Section 4 is devoted to the uniform Harnack inequality and boundary behaviour
of harmonic functions. These tools we use in Section 5 to prove estimates of the function
P

x(T[−r,r] > t). Section 6 focuses on symmetric unimodal processes with weak global
scaling. We use the methods and results of the previous sections to obtain estimates of the
Dirichlet heat kernel of a complement of an interval.
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2 Preliminaries

Throughout the paper by c, c1 . . . we denote nonnegative constants which may depend on
other constant parameters only. The value of c or c1 . . . may change from line to line in
a chain of estimates. If we use enumerated C1, C2 . . . then they are fixed constants and
usually used in the sequel parts of the paper. Any subsets and real functions considered in
the paper are assumed to be Borel measurable. The notion p(u) ≈ q(u), u ∈ A means that
the ratio p(u)/q(u), u ∈ A is bounded from below and above by positive (comparability)
constants which may depend on other constant parameters only but does not depend on the
set A.

We present in this section some basic material regarding one-dimensional symmetric
Lévy processes which hit points with non-zero probability. For more detailed information,
see [2, 11]. For questions regarding the Markov and the strong Markov properties, semi-
group properties, Schrödinger operators and basic potential theory, the reader is referred to
[17] and [4].

In this paper we assume that a Lévy process X = (Xt , t ≥ 0) [34], is symmetric. By ν

we denote its Lévy measure and by ψ its Lévy-Khintchine exponent (symbol). Notice that
ν and ψ are symmetric as well. Recall that any Lévy measure is a measure such that∫

R

(
|x|2 ∧ 1

)
ν(dx) < ∞.

If the Lévy measure ν is absolutely continuous with respect to the Lebesgue measure, then
with a slight abuse of notation, we denote its density by ν as well. Since the process is
symmetric there is σ ∈ R such that

ψ(ξ) =
∫
R

(1 − cos ξx) ν(dx) + σ 2ξ2, ξ ∈ R,

and
E eiξXt = e−tψ(ξ), ξ ∈ R.

For x ∈ R, by P
x and E

x we denote the distribution and the resulting expectation of the
process x + X. Obviously P

0 = P and E
0 = E. The process X is called unimodal if for

any t > 0 the distribution pt (dx) of Xt is unimodal, that is, it is absolutely continuous on
R \ {0} and its density pt (x) is symmetric on R and non-increasing on (0, ∞). Unimodal
Lévy processes are characterized in [40] by unimodal Lévy measures ν(dx) = ν(x)dx =
ν(|x|)dx.

The first exit time of an (open) set D ⊂ R
d by the process Xt is defined by the formula

τD = inf{t > 0; Xt /∈ D} .

If F ⊂ R is a closed set we define the first hitting time TF of F as the first exit time
from Fc. In the case when F = {a}, a ∈ R, we denote TF = Ta .

In this paper we consider symmetric Lévy processes which have the property that∫ ∞

0

1

1 + ψ(x)
dx < ∞. (1)

Note that the above condition implies that ψ is unbounded, so excludes compound Poisson
processes and in consequence ψ(x) > 0 for x 
= 0. From [11, Theoreme 7 and Theoreme 8]
we infer that for symmetric Lévy processes, which are not compound Poisson, the condition
(1) is equivalent to the fact that 0 is regular for the set {0} that is

P
0(T0 = 0) = 1.
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Moreover (1) guarantees that the distribution of Xt, t > 0, is absolutely continuous and
its density pt (·) ∈ C∞(R).

In general potential theory a very important role is played by λ-potential kernels, λ > 0,
which are defined as

uλ(x) =
∫ ∞

0
e−λtpt (x)dt, x ∈ R.

If the defining integral above is finite for λ = 0 we call u0(x) = u(x) the potential kernel
and then the underlying process is transient.

Under the above assumptions it follows from [2, Corollary II.18 and Theorem II.19] that
hλ(x) = E

0e−λTx is continuous and

uλ(x) =
∫ ∞

0
e−λsps(x)ds = uλ(0)hλ(x).

Denote
Kλ(x) = uλ(0) − uλ(x)

and

K(x) = lim
λ→0+ Kλ(x) =

∫ ∞

0
(ps(0) − ps(x))ds.

By symmetry and [2, Theorem II.19],

Kλ(x) = 1

π

∫ ∞

0
(1 − cos xs)

1

λ + ψ(s)
ds.

The monotone convergence theorem implies

K(x) = 1

π

∫ ∞

0
(1 − cos xs)

1

ψ(s)
ds = 1

xπ

∫ ∞

0
(1 − cos s)

1

ψ(s/x)
ds.

For a number of results below we make the assumption that K is non-decreasing on
(0, ∞). We do not know any general criterion which guarantees monotonicity, but it is
clear that sufficient conditions are: ψ(x)/x is non-decreasing on (0, ∞) or the process X is
unimodal. Another interesting problem is the question if monotonicity of K implies some
monotonicity properties of ψ .

Define κ ∈ [0, ∞) by

κ = π∫ ∞
0

ds
ψ(s)

.

Lemma 2.1 ([41], Theorem 3.1) We have P0(Tx = ∞) = κK(x). If
∫ ∞

0
1

ψ(s)
ds = ∞ then

for any x ∈ R, P0(Tx < ∞) = 1.

If
∫ ∞

0
1

ψ(s)
ds < ∞ the process X is transient and it is clear from Lemma 2.1 that its

potential kernel satisfies

u(x) =
∫ ∞

0
ps(x)ds = 1

κ
P

x(T0 < ∞).

Proposition 2.2 K is subadditive on R.

Proof Observe that Tx+y ≤ Tx + Tx+y ◦ Tx , where ◦ denotes the usual shift operation. By
the strong Markov property, for λ > 0,

hλ(x + y) ≥ hλ(x)hλ(y), x, y ∈ R.
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Hence

K(x) + K(y) − K(x + y) = lim
λ→0

[
(uλ(0) − uλ(x)) + (uλ(0) − uλ(y)) − (uλ(0) − uλ(x + y))

]

= lim
λ→0

uλ(0)
[
1 − hλ(x) − hλ(y) + hλ(x + y)

]

≥ lim
λ→0

uλ(0)
[
1 − hλ(x) − hλ(y) + hλ(x)hλ(y)

]

= lim
λ→0

uλ(0)[1 − hλ(x)][1 − hλ(y)] ≥ 0.

The fundamental object of the potential theory is the killed process XD
t when exiting the

set D. It is defined in terms of sample paths up to time τD . More precisely,

E
xf (XD

t ) = E
x[t < τD; f (Xt )] , t > 0 .

The density function of the transition probability of the process XD
t is denoted by pD

t . We
have

pD
t (x, y) = pt (y − x) − E

x[t > τD; pt−τD
(y − XτD

)] , x, y ∈ R
d .

Obviously, we obtain
pD

t (x, y) ≤ pt (y − x) , x, y ∈ R
d .

(pD
t )t>0 is a strongly contractive semigroup (under composition) and shares most of prop-

erties of the semigroup pt . In particular, it is strongly Feller and symmetric: pD
t (x, y) =

pD
t (y, x). The λ-potential measure of the process XD

t started from x is a Borel measure
defined as

Gλ
D(x,A) =

∫ ∞

0
e−λt

P
x(XD

t ∈ A) dt ,

for any Borel subset A of R. For the Lévy processes explored in the paper their potential
measures are absolutely continuous and the corresponding density is λ-potential kernel of
the process XD

t and is called λ-Green function of the set D. It is denoted by Gλ
D and we have

Gλ
D(x, y) =

∫ ∞

0
e−λtpD

t (x, y) dt .

If λ = 0 the corresponding 0-Green function we simply call the Green function of D and
denote GD(x, y).

Another important object in the potential theory of Xt is the harmonic measure of the set
D. It is defined by the formula:

PD(x, A) = E
x[τD < ∞; 1A(XτD

)], A ⊂ R.

The density kernel (with respect to the Lebesgue measure) of the measure PD(x,A) (if it
exists) is called the Poisson kernel of the set D. The relationship between the Green function
of D and the harmonic measure is provided by the Ikeda-Watanabe formula [24],

PD(x,A) =
∫

D

ν(A − y)GD(x, dy), A ⊂ (D̄)c.

Now we define harmonic and regular harmonic functions with respect to the process X.
Let u be a Borel measurable function on R. We say that u is harmonic function in an open
set D ⊂ R if

u(x) = E
xu(XτB

), x ∈ B,
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for every bounded open set B with the closure B ⊂ D. We say that u is regular harmonic
in D if

u(x) = E
x[τD < ∞;u(XτD

)], x ∈ D.

We note that for any open D the Green function GD(x, y)(if exists) is harmonic in D \ {y}
as a function of x. This follows from the strong Markov property and is frequently used in
the paper.

The following formula for the Green function of the complement of a point can be found
in [41, Lemma 4.1], [19, Theorem 6.1] for recurrent processes and [10, Lemma 4] for stable
processes.

Proposition 2.3 G{0}c (·, ·) is jointly continuous on R × R. Moreover

G{0}c (x, y) = K(x) + K(y) − K(y − x) − K(x)K(y)κ. (2)

Proof Recall that for λ > 0 we define Kλ(x) = uλ(0) − uλ(x). We have

Gλ{0}c (x, y) = uλ(y − x) − E
xe−λT0uλ(y − XT0) = uλ(y − x) − hλ(x)uλ(y)

= −Kλ(y − x) + Kλ(y) + Kλ(x) − Kλ(x)Kλ(y)

uλ(0)
.

Hence by the monotone convergence theorem

G{0}c (x, y) = K(x) + K(y) − K(y − x) − K(x)K(y)κ.

By the dominated convergence theorem we get continuity of K and G{0}c as well.

The following observation plays a crucial role in the sequel.

Proposition 2.4 For any x, y ∈ R we have

G{0}c (x, y) ≤ 2 [K(x) ∧ K(y)] .

If additionally K(·) is non-decreasing on (0, ∞) then for xy ≥ 0 we have

G{0}c (x, y) ≥ K(|x| ∧ |y|) − K(x)K(y)κ = K(|x| ∧ |y|)P|x|∨|y|(T0 < ∞).

Proof By subadditivity of K we have

K(y) ≤ K(x) + K(y − x).

Hence
G{0}c (x, y) ≤ 2K(x).

If K(·) is non-decreasing on (0, ∞) then for y ≥ x > 0 we have K(y) − K(y − x) ≥ 0.
Hence

K(x) − K(x)K(y)κ ≤ G{0}c (x, y).

Lemma 2.5 For any 0 < |x| < R < |y|,
G{0}c (x, y) = E

xG{0}c (Xτ(−R,R)∧T0 , y).

Proof Let 0 < r < |x| < R < R′ < |y|. Then by harmonicity of G{0}c (·, y) on (−R′, 0) ∪
(0, R′) we have

G{0}c (x, y) = E
xG{0}c (XτDr,R

, y),
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where Dr,R = (−R, −r) ∪ (r, R). Proposition 2.4, the dominated convergence theorem,
continuity of G{0}c and quasi-left continuity of X yield the conclusion when we pass r →
0.

Proposition 2.6 For |x| ∈ (0, R) we have

E
x[τ(−R,R) ∧ T0] ≤ 4RK(x).

Proof By Proposition 2.4,

E
x[τ(−R,R) ∧ T0] =

∫ R

−R

G(−R,0)∪(0,R)(x, y)dy ≤
∫ R

−R

G{0}c (x, y)dy

≤ 4RK(x).

Proposition 2.7 Let K be non-decreasing on [0, ∞). For R > 0 and 0 < |x| < R,

1

6

K(x)

K(R)
≤ P

x(τ(−R,R) < T0).

If κ = 0, then additionally

P
x(τ(−R,R) < T0) ≤ 4

K(x)

K(R)
.

Proof Let 0 < x < R. By Proposition 2.4, Lemma 2.5 and subadditivity of K ,

K(x)P2R(T0 < ∞) ≤ G{0}c (x, 2R) = E
xG{0}c (Xτ(−R,R)∧T0 , 2R) ≤ 4K(R)Px(|Xτ(−R,R)∧T0 | ≥ R).

On the other hand, by Lemma 2.1 and subadditivity of K ,

P
x(τ(−R,R) < T0) ≥ P

x(T0 = ∞) = κK(x) = K(x)

K(2R)
P

2R(T0 = ∞) ≥ 1

2

K(x)

K(R)
P

2R(T0 = ∞),

which combined with the first bound above provide the first estimate. Moreover, if κ = 0
then

2K(x) ≥ G{0}c (x, 2R) = E
xG{0}c (Xτ(−R,R)∧T0 , 2R) ≥ K(R)Px(Xτ(−R,R)∧T0 ≥ R)

and

2K(x) ≥ G{0}c (x,−2R) = E
xG{0}c (Xτ(−R,R)∧T0 ,−2R) ≥ K(R)Px(Xτ(−R,R)∧T0 ≤ −R).

Hence

4K(x) ≥ K(R)Px(|Xτ(−R,R)∧T0 | ≥ R).

We also consider the renewal function V of the (properly normalized) ascending ladder-
height process of Xt . The ladder-height process is a subordinator with the Laplace exponent

κ(ξ) = exp

{
1

π

∫ ∞

0

log ψ(ξζ )

1 + ζ 2
dζ

}
, ξ ≥ 0,
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and V (x), x ≥ 0,is its potential measure of the interval [0, x]. For x < 0 we set V (x) = 0.
Silverstein studied V and its derivative V ′ as g and ψ in [36, (1.8) and Theorem 2]. The
Laplace transform of V is

LV (ξ) =
∫ ∞

0
V (x)e−ξxdx = 1

ξκ(ξ)
, ξ > 0. (3)

For instance, V (x) = xα/2 for x ≥ 0, if ψ(ξ) = |ξ |α [39, Example 3.7]. The definition of V

is rather implicit and properties of V are delicate. In particular the decay properties of V ′ are
not yet fully understood. For a detailed discussion of V we refer the reader to [5] and [36].
We have V (x) = 0 for x ≤ 0 and V (∞) := limr→∞ V (r) = ∞. Also, V is subadditive:

V (x + y) ≤ V (x) + V (y), x, y ∈ R. (4)

It is known that V is absolutely continuous and harmonic on (0, ∞) for Xt . Also V ′ is a pos-
itive harmonic function for Xt on (0, ∞), hence V is actually (strictly) increasing. For the
so-called complete subordinate Brownian motions [35] V ′ is monotone, in fact completely
monotone, cf. [30, Proposition 4.5]. This property was crucial for the development in [15,
27], but in general it fails in the present setting cf. [5, Remark 9]. One of the important
features of the function V ′ is the fact that the Green function of (0, ∞) can be written as

G(0,∞)(x, y) =
∫ x

0
V ′(u)V ′(y − x + u)du, 0 < x < y. (5)

This follows from [2, Theorem VI.20].
Let ψ∗(x) = sup|u|≤x ψ(u), x ≥ 0 be the maximal function of ψ . By [23, Theorem 2.7],

ψ(su) ≤ ψ∗(su) ≤ 2(s2 + 1)ψ∗(u), s, u ≥ 0. (6)

Below, in Lemmas 2.8-2.11 we collect useful facts which are true for general symmetric
Lévy processes, which are not compound Poisson.

Lemma 2.8 ([5], Proposition 2.4) There is an absolute constant C1 ≥ 1 such that

C−1
1

1√
ψ∗(1/r)

≤ V (r) ≤ C1
1√

ψ∗(1/r)
, r > 0.

Lemma 2.9 ([5], (2.23) and (2.24)) There is an absolute constant C2 such that

P
0(|Xt | ≥ r) ≤ C2

t

V 2(r)
, r > 0, (7)

and

ν[r, ∞) ≤ C2
1

V 2(r)
, r > 0. (8)

Moreover for any D ⊂ Br and |x| < r/2,

P
x(|XτD

| ≥ r) ≤ C2
E

xτD

V 2(r)
, r > 0. (9)

Lemma 2.10 ([30], Theorem 3.1) There is an absolute constant C3 such that for x > 0, t >

0,

C3

(
V (x)√

t
∧ 1

)
≤ P

x(τ(0,∞) > t) ≤ 2

(
V (x)√

t
∧ 1

)
.
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Lemma 2.11 ([22], Proposition 3.7) There is an absolute constant C4 such that for any
x ∈ (0, R),

C4
V (x)

V (R)
≤ P

x(Xτ(0,R)
≥ R) ≤ V (x)

V (R)
.

In fact we may take C4 = C2
3

4 .

Lemma 2.12 ([7], Lemma 1) Let f : (0, ∞) �→ [0, ∞) be non-increasing. Then for x > 0,

2

π2

∫ ∞

0
[1 ∧ (xr)2]f (r)dr ≤

∫ ∞

0
(1 − cos(xr))f (r)dr.

For a continuous non-decreasing function φ : [0, ∞) → [0, ∞), such that φ(0) = 0 and
lims→∞ φ(s) = ∞ and define the generalized inverse φ−1 : [0, ∞) → [0, ∞),

φ−1(u) = inf{s ≥ 0 : φ(s) ≥ u}, 0 ≤ u < ∞.

The function φ−1 is non-decreasing and càglàd (left continuous with right-hand side limits).
Notice that φ(φ−1(u)) = u for u ∈ [0, ∞) and φ−1(φ(s)) ≤ s for s ∈ [0, ∞). Also, if
ϕ : [0, ∞) → [0, ∞), ϕ(0) = 0, c > 0 and cφ ≤ ϕ, then φ−1(u) ≥ ϕ−1(cu), u ≥ 0. Below
we often consider the (unbounded) characteristic exponent ψ of a symmetric Lévy process
with infinite Lévy measure and its maximal function ψ∗, and denote

ψ−1 = (ψ∗)−1.

This short notation is motivated by the following equality:

inf{s ≥ 0 : ψ(s) ≥ u} = inf{s ≥ 0 : ψ∗(s) ≥ u}, 0 ≤ u < ∞.

It is rather natural to assume (relative) power-type behaviour for the characteristic expo-
nent ψ of X. To this end we consider ψ as a function on (0, ∞). We say that ψ satisfies the
global weak lower scaling condition (WLSC) if there are numbers α > 0 (called the index
of the lower scaling) and γ ∈ (0, 1], such that

ψ(λθ) ≥ γ λαψ(θ) for λ ≥ 1, θ > 0.

In short we write ψ ∈ WLSC(α, γ ) or ψ ∈ WLSC. The global weak upper scaling condi-
tion (WUSC) means that there are numbers β < 2 (called the index of the upper scaling)
and ρ∈ [1, ∞) such that

ψ(λθ) ≤ ρλβψ(θ) for λ ≥ 1, θ > 0.

In short, ψ ∈ WUSC(β, ρ) or ψ ∈ WUSC.
We call α, γ , β, ρ the scaling characteristics of ψ or simply the scalings. In most of our

results we assume only the lower scaling condition.
Here are further remarks from [7]: We have ψ ∈ WLSC(α, γ ) if and only if ψ(θ)/θα

is comparable to a non-decreasing function on (0, ∞), and ψ ∈WUSC(γ, ρ) if and only if
ψ(θ)/θβ is comparable to a non-increasing function on (0, ∞), see [7, Lemmas 8, 9 and 11].

We are thus led to the behavior of ψ−1.

Lemma 2.13 If ψ ∈ WLSC(α, γ ), then

ψ−1 ∈ WLSC(1/2, (γ /482)1/α) ∩ WUSC(1/α, (483/γ 2)1/α). (10)
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Proof The proof is similar to the proof of [7, Lemma 18], where unimodal Lévy processes
were considered. Let W(x) = ∫

R
(1 ∧ (xs)2)ν(ds) + σ 2x2. Since ψ is unbounded the

function W is increasing on (0,∞). Moreover, by [21, Lemma 4]

1

2
ψ∗(x) ≤ W(x) ≤ 24ψ∗(x), x ≥ 0.

Since ψ ∈ WLSC(α, γ ) then ψ∗ ∈ WLSC(α, γ ) and W ∈ WLSC(α,
γ
48 ). Now, we can

repeat the arguments of [7, Lemma 18] to arrive at Eq. 10.

Lemma 2.14 Let a > 0. If ψ ≥ aψ∗, then for x > 0,

2

π3

∫ ∞

1/x

ds

ψ∗(s)
≤ K(x) ≤ 10

πa

∫ ∞

1/x

ds

ψ∗(s)
.

Moreover, ψ ∈ WLSC(α, γ ), α > 1 if and only if

K(x) ≈ 1

|x|ψ(1/x)
≈ V 2(|x|)

|x| , x 
= 0 and ψ∗ ≈ ψ.

The comparability constants depend only on the scalings. In this caseK ∈ WLSC(α−1, γ1),
where γ1 > 0 depends on the scalings of ψ .

Proof Let K̃(x) = 1
π

∫ ∞
0 (1−cos xs) 1

ψ∗(s) ds. Observe that K̃ is the Lévy-Khintchine expo-

nent of some isotropic unimodal Lévy process with the Lévy density 1
2πψ∗(|s|) . By Lemma

2.12 and the inequality 1 − cos s ≤ s2/2 we have

2

π2

∫ ∞

0
(1 ∧ (xs)2)

ds

ψ∗(s)
≤ πK̃(x) ≤ x2

2

∫ 1/x

0
s2 ds

ψ∗(s)
+ 2

∫ ∞

1/x

ds

ψ∗(s)
.

Moreover, by Eq. 6, for 0 < xs ≤ 1,

(xs/2)2ψ∗(2/x) ≤ 4ψ∗(s),
which implies that

x2

2

∫ 1/x

0
s2 ds

ψ∗(s)
≤ 8

xψ∗(2/x)
≤ 8

∫ 2/x

1/x

ds

ψ∗(s)
≤ 8

∫ ∞

1/x

ds

ψ∗(s)
.

Hence,

2

π3

∫ ∞

1/x

ds

ψ∗(s)
≤ K̃(x) ≤ 10

π

∫ ∞

1/x

ds

ψ∗(s)
. (11)

Since K̃(x) ≤ K(x) ≤ 1
a

K̃(x) we get the first conclusion.
Suppose that ψ ∈ WLSC(α, γ ), α > 1. Then ψ ≥ γψ∗ and ψ∗ ∈ WLSC(α, γ ) as well.

Hence, for x > 0,

1

16

1

xψ∗(1/x)
≤ 1

xψ∗(2/x)
≤

∫ ∞

1/x

dr

ψ∗(r)
≤ 1

γ (α − 1)xψ∗(1/x)
, (12)

which shows that K(x) ≈ 1
xψ(1/x)

with the comparability constant dependent on the scaling
characteristics. Also, it is evident that K satisfies the weak lower scaling condition with

index α − 1. Furthermore, by Lemma 2.8 we get K(x) ≈ V 2(|x|)
|x| .

Next we assume that 1
ψ∗(|x|) ≈ K(1/x)

|x| . By [7, Theorem 26] it is equivalent to the fact
that K(x) satisfies the global weak lower and upper scaling conditions with indices 0 <
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δ ≤ β < 2, respectively. This implies that xK(x) satisfies the global weak lower scaling
condition with index α = δ +1. Equivalently, ψ∗ satisfies the weak lower scaling condition
with index α = δ + 1 > 1. The proof is completed.

The following technical lemma is the main tool in estimating the tail function of T0 via
its Laplace transform. Recall that K̃(x) = 1

π

∫ ∞
0 (1 − cos xs) 1

ψ∗(s) ds.

Lemma 2.15 For any λ > 0,

uλ(0) ≥ 1

4
K̃

(
1

ψ−1(λ)

)
≥ 1

32π3

ψ−1(λ)

λ
. (13)

Let a > 0. If aψ∗(x) ≤ ψ(x), x ≥ 0, then
a

4
K

(
1

ψ−1(λ)

)
≤ uλ(0) ≤ 3π2

2a
K

(
1

ψ−1(λ)

)
.

For xψ−1(λ) ≤ 1, x ≥ 0,
Kλ(x) ≥ a

10π2
K(x).

Proof By Eq. 6, λ = ψ∗ (
ψ−1(λ)ss−1

) ≤ (2s−2 + 2)ψ∗ (
ψ−1(λ)s

)
, hence

uλ(0) = 1

π

∫ ∞

0

dr

λ + ψ(r)
= ψ−1(λ)

π

∫ ∞

0

ds

λ + ψ
(
ψ−1(λ)s

)

≥ ψ−1(λ)

π

∫ ∞

0

ds

λ + ψ∗ (
ψ−1(λ)s

) ≥ ψ−1(λ)

π

[∫ 1

0

ds

2λ
+

∫ ∞

1

ds

2ψ∗ (
ψ−1(λ)s

)
]

≥ ψ−1(λ)

2π

[∫ 1

0

s2ds

4ψ∗(ψ−1(λ)s)
+

∫ ∞

1
(1 − cos s)

ds

2ψ∗ (
ψ−1(λ)s

)
]

≥ ψ−1(λ)

4π

∫ ∞

0
(1 − cos s)

ds

ψ∗ (
ψ−1(λ)s

) = 1

4
K̃

(
1

ψ−1(λ)

)
.

By Eqs. 11 and 12 we have K̃(x) ≥ 1
8π3

1
xψ∗(1/x)

, which implies the second inequality in Eq. 13.
Now assume that aψ∗(x) ≤ ψ(x), x ≥ 0. Then we have

uλ(0) ≥ 1

4
K̃

(
1

ψ−1(λ)

)
≥ a

4
K

(
1

ψ−1(λ)

)
.

To obtain the upper bound we apply Lemma 2.12 with f (r) = 1
ψ∗(ψ−1(λ)r)

to get

uλ(0) ≤ ψ−1(λ)

π

[∫ 1

0

ds

λ
+

∫ ∞

1

ds

ψ
(
ψ−1(λ)s

)
]

= ψ−1(λ)

π

[
3
∫ 1

0

s2ds

ψ(ψ−1(λ))
+

∫ ∞

1

ds

ψ
(
ψ−1(λ)s

)
]

≤ 3ψ−1(λ)

aπ

∫ ∞

0
(s2 ∧ 1)

ds

ψ∗ (
ψ−1(λ)s

)

≤ 3π2

2a

ψ−1(λ)

π

∫ ∞

0
(1 − cos s)

ds

ψ∗ (
ψ−1(λ)s

)

≤ 3π2

2a
K

(
1

ψ−1(λ)

)
.
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For 0 < xψ−1(λ) ≤ 1, applying Lemma 2.12 with f (s) = 1
λ+ψ∗(s) , we obtain

πKλ(x) =
∫ ∞

0
(1 − cos(xs))

ds

λ + ψ(s)
≥

∫ ∞

0
(1 − cos(xs))

ds

λ + ψ∗ (s)

≥ 2

π2

∫ ∞

0
(1 ∧ (xs)2)

ds

λ + ψ∗ (s)
≥ 1

π2

∫ ∞

1/x

ds

ψ∗ (s)

≥ a

10π
K(x),

where the last step follows from Lemma 2.14.

For two functions g, f we write g(x) ∼= f (x), x → x0,if limx→x0 g(x)/f (x) = 1.

Lemma 2.16 Suppose that ψ(r) is regularly varying at 0 with index 1 < δ ≤ 2. Then

uλ(0) ∼= ψ−1(λ)

λ

1

δ sin π
δ

, λ → 0+

and uλ(0) is regularly varying at 0 with index 1/δ − 1.
If ψ(r) is regularly varying at 0 with index 1, then

uλ(0) ∼= 1

π

∫ ∞

ψ−1(λ)

ds

ψ(s)
, λ → 0+

and uλ(0) is slowly varying.

Proof Assume that ψ(s) is regularly varying with index 1 < δ ≤ 2. We may write

uλ(0) = 1

π

∫ ∞

0

ds

λ + ψ(s)
= 1

π

∫ 1

0

ds

λ + ψ(s)
+ 1

π

∫ ∞

1

ds

λ + ψ(s)

= ψ−1(λ)

λπ

∫ 1
ψ−1(λ)

0

dw

1 + ψ(ψ−1(λ)w)
ψ∗(ψ−1(λ))

+ 1

π

∫ ∞

1

ds

λ + ψ(s)
.

The second integral converges to 1
π

∫ ∞
1

dr
ψ(r)

< ∞ and since λ

ψ−1(λ)
→ 0 it has no

contribution to the limit. Note that ψ∗(u) ∼= ψ(u), u → 0 (see [3, Theorem 1.5.3]). Since
ψ(x) > 0, x 
= 0, by Potter’s lemma [3, Theorem 1.5.6], and continuity of ψ and ψ∗, for
1 < δ∗ < δ, we can find a constant c = c(δ∗, ψ) > 0 such that for λ < 1, ψ−1(λ)s <

1, s > 1,
ψ

(
ψ−1(λ)s

)
ψ∗ (

ψ−1(λ)
) ≥ csδ∗

.

By the dominated convergence theorem

lim
λ→0

λ

ψ−1(λ)
uλ(0) = 1

π

∫ ∞

0

ds

1 + sδ
= �(1/δ)�(1 − 1/δ)

πδ
= 1

δ sin π
δ

.

Next, let ψ(r) be regularly varying at 0 with index 1. Let L(u) = ∫ ∞
u

dr
ψ(r)

. This func-

tion is slowly varying at 0 [3, Proposition 1.5.9a]. Note that
∫ ψ−1(λ)

0
dr

λ+ψ(r)
≤ ψ−1(λ)

λ
=

ψ−1(λ)

ψ∗(ψ−1(λ))
. Due to regular variation of ψ2 with index 2 we have

∫ ∞

ψ−1(λ)

dr

ψ(r)
−

∫ ∞

ψ−1(λ)

dr

λ + ψ(r)
≤ λ

∫ ∞

ψ−1(λ)

dr

ψ2(r)
∼= ψ−1(λ)

λ
, λ → 0+.
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Hence it is enough to prove that

u/ψ∗(u)

L(u)
→ 0, u → 0+.

Let a > 1. Then
L(u) − L(au)

L(u)
≥ (a − 1)u

L(u)ψ∗(au)
.

Since L varies slowly the left hand side converges to 0 so the proof is completed.

3 Hitting Times of Points

In this section we examine the tail function P
x(T0 > t) under various assumptions on ψ or

K . Under the monotonicity of K we find the lower and upper bounds of the tail function. On
the other hand comparability of ψ and ψ∗ is another source of the estimates via approximate
inversion of the Laplace transform. We also derive asymptotics of Px(T0 > t) as t → ∞ by
applying Tauberian theorems.

Proposition 3.1 We have for any t > 0 and x ∈ R

P
x(T0 > t) ≤

⎡
⎣7

K(x)

K̃
(

1
ψ−1(1/t)

)
⎤
⎦ ∧ 1 ≤

[
51π3 K(x)

tψ−1(1/t)

]
∧ 1.

Let a > 0. If additionally ψ(x) ≥ aψ∗(|x|) for x ∈ R, then

P
x(T0 > t) ≤

⎡
⎣ 7

a

K(x)

K
(

1
ψ−1(1/t)

)
⎤
⎦ ∧ 1.

Proof Observe that for the Laplace transform of Px(T0 > ·) we have

L(Px(T0 > ·))(λ) = 1

λ

[
1 − E

xe−λT0
]

= 1

λ

uλ(0) − uλ(x)

uλ(0)
≤ 1

λ

K(x)

uλ(0)
.

It follows from Eq. 13 that

L(Px(T0 > ·))(λ) ≤ 4

λ

K(x)

K̃( 1
ψ−1(λ)

)
≤ 32π3 K(x)

ψ−1(λ)

in general case, while under the assumption ψ(x) ≥ aψ∗(|x|),

L(Px(T0 > ·))(λ) ≤ 4

aλ

K(x)

K
(

1
ψ−1(λ)

) .

By [7, Lemma 5] we have

P
x(T0 > t) ≤ 4e

e − 1

K(x)

K̃
(

1
ψ−1(1/t)

) ≤ 32π3 e

e − 1

K(x)

tψ−1(1/t)

in general case, and in the other considered case

P
x(T0 > t) ≤ e

e − 1

4

a

K(x)

K
(

1
ψ−1(1/t)

) ,

which ends the proof.
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Proposition 3.2 Let K be non-decreasing on [0, ∞) and κ = 0. Then

P
x(T0 > t) ≤

[
8

K(x)

K(Rt )

]
∧ 1,

where RtK(Rt ) = t .

Proof Let R, t > 0. We have

P
x(T0 > t) ≤ P

x(τ(−R,R) ∧ T0 > t) + P
x(τ(−R,R) < T0).

Let |x| < R. By Chebyshev’s inequality and Proposition 2.6 we obtain

P
x(τ(−R,R) ∧ T0 > t) ≤ E

xτ(−R,R) ∧ T0

t
≤ 4

RK(x)

t
,

while by Lemma 2.7,

P
x(τ(−R,R) < T0) ≤ 4

K(x)

K(R)
.

Setting RK(R) = t we obtain the conclusion.

Lemma 3.3 Let K be non-decreasing on [0, ∞). For x ∈ R, t > 0,

P
x(T0 > t) ≥ C3

6C1

(
K(x)

K(1/ψ−1(1/t))
∧ 1

)
.

Proof For x ≥ 1/ψ−1(1/t) we have, by Lemma 2.8, V (x) ≥ V (1/ψ−1(1/t)) ≥
√

t
C1

.
Hence by Lemma 2.10,

P
x(T0 > t) ≥ P

x(τ(0,∞) > t) ≥ C3

C1
. (14)

Let R = 1/ψ−1(1/t). Then for 0 < x < R, by Proposition 2.7 and the strong Markov
property

P
x(T0 > t) ≥ E

x{|Xτ(−R,R)∧T0 | ≥ R;PXτ(−R,R)∧T0 (T0 > t)}
≥ C3

C1
P

x{|Xτ(−R,R)∧T0 | ≥ R} ≥ C3

6C1

K(x)

K(R)
.

The proof is completed.

The assumption about monotonicity of K can be removed if we assume the lower scaling
condition of ψ .

Proposition 3.4 Let ψ ∈ WLSC(α, γ ), α > 1. For x ∈ R, t > 0,

P
x(T0 > t) ≥ c

(
K(x)

K(1/ψ−1(1/t))
∧ 1

)
,

where c depends only on the scalings.

Proof Since ψ ∈ WLSC(α, γ ) we have γψ∗(r) ≤ ψ(r) for any r ≥ 0. By Lemma 2.15,

2γ

3π2

Kλ(x)

K
(

1
ψ−1(λ)

) ≤ λL(Px(T0 > ·))(λ) ≤ 4

γ

Kλ(x)

K
(

1
ψ−1(λ)

) .
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This, Lemma 2.14 and Eq. 10 imply for λ > 0 and s > 1,

L(Px(T0 > ·))(λs)

L(Px(T0 > ·))(λ)
≤ 6π2

γ 2

1

s

Kλs(x)

Kλ(x)

K
(

1
ψ−1(λ)

)

K
(

1
ψ−1(λs)

) ≤ c1
ψ−1(λ)

ψ−1(λs)
≤ c2s

−1/2, (15)

where c2 depends only on the scalings. Hence, by [7, Lemma 13] there exists a constant c3
that depends only on the scalings such that

P
x(T0 > t) ≥ c3

K1/t (x)

K
(

1
ψ−1(1/t)

) .

For t ≥ 1/ψ∗(1/x), by Lemma 2.15, K1/t (x) ≥ γ

10π2 K(x), which gives the conclusion in
this case. We complete the proof by applying (14) for t < 1/ψ∗(1/x) .

From the above lower and upper bounds we derive two corollaries providing two sided
sharp estimates.

Corollary 3.5 If X is unimodal then for x ∈ R and t > 0,

P
x(T0 > t) ≈ K(x)

K(1/ψ−1(1/t))
∧ 1.

The comparability constant is absolute.

Proof If X is unimodal then K is increasing and ψ ≥ π−2ψ∗ (see [7, Proposition 2]), hence
the upper bound follows from Proposition 3.1, while the lower bound is a consequence of
Lemma 3.3.

Corollary 3.6 Let ψ ∈ WLSC(α, γ ), α > 1. Then for x ∈ R and t > 0,

P
x(T0 > t) ≈ K(x)

K(1/ψ−1(1/t))
∧ 1 ≈ 1

tψ−1(1/t)|x|ψ(1/x)
∧ 1.

The comparability constants depend on the scalings.

Proof By Lemma 2.14 we have K(x) ≈ 1
|x|ψ(1/x)

and the conclusion follows immediately
from Proposition 3.1 and Proposition 3.4.

Example 1 Let ψ(x) = |x| + x2. The corresponding process, which is the sum of
the Cauchy process and independent Brownian motion, is obviously unimodal. Then, by
Lemma 2.14,

K(x) ≈
∫ ∞

1/x

dr

ψ(r)
≈ log(1 + x)

and by Corollary 3.5,

P
x(T0 > t) ≈ log(1 + x)

log(1 + √
t)

∧ 1.

Example 2 We consider ψ(x) = 2
∫ 1

0 (1 − cos(|x|s))ν(ds), where ν is singular. Namely,
let ν(ds) = ∑∞

k=1 δ1/k(ds) (kα − (k − 1)α) or ν(ds) = s−βF (ds), where α ∈ (1, 2) and
β = α + log 2/ log 3 and F is the standard Cantor measure on [0,1]. In both cases we
claim that ψ(x) ≈ |x|α ∧ x2. Indeed, by the integration by parts and [20, Lemma 2] to
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verify the claim in the second case, we obtain that
∫ |x|−1

0 s2ν(ds) ≈ 1 ∧ |x|α−2. Moreover∫ ∞
|x|−1 ν(ds) ≤ c|x|α for |x| ≥ 1 and

∫ ∞
|x|−1 ν(ds) = 0 for |x| < 1. Since

2(1 − cos 1)|x|2
∫ |x|−1

0
s2ν(ds) ≤ ψ(x) ≤ |x|2

∫ |x|−1

0
s2ν(ds) + 2

∫ ∞

|x|−1
ν(ds)

we get the claim in both cases. Hence ψ ∈ WLSC(α, γ ) for some 0 < γ ≤ 1. Applying
Corollary 3.6 we obtain

P
x(T0 > t) ≈ |x|α−1 ∨ |x|

t1−1/α ∨ t1/2
∧ 1.

Since the Lévy measure is singular the process with symbol ψ(x) can not be unimodal.
This illustrates that Corollary 3.6 does not follow from Corollary 3.5.

Remark 1 There are recent results obtained by Juszczyszyn and Kwaśnicki [25] where not
only the behaviour of the tail function P

x(T0 > t) was described but also its derivatives.
Their assumptions on the process were much more restrictive than ours. They assumed
complete monotonicity of the Lévy density and some additional property of the first two
derivatives of the symbol of the process. The results of our paper regarding the tail func-
tions are more general, however our methods do not allow us to treat the derivatives. The
processes from Example 1 and 2 do not satisfy the assumptions of [25]. In Example 1 the
symbol ψ fails the requirements of [25], while the Lévy measures in Example 2 are singular.

Now we turn to asymptotics of the tail function when t → ∞ not only in the case of
hitting {0} but for hitting arbitrary compact set as well.

Proposition 3.7 Let ψ be regularly varying at 0 with index δ ∈ (1, 2]. Then for a compact
set B such that 0 ∈ B we have for x ∈ R,

lim
t→∞ tψ−1(1/t)Px(TB > t) =

δ�
(

1 − 1
δ

)
sin2 π

δ

π

[
K(x) − E

xK(XTB
)
]
.

If ψ is regularly varying at 0 with index 1 then there is a function L(u) slowly varying at
0 such that

lim
t→∞ L(1/t)Px(TB > t) = K(x) − E

xK(XTB
).

We can take L(u) = 1
π

∫ ∞
ψ−1(u)

dr
ψ(r)

, u > 0.

Proof Observe that

L(Px(TB > ·))(λ) = 1

λ

[
1 − E

xe−λTB

]
.

Since 0 ∈ B, 0 is regular for B. By symmetry Gλ
Bc(x, 0) = 0. Hence

λuλ(0)L(Px(TB > ·))(λ) = uλ(0) − uλ(x) − E
xe−λTB

[
uλ(0) − uλ(XTB

)
]

+uλ(x) − E
xe−λTB (uλ(XTB

))

= uλ(0) − uλ(x) − E
xe−λTB

[
uλ(0) − uλ(XTB

)
] + Gλ

Bc(x, 0)

= Kλ(x) − E
xe−λTB Kλ(XTB

). (16)

Since K is continuous and B is compact, by the dominated convergence theorem and
Lemma 2.1,

lim
λ→0

λuλ(0)L(Px(TB > ·))(λ) = K(x) − E
xK(XTB

).
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Let ψ be regularly varying at 0 with index δ ∈ (1, 2]. By Lemma 2.16,

lim
λ→0

ψ−1(λ)L(Px(TB > ·))(λ) = δ sin
(π

δ

)
[K(x) − E

xK(XTB
)].

Define U(s) = ∫ s

0 P
x(TB > t)dt . We have

LU(λ) = 1

λ
L(Px(TB > ·))(λ).

Hence
lim
λ→0

λψ−1(λ)LU(λ) = δ sin
(π

δ

)
[K(x) − E

xK(XTB
)].

Since ψ−1 is regularly varying at 0 with index 1/δ the Tauberian theorem ([3, Theorem
1.7.1]) implies

lim
t→∞ ψ−1(1/t)U(t) = δ sin

(
π
δ

)
�(1 + 1/δ)

[K(x) − E
xK(XTB

)].
By the monotone density theorem ([3, Theorem 1.7.2]),

lim
t→∞

[
tψ−1(1/t)Px(TB > t)

]
= δ sin π

δ

�(1/δ)
[K(x) − E

xK(XTB
)].

If ψ is regularly varying at 0 with index 1, then by Lemma 2.16,

uλ(0) ∼= 1

π

∫ ∞

ψ−1(λ)

dr

ψ(r)
= L(λ),

where L(λ) is slowly varying at 0. Hence

lim
λ→0

λL(λ)L(Px(TB > ·))(λ) = K(x) − E
xK(XTB

).

By the monotone density theorem

lim
t→∞ L(1/t)Px(TB > t) = K(x) − E

xK(XTB
).

Corollary 3.8 Let ψ be regularly varying at 0 with index δ ∈ [1, 2]. Then for x ∈ R,

lim
t→∞

[
tψ−1(1/t)Px(T0 > t)

]
=

δ�
(

1 − 1
δ

)
sin2 π

δ

π
K(x), δ > 1,

and

lim
t→∞ L(1/t)Px(T0 > t) = K(x), δ = 1,

where L(u) = 1
π

∫ ∞
ψ−1(u)

dr
ψ(r)

.

Proof Since E
xK(XT0) = 0 the corollary follows from Proposition 3.7.

Remark 2 We again compare [25] with our results with regard to asymptotics of the tail
function of T0. For example the case ψ(x) = |x| + |x|2 is not covered in [25]. In Example
2 we provided sharp estimates of Px(T0 > t) and Corollary 3.8 exhibits the asymptotics at
infinity. Note that ψ−1(u) = u√

u+ 1
4 + 1

2

∼= u, u → 0. Next,

L(u) = 1

π

∫ ∞

ψ−1(u)

dr

r + r2
= 1

π

[
log

(
u +

√
u + 1

4
+ 1

2

)
− log u

]
∼= − log u

π
, u → 0+.
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Then, by the second part of Corollary 3.8,

lim
t→∞ log t Px(T0 > t) = πK(x),

where K(x) ≈ log(1 + x).

The next example illustrates that the decay of the tail function of T0 can be very slow.
Note that the intensity of small jumps of the process below is larger than the corresponding
intensity of the Cauchy process while it is smaller than the corresponding intensity for any
symmetric α-stable process, α > 1. Therefore the considered process is in some sense
between the Cauchy process and any symmetric α-stable processes, α > 1. Note that the
Cauchy process hits points with 0 probability, while α-stable processes, α > 1, hit points
with probability 1.

Example 3 Let ν(r) = log2(2+1/|r|) log(2+|r|)
r2 , r ∈ R. By Lemma 2.12,

ψ(x) ≈
∫ ∞

0
(1 ∧ (xr)2)ν(r)dr = x2

∫ 1/x

0
r2ν(r)dr +

∫ ∞

1/x

ν(r)dr.

Elementary calculations show that

ψ(x) ≈ xlog2(2 + x) log(2 + 1/x), x ≥ 0

and
ψ−1(x) ≈ x

log2(2 + x) log(2 + 1/x)
, x ≥ 0.

It is clear that ψ can not have the weak lower scaling property with any 1 < α ≤ 2, but
ψ = ψ∗ since ν(r)/r is decreasing on (0, ∞). Hence, by Lemma 2.14,

K(x) ≈
∫ ∞

1/x

dr

ψ(r)
≈ log log(2 + x)

log(2 + 1/x)
, x > 0.

Moreover, ψ(x) ∼= cx log(1/x) and ψ−1(x) ∼= x
c log(1/x)

as x → 0+, where c =
2 log2 2

∫ ∞
0

1−cos r

r2 dr = π log2 2. Therefore ψ is regularly varying at 0 with index 1. Hence

L(u) = 1

π

∫ ∞

ψ−1(u)

dr

ψ(r)
∼= 1

cπ
log log(1/u), u → 0+

and from Corollary 3.8 we infer that

P
x(T0 > t) ∼= (π log 2)2 K(x)

log log t
, t → ∞.

4 Behaviour of Harmonic Functions

This section prepares some tools used in the sequel for estimating the tail function for the
hitting time of an interval. On the other hand the results are interesting on their own. In the
first subsection we prove the global Harnack inequality under global weak scaling assump-
tion for ψ , while in the second we provide some boundary type estimates for harmonic
functions.

We start with a lemma which shows a very useful property of the compensated kernel.
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Lemma 4.1 Let 0 < R ≤ ∞. For x > 0 we have ExK(Xτ(0,R)
) ≤ K(x).

Proof We provide the proof for R = ∞, since the case R < ∞ is similar. By [41, Theorem
1.1] we know that the function K(x) is invariant for the killed process upon hitting {0} which
implies its harmonicity on {0}c. Let R > 1 such that 1/R < x < R. Then by harmonicity
E

xK(Xτ(1/R,R)
) = K(x). Since τ(1/R,R) ↑ τ(0,∞), R ↑ ∞ and τ(0,∞) < ∞ almost surely, the

conclusion follows by continuity of K , quasi-left continuity of X and Fatou’s lemma.

4.1 Harnack inequality

We say that the global Harnack inequality holds if there is a constant CH such that for every
R > 0 and any non-negative harmonic function on (−R,R) we have

sup
x∈(−R/2,R/2)

h(x) ≤ CH inf
x∈(−R/2,R/2)

h(x).

Here we prove that ψ ∈ WLSC(α, γ ), α > 1 is a sufficient condition. The Harnack inequal-
ity will be very important in the next subsection to find the boundary behaviour of certain
harmonic functions.

Lemma 4.2 Let ψ ∈ WLSC(α, γ ), α > 1. Then there are λ1, λ2 depending on the scalings
such that for any R > 0,

G(−R,R)(x, y) ≥ λ2K(R), |x|, |y| ≤ λ1R.

Proof Since ψ ∈ WLSC(α, γ ), α > 1, then K has the lower scaling property with index
α − 1. Hence there exists δ < 1/2, depending on the scalings, such that

inf
z≥R(1−δ)

K(z) − sup
|z|≤δR

K(z) ≥ (1/2) inf
z≥R(1−δ)

K(z) ≥ (1/2) inf
z≥R/2

K(z).

Let λ = δ
2 and |x|, |y| ≤ λR. By Lemma 4.1 we have Ex+RK(Xτ(0,2R)

) ≤ K(x+R). Hence

G(−R,R)(x, y) = G(0,2R)(x + R, y + R) = G{0}c (x + R, y + R) − E
x+RG{0}c (Xτ(0,2R)

, y + R)

= K(x + R) − K(y − x) − E
x+RK(Xτ(0,2R)

) + E
x+RK(Xτ(0,2R)

− y − R)

≥ E
x+RK(Xτ(0,2R)

− y − R) − K(y − x)

≥ inf
z≥R(1−λ)

K(z) − sup
|z|≤2λR

K(z)

≥ (1/2) inf
z≥R/2

K(z) ≥ λ2K(R),

where λ2 depends only on the scalings.

Proposition 4.3 Let ψ ∈ WLSC(α, γ ), α > 1 and let λ1 be the constant from Lemma 4.2.
There exists a constant δ ≤ λ1 dependent only on the scalings such that for any R > 0 and
any non-empty Borel A ⊂ (−δR, δR),

P
x(TA < τ(−R,R)) ≥ 1

2
, |x| ≤ δR.

Proof Let |a| ≤ R/4. Let D = (−R/2, 0) ∪ (0, R/2). By Eq. 9 and then by Proposition
2.6, for |x − a| ≤ R/4,

P
x(Ta > τ(−R,R)) ≤ P

x−a(T0 > τ(−R/2,R/2)) ≤ C2
E

x−aτD

V 2(R/2)
≤ 8C2K(x − a)

R

V 2(R)
.
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Since V 2(R)
R

≈ K(R), with comparability constant dependent on the scalings, then

P
x(Ta > τ(−R,R)) ≤ c

K(x − a)

K(R)
, |x − a| < R/4,

with c dependent on the scalings. Next, we can use WLSC property for K with index α − 1
to choose δ < 1/2 (dependent only on the scalings) small enough, such that

P
x(Ta > τ(−R,R)) ≤ 1/2, |x − a| < 2δR.

Let x ∈ A ⊂ (−δR, δR) and a ∈ A. Then

P
x(TA > τ(−R,R)) ≤ P

x(Ta > τ(−R,R)) ≤ 1/2.

Let R0 = δR, with δ chosen in the preceding proposition.

Proposition 4.4 Let ψ ∈ WLSC(α, γ ), α > 1. Then for any R > 0, and any non-negative
function F such that (suppF)c ⊂ (−R,R),

E
xF (Xτ(−R0,R0)

) ≤ 2

λ2
E

yF (Xτ(−R,R)
), |x|, |y| < R0.

Proof Denote ν(w,A) = ν(A − w),w ∈ R and Borel A ⊂ R. By the Ikeda-Watanabe
formula and Lemma 4.2,

E
yF (Xτ(−R,R)

) ≥
∫

(−R,R)c

∫ R0

−R0

F(z)G(−R,R)(y, w)ν(w, dz)dw

≥ λ2K(R)

∫
(−R,R)c

∫ R0

−R0

F(z)ν(w, dz)dw.

Again, by the Ikeda-Watanabe formula, subadditivity of K and Proposition 2.4,

E
xF (Xτ(−R0,R0)

) ≤
∫

(−R,R)c

∫ R0

−R0

F(z)G{0}c (x + R0, w + R0)ν(w, dz)dw

≤ 2K(R0)

∫
(−R,R)c

∫ R0

−R0

F(z)ν(w, dz)dw.

Hence

E
xF (Xτ(−R0,R0)

) ≤ 2

λ2
E

yF (Xτ(−R,R)
).

Theorem 4.5 If ψ ∈ WLSC(α, γ ), α > 1, then the global scale invariant Harnack inequal-
ity holds. That is there is a constant CH dependent only the scalings such that for any R > 0
and any non-negative harmonic function on (−R,R) we have

sup
x∈(−R/2,R/2)

h(x) ≤ CH inf
x∈(−R/2,R/2)

h(x). (17)

Proof We prove the result for bounded harmonic functions. The boundedness assumption
can be removed in a similar way as in [38, Theorem 2.4].
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With Propositions 4.4 and 4.3 at hand we can use the approach of Bass and Levin ([1])
to get the existence of constants c1 = c1(α, γ ) and a = a(α, γ ) < 1 such that, for any
function h non-negative and bounded on R and harmonic in a ball (−R,R), R > 0,

sup
x∈(−aR,aR)

h(x) ≤ c1 inf
x∈(−aR,aR)

h(x).

Next, we use the standard chain argument to get

sup
x∈(−R/2,R/2)

h(x) ≤ CH inf
x∈(−R/2,R/2)

h(x),

where CH = CH (c1, a).

4.2 Boundary behaviour

In this subsection we prove certain estimates of non-negative functions which are harmonic
on (0, R), 0 < R ≤ ∞. We show that under appropriate assumptions the function V (x)

provides the right order of decay at the boundary at 0 for harmonic functions we consider.
The obtained results are then used in Section 5 to estimate the tail function of the hitting
time of an interval.

In our development the following Property (H) of the derivative of V is crucial. Recall
that V is the renewal function defined on page 8. Below, in Remark 3, we discus the sit-
uations when it holds. We also mention that we do not know any example of a symmetric
Lévy process with an unbounded symbol for which the property is not satisfied.

Property (H).
We say that X satisfies (H) if there is a constant H ≥ 1 such that for any 0 < δ ≤ w ≤

u ≤ w + 2δ we have
V ′(u) ≤ HV ′(w).

Remark 3 The assumption (H) is satisfied in the following situations:

a) ψ ∈ WLSC(α, γ ), α > 1. The constant H depends only on the scalings. Since V ′ is
harmonic on (0, ∞) this follows from Theorem 4.5.

b) X is a subordinate Brownian motion and ψ ∈ WLSC(β, γ ), β > 0. The constant H

depends only on the scalings. This follows from [21, Theorem 7].
c) X is a special subordinate Brownian motion, since in this case V ′ is non-increasing

[5, Lemma 7.5]. Recall that X is a special subordinate Brownian motion if its sym-
bol ψ(x) = φ(x2), x ∈ R, where φ is a special Bernstein function. That is both
φ(λ), λ/φ(λ), λ > 0,are Bernstein functions.

Lemma 4.6 Suppose that (H) holds. Then for 0 < x < δ < y/3 we have

G(0,∞)(x, y) ≤ H 2G(0,∞)(2δ, y)
V (x)

V (δ)
.

Proof Let 0 ≤ u ≤ x. Since x < y, and δ ≤ y − x ≤ y − x + u ≤ y − x + δ by Eq. 5 and
the property (H) we have

G(0,∞)(x, y) =
∫ x

0
V ′(u)V ′(y − x + u)du ≤ HV ′(y − x)V (x).

Next, since δ < y − 2δ + u ≤ y − x ≤ y − 2δ + u + 2δ for 0 ≤ u ≤ δ, using again the
property (H) we arrive at

V ′(y − x) ≤ HV ′(y − 2δ + u).
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Multiplying both sides by V ′(u) and integrating over [0, δ] we obtain

V ′(y−x)V (δ) ≤ H

∫ δ

0
V ′(y−2δ+u)V ′(u)du ≤ H

∫ 2δ

0
V ′(y−2δ+u)V ′(u)du = HG(0,∞)(2δ, y),

which completes the proof.

According to [2, Theorem VI.20] we have for any non-negative function f on [0, ∞),
∫ ∞

0
f (y)G(0,∞)(x, y)dy =

∫ ∞

0
V ′(y)dy

∫ x

0
f (x + y − u)V ′(u)du.

Applying this to the indicator of the interval [0, z], z > 0,we have M(x, z) =∫ z

0 G(0,∞)(x, y)dy = ∫ z

0 V ′(y)dy
∫ x

(x+y−z)∨0 V ′(u)du. It is then clear that

V (z − x)V (x) ≤ M(x, z) ≤ V (x)V (z), 0 < x ≤ z < ∞. (18)

Lemma 4.7 Suppose that (H) holds. Let F(z) be non-negative subadditive on R and
E

xF (Xτ(0,∞)
) ≤ F(x), x > 0. Then, for 0 < x < 1,

E
x[Xτ(0,∞)

≤ −2; F(Xτ(0,∞)
)] ≤ cH 2F ∗(1)

V (x)

V (1)
,

where F ∗(x) = sup|z|≤|x| F(z). The constant c is absolute.

Proof By the Ikeda-Watanabe formula,

E
x[Xτ(0,∞)

≤ −2; F(Xτ(0,∞)
)] =

∫ −2

−∞
F(z)

∫ ∞

0
G(0,∞)(x, y)ν(z, dy)dz.

By Lemma 4.6,

G(0,∞)(x, y) ≤ H 2 V (x)

V (2)
G(0,∞)(4, y), x ≤ 2 < 6 ≤ y.

Hence, ∫ ∞

6
G(0,∞)(x, y)ν(z, dy) ≤ H 2 V (x)

V (2)

∫ ∞

6
G(0,∞)(4, y)ν(z, dy).

Note that EzF (Xτ(0,∞)
) ≤ for z>0 F(z), which implies

I =
∫ −2

−∞
F(z)

∫ ∞

6
G(0,∞)(x, y)ν(z, dy)dz ≤ H 2 V (x)

V (2)
E

4F(Xτ(0,∞)
) ≤ H 2 V (x)

V (2)
F (4).

Observe that by subadditivity of F , F(w+y) ≤ F(w)+F(y) ≤ F(w)+F ∗(6) if 0 < y < 6
and w < −2−y. By Eq. 18 we have

∫ 6
0 G(0,∞)(x, y)dy ≤ V (6)V (x) ≤ 2V (4)V (x), hence

II =
∫ −2

−∞
F(z)

∫ 6

0
G(0,∞)(x, y)ν(z, dy)dz =

∫ 6

0
G(0,∞)(x, y)

∫ −2−y

−∞
F(w + y)ν(dw)dy

≤ 2V (x)
V (2)V (4)

V (2)

∫ −2

−∞
F(w)ν(dw) + 2V (x)F ∗(6)V (4)ν([2, ∞)).
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Note that by Eq. 18, V (2)V (4) ≤ ∫ 6
0 G(0,∞)(2, y)dy,and F(w − y) ≤ F(w) + F ∗(6) if

0 < y < 6 and w < −6 which imply

V (2)V (4)

∫ −12

−∞
F(w)ν(dw) ≤

∫ 6

0

∫ −12

−∞
F(w)G(0,∞)(2, y)ν(dw)dy

≤
∫ 6

0

∫ −6−y

−∞
F(w)G(0,∞)(2, y)ν(dw)dy

=
∫ 6

0

∫ −6

−∞
F(w − y)G(0,∞)(2, y)ν(y, dw)dy

≤
∫ 6

0

∫ −6

−∞
(F (w) + F ∗(6))G(0,∞)(2, y)ν(y, dw)dy

≤ E
2F(Xτ(0,∞)

) + F ∗(6)P2(Xτ(0,∞)
≤ −6)

≤ F(2) + F ∗(6).

Next, by Lemma 2.9,

∫ −2

−12
F(w)ν(dw) ≤ F ∗(12)ν[2, ∞) ≤ C2

F ∗(12)

V 2(2)
.

Combining all the estimates obtained above and using subaddativity of F ∗ and V we
conclude that there is an absolute constant c such that

E
x[Xτ(0,∞)

≤ −2;F(Xτ(0,∞)
)] = I + II ≤ cH 2F ∗(1)

V (x)

V (1)
, 0 < x < 1,

which ends the proof.

Lemma 4.8 Let ψ ∈ WLSC(α, γ ), α > 1 and let F be a non-negative harmonic function
on (0, 2R), R > 0. Suppose that r > 0 is such that V (R) ≥ 2V (r)/C4, where C4 is the
constant from Lemma 2.11. Then for 0 < x < r ,

F(x)

F (r)
≥ C4

2
(CH )R/r+1 V (x)

V (r)
,

where CH is the constant from the Harnack inequality (17), which depends only on the
scalings.

Proof Observe that V (R) ≥ 2V (r)/C4 implies that V (R) > V (r), hence r < R. Since F

is harmonic then using the Harnack inequality (Theorem 4.5) we have for every r ≤ x, y ≤
R such that |x − y| < r , F(x) ≥ CH F(y). By the chaining argument we have for any
r ≤ x ≤ R,

F(x) ≥ (CH )R/r+1F(r). (19)

By Lemma 2.11,

P
x(Xτ(0,r)

∈ [r, R)) = P
x(Xτ(0,r)

≥ r) − P
x(Xτ(0,r)

≥ R) ≥ P
x(Xτ(0,r)

≥ r) − P
x(Xτ(0,R)

≥ R)

≥ C4
V (x)

V (r)
− V (x)

V (R)
≥ C4

2

V (x)

V (r)
.
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Note that by Eq. 19, quasi left-continuity of X and harmonicity of F ,

F(x) = lim
ε→0+ E

xF (Xτ(ε,r)
) ≥ lim

ε→0+ E
x
[
F(Xτ(ε,r)

), Xτ(ε,r)
∈ [r, R]]

≥ C
R/r+1
H F(r) lim

ε→0+ P
x(Xτ(ε,r)

∈ [r, R]) = C
R/r+1
H F(r)Px(Xτ(0,r)

∈ [r, R])

≥ C
R/r+1
H C4

2
F(r)

V (x)

V (r)
.

5 Hitting Times of Intervals

Throughout this section BR = [−R, R], R > 0. The goal is to find sharp estimates for the
tail function of TBR

and we start with the case R = 1. Once this is done we use the scaling
argument to treat any R > 0. The proposition below provides an effective tool for the upper
bound.

Proposition 5.1 Suppose that the condition (H) holds. If 1 > 1/ψ∗(1), then

P
x(TB1 > 1) ≤ cH 2 V (|x| − 1)

V (|x|)

[
sup
|z|≤1

P
z(T0 > 1/2) + P

x−1(T0 > 1/2)

]
, |x| > 1.

The constant c is absolute.

Proof If |x| ≥ 2 we have, by subadditivity of V , V (|x|−1)
V (|x|) ≥ 1

3 , hence the conclusion is

obvious since H ≥ 1 and P
x(TB1 > 1) ≤ P

x−1(T0 > 1/2).
Let 1 < x < 2. The condition 1 > 1/ψ∗(1), by Lemma 2.8, implies 1/V (1) ≤ C1.

Then, by Lemma 2.10 and subadditivity of V ,

P
x(τ(1,∞) > 1/2) ≤ 2

√
2
C1

C3

V (x − 1)

V (1)
P

2(τ(1,∞) > 1) ≤ 4
√

2
C1

C3

V (x − 1)

V (x)
P

1(T0 > 1/2).

Since
P

x(TB1 > 1) ≤ P
x(τ(1,∞) > 1/2) + E

x
P

Xτ(1,∞) (TB1 > 1/2)

it is enough to estimate the harmonic function

E
x
P

Xτ(1,∞) (TB1 > 1/2) ≤ E
x[Xτ(1,∞)

≤ −1;PXτ(1,∞) (T1 > 1/2)]
= E

x−1[Xτ(0,∞)
≤ −2;PXτ(0,∞) (T0 > 1/2)].

Let F(z) = P
z(T0 > 1/2). Observe that this function is subadditive and satisfies the

assumptions of Lemma 4.7. Therefore the conclusion follows from Lemma 4.7.

Corollary 5.2 Let ψ ∈ WLSC(α, γ ), α > 1. If |x| > 1 and 1 > 1/ψ∗(1) then

P
x(TB1 > 1) ≤ c

V (|x| − 1)K(|x|)
V (|x|)K(1/ψ−1(1))

∧ 1 ≈ V (|x| − 1)K(|x|)
V (|x|)ψ−1(1)

∧ 1.

The constant c depends only on the scalings.

Proof By Remark 3 we find a constant H dependent only on the scalings such that the
property (H) holds. Therefore, by applying Propositions 5.1 and 3.1 together with Lemma
2.14 we end the proof.
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Remark 4 If Px(T0 > t) ≤ c
(

K(x)

K(1/ψ−1(1/t))
∧ 1

)
the WLSC assumption is merely to assure

the property (H). However there are many examples for which V ′ is non-increasing and then
this property holds automatically with the constant H = 1. For example if X is a special
subordinate Brownian motion satisfying (1), then the estimate from the preceding corollary
holds with an absolute constant. In particular ψ(x) = |x|+|x|2 defines a special subordinate
Brownian motion and it does not have the lower scaling property with index α > 1.

Next, we deal with the lower bound.

Proposition 5.3 Let ψ ∈ WLSC(α, γ ), α > 1, and let 1 > 1/ψ∗(1). There is x∗ ≥ 2,
which depends only on the scaling characteristics, such that for |x| ≥ x∗ we have

P
x(TB1 > 2) ≥ C5

(
K(|x|)

K(1/ψ−1(1))
∧ 1

)
≈

(
K(|x|)
ψ−1(1)

∧ 1

)
.

The constant C5 depends only on the scalings.

Proof By symmetry we may assume that x > 0. Let f (t) = P
x(TB1 > t), f0(t) =

P
x(T0 > t). We begin with a simple observation relating the Laplace transforms of f (t)

and f0(t). By Eq. 16,

λuλ(0)Lf (λ) = Kλ(x) − E
xe−λTB1 Kλ(XTB1

)

≥ Kλ(x) − E
xK(XTB1

)

= λuλ(0)Lf0(λ) − E
xK(XTB1

).

Let γ (θ, z) = ∫ z

0 uθ−1e−udu, z > 0, θ > 0 be the lower incomplete Gamma function
of index θ . We pick 0 < b ≤ 1 to be specified later. By [7, Lemma 5], γ (1, 1)f0(s) ≤
Lf0(s

−1)s−1, s > 0. Moreover, Eq. 15 implies Lf0(s
−1) ≤ c1 (λs)1/α Lf0(λ), s ≤ λ−1,

where c1 depends on the scalings. Hence

λLf (λ) = λ

∫ bλ−1

0
e−λsf (s)ds + λ

∫ ∞

bλ−1
e−λsf (s)ds

≤ λ

γ (1, 1)

∫ bλ−1

0
e−λsLf0(s

−1)s−1ds + f (bλ−1)

∫ ∞

bλ−1
e−λsλds

≤ λ

γ (1, 1)

∫ bλ−1

0
c1 (λs)1/α Lf0(λ)e−λss−1ds + f (bλ−1)e−b

= c1
γ (1/α, b)

γ (1, 1)
λLf0(λ) + f (bλ−1)e−b.

Next we choose the largest b ≤ 1 such that 2c1γ (1/α, b) ≤ γ (1, 1) = 1 − e−1. Since

λLf (λ) ≥ λLf0(λ) − E
xK(XTB1

)

uλ(0)
, then

f (bλ−1) ≥ λLf0(λ)/2 − E
xK(XTB1

)

uλ(0)
= Kλ(x)

2uλ(0)
− E

xK(XTB1
)

uλ(0)
.
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If xψ−1(λ) ≤ 1 then by Lemma 2.15, Kλ(x) ≥ c2K(x), hence in this case

f (bλ−1) ≥ c2K(x) − E
xK(XTB1

)

uλ(0)
.

Letting λ = 1/t and applying again Lemma 2.15 to estimate uλ(0) we have for t ≥ 1
ψ∗(1/x)

,

f (bt) ≥ c3

[
c2K(x) − sup|z|≤1 K(z)

K(1/ψ−1(1/t))

]
.

By Lemma 2.14 the lower scaling property with index α − 1 holds for K , therefore we can
find x∗ ≥ 2, dependent on the scalings, such that c2K(x)−sup|z|≤1 K(z) ≥ c2

2 K(x), x ≥
x∗. Hence, for x ≥ x∗ and t ≥ 1

ψ∗(1/x)
we have

f (bt) ≥ c4
K(x)

K(1/ψ−1(1/t))
.

For x ≥ x∗ ≥ 2 and t ≤ 1
ψ∗(1/x)

we apply subaddativity of V and Lemma 2.8 to get
V (x−1)√

t
≥ 1

2
V (x)√

t
≥ 1

2C1
. Next, applying Lemma 2.10 to arrive at

f (bt) ≥ P
x(τ(1,∞) ≥ bt) ≥ C3

(
V (x − 1)√

bt
∧ 1

)
≥ C3

(
1

2C1
√

b
∧ 1

)
.

Therefore we have proved that for x ≥ x∗ and any t > 0 we have

f (bt) ≥ c5 min

{
K(x)

K(1/ψ−1(1/t))
, 1

}
,

where c5 depends on the scalings. In particular taking t = 2/b we obtain

f (2) ≥ c5 min

{
K(x)

K(1/ψ−1(b/2))
, 1

}
≥ c6 min

{
K(x)

K(1/ψ−1(1))
, 1

}
, |x| ≥ x∗,

where the last inequality follows from scaling property for K and ψ−1 (see Lemma 2.14
and Eq. 10). The constant c6 depends on the scalings.

Lemma 5.4 Let ψ ∈ WLSC(α, γ ), α > 1. If 1 < |x| < x∗ and 1 > 1/ψ∗(1), where x∗ is
chosen in the preceding lemma, then

P
x(TB1 > 1) ≥ c

V (|x| − 1)K(|x|)
V (|x|)K(1/ψ−1(1))

∧ 1.

The constant c depends only on the scalings.

Proof We may and do assume that 1 ≤ x < x∗. By the strong Markov property we have
for any z ≥ 1,

P
z(TB1 > 2) ≤ P

z(τ(1,∞) > 1) + E
z
P

Xτ(1,∞) (TB1 > 1)

and

P
z(TB1 > 1) ≥ 1

2
P

z(τ(1,∞) > 1) + 1

2
E

z
P

Xτ(1,∞) (TB1 > 1).

Using Lemma 4.8 we estimate the harmonic function F(z) = E
z
P

Xτ(1,∞) (TB1 > 1),

F(x) ≥ c1
V (x − 1)

V (2)
F (x∗),
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with the constant c1 dependent only on the scalings. From Lemma 2.10 and subaddativity
of V we infer that Px(τ(1,∞) > 1) ≥ c2

V (x−1)
V (2)

P
x∗

(τ(1,∞) > 1), with c2 dependent only on
the scalings. Hence,

P
x(TB1 > 1) ≥ 1/2

(
P

x(τ(1,∞) > 1) + E
x
P

Xτ(1,∞) (TB1 > 1)
)

≥ c1 ∧ c2

2

V (x − 1)

V (2)

(
P

x∗
(τ(1,∞) > 1) + E

x∗
P

Xτ(1,∞) (TB1 > 1)
)

≥ c1 ∧ c2

2

V (x − 1)

V (2)
P

x∗
(TB1 > 2).

Applying Proposition 5.3 we get Px∗
(TB1 > 2) ≥ C5

(
K(2)

K(1/ψ−1(1))
∧ 1

)
, which completes

the proof.

Now we are ready to state and prove the main result of this section.

Theorem 5.5 Let ψ ∈ WLSC(α, γ ), α > 1. If BR = [−R, R] and |x| > R,

P
x(TBR

> t) ≈ V (|x| − R)√
t ∧ V (R)

∧ 1, t ≤ 1/ψ∗(1/R)

and

P
x(TBR

> t) ≈ V (|x| − R)K(|x|)
V (|x|)K(1/ψ−1(1/t))

∧ 1 ≈ V (|x| − R)K(|x|)
V (|x|)tψ−1(1/t)

∧ 1, t > 1/ψ∗(1/R).

The comparability constants depend only on the scaling characteristics.

Proof If t ≤ 1/ψ∗(1/R) the estimates hold by [5, Remark 6] and Lemma 2.10.
Let t > 0, R > 0 be fixed. We consider a space and time rescaled process Ys =

Xts/R, s ≥ 0. Let Kt
R , etc. be objects corresponding to the process Y . Then

ψt
R(x) = tψ(x/R),

Kt
R(x) = R

t
K(xR),

V t
R(x) = V (xR)√

t
,

ψ−1
R (x) = Rψ−1(x/t).

Let T Y
B1

be the hitting time of B1 by the process Y . Observe that ψt
R(x) has exactly the

same scaling property (with the same scaling characteristics) as ψ(x). Let t > 1/ψ∗(1/R)

or equivalently 1 > 1/(ψt
R)∗(1). We now apply Corollary 5.2, Proposition 5.3 and Lemma

5.4 to get

P
x(TBR

> t) = P
x/R(T Y

B1
> 1)

≈ V t
R(|x/R| − 1)Kt

R(|x/R|)
V t

R(|x/R|)Kt
R

(
1/(ψt

R)−1(1)
) ∧ 1

= V (|x| − R)K(|x|)
V (|x|)K(1/ψ−1(1/t))

∧ 1

≈ V (|x| − R)K(|x|)
V (|x|)tψ−1(1/t)

∧ 1,

where the comparability constants depend only on the scalings of ψ .
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Corollary 5.6 Assume that the second moment of X is finite and ψ ∈ WLSC(α, γ ), α > 1.
Let R > 1 and BR = [−R, R]. Then

P
x(TBR

> t) ≈ V (|x| − R)√
t

∧ 1, t > 0.

The comparability constant depends on ψ .

Proof If the second moment is finite, then ψ(x) ≈ x2, |x| < 1, hence ψ−1(x) ≈ √
x, 0 ≤

x < 1. Moreover K(w) ≈ V (w) ≈ w,w > 1. Hence we obtain the conclusion applying
Theorem 5.5.

Remark 5 If X is a special subordinate Brownian motion satisfying (1), then the upper
bound from Theorem 5.5 is true without the assumption ψ ∈ WLSC(α, γ ), α > 1. This
follows from the fact that property (H) holds for such processes (see Remark 3). In particular
ψ(x) = |x| + |x|2 defines a special subordinate Brownian and it does not have a lower
scaling property with α > 1 but we have

P
x(TBR

> t) ≤ c
V (|x| − R)√

t ∧ V (R)
∧ 1, t ≤ 1/ψ∗(1/R),

and

P
x(TBR

> t) ≤ c
V (|x| − R)K(|x|)

V (|x|)K(1/ψ−1(1/t))
∧ 1, t > 1/ψ∗(1/R).

Here the constant c is independent of R, V (x) ≈ √
x ∧ x, x ≥ 0 and K(x) ≈ log(1 +

|x|), x ∈ R.
By inspecting the proof of Proposition 5.3 it is clear that we can prove a lower bound

P
x(TBR

> t) ≥ cR

V (|x| − R)K(|x|)
V (|x|)K(1/ψ−1(1/t))

∧ 1, t > 1/ψ∗(1/R),

but the constant cR will be dependent on R (to choose x∗ as in Proposition 5.3 one can use
unboundedness of K instead of the scaling property).

Example 4 Let ν(r) = 1
|r|3 log2(2+1/|r|) , r ∈ R. Since ν is decreasing on (0, ∞), by

Lemma 2.12, ψ(x) ≈ ∫ ∞
0 (1∧(xr)2)ν(r)dr = x2

∫ 1/x

0 r2ν(r)dr +∫ ∞
1/x

ν(r)dr . Elementary
calculations show that

ψ(x) ≈ x2 log(2 + 1/x)

log(2 + x)
, x > 0,

ψ−1(x) ≈ √
x

√
log(2 + x)√

log(2 + 1/x)
, x > 0.

It is clear that ψ has the weak lower scaling property with any 1 < α < 2. Hence

K(x) ≈ 1

xψ(1/x)
≈ x

log(2 + 1/x)

log(2 + x)
, x > 0

and

V (x) ≈ 1√
ψ(1/x)

≈ x

√
log(2 + 1/x)√
log(2 + x)

, x > 0.

Hence
K(x)

V (x)
≈

√
log(2 + 1/x)√
log(2 + x)

, x > 0.
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Applying Theorem 5.5 we obtain for |x| > R,

P
x(TBR

> t) ≈ (|x| − R)

√
log(2 + 1/(|x| − R))√
t log(2 + (|x| − R))

∧ 1, t ≤ 1/ψ∗(1/R)

and for t > 1/ψ∗(1/R),

P
x(TB1 > t) ≈ (|x| − R)

√
log(2 + 1/(|x| − R))√
log(2 + (|x| − R))

√
log(2 + 1/|x|)√
log(2 + |x|)

√
log(2 + t)√

t log(2 + 1/t)
∧ 1,

since tψ−1(1/t) ≈
√

t
log(2+1/t)

log(2+t)
.

6 Heat Kernel Estimates

This section is devoted to finding sharp estimates of the heat kernel of the process X killed
after hitting an interval. We apply the previous results on hitting times and the estimates of
the heat kernel of the free process obtained in [7] under the assumption of unimodality of
X and both lower and upper scaling property of ψ . At the end of the section we suggest a
certain extension of the main result, which allows to treat symmetric processes which are
not unimodal.

We denote DR = (−R, −1) ∪ (1, R), R > 1.

Proposition 6.1 Let ψ ∈ WLSC(α, γ ), α > 1. For |x| ∈ (1, R) and R > 1 we have

E
xτDR

≤ C6R
V (|x| − 1)K(|x|)

V (|x|) ,

where the constant C6 depends on the scalings.

Proof Let x > 1. By Proposition 2.4,

E
xτDR

=
∫

(−R,−1)∪(1,R)

G(−R,−1)∪(1,R)(x, y)dy ≤ 2
∫ R

0
G{0}c (x − 1, y)dy

≤ 4RK(x − 1),

which gives the desired bound if x > 2, since V (x−1)
V (x)

≥ 1/2.
Assume that 1 < x ≤ 2. Let s(u) = E

uτDR
, u ∈ R. Then by the strong Markov property

we have
s(x) = E

xτ(1,R) + E
xs(Xτ(1,R)

).

Next, applying the above estimate and subaddativity of K we obtain

E
xs(Xτ(1,R)

) ≤ 4RE
x[K(|Xτ(1,R)

| − 1); Xτ(1,R)
≤ −1]

≤ 4RE
x[K(Xτ(1,R)

) + K(1);Xτ(1,R)
≤ −1]

≤ 4RE
x[K(Xτ(1,∞)

) + K(1); Xτ(1,∞)
≤ −1]

= 4RE
x−1[K(Xτ(0,∞)

) + K(1);Xτ(0,∞)
≤ −2]

≤ c1R
V (x − 1)K∗(1)

V (1)
,
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where in the last step we applied Lemma 4.1 and Lemma 4.7. Note that the constant c1
depends only on the scalings. Finally, applying [22, Proposition 3.5], subadditivity of V and
the estimate V 2(2) ≤ c2K(2) following from Lemma 2.14 , we obtain

E
xτ(1,R) ≤ 2V (x − 1)V (R) ≤ 2RV (x − 1)V (2) ≤ c2R

V (x − 1)K(2)

V (2)
.

The proof is completed by observing that, by Lemma 2.14, K∗(1) ≈ K(|x|), 1 ≤ |x| ≤ 2
and by subaddativity V (1) ≈ V (|x|), 1 ≤ |x| ≤ 2.

Proposition 6.2 Let R > 2 and 1 < |x| < R. If ψ ∈ WLSC(α, γ ), α > 1, then

P
x(|XτDR

| ≥ R) ≤ C7
V (|x| − 1)

V (|x|)
K(|x|)
K(R)

,

where the constant C7 depends only on the scalings.

Proof By subaddativity of V and K it is enough to consider 1 < x ≤ (R ∨ 3)/2. By Eq. 9,
and then Proposition 6.1,

P
x(|XτDR

| ≥ R) ≤ C2
E

xτDR

V 2(R)
≤ C2C6R

V (x − 1)K(x)

V (x)V 2(R)
.

The proof is completed by observing that K(R) ≈ V 2(R)/R with the comparability
constant dependent only on the scalings, which folows from Lemma 2.14.

The following lemma is consequence of [33, (3.2)], [21, Corollary 1] and the weak lower
scaling property.

Lemma 6.3 Let ψ ∈ WLSC(α, γ ), α > 0. There is a constant C8 ≥ 1 dependent on the
scalings such that for R = χ/ψ−1(1), χ > 1, we have

P
0(τ(−R,R) ≤ 1) ≤ C8

χα
.

In the next proposition we prove estimates for some exit times which play a crucial role
in obtaining the main result of this section. Recall that TB1 is the first hitting time of B1.

Proposition 6.4 Let ψ ∈ WLSC(α, γ ), α > 1. Assume that 1 > 1/ψ∗(1). There is χ ≥ 2
dependent only on the scalings such that for R = χ

ψ−1(1)
> 2 and DR = (−R, −1)∪ (1, R)

we have

P
x(τDR

> 1) ≥ C9P
x(TB1 > 1), 1 < |x| ≤ R

2
.

Moreover
P

0(τ(−R/4,R/4) > 1) ≥ 1/2.

The constant C9 depends only on the scalings.

Proof First observe that 1 > 1/ψ∗(1) is equivalent to 1
ψ−1(1)

> 1. Let x∗ be the value

picked in Proposition 5.3. We first consider |x| ≥ x∗ ≥ 2. By Proposition 5.3,

P
x(TB1 > 2) ≥ C5

(
K(|x|)

K(1/ψ−1(1))
∧ 1

)
.
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We find 1 ≤ χ1 ≤ χ/4 satisfying the following conditions

K(1/ψ−1(1))

K(χ/ψ−1(1))
≤ C5/(2C7),

V (x∗ − 1)

V (χ/ψ−1(1))
≤ 1

8
(C3(V (x∗ − 1) ∧ 1),

V (χ1/ψ
−1(1))

V (χ/ψ−1(1))
≤ C3/(8C1),

C8

χα
1

≤ 1
2 .

Such choice of χ1, χ , which are dependent on the scalings, is possible due to weak lower
scaling property for V , K implied by Lemma 2.8 and Lemma 2.14, respectively.

We set R = χ

ψ−1(1)
. The choice of χ together with Proposition 6.2 imply

P
x(|XτDR

| ≥ R) ≤ C7
K(|x|)
K(R)

≤ C5

2

K(|x| − 1)

K(1/ψ−1(1))
.

Then

P
x(τDR

> 2) ≥ P
x(TB1 > 2) − P

x(|XτDR
| ≥ R) ≥ 1

2
P

x(TB1 > 2)

if x∗ ≤ |x| ≤ 1 + 1/ψ−1(1).
If 1 + 1/ψ−1(1) < |x| ≤ 1 + χ1/ψ

−1(1) we use a similar argument based on the exit
from a half-space. Indeed, by Lemmas 2.10 and 2.11,

P
x(τDR

> 1) ≥ P
x(τ(1,R) > 1) ≥ P

x(τ(1,∞) > 1)−P
x(Xτ(1,R)

≥ R) ≥ C3(V (|x|−1)∧1)− 2V (|x| − 1)

V (R − 1)
.

Observe that, due to Lemma 2.8, C3(V (|x| − 1) ∧ 1) ≥ C3(V (1/ψ−1(1)) ∧ 1) ≥ C3/C1

and by the choice of χ1, 2V (|x|−1)
V (R−1)

≤ 4V (χ1/ψ
−1(1))

V (R)
≤ C3/(2C1). Hence,

P
x(τDR

> 1) ≥ C3/(2C1), 1 + 1/ψ−1(1) < |x| ≤ 1 + χ1/ψ
−1(1).

Next, we assume that 1 < |x| < x∗. By Lemmas 2.10, 2.11 and the choice of R we have

P
x(τ(1,R) > 1) ≥ P

x(τ(1,∞) > 1) − P
x(Xτ(1,R)

≥ R)

≥ C3(V (|x| − 1) ∧ 1) − 2V (|x| − 1)

V (R − 1)

= V (|x| − 1)

V (x∗ − 1)

[(
C3(V (x∗ − 1) ∧ V (x∗ − 1)

V (x − 1)

)
− 2V (x∗ − 1)

V (R − 1)

]

≥ V (|x| − 1)

V (x∗ − 1)

[(
C3(V (x∗ − 1) ∧ 1

) − 4V (x∗ − 1)

V (R)

]

≥ V (|x| − 1)

V (x∗ − 1)

1

2
C3(V (x∗ − 1) ∧ 1)

≥ V (|x| − 1)

V (x∗ − 1)

1

4
C3P

x∗
(τ(1,R) > 1).
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Moreover, we can apply Lemma 4.8 to F(x) = E
x
P

Xτ(1,R) (τDR
> 1) with r = x∗ − 1. In

consequence we can find c1 dependent on the scalings such that

P
x(τDR

> 1) ≥ 1

2

(
P

x(τ(1,R) > 1) + E
x
P

Xτ(1,R) (τDR
> 1)

)

≥ c1
V (|x| − 1)

V (x∗ − 1)

(
P

x∗
(τ(1,R) > 1) + E

x∗
P

Xτ(1,R) (τDR
> 1)

)

≥ c1
V (|x| − 1)

V (x∗ − 1)
P

x∗
(τDR

> 2)

≥ c1

2

V (|x| − 1)

V (x∗ − 1)
P

x∗
(TB1 > 2),

where the last inequality follows from the first part of the proof. Applying Theorem 5.5 we
can find c2 dependent only on the scalings such that

P
x(τDR

> 1) ≥ c1

2

V (|x| − 1)

V (x∗ − 1)
P

x∗
(TB1 > 2) ≥ c2P

x(TB1 > 1),

which completes the proof for 1 < |x| < x∗.
Finally we consider 1 + χ1/ψ

−1(1) ≤ |x| ≤ R/2. Let R1 = χ1/ψ
−1(1) ≤ R/4. Then

by Lemma 6.3, and the choice of χ1,

P
x(τDR

> 1) ≥ P
0(τ(−R1,R1) > 1) ≥ 1 − C8

χα
1

≥ 1/2

and

P
0(τ(−R/4,R/4) > 1) ≥ 1/2.

The proof is completed.

Below we recall optimal estimates for the transition density of an unimodal process X if
we assume appropriate scaling conditions.

Lemma 6.5 ([7] ,Corollary 23) Assume that X is unimodal. Let ψ ∈ WLSC(α, γ ) ∩
WUSC(β, ρ), 1 < α ≤ β < 2. Then

pt (x) ≈ ψ−1(1/t) ∧ t

|x|V 2(|x|) ≈ pt (0) ∧ t

|x|V 2(|x|) ≈ ψ−1(1/t) ∧ tν(x), t > 0, x, ∈ R.

The comparability constants depend on the scalings.

The following lemma is instrumental in estimating the heat kernel pD . For the proof see
[14, Lemma 2.2] or [6, Lemma 2].

Lemma 6.6 Consider disjoint open sets U1, U3 ⊂ D. Let U2 = D \ (U1 ∪ U3). If x ∈ U1,
y ∈ U3 and t > 0, then

pD
t (x, y) ≤ P

x(XτU1
∈ U2) sup

s<t, z∈D2

ps(z − y) + (t ∧ E
xτU1) sup

u∈U1, z∈U3

ν(z − u),

pD
t (x, y) ≥ t Px(τU1 > t)Py(τU3 > t) inf

u∈U1, z∈U3
ν(z − u).

Now we are ready to state and prove the main theorem of this section.
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Theorem 6.7 Let ψ ∈ (WLSC)(α, γ ) ∩ WUSC(β, ρ), 1 < α ≤ β < 2 and the process is
unimodal. Let D = (−∞,−r) ∪ (r,∞), r > 0. Then

pD
t (x, y) ≈ P

x(τD > t)Py(τD > t)pt (x − y), t > 0, x, y ∈ D.

The comparability constants depend only on the scalings.

Proof We may assume that |x| < y. We find the estimates in the case of fixed t = 2 or
t = 3 and r = 1, keeping all arising constants dependent only on the scalings. Then apply-
ing the scaling argument we will be able to extend the estimates for the whole range of times
and any r > 0. We also assume that t = 1 > V 2(1). The case 1 ≤ V 2(1) can be deduced
from a general bound for the killed semigroup obtained in [8, Corollary 2.4, Theorem 3.3
and the beginning of Section 5]. In what follows all comparabilities hold with comparabil-
ity constants which are either depend only on the scalings or they are absolute. The same
remark applies to all constants appearing in the proof. As mentioned above throughout the
proof we fix D = (−∞,−1) ∪ (1, ∞).

We start with the upper bound. First, we prove that there is a constant c0 such that

pD
1 (x, y) ≤ c0P

x(τD > 2)p1(x − y). (20)

To this end we consider two cases.

Case 1 Assume that V 2(|x − y|) ≤ 16. In this case, by Lemma 6.5, p1(x − y) ≈ p1/2(0).
Hence

pD
1 (x, y) =

∫
pD

1/2(x, u)pD
1/2(u, y)du

≤ p1/2(0)

∫
pD

1/2(x, u)du

≤ c1P
x(τD > 1/2)p1(x − y). (21)

Case 2 Assume that 16 < V (|x − y|). If V (|x| − 1) ≥ 1 then by Theorem 5.5 (or Lemma
2.10), Px(τD > 2) ≈ 1 and of course

pD
1 (x, y) ≤ p1(x − y) ≤ c2P

x(τD > 2)p1(x − y). (22)

Assume that V (|x| − 1) ≤ 1, and V (y − 1) > 2 (the case V (|x| − 1) < V (y − 1) < 2
is included in Case 1). Let R : V 2(R − 1) = 1. This implies that |x| ≤ R. Also, since
1 > V 2(1), we have R > 2.

We put U1 = (−R, −1) ∪ (1, R) = DR and U3 = (y − |x − y|/2, y + |x − y|/2). We
claim that (y − x)/4 ≥ R − x. Indeed, by subaddativity

V ((y − x)/4) ≥ (1/4)V (y − x) > 4,

while

V (|R − x|) ≤ V (R) + V (|x|) ≤ V (R − 1) + V (|x| − 1) + 2V (1) ≤ 4.

Hence
inf

u∈U1, z∈U3
|z − u| = y − (y − x)/2 − R ≥ (y − x)/4. (23)

By Proposition 6.2,

P
x(τU1 < τD) ≤ C7

V (|x| − 1)K(|x|)
V (x)K(R)

, 1 < |x| < R.
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Since R ≥ 2 then 1 = V (R−1) ≤ V (R) ≤ 2V (R−1) ≤ 2, and by Lemma 2.8, R ≈ 1
ψ−1(1)

.

Next, by Lemma 2.14, K(R) ≈ V 2(R)
R

≈ ψ−1(1) implies that for all x : 1 < |x| < R,

P
x(τU1 < τD) ≤ c3 min

{
V (|x| − 1)

V (|x|)ψ−1(1)
K(|x|), 1

}
≤ c4P

x(τD > 1),

where the last inequality follows from Theorem 5.5. By Proposition 6.1 and again by
Theorem 5.5,

1 ∧ E
xτU1 ≤ C6 min

{
V (|x| − 1)

V (|x|)ψ−1(1)
K(|x|), 1

}
≤ c5P

x(τD > 1).

Let U2 = D \ (U1 ∪ U3). By the estimates of ps(z − y) (see Lemma 6.5),

sup
s<1, z∈U2

ps(z − y) = sup
s<1

p(s, (x − y)/2) ≤ c6p1(x − y).

Moreover by Eq. 23,

sup
u∈U1, z∈U3

ν(z − u) ≤ ν((x − y)/4) ≈ ν(x − y) ≤ c7p1(x − y).

Then, by Lemma 6.6,

pD
1 (x, y) ≤ (1 ∧ E

xτD1) sup
u∈D1, z∈D3

ν(z − u) + sup
s<1, z∈D2

ps(z − y)Px(τD1 < τD)

≤ (c5c7 + c4c6)P
x(τD > 1)p1(x − y). (24)

Since, by Theorem 5.5, Px(τD > 1/2) ≈ P
x(τD > 1) ≈ P

x(τD > 2) we arrive at Eq. 20
by combining (21), Eqs. 22 and 24.

Finally, by the semigroup property and by applying the estimate (20), and from symmetry
of the heat kernel, we have

pD
2 (x, y) ≤ c8P

x(τD > 2)Py(τD > 2)p2(x − y). (25)

To get a general bound for any t, r > 0 we consider Ys = 1
r
Xst , s ≥ 0. For such a

process (fixing t and r) its characteristic exponent is ψr
t (u) = tψ(u/r) so it has the same

scaling characteristics as ψ(u). Let pY , pD,Y denote the transition densities for the free and
killed process Y , respectively. We have p2t (x − y) = pY

2 ((x − y)/r) and prD
2t (x, y) =

p
D,Y
2 (x/r, y/r). Moreover Py/r (τY

D > 2) = P
y(τrD > 2t). Hence applying (25) to Y we

obtain

prD(2t, x, y) = p
D,Y
2 (x/r, y/r)

≤ c8P
y/r (τY

D > 2)Px/r (τY
D > 2)pY

2 ((x − y)/r)

= c8P
y(τrD > 2t)Py(τrD > 2t)p2t (x − y).

Next we deal with the lower bound.
Let R = χ

ψ−1(1)
, where χ is the constant from Proposition 6.4. Recall that

P
0(τ(−R/4,R/4) > 1) ≥ 1/2. (26)

Also note that by Lemma 2.8, 1/C2
1 ≤ V 2( 1

ψ−1(1)
) ≤ V 2(R) ≤ (1 + χ2)V 2( 1

ψ−1(1)
) ≤

(1 + χ2)C2
1 . Next, we define for every z ∈ D, Uz = D ∩ (−R,R) and Bz = (3R, 4R)

if |z| < R/2 or Uz = (z − R/4, z + R/4) and Bz = (z + 2R, z + 3R), z > R/2 or
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Bz = (z − 3R, z − 2R), z < −R/2, otherwise. Note that V (|w| − 1) ≥ V (R) ≥ 1/C1 for
w ∈ Bz. Hence, by [8, Corollary 3.5] we have

pD
1 (u, v) ≥ c9(V (|u| − 1) ∧ 1)(V (|v| − 1) ∧ 1)p1(u − v)

≥ c9C
−2
1 p1(u − v), u ∈ Bx, v ∈ By.

Moreover it is easy to check that |u−v| ≤ 2((y −x)∨R), hence p1(u−v) ≥ c10p1(x −y),
which follows from Lemma 6.5. In consequence we have

pD
1 (u, v) ≥ c11p1(x − y), u ∈ Bx, v ∈ By, (27)

where c11 = c9c10C
−2
1 . By the semigroup property and Eq. 27,

pD
3 (x, y) =

∫
pD

1 (x, u)pD
1 (u, v)pD

1 (v, y)dudv

≥ c11p1(x − y)

∫
Bx

pD
1 (x, u)du

∫
By

pD
1 (x, v)dv. (28)

Next for u ∈ B ′′
x which is an interval with the same center as Bx , and has the length |B ′′

x | =
|Bx |/2, we have by Lemma 6.6

pD
1 (x, u) ≥ P

x(τUx > 1)Pu(τBx > 1) inf
u∈Ux, z∈Bx

ν(z − u) ≥ P
x(τUx > 1)Pu(τBx > 1)ν(5R).

Next note that, by Eq. 26,

P
u(τBx > 1) ≥ P

0(τ(−R/4,−R/4) > 1) ≥ 1/2

and

P
x(τUx > 1) ≥ C9

2
P

x(τD > 1),

which follows from Proposition 6.4 for |x| ≤ R/2 and from Eq. 26 for |x| > R/2. Hence,
using ν(5R) ≈ 1

RV 2(5R)
≈ 1

R
, we arrive at

∫
Bx

pD
1 (x, u)du ≥ C9

4
P

x(τD > 1)ν(R)|B ′′
x | ≥ c12

|B ′′
x |

R
P

x(τD > 1) ≥ c13P
x(τD > 1),

since |B ′′
x | ≈ R. The above estimates combined with Eq. 28 yield

pD(3, x, y) ≥ c11c
2
13p1(x − y)Px(τD > 1)Py(τD > 1).

Finally, by observing that p3(x−y) ≈ p1(x−y) (Lemma 6.5) and P
x(τD > 3) ≈ P

x(τD >

1) (Theorem 5.5), we arrive at

pD(3, x, y) ≥ c14P
x(τD > 3)p(3, x, y)Py(τD > 3).

Applying the same scaling argument as used for the upper bound we conclude for any
t, r > 0,

prD
t (x, y) ≥ c14P

x(τrD > t)pt (x − y)Py(τrD > t).

The proof is completed.

Remark 6 If we consider the semigroup killed upon hitting {0} then with the assumptions
of Theorem 6.7 we can obtain the following estimate of its transition density

p
{0}c
t (x, y) ≈ P

x(T0 > t)Py(T0 > t)pt (x − y), t > 0, x, y 
= 0.

This can be proved either by taking the limit in the estimates from Theorem 6.7 if r → 0 or
by proving directly following the steps of the proof above.
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Now, we suggest the following extension of Theorem 6.7.

Remark 7 Let X be a pure jump process. The assumption of unimodality of X can be
removed by assuming certain estimates of the symmetric Lévy density of X. Suppose that

ν(x) ≈ f (1/|x|)
|x| , x ∈ R,

where f : [0, ∞) → [0, ∞) is non-decreasing and f ∈ WLSC(α, γ1) ∩ WUSC(β, ρ1),
1 < α < β < 2. Then according to [7, Proposition 28] the characteristic exponent of X,
ψ ≈ f , so ψ ∈ WUSC(β, ρ) ∩ WUSC(β, ρ). Moreover, by the result of Chen, Kim and
Kumagai [13] we have

pt (x) ≈ f −1(1/t) ∧ t
f (1/|x|)

|x| ≈ pt (0) ∧ t
f (1/|x|)

|x| ≈ ψ−1(1/t) ∧ tν(x).

We also note that the renewal function of the ladder process is VX(x) ≈ 1√
ψ(1/x)

≈ 1√
f (1/x)

.

Hence we conclude that Lemma 6.5 holds in this case. Moreover the density pt (x) is almost
non-increasing for x ∈ (0, ∞) that is there is symmetric qt (x) non-increasing on (0, ∞)

and a constant c ≥ 1 such that

c−1qt (x) ≤ pt (x) ≤ cqt (x), t > 0, x ∈ R.

Therefore we can repeat, with necesarry slight modifications, all the steps from the proof of
Theorem 6.7 and obtain its conclusion in this case. The details are left to interested readers.
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27. Kim, P., Song, R., Vondraček, Z.: Global uniform boundary Harnack principle with explicit decay rate
and its application. Stoch. Process Appl. 124(1), 235–267 (2014)

28. Kuznetsov, A., Kyprianou, A.E., Pardo, J.C., Watson, A.R.: The hitting time of zero for a stable process.
Electron. J. Probab. 19(30), 26 (2014)
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origin. Electron. J. Probab. 17(83), 29 (2012)
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Gaussian part. Potential Anal. 32(4), 305–341 (2010)

42. Yano, K., Yano, Y., Yor, M.: On the laws of first hitting times of points for one-dimensional sym-
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