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Abstract In this paper we study maximal Lp-regularity for evolution equations with time-
dependent operators A. We merely assume a measurable dependence on time. In the first
part of the paper we present a new sufficient condition for the Lp-boundedness of a class of
vector-valued singular integrals which does not rely on Hörmander conditions in the time
variable. This is then used to develop an abstract operator-theoretic approach to maximal
regularity. The results are applied to the case of m-th order elliptic operators A with time and
space-dependent coefficients. Here the highest order coefficients are assumed to be mea-
surable in time and continuous in the space variables. This results in an Lp(Lq)-theory for
such equations for p, q ∈ (1, ∞). In the final section we extend a well-posedness result for
quasilinear equations to the time-dependent setting. Here we give an example of a nonlinear
parabolic PDE to which the result can be applied.
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1 Introduction

In this paper we study maximal Lp-regularity of the Cauchy problem:

u′(t) + A(t)u(t) = f (t), t ∈ (0, T )

u(0) = x.
(1.1)

Here (A(t))t∈(0,T ) is a family of closed operators on a Banach space X0. We assume the
operators have a constant domain D(A(t)) = X1 for t ∈ [0, T ].

In recent years there has been much interest in maximal regularity techniques and their
application to nonlinear PDEs. Maximal regularity can often be used to obtain a priori
estimates which give global existence results. For example, using maximal regularity it
is possible to solve quasi-linear and fully nonlinear PDEs by elegant linearization tech-
niques combined with the contraction mapping principle [4, 6, 14, 16, 67, 81]. This has
found numerous applications in problems from mathematical physics (e.g. fluid dynamics,
reaction-diffusion equations, material science, etc. see e.g. [1, 14, 21, 35, 44, 63, 70, 71, 79,
81, 84, 85, 95]). For maximal Hölder-regularity we refer the reader to [2, 67] and references
therein. In this paper we focus on maximal Lp-regularity as this usually requires the least
regularity of the data in PDEs.

An important step in the theory of maximal Lp-regularity was the discovery of an
operator-theoretic characterization in terms of R-boundedness properties of the differen-
tial operator A due to Weis (see [91, 92]). This characterization was proved for the class of
Banach spaces with the UMD property. About the same time Kalton and Lancien discovered
that not every sectorial operator A on X = Lq of angle < π/2 has maximal Lp-regularity
(see [53, 54] and [29]), but their example is not a differential operator.

In the case t �→ A(t) is (piecewise) continuous, one can study maximal Lp-regularity
using perturbation arguments (see [5, 7, 82]). In particular, in [82], it was shown that max-
imal Lp-regularity of Eq. 1.1 is equivalent to the maximal Lp-regularity for each operator
A(t0) for t0 ∈ [0, T ] fixed. This, combined with the characterization of [92] yields a very
precise condition for maximal Lp-regularity. The case where the domains D(A(t)) vary in
time will not be considered in this paper. In that setting maximal Lp-regularity results can
be obtained under certain Hölder regularity assumptions in the time variable (see [80] and
references therein).

In many real-life models, the differential operator A has time-dependent coefficients,
and the dependence on time can be rather rough (e.g. the coefficient could be a stochastic
process). If this is the case, the operator-theoretic characterization of maximal regularity
just mentioned does not apply or leads to unwanted restrictions. In the present paper we
develop a functional analytic approach to maximal Lp-regularity in the case t �→ A(t)

is only measurable (see Theorems 1.1 and 4.9 below). Our approach is based on the Lp-
boundedness of a new class of vector-valued singular integrals of non-convolution type (see
Theorem 3.4). It is important to note that we do not assume any Hörmander conditions on
the kernel in the time variable. For discussion and references on (vector-valued) singular
integrals we refer the reader to Section 3.

When the time-dependence is just measurable, an operator-theoretic condition for max-
imal Lp-regularity is known only in the Hilbert space setting for p = 2 (see [65, 66] and
[88, Section 5.5]). The assumption here is that A arises from a coercive form a(t, ·, ·) :
V × V → C and V ↪→ X0 ↪→ V ′. Unfortunately, this only yields a theory of maximal L2-
regularity on V ′ in general (see [30] for a counterexample). In many situations one would
like to have maximal Lp-regularity on X0 and also for any p ∈ (1, ∞). Results of this type
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have been obtained in [8, 23, 24, 41] using regularity conditions on the form in the time
variable.

Most results will be presented in the setting of weighted Lp-spaces. For instance Theo-
rems 1.2 and 5.4 we will present a weighted Lp(Lq)-maximal regularity result in the case
A is a 2m-th order elliptic operator, assuming only measurability in the time variable and
continuity in the space variable. Weighted results can be important for several reasons. Max-
imal Lp-regularity with a power weight tα in time (e.g. see [59, 71]) allows one to consider
rather rough initial values. It can also be used to prove compactness properties which in
turn can be used to obtain global existence of solutions. Another advantage of using weights
comes from a harmonic analytic point of view. The theory of Rubio de Francia (see [18]
and references therein) enables one to extrapolate from weighted Lp-estimates for a single
p ∈ (1, ∞), to any p ∈ (1,∞). In Section 5 Ap-weights in space will be used to check R-
boundedness of certain integral operators. We refer to Theorem 2.6 and Step 1 of the proof
of Theorem 5.4 for details. Weights in time will be used for extrapolation arguments more
directly. For instance in step 4 of the proof of Theorem 5.4 and also the proof of Theorem
1.1 at the end of Section 4.4.

In the special case X0 is a Hilbert space, our main result Theorem 4.9 implies the
following result.

Theorem 1.1 Let X0 be a Hilbert space. Assume A : (0, τ ) → L (X1, X0) is such that for
all x ∈ X1, t �→ A(t)x is measurable and

c1‖x‖X1 ≤ ‖x‖X0 + ‖A(t)x‖X0 ≤ c2‖x‖X1 , t ∈ (0, τ ), x ∈ X1.

Assume there is an operator A0 on X0 with D(A0) = X1 which generates a contractive
analytic semigroup (e−zA0)z∈�θ which is such that (A(t)−A0)t∈(0,τ ) generates an evolution
system (T (t, s))0≤s≤t≤τ on X0 which commutes with (e−rA0)r≥0.

e−rA0T (t, s) = T (t, s)e−rA0 , 0 ≤ s ≤ t ≤ τ, r ≥ 0.

Then A has maximal Lp-regularity for every p ∈ (1, ∞), i.e. for every f ∈ Lp(0, τ ;X0)

and x ∈ (X0, X1)1− 1
p

,p
there exists a unique strong solution u ∈ Lp(0, τ ;X1) ∩

W 1,p(0, τ ; X0)∩C([0, τ ]; (X0, X1)1− 1
p

,p
) of Eq. 1.1 and there is a constantC independent

of f and x such that

‖u‖Lp(0,τ ;X1) + ‖u‖W 1,p(0,τ ;X0)
+‖u‖C([0,τ ];(X0,X1)1− 1

p ,p
)

≤ C‖f ‖Lp(0,τ ;X0) + C‖x‖(X0,X1)1− 1
p ,p

.

The condition on A(t)−A0 can be seen as an abstract ellipticity condition. The assump-
tion that the operators are commuting for instance holds if A(t) and A0 are differential
operators with coefficients independent of the space variable on R

d . We will show that the
space dependence can be put in later on by perturbation arguments.

In Section 4.4 we will derive this result from Theorem 4.9 where the case of more gen-
eral Banach spaces X0 and weighted Lp-spaces is considered. Instead of assuming that A0
generates an analytic contraction semigroup one could also assume that A0 has a bounded
H∞-calculus of angle < π/2.
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As an application of our main result we prove maximal Lp-regularity for the following
class of parabolic PDEs:

u′(t, x) + A(t)u(t, x) = f (t, x), t ∈ (0, T ), x ∈ R
d ,

u(0, x) = u0(x), x ∈ R
d .

(1.2)

Here

A(t)u(t, x) =
∑

|α|≤m

aα(t, x)Dαu(t, x). (1.3)

For such concrete equations with coefficients which depend on time in a measurable way,
maximal Lp-regularity results can be derived using PDE techniques. Our results enable us
to give an alternative approach to several of these problems. Moreover, we are the first to
obtain a full Lp(0, T ; Lq(Rd))-theory, whereas previous papers usually only give results
for p = q or q ≤ p (see Remark 5.7 for discussion).

In the next result we will use condition (C) on A which will be introduced in Section 5. It
basically says that A is uniformly elliptic and the highest order coefficients are continuous
in space, but only measurable in time.

Theorem 1.2 Let T ∈ (0,∞). Assume condition (C) on the family of operators
(A(t))t∈(0,T ) given by Eq. 1.3. Let p, q ∈ (1, ∞). Then the operator A has maximal
Lp-regularity on (0, T ), i.e. for every f ∈ Lp(0, T ; Lq(Rd)) and u0 ∈ Bs

q,p(Rd) with

s = m(1 − 1
p
), there exists a unique

u ∈ W 1,p(0, T ;Lq(Rd)) ∩ Lp(0, T ; Wm,q(Rd)) ∩ C([0, T ];Bs
q,p(Rd))

such that Eq. 1.2 holds a.e. and there is a C > 0 independent of u0 and f such that

‖u‖Lp(0,T ;Wm,q (Rd )) + ‖u‖W 1,p(0,T ;Lq(Rd )) + ‖u‖C([0,T ];Bs
q,p(Rd ))

≤ C
(‖f ‖Lp(R;Lq(Rd )) + ‖u0‖Bs

q,p(Rd )

)
.

(1.4)

The conditions on f and u0 are also necessary in the above result. Here Bs
q,p(Rd) denotes

the usual Besov space (see [90] for details). The proof of Theorem 1.2 is given at the end
of Section 5. It will be derived from Theorem 5.4 which is a maximal regularity result with
weights in time and space. One can also consider systems instead of Eq. 1.2. The results in
this case are more complicated and will be presented in [33].

Overview In Section 2 we discuss preliminaries on weights, R-boundedness and func-
tional calculus. In Section 3 we prove the Lp-boundedness of a new class of singular
integrals. The main result on maximal Lp-regularity is presented in Section 4. In Section 5
we show how to use our new approach to derive maximal Lp-regularity for Eq. 1.2.
Finally in Section 6 we extend the result of [14] and [81] on quasi-linear equations to the
time-dependent setting.

Notation Throughout this paper we will write L (X, Y ) for the space of all bounded linear
operators mapping X into Y . In the estimates below, C can denote a constant which varies
from line to line. We set N = {1, 2, 3, · · · } and N0 = N ∪ {0}.
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2 Preliminaries

2.1 Ap-Weights

Details on Ap-weights can be found in [38, Chapter 9] and [87, Chapter V].
A weight is a locally integrable function on R

d with w(x) ∈ (0, ∞) for a.e. x ∈ R
d . For

a Banach space X and p ∈ [1, ∞], Lp(Rd , w; X) is the space of all strongly measurable
functions f : Rd → X such that

‖f ‖Lp(Rd ,w;X) =
( ∫

Rd

‖f (x)‖pw(x) dx
) 1

p
< ∞ if p ∈ [1, ∞),

and ‖f ‖L∞(Rd ,w;X) = ess. supx∈Rd ‖f (x)‖.
For p ∈ (1,∞) a weight w is said to be an Ap-weight if

Ap = sup
Q

∫

Q

w(x) dx
(∫

Q

w(x)
− 1

p−1 dx
)p−1

< ∞.

Here the supremum is taken over all cubes Q ⊆ R
d with axes parallel to the coordinate

axes and
∫
Q

= 1
|Q|

∫
Q

. The extended real number [w]Ap is called the Ap-constant. The
Hardy-Littlewood maximal operator is defined as

M(f )(x) = sup
Q
x

∫

Q

|f (y)| dy, f ∈ Lp(Rd , w)

with Q ⊆ R
d cubes as before. Recall that w ∈ Ap if and only if the Hardy-Littlewood

maximal operator M is bounded on Lp(Rd , w).
The following simple extension of the extrapolation result from [18, Theorem 3.9] will

be needed.

Theorem 2.1 (Extrapolation) For every λ ≥ 0, let fλ, gλ : Rd → R+ be a pair of nonneg-
ative, measurable functions and suppose that for some p0 ∈ (1, ∞) there exist increasing
functions αp0 , βp0 on R+ such that for all w0 ∈ Ap0 and all λ ≥ βp0([w0]Ap0

),

‖fλ‖Lp0 (Rd ,w0)
≤ αp0([w0]Ap0

)‖gλ‖Lp0 (Rd ,w0)
. (2.1)

Then for all p ∈ (1, ∞) there is a constant cp,d ≥ 1 such that for all w ∈ Ap, and all
λ ≥ βp0(φ([w]Ap))

‖fλ‖Lp(Rd ,w) ≤ 4αp0(φ([w]Ap))‖gλ‖Lp(Rd ,w),

where φ(x) = cp,dx
p0−1
p−1 +1.

Note that [18, Theorem 3.9] corresponds to the case that fλ and gλ are constant in λ. To
obtain the above extension one can check that in the proof [18, Theorem 3.9] for given p

and w ∈ Ap, the Ap0 -weight w0 which is constructed satisfies [w0]Ap0
≤ φ([w]Ap). This

clarifies the restriction on the λ’s.
Below estimates of the form (2.1) with increasing function αp0 will appear frequently. In

this situation we say there is an Ap0 -consistent constant C such that

‖f ‖Lp0 (Rd ,w0)
≤ C‖g‖Lp0 (Rd ,w0)

.

Note that the Lp-estimate obtained in Theorem 2.1 is again Ap-consistent for all p ∈
(1, ∞).
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The following simple observation will be applied frequently. For a bounded Borel set
A ⊂ R

d and for every f ∈ Lp(Rd , w;X) one has 1Af ∈ L1(Rd ; X) and by Hölder’s
inequality

‖1Af ‖L1(Rd ;X) ≤ Cw,A‖f ‖Lp(Rd ,w;X).

A linear subspace Y ⊆ X∗ is said to be norming for X if for all x ∈ X, ‖x‖ =
sup{|〈x, x∗〉| : x∗ ∈ Y, ‖x∗‖ ≤ 1}. The following simple duality lemma will be needed.

Lemma 2.2 Let p, p′ ∈ [1, ∞] be such that 1
p

+ 1
p′ = 1. Let v be a weight and let

v′ = v
− 1

p−1 . Let Y ⊆ X∗ be a subspace which is norming for X. Then setting

〈f, g〉 =
∫

R

〈f (t), g(t)〉 dt, f ∈ Lp(R, v; X), g ∈ Lp′
(R, v′; X∗),

the space Lp′
(R, v′; X∗) can be isometrically identified with a closed subspace of

Lp(R, v; X)∗. Moreover, Lp′
(R, v′; Y ) is norming for Lp(R, v; X).

2.2 R-Boundedness and Integral Operators

In this section we recall the definition of R-boundedness (see [15, 22, 62] for details).
A sequence of independent random variables (rn)n≥1 on a probability space (�,A ,P)

is called a Rademacher sequence if P(rn = 1) = P(rn = −1) = 1
2 .

Let X and Y be Banach spaces. A family of operators T ⊆ L (X, Y ) is said to be R-
bounded if there exists a constant C such that for all N ∈ N, all sequences (Tn)

N
n=1 in T

and (xn)
N
n=1 in X,

∥∥∥
N∑

n=1

rnTnxn

∥∥∥
L2(�;Y )

≤ C

∥∥∥
N∑

n=1

rnxn

∥∥∥
L2(�;X)

(2.2)

The least possible constant C is called the R-bound of T and is denoted by R(T ). Recall
the Kahane-Khintchine inequalities (see [25, 11.1]): for every p, q ∈ (0, ∞), there exists a
κp,q > 0 such that

∥∥∥
N∑

n=1

rnxn

∥∥∥
Lp(�;X)

≤ κp,q

∥∥∥
N∑

n=1

rnxn

∥∥∥
Lq(�;X)

. (2.3)

Therefore, the L2(�; X)-norms in Eq. 2.2 can be replaced by Lp(�; X), to obtain an
equivalent definition up to a constant depending on p.

Every R-bounded family of operators is uniformly bounded. A converse holds for
Hilbert spaces X and Y : every uniform bounded family of operators is automatically
R-bounded.

The R-boundedness of a certain family of integral operators plays a crucial role in this
paper. Let K be the class of kernels k ∈ L1(R) for which |k| ∗ f ≤ Mf for all simple
functions f : R → R+, where M denotes the Hardy-Littlewood maximal operator. The
next example gives an important class of kernels which are in K.
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Example 2.3 Let k : (0,∞) × R → C, be such that |k(u, t)| ≤ h(
|t |
u

) 1
u
, u > 0, where

h ∈ L1(R+) ∩ Cb(R+), h has a maximum in x0 ∈ [0, ∞) and h is radially decreasing on
[x0,∞). Then,

∫ ∞

0
sup
|t |≥x

|k(u, t)| dx ≤
∫ ∞

0
sup
t≥x

|h( t
u
)| dx

u
=

∫ ∞

0
sup
s≥ x

u

|h(s)| dx

u
=

∫ ∞

0
sup
s≥y

|h(s)| dy

=
∫ x0

0
sup
s≥y

|h(s)| dy +
∫ ∞

x0

|h(y)| dy = x0|h(x0)| + ‖h‖L1(x0,∞).

Now by [77, Proposition 4.5] we find { k(u,·)
C

: u > 0} ⊆ K with C = x0|h(x0)| +
‖h‖L1(x0,∞).

Suppose T : {(t, s) ∈ R
2 : t �= s} → L (X) is such that for all x ∈ X, (t, s) �→ T (t, s)x

is measurable. For k ∈ K let

IkT f (t) =
∫

R

k(t − s)T (t, s)f (s) ds. (2.4)

Consider the family of integral operators I := {IkT : k ∈ K} ⊆ L (Lp(R;X)). The
R-boundedness of such families I of operators will play an important role in Section 3.

Proposition 2.4 If {T (t, s) : s, t ∈ R} is uniformly bounded on X, then I is uniformly
bounded on Lp(R, v; X) for every p ∈ (1, ∞) and v ∈ Ap. Moreover, it is also uniform
bounded on L1(R; X).

Proof For any p ∈ (1,∞), note that

‖IkT f (t)‖X ≤
∫

R

|k(t − s)|‖T (t, s)f (s)‖X ds

≤ C

∫

R

|k(t − s)|‖f (s)‖X ds ≤ CM(‖f ‖X)(t).

for a.e. t ∈ R. Therefore the uniform boundedness of IkT follows from the boundedness of
the maximal operator. The case v ≡ 1 and p = 1 follows from Fubini’s theorem and the
fact that ‖k‖L1(R) ≤ 1 (see [77, Lemma 4.3]).

The R-boundedness of Eq. 2.4 has the following simple extrapolation property:

Proposition 2.5 Let p0 ∈ (1, ∞). If for all v ∈ Ap0 ,I ⊆ L (Lp0(R, v; X)) isR-bounded
by a constant which is Ap0 -consistent, then for every p ∈ (1, ∞) and v ∈ Ap, I ⊆
L (Lp(R, v; X)) isR-bounded by a constant which is Ap-consistent.

Proof The special structure of I will not be used in this proof. Let I1, . . . , IN ∈ I ,
f1, . . . , fN ∈ Lp(R, v; X) and let

Fp(t) =
∥∥∥

N∑

n=1

rnInfn(t)

∥∥∥
Lp(�;X)

and Gp(t) =
∥∥∥

N∑

n=1

rnfn(t)

∥∥∥
Lp(�;X)

.

Then the assumption combined with Fubini’s theorem yields that for all v ∈ Ap0 ,

‖Fp0‖Lp0 (R,v) ≤ C‖Gp0‖Lp0 (R,v),



534 C. Gallarati, M. Veraar

where C is a constant which is Ap0 -consistent. Therefore, by Theorem 2.1 we find that for
each p ∈ (1, ∞), there is an Ap-consistent constant C′ (depending only on C) such that

‖Fp0‖Lp(R,v) ≤ C′‖Gp0‖Lp(R,v). (2.5)

Now by Eq. 2.3, Fp ≤ κp,p0Fp0 , Gp0 ≤ κp0,pGp, and the result follows from Eq. 2.5 and
another application of Fubini’s theorem.

In [32] the following simple sufficient condition for R-boundedness of such families
was obtained in the case X = Lq .

Theorem 2.6 LetO ⊆ R
d be open. Let q0 ∈ (1, ∞) and let {T (t, s) : s, t ∈ R} be a family

of bounded operators on Lq0(O). Assume that for all Aq0 -weights w,

‖T (t, s)‖L (Lq0 (O,w)) ≤ C, (2.6)

whereC isAq0 -consistent and independent of t, s ∈ R. Then the family of integral operators
I = {IkT : k ∈ K} ⊆ L (Lp(R, v; Lq(O, w))) as defined in Eq. 2.4 isR-bounded for all
p, q ∈ (1, ∞) and all v ∈ Ap and w ∈ Aq . Moreover, in this case the R-bounds R(I )

are Ap- and Aq -consistent.

The proof of this result is based on extrapolation techniques of Rubio de Francia. As for
fixed t, s ∈ R, T (t, s) on Lq(O) is usually defined by a singular integral of convolution type
in R

d , one can often apply Calderón-Zygmund theory and multiplier theory to verify (2.6).
In this case it is usually not more difficult to prove the boundedness for all Aq -weights, than
just w = 1. The reason for this is that for large classes of operators, boundedness implies
weighted boundedness (see [34, Theorem IV.3.9], [38, Theorem 9.4.6] and [45, Corollary
2.10]). Another situation where weights are used to obtain R-boundedness can be found in
[31, 43].

Example 2.7 For a bounded measurable function θ : R
2 → C let T (t, s)f = θ(t, s)f ,

f ∈ Lq0(Rd , w). Then Eq. 2.6 holds and hence Theorem 2.6 implies that I ⊆
L (Lp(R, v; Lq(Rd , w))) is R-bounded for all p, q ∈ (1, ∞) and all v ∈ Ap and w ∈ Aq .

2.3 Sectorial Operators and H∞-Calculus

Let X be a Banach space. We briefly recall the definition of the H∞-calculus which was
developed by McIntosh and collaborators (see e.g. [3, 9, 17, 68]). We refer to [42, 62] for
an extensive treatment of the subject. For θ ∈ (0, π) we set

�θ = {z ∈ C \ {0} : | arg(z)| < θ},
where arg : C \ {0} → (−π, π ]. A closed densely defined linear operator (A, D(A)) on X

is said to be sectorial of type σ ∈ (0, π) if it is injective and has dense range, its spectrum
is contained in �σ , and for all σ ′ ∈ (σ, π) the set

{
z(z + A)−1 : z ∈ C \ {0}, | arg(z)| > σ ′}

is uniformly bounded by some constant CA. The infimum of all σ ∈ (0, π) such that A is
sectorial of type σ is called the sectoriality angle of A. If σ < π/2, then by [67, Proposition
2.1.1], A generates an analytic strongly continuous semigroup T (z) = e−zA for arg(z) <

π/2 − σ and
‖T (t)‖ ≤ CACσ , t ≥ 0. (2.7)
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Let H∞(�θ ) denote the Banach space of all bounded analytic functions f : �θ → C,
endowed with the supremum norm. Let H∞

0 (�θ ) denote the linear subspace of all f ∈
H∞(�θ ) for which there exists ε > 0 and C ≥ 0 such that

|f (z)| ≤ C|z|ε
(1 + |z|)2ε

, z ∈ �θ .

If A is sectorial of type σ0 ∈ (0, π), then for all σ ∈ (σ0, π) and f ∈ H∞
0 (�σ ) we define

the bounded operator f (A) by

f (A) = 1

2πi

∫

∂�σ

f (z)(z + A)−1 dz.

A sectorial operator A of type σ0 ∈ (0, π) is said to have a bounded H∞(�σ )-calculus)
for σ ∈ (σ0, π) if there exists a C ≥ 0 such that

‖f (A)‖ ≤ C‖f ‖H∞(�σ ), f ∈ H∞
0 (�σ ).

If A has a bounded H∞(�σ )-calculus, then the mapping f �→ f (A) extends to a bounded
algebra homomorphism from H∞(�σ ) to L (X) of norm ≤ C.

Many differential operators on Lq -spaces with q ∈ (1, ∞) are known to have a bounded
H∞-calculus (see [22, 62] and the survey [93]). The case A = −� on Lp(Rd , w) has
a bounded H∞-calculus of arbitrary small angle σ ∈ (0, π) for every w ∈ Ap and
p ∈ (1, ∞). This easily follows from the weighted version of Mihlin’s multiplier theorem
(see [62, Example 10.2] and [34, Theorem IV.3.9]). For instance, it includes all sectorial
operators A of angle < π/2 for which e−tA is a positive contraction (see [56]).

3 A Class of Singular Integrals with Operator-Valued Kernel

Let X be a Banach space. In this section we will study a class of singular integrals of the
form

IKf (t) =
∫

R

K(t, s)f (s) ds, t ∈ R, (3.1)

where K : {(t, s) : t �= s} → L (X) is an operator-valued kernel. If a kernel L depends on
one variable we write IL = IK where K(t, s) = L(t − s).

There is a natural generalization of the theory of singular integrals of convolution type to
the vector-valued setting (see [50]). In the case the singular integral is of non-convolution
type, the situation is much more complicated. An extensive treatment can be found in
[47–49], where T 1-theorems [19] and T b-theorems [20] have been obtained in an infinite
dimensional setting. Checking the conditions of these theorems can be hard. For instance,
from [69] it follows that the typical BMO conditions one needs to check, have a differ-
ent behavior in infinite dimensions. Our motivation comes from the application to maximal
Lp-regularity of Eq. 1.2. At the moment we do not know whether the T 1-theorem and T b-
theorem can be applied to study maximal Lp-regularity for the time dependent problems we
consider. Below we study a special class of singular integrals with operator-valued kernel
for which we prove Lp-boundedness. The assumptions on K are formulated in such a way
that they are suitable for proving maximal Lp-regularity of Eq. 1.2 later on.

3.1 Assumptions

The assumptions in the main result of this section are as follows.
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(H1) Let X be a Banach space and let p ∈ [1, ∞) and1 v ∈ Ap .

(H2) The kernel K factorizes as

K(t, s) = φ0(|t − s|A0)T (t, s)φ1(|t − s|A1)

t − s
, (t, s) ∈ R

2, t �= s. (3.2)

Here A0 and A1 are sectorial operators on X of angle < σ0 and < σ1 respectively,
and φj ∈ H∞

0 (�σ ′
j
) and σ ′

j ∈ (σj , π) for j = 0, 1. Moreover, we assume T :
{(t, s) : t �= s} → L (X) is uniformly bounded and for all x ∈ X, {(t, s) : t �=
s} �→ T (t, s)x is strongly measurable.

(H3) Assume X has finite cotype. Assume Aj has a bounded H∞(�σj
)-calculus with

σj ∈ [0, π) for j = 0, 1.

(H4) Assume the family of integral operators I := {IkT : k ∈ K} ⊆ L (Lp(R, v; X)) is
R-bounded.

The class of kernels K is as defined in Section 2.2. Recall from Eq. 3.1 that

IkT f (t) =
∫

R

k(t − s)T (t, s)f (s) ds. (3.3)

Since T is uniformly bounded, the operator IkT is bounded on Lp(R, v; X) by Proposi-
tion 2.4.

Remark 3.1

1. The class of Banach spaces with finite cotype is rather large. It contains all Lp-spaces,
Sobolev, Besov and Hardy spaces as long as the integrability exponents are in the range
[1, ∞). The spaces c0 and L∞ do not have finite cotype. The cotype of X will be
applied in order to have estimates for certain continuous square functions (see Eq. 3.7).
Details on type and cotype can be found in [25].

2. In the theory of singular integrals in a vector-valued setting one usually assumes X

is a UMD space. Note that every UMD has finite cotype and nontrivial type by the
Maurey-Pisier theorem (see [25]).

3. A sufficient condition for the R-boundedness condition in the case X = Lq can be
deduced from Theorem 2.6.

4. In (H2), φj (|t − s|Aj ) could be replaced by φj ((t − s)Aj ) if the Aj ’s are bisectorial
operators. On the other hand, one can also consider T (t, s)1{s<t} and T (t, s)1{t<s} sep-
arately. Indeed, the hypothesis (H1)–(H4) holds for these operators as well whenever
they hold for T (t, s).

Example 3.2 Typical examples of functions φj which one can take are φj (z) = zαe−z for
j = 0, 1. If T (t, s) = I1{s<t}, then for A = A0 = A1 one would have

K(t, s) = (t − s)2α−1A2αe−2(t−s)A1{s<t}.

This kernel satisfies ‖K(t, s)‖ ∼ (t − s)−1 for t close to s. If one takes T (t, s) varying in t

and s one might view it as a multiplicative perturbation of the above kernel.

1For the case p = 1, the convention will be that v ≡ 1.
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The following simple observation shows that IK as given in Eq. 3.1 can be defined on
Lp(R; D(A1) ∩ R(A1)), where D(A1) denotes the domain of A1 and R(A1) the range of
A1.

Lemma 3.3 Under the assumptions (H1) and (H2), IK is bounded as an operator from
Lp(R, v; D(A1) ∩ R(A1)) into Lp(R, v; X).

Proof As φ1 ∈ H∞
0 (�σ ′

1
) we can find a constant C and ε ∈ (0, 1) such that |φ1(z)| ≤

C|z|ε|1 + z|−2ε . One can check that for all x ∈ D(A1) ∩ R(A1),

‖φ1(tA1)x‖ ≤ C min{tε, t−ε}(‖x‖ + ‖A1x‖ + ‖A−1
1 x‖), t > 0. (3.4)

Now since φ0 ∈ H∞
0 (�σ ′

0
) and ‖T (t, s)‖ is uniformly bounded we obtain

|t − s| ‖K(t, s)x‖ ≤ ‖φ0(|t − s|A0)‖ ‖T (t, s)‖ ‖φ1(|t − s|A1)x‖
≤ C min{|t − s|ε, |t − s|−ε}(‖x‖ + ‖A1x‖ + ‖A−1

1 x‖).
Therefore, K : {(t, s) : t �= s} → L (R(A1) ∩ D(A1),X) is essentially nonsingular, and
the assertion of the lemma easily follows from [37, Theorem 2.1.10] and the boundedness
of the Hardy-Littlewood maximal operator for p ∈ (1, ∞). The case p = 1 follows from
Young’s inequality.

3.2 Main Result on Singular Integrals

Theorem 3.4 Assume (H1)–(H4). Then IK defined by Eq. 3.1 extends to a bounded
operator on Lp(R, v; X).

The proof is inspired by the recent solution to the stochastic maximal Lp-regularity
problem given in [76].

Before we turn to the proof, we have some preliminary results and remarks.

Example 3.5 Assume (H2) and (H3). If T (t, s) is as in Example 2.7 then (H4) holds.
Therefore, IK is bounded by Theorem 3.4. Surprisingly, we do not need any smoothness
of the mapping (t, s) �→ K(t, s) in this result. In particular we do not need any regularity
conditions for K(t, s) (such as Hörmander’s condition) in (t, s).

Recall the following Poisson representation formula (see [76, Lemma 4.1]).

Lemma 3.6 Let α ∈ (0, π) and α′ ∈ (α, π ] be given, let E be a Banach space and let
f : �α′ → E be a bounded analytic function. Then, for all s > 0 we have

f (s) =
∑

j∈{−1,1}

j

2

∫ ∞

0
kα(u, s)f (ueijα)du,

where kα : R+ × R+ → R is given by

kα(u, t) = (t/u)
π
2α

(t/u)
π
α + 1

1

αu
. (3.5)

Remark 3.7 In the special case X = Lq(S) with q ∈ (1, ∞), we present some identification
of spaces which can be used to simplify the proof below. This might be of use to readers
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who are only interested in Lq -spaces. First of all one can use the usual adjoint ∗ instead of
the moon adjoint # in the proof below. In this case one can take

γ ( du
u

; X) = Lq(S; L2(0, ∞; du
u

)),

γ ( du
u

;X)∗ = Lq ′
(S; L2(0, ∞; du

u
)),

γ ( du
u

; Lp(R, v; X)) = Lp(R, v; Lq(S; L2(0, ∞; du
u

))).

The γ -multiplier theorem which is applied below in Eq. 3.6 can be replaced by [91, 4a] in
this case. Finally, the estimates in Eq. 3.7 can be found in [64] in this special case.

Proof of Theorem 3.4 Step 1: By density it suffices to prove ‖IKf ‖Lp(R,v;X) ≤
C‖f ‖Lp(R,v;X) with C independent of f ∈ Lp(R, v; D(A1) ∩ R(A1)). Note that by
Lemma 3.3, IK is well defined on this subspace.

Step 2: Fix 0 < α < α′ ≤ min{σ ′
0−σ0, σ

′
1−σ1}. First, since z → φ0(zA0)T (t, s)φ1(zA1)

is analytic and bounded on �α′ , by Lemma 3.6, for x ∈ D(A1) ∩ R(A1) and z > 0,

φ0(zA0)T (t, s)φ1(zA1)x =
∑

j∈{−1,1}

j

2

∫ ∞

0
�0,j (u)kα(u, z)T (t, s)�1,j (u)x du

with kα(u, t) as in Eq. 3.5 and �k,j (u) = φk(ueijαAk) for j ∈ {−1, 1} and k ∈ {0, 1}.
Together with (H2) this yields the following representation of K(t, s)x for x ∈ D(A1) ∩
R(A1):

K(t, s)x =
∑

j∈{−1,1}

j

2

∫ ∞

0
�0,j (u)Su(t, s)�1,j (u)x

du

u
,

where Su(t, s) := k̃α(u, t − s)T (t, s) with k̃α(u, t) := kα(u, |t |) u
t

and kα is defined as in

Eq. 3.5. Moreover, the kernels k̃α(u, ·) satisfy

|k̃α(u, t)| ≤ α−1hα( t
u
)u−1, u, t > 0,

where hα(x) = xβ−1

x2β+1
and β := π

2α
> 0. Extending kα(u, t) as zero for t < 0, by

Example 2.3 we find that k̃α(u, ·) ∈ K. Indeed, substituting y = xβ , we obtain

‖h‖L1(0,∞) =
∫ ∞

0

xβ−1

x2β + 1
dx = 1

β

∫ ∞

0

1

y2 + 1
dy = α.

Therefore, the following representation holds for the singular integral

IKf =
∑

j∈{−1,1}

j

2

∫ ∞

0
�0,j (u)ISu [�1,j (u)f ] du

u
,

where f ∈ Lp(R, v; D(A1) ∩ R(A1)).
Step 3: Let Y1 = Lp(R, v; X) and Y2 = Lp′

(R, v′; X#), where X# = D(A∗
0) ∩ R(A∗

0) is

the moondual of X with respect to A0 (see [62, Appendix A]) and v′ = v
− 1

p−1 . For g ∈ Y2
write 〈f, g〉Y1,Y2 = ∫

R
〈f (t), g(t)〉 dt . In this way Y2 can be identified with an isometric

closed subspace of Y ∗
1 . Note that by [62, Proposition 15.4], X# is norming for X and hence
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Lemma 2.2 implies that Y2 is norming for Y1. For fixed g ∈ Y2 it follows from Fubini’s
theorem and γ -duality (see [40, Sections 2.3 and 2.6] and [55, Section 5]),

|〈IKf, g〉Y1,Y2 | ≤
∑

j∈{−1,1}

1

2

∣∣∣
∫

R

∫ ∞

0
〈�0,j (u)ISu [�1,j (u)f ](t), g(t)〉 du

u
dt

∣∣∣

=
∑

j∈{−1,1}

1

2

∣∣∣
∫ ∞

0
〈ISu [�1,j (u)f ], �0,j (u)#g〉 du

u

∣∣∣

=
∑

j∈{−1,1}

1

2
‖ISu [�1,j (u)f ]‖

γ (R+, du
u

;Y1)
‖�0,j (u)#g‖

γ (R+, du
u

;Y1)
∗ .

Here �0,j (u)# := φ0(ueijαA#
0). By (H4) the family {ISu : u > 0} is R-bounded by some

constant CT . Therefore, by the Kalton-Weis γ -multiplier theorem (see [55, Proposition
4.11] and [74, Theorem 5.2])

‖ISu [�1,j (u)f ]‖
γ (R+, du

u
;Y1)

≤ CT ‖�1,j (u)f ‖
γ (R+, du

u
;Y1)

. (3.6)

Here we used that X does not contain an isomorphic copy of c0 as it has finite cotype (see
(H3)). The remaining two square function norms can be estimated by the square function
estimates of Kalton and Weis. Indeed, by (H3) and [40, Theorem 4.11] or [55, Section 7]
(here we again use the finite cotype of X) and the γ -Fubini property (see [74, Theorem
13.6]), we obtain

‖�1,j (u)f ‖
γ (R+, du

u
;Y1)

� ‖�1,j (u)f ‖
Lp(R,v;γ (R+, du

u
;X))

≤ CA1‖f ‖Y1 ,

‖�0,j (u)#g‖
γ (R+, du

u
;Y1)

∗ � ‖�0,j (u)#g‖
Lp′

(R,v′;γ (R+, du
u

;X)∗) ≤ CA0‖g‖Y2 .
(3.7)

Combining all the estimates yields

|〈IKf, g〉Y1,Y2 | ≤ CT CA0CA1‖f ‖Y1‖g‖Y2 .

Taking the supremum over all g ∈ Lp′
(R, v′; X#) with ‖g‖Y2 ≤ 1 we find ‖IKf ‖Y1 ≤

CT CA0CA1‖f ‖Y1 . This proves the Lp-boundedness.

Remark 3.8 One can also apply standard extrapolation techniques to obtain weighted
boundedness results for singular integrals from the unweighted case (see [13, 45]). How-
ever, for this one needs Hörmander conditions on the kernel. As our proof gives a result in
the more general setting, we can avoid smoothness assumptions on the kernel.

4 Maximal Lp-Regularity

In this section we will apply Theorem 3.4 to obtain maximal Lp-regularity for the following
evolution equation on a Banach space X0.

u′(t) + A(t)u(t) = f (t), t ∈ (0, T )

u(0) = x.
(4.1)

As explained in the introduction no abstract Lp-theory is available for Eq. 4.1 outside the
case where t �→ A(t) is continuous.

The following assumption will be made throughout this whole section.
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(A) Let X0 be a Banach space and assume the Banach space X1 embeds densely and
continuously in X0. Let p ∈ [1, ∞) and v ∈ Ap with the convention that v ≡ 1 if
p = 1. Let A : R → L (X1, X0) be such that for all x ∈ X1, t �→ A(t)x is strongly
measurable, and there is a constant C > 0 such that

C−1‖x‖X1 ≤ ‖x‖X0 + ‖A(t)x‖X0 ≤ C‖x‖X1 .

The above implies that each A(t) is a closed operator on X0 with D(A(t)) = X1. Note
that whenever A is given on an interval I ⊆ R, we may always extend it constantly or
periodically to all of R.

Before we state the main result we will present some preliminary results on evolution
equations with time-dependent A.

4.1 Preliminaries on Evolution Equations

Evolution equations and evolution families are extensively studied in the literature (see [2,
28, 67, 78, 86, 88, 89, 94]). We explain some parts which are different in our set-up.

For a strongly measurable function f : (a, b) → X0 we consider:
{

u′(t) + A(t)u(t) = f (t), t ∈ (a, b)

u(a) = x,
(4.2)

where u(a) = x is omitted if a = −∞.

(1) Assume −∞ < a < b < ∞. The function u is said to be a strong solution of Eq. 4.2
if u ∈ W 1,1(a, b;X0) ∩ L1(a, b;X1) ∩ C([a, b];X0), u(a) = x and Eq. 4.2 holds for
almost all t ∈ (a, b).

(2) Assume a = −∞ and b < ∞. The function u is said to be a strong solution of Eq. 4.2
if u ∈ W

1,1
loc (a, b;X0) ∩ L1

loc(a, b;X1) ∩ C((a, b];X0) and lims→a u(s) = 0 and
Eq. 4.2 holds for almost all t ∈ (a, b).

(3) Assume b = ∞. The function u is said to be a strong solution of Eq. 4.2 if for every
T > a the restriction to [a, T ] or (a, T ] yield strong solutions in the sense of (1) and
(2) respectively.

Note the following simple embedding result for general Ap-weights.

Lemma 4.1 Let p ∈ [1, ∞) and let v ∈ Ap, where v ≡ 1 if p = 1. For−∞ < a < b < ∞,
W 1,p((a, b), v; X0) ↪→ C([a, b]; X0) and

‖u‖C([a,b];X0) ≤ C‖u‖W 1,p((a,b),v;X0)
.

Proof Since Lp((a, b), v; X0) ↪→ L1(a, b;X0), and u(t) − u(s) = ∫ t

s
u′(r) dr , the

continuity of u is immediate. Moreover,

‖u(t)‖ ≤ ‖u(s)‖ +
∫ t

s

‖u′(r)‖ dr ≤ ‖u(s)‖ + C‖u′‖Lp((a,b),v;X0).

Taking Lp((a, b), v)-norms with respect to the s-variable yields the result.

There is a correspondence between the evolution problem (4.2) and evolution families as
defined below.
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Definition 4.2 Let (A(t))t∈R be as in (A). A two parameter family of bounded linear opera-
tors S(t, s), s ≤ t , on a Banach space X0 is called an evolution system for A if the following
conditions are satisfied:

(i) S(s, s) = I, S(t, r)S(r, s) = S(t, s) for s ≤ r ≤ t;
(ii) (t, s) → S(t, s) is strongly continuous for s ≤ t .

(iii) For all s ∈ R and T ∈ (s,∞), for all x ∈ X1, the function u : [s, T ] → X0
defined by u(t) = S(t, s)x is in L1(s, T ;X1) ∩ W 1,1(s, T ; X0) and satisfies u′(t) +
A(t)S(t, s)x = 0 for almost all t ∈ (s, T ).

(iv) For all t ∈ R and T ∈ (−∞, t] for all x ∈ X1, the function u : [T , t] → X0
defined by u(s) = S(t, s)x is in L1(T , t; X1) ∩ W 1,1(T , t; X0) and satisfies u′(s) =
S(t, s)A(s)x.

Note that (iii) says that u is a strong solution of Eq. 4.2 with f = 0.

Example 4.3 If A(t) = A is independent of t and sectorial of angle < π/2, then S(t, s) =
e−(t−s)A and the two-parameter family of operators reduces to the one-parameter family
e−tA, t ≥ 0, which is the semigroup generated by −A.

Example 4.4 Assume A : R → L (X1, X0) is strongly measurable and satisfies (A). Define
a family of operators A by

A = {A(t) : t ∈ R} ∪
{ 1

t − s

∫ t

s

A(r) dr : s < t
}
.

Here we use the strong operator topology to define the integral. Assume there exist φ, M

and N such that all B ∈ A are all sectorial of angle φ < π/2 and for all λ ∈ �φ ,

‖λ(λ + B)−1‖ ≤ M and ‖x‖X1 ≤ N(‖x‖X0 + ‖Bx‖X0)

Assume for every B1, B2 ∈ A and λ, μ ∈ �φ , the operators (λ + B1)
−1 and (μ + B2)

−1

commute. Define S(t, s) = e−(t−s)Ast , where Ast = 1
t−s

∫ t

s
A(r) dr . Then S is an evolution

family for A. Here the exponential operator is defined by the usual Cauchy integral (see
[67, Chapter 2]). Usually, no simple formula for S is available if the operators in A do not
commute.

Note that in this special case the kernel K(t, s) = 1{s<t}A(0)e−λ(t−s)S(t, s) satis-
fies the Calderón-Zygmund estimates of [45]. Indeed, note that ∂K

∂t
= −1{s<t}(λ +

A(t))A(0)e−λ(t−s)S(t, s) and ∂K
∂s

= 1{s<t}(λ + A(s))A(0)e−λ(t−s)S(t, s). Now since for
all r ∈ R and B ∈ A , ‖A(r)x‖ ≤ NC(‖x‖X0 + ‖Bx‖X0), we find that for all r, τ ∈ R and
s < t letting σ = (t + s)/2,

‖A(r)A(τ)S(t, s)‖ = ‖A(r)S(t, σ )‖ ‖A(τ)S(σ, s)‖
≤ N2C2(1 + ‖AσtS(t, σ )‖)(1 + ‖Asσ S(σ, s)‖)
≤ C′(1 + (t − s)−1)2 ≤ 3

2C′(1 + (t − s)−2).

Therefore, the extrapolation results from the unweighted case to the weighted case of
Remark 3.8 does hold in this situation.
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Proposition 4.5 Let S be an evolution family for A. Fix x ∈ X0 and f ∈ L1(a, b; X0). If
Eq. 4.2 has a strong solution u ∈ L1(a, b;X1) ∩ W 1,1(a, b; X0) ∩ C([a, b];X0), then it
satisfies

u(t) = S(t, s)u(s) +
∫ t

s

S(t, r)f (r) dr, a < s ≤ t < b, (4.3)

where we allow s = a and t = b whenever these are finite numbers. In particular,
strong solutions are unique if a > −∞. In the case a = −∞ this remains true if
lims→−∞ ‖S(t, s)‖ = 0.

A partial converse is used and proved in Theorem 4.9.

Proof Fix a < s < t < b. By approximation one easily checks that for u ∈
W 1,1(s, b; X0) ∩ L1(s, b; X1), r �→ S(t, r)u(r) is in W 1,1(s, b;X0) and

d

dr
[S(t, r)u(r)] = −S(t, r)A(r)u(r) + S(t, r)u′(r), r ∈ (s, T ). (4.4)

Applying Eq. 4.4 to the strong solution u of Eq. 4.2, yields d
dr

[S(t, r)u(r)] = S(t, r)f (r).
Integrating this identity over (s, t), we find Eq. 4.3.

If a > −∞, then we may take s = a in the above proof and hence we can replace
u(s) = u(a) by the initial value x. If a = ∞, the additional assumption on S allows us to
let s → −∞ to obtain

u(t) =
∫ t

−∞
S(t, r)f (r) dr, t < b.

Corollary 4.6 If S1 and S2 are both evolution families for A, then S1 = S2.

4.2 Assumptions on A

The following condition can be interpreted as an abstract ellipticity condition.

(E) Assume that X0 has finite cotype and assume that there exists A0 ∈ L (X1, X0) which
has a bounded H∞-calculus of angle σ < π/2 and there exists a strongly continuous
evolution system (T (t, s))s≤t for (A(t) − A0)t∈R such that e−rA0 commutes with
T (t, s) for every t ≥ s and r ∈ R+ and assume there exists an ω ∈ R such that

‖T (t, s)‖L (X0) ≤ Meω(t−s), s ≤ t.

Set T (t, s) = 0 for t < s. The following R-boundedness condition will be used.

(Rbdd) Assume that the family I := {Iω,kT : k ∈ K} ⊆ L (Lp(R, v, X0)) is R-
bounded, where for k ∈ K and f ∈ Lp(R, v; X0),

Iω,kT f (t) :=
∫

R

k(t − s)e−ω|t−s|T (t, s)f (s)ds.

Remark 4.7

1. By (A) and (E) there is a constant C such that

C−1(‖A(t)x‖X0 + ‖x‖X0) ≤ ‖A0x‖X0 + ‖x‖X0

≤ C(‖A(t)x‖X0 + ‖x‖X0), t ∈ R
(4.5)

and both norms are equivalent to ‖x‖X1 .
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2. For m even, if the A(t) are m-th order elliptic operators with x-independent coefficients
one typically takes A0 = δ(−�)m with δ > 0 small enough.

3. For p, q ∈ (1,∞), v ∈ Ap and X = Lq , the R-boundedness assumption follows from
the weighted boundedness of T (t, s) for all w ∈ Aq (see Theorem 2.6).

4. Although we allow p = 1 and v = 1 in the above assumptions, checking the assumption
(Rbdd) seems more difficult in this limiting case.

Lemma 4.8 Under the assumptions (A) and (E) the evolution family S for A uniquely exists
and satisfies

S(t, s) = e−(t−s)A0T (t, s)

= T (t, s)e−(t−s)A0 = e− 1
2 (t−s)A0T (t, s)e− 1

2 (t−s)A0 , s ≤ t,
(4.6)

and there is a constant C such that for all s ≤ t , ‖S(t, s)‖L (X0) ≤ Ceω(t−s). Moreover,
there is a constant C such that,

‖S(t, s)‖L (X1) ≤ C‖S(t, s)‖L (X0), s ≤ t.

Proof The second identity follows from (E). To prove the first identity, we check that S(t, s)

given by Eq. 4.6 is an evolution family for A. By Corollary 4.6 this would complete the
proof. It is simple to check properties (i) and (ii) of Definition 4.2 and it remains to check
(iii) and (iv). Let x ∈ X1. By the product rule for weak derivatives and (E) we find

d

dt
S(t, s)x = −A0e

−(t−s)A0T (t, s)x − (A(t) − A0)T (t, s)e−(t−s)A0x

= −A0S(t, s)x − (A(t) − A0)S(t, s)x = −A(t)S(t, s)x.

Similarly, one checks that d
ds

S(t, s)x = S(t, s)A(s)x. The fact that S(t, s) satisfies the
same exponential estimate as T (t, s) follows from the estimate (2.7) applied to A0.

By assumptions, for every x ∈ X1, e−rA0S(t, s)x = S(t, s)e−rA0x. Thus, by differenti-
ation we find −A0S(t, s)x = −S(t, s)A0x and therefore

‖S(t, s)x‖X1 ≤ C(‖A0S(t, s)x‖X0 + ‖S(t, s)x‖X0)

≤ C(‖S(t, s)A0x‖X0 + ‖S(t, s)x‖X0)

≤ C‖S(t, s)‖L (X0)(‖A0x‖X0 + ‖x‖X0) ≤ C′‖S(t, s)‖L (X0)‖x‖X1 .

4.3 Main Result on Maximal Lp-Regularity

Next we will present our main abstract result on the regularity of the strong solution to the
problem

u′(t) + (A(t) + λ)u(t) = f (t), t ∈ R. (4.7)

Theorem 4.9 Assume (A), (E), and (Rbdd). For any λ > ω and for every f ∈ Lp(R, v; X0)

there exists a unique strong solution u ∈ W 1,p(R, v; X0) ∩ Lp(R, v; X1) of Eq. 4.7.
Moreover, there is a constant C independent of f and λ such that

(λ − ω)‖u‖Lp(R,v,X0) + ‖A0u‖Lp(R,v;X0) ≤ C‖f ‖Lp(R,v;X0)

‖u′‖Lp(R,v;X0) ≤ C(λ−ω+1)
λ−ω

‖f ‖Lp(R,v;X0).
(4.8)
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Remark 4.10 Parts of the theorem can be extended to λ = ω, but we will not consider this in
detail. The constant in the estimate (4.8) for u′ can be improved if one knows ‖A(t)x‖X0 ≤
C‖A0x‖X0 or when taking λ ≥ ω + 1 for instance.

Before we turn to the proof of Theorem 4.9 we introduce some shorthand notation. Let
Sλ(t, s) = e−λ(t−s)S(t, s) and Tλ(t, s) = e−λ(t−s)T (t, s). Since by Lemma 4.8, S is an
evolution family for A, also Sλ is the evolution family for A(t) + λ. Similarly, Tλ(t, s) is an
evolution family for A(t) − A0 + λ. By Eq. 4.3 if the support of f ∈ L1(R;X0) is finite, a
strong solution of Eq. 4.7 satisfies

u(t) =
∫ t

−∞
Sλ(t, r)f (r) dr, t ∈ R. (4.9)

Proof Replacing A(t) and T (t, s) by A(t) + ω and e−(t−s)ωT (t, s) one sees that without
loss of generality we may assume ω = 0 in (E) and (Rbdd). We first prove that u given by
Eq. 4.9, is a strong solution and Eq. 4.8 holds. First let f ∈ Lp(R, v; X1) and such that
f has support on the finite interval [a, b]. Later on we use a density argument for general
f ∈ Lp(R, v; X0). Let u be defined as in Eq. 4.9. Note that u = 0 on (−∞, a].

Step 1: By Lemma 4.8 the function u defined by Eq. 4.9 satisfies

‖u(t)‖X1 ≤
∫ t

−∞
‖Sλ(t, s)‖L (X1)‖f (s)‖X1 ds

≤ C′‖f ‖L1(a,b;X1)
≤ C([v]Ap)‖f ‖Lp(R,v;X1).

We show that u is a strong solution of Eq. 4.2. Observe that from Fubini’s Theorem and
d
ds

Sλ(s, r)x = −(λ + A(s))Sλ(s, r)x for x ∈ X1, we deduce
∫ t

−∞
(λ + A(s))u(s) ds =

∫ t

−∞

∫ s

−∞
(λ + A(s))Sλ(s, r)f (r) dr ds

=
∫ t

−∞

∫ t

r

(λ + A(s))Sλ(s, r)f (r) ds dr

=
∫ t

−∞
(−Sλ(t, r)f (r) + f (r))dr = −u(t) +

∫ t

−∞
f (r)dr.

Therefore, u is a strong solution of Eq. 4.7.
Step 2: In this step we show there exists a C ≥ 0 independent of λ and f such that

‖A0u‖Lp(R,v;X0) ≤ C‖f ‖Lp(R,v;X0). (4.10)

By Eqs. 4.6 and 4.9 we can write A0u = IKf , where

K(t, s) = φ((t − s)A0)Tλ(t, s)φ((t − s)A0)

t − s
.

Here φ ∈ H∞
0 (�σ ′) for σ ′ < π/2 is given by φ(z) = z1/2e−z/2. In order to apply The-

orem 3.4, we note that all assumptions (H1)–(H4) are satisfied. Only the R-boundedness
condition (H4) requires some comment. Note that k ∈ K implies that for all λ ≥ 0, kλ ∈ K
where kλ(t) = e−λt1{t>0}k(t). Therefore, it follows from (Rbdd) that for all λ ≥ 0,

R(IkTλ : k ∈ K) = R(IkλT : k ∈ K) ≤ R(IkT : k ∈ K) < ∞
which gives (H4) with a uniform estimate in λ. Now Eq. 4.10 follows from Theorem 3.4.
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Step 3: In this step we show there exists a C ≥ 0 independent of λ and f such that

λ‖u‖Lp(R,v;X0) ≤ C‖f ‖Lp(R,v;X0). (4.11)

Using Eq. 4.9 and ‖S(t, s)‖ ≤ C we find

λ‖u‖X0 ≤
∫ t

−∞
λ‖Sλ(t, s)f (s)‖X0 ds ≤ C

∫ t

−∞
λe−λ(t−s)‖f (s)‖X0ds ≤ Crλ ∗ g(t),

where rλ(t) = λe−λ|t | and g(s) = ‖f (s)‖X0 As r1 ∈ L1(R) is radially decreasing by
[37, Theorem 2.1.10] and [38, Theorem 9.1.9],

λ‖u‖Lp(R+,v;X0) ≤ C‖rλ ∗ g‖Lp(R,v)

≤ C‖Mg‖Lp(R,v) ≤ C′‖g‖Lp(R,v) = C′‖f ‖Lp(R,v;X0)

in the case p > 1. The case p = 1 follows from Fubini’s theorem and the convention v ≡ 1.
This estimate yields (4.11).

Step 4: To prove the estimate for u′ note that u′ = −λu − Au + f , and hence writing
Z = Lp(R, v; X0), by Eqs. 4.5 and 4.8, we obtain

‖u′‖Z ≤ λ‖u‖Z + ‖Au‖Z + ‖f ‖Z

≤ (λ + C)‖u‖Z + C‖A0u‖Z + ‖f ‖Z ≤ K
(λ + C

λ − ω
+ 1

)
‖f ‖Z.

This finishes the proof of Eq. 4.8 for f ∈ Lp(R; X1) with support in [a, b]
Step 5: Now let f ∈ Lp(R, v; X0). Choose for n ≥ 1, fn ∈ Lp(R, v; X1) with compact

support and such that fn → f in Lp(R, v; X0). For each n ≥ 1 let un be the correspond-
ing strong solution of Eq. 4.7 with f replaced by fn. From Eq. 4.8 applied to un − um

we can deduce that (un)n≥1 is a Cauchy sequence and hence convergent to some u in
Lp(R, v; X1)∩W 1,p(R, v; X0). On the other hand, for u defined as in Eq. 4.9 one can show
in the same way as in Step 3 that for almost all t ∈ R,

‖u(t) − un(t)‖ ≤
∫ t

−∞
‖Sλ(t, s)‖ ‖f (s) − fn(s)‖ ds

≤ C

∫ t

−∞
e−λ(t−s)‖f (s) − fn(s)‖ ds ≤ C M(‖f − fn‖)(t),

where M is the Hardy-Littlewood maximal operator. Taking Lp(v)-norms and using the
boundedness of the maximal operator we find un → u in Lp(R, v; X0) and hence u = u

if p ∈ (1,∞). Taking limits (along a subsequence), Eqs. 4.7 and 4.8 follow if p ∈ (1, ∞).
The case p = 1 is proved similarly using Young’s inequality.

It will be convenient to restate our results in terms of maximal L
p
v -regularity. For −∞ ≤

a < b ≤ ∞, let

MRp((a, b), v) = W 1,p((a, b), v; X0) ∩ Lp((a, b), v; X1).

Definition 4.11 Let −∞ ≤ a < b ≤ ∞. Assume (A) holds and let p ∈ [1, ∞) and v ∈ Ap

with the convention that v ≡ 1 if p = 1. The operator-valued function A is said to have
maximal Lp

v -regularity on (a, b) if for all f ∈ Lp((a, b), v; X0), the problem
{

u′(t) + A(t)u(t) = f (t), t ∈ (a, b)

u(a) = 0,
(4.12)
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has a unique strong solution u : (a, b) → X0 and there is a constant C independent of f

such that
‖u‖MRp((a,b),v) ≤ C‖f ‖Lp((a,b),v;X0). (4.13)

Here we omit the condition u(a) = 0 if a = −∞.

Of course, the reverse estimate of Eq. 4.13 holds trivially. Note that maximal L
p
v -

regularity on (a, b) implies maximal L
p
v -regularity on (c, d) ⊆ (a, b). It is also easy to

check that if |b − a| < ∞, the maximal L
p
v -regularity on (a, b) for A and λ+A are equiva-

lent. Indeed, the solutions of u′(t)+(λ+A(t))u(t) = f (t) and w′(t)+A(t)w(t) = eλtf (t)

are connected by the identity u(t) = e−λtw(t).
The result of Theorem 4.9 immediately implies that

Corollary 4.12 Assume (A), (E) and (Rbdd). For any λ > ω, λ + A has maximal L
p
v -

regularity on R.

Actually the constant in the estimate can be taken uniformly in λ. Indeed, for fixed λ0 >

ω by Eq. 4.8 and Remark 4.10, there is a constant C such that for all λ ≥ λ0 and for all
f ∈ Lp(R+, v; X0),

‖u‖MRp(R,v) ≤ C‖f ‖Lp(R,v;X0). (4.14)

This is a maximal regularity estimate with constant which is uniform in λ.

Remark 4.13 If A is time independent and has an H∞-calculus of angle < π/2, then setting
A0 = A, and T (t, s) = I , Theorem 4.9 yields a maximal regularity result for autonomous
equations. There are much more suitable ways to derive maximal Lp-regularity results in the
autonomous case (see [56, 62, 91, 92]), using less properties of the operator A. Indeed, only
R-sectoriality of A is needed, but the Banach space X0 is assumed to be a UMD space. We
assume more on the operator but less on the space as we only require finite cotype of X0 and
the R-boundedness of a certain integral operator. Another theory where no assumptions on
the Banach space are made but even more on the operator, can be found in [52]. In the above
mentioned works only maximal Lp-regularity on R+ is considered, but by a standard trick
due to Kato one can always reduce to this case (see for instance the proof of [27, Theorem
7.1]). For the case of time-dependent operators this is no longer true.

4.4 Traces and Initial Values

Recall from Lemma 4.1 that any u ∈ W 1,p((a, b), v; X0) has a continuous version. We
introduce certain interpolation spaces in order to give a more precise description of traces.
Let Xv,p be the space of all x ∈ X0 for which there is a u ∈ MRp(R+, v) such that
u(0) = x. Let

‖x‖Xv,p = inf{‖u‖MRp(R+,v) : u(0) = x}. (4.15)

Spaces of this type have been studied in the literature (see [10, 12, 51] and references
therein). Obviously, one has X1 ↪→ Xv,p ↪→ X0.

For t ∈ R and a weight v, let vt = v(·− t). The following trace estimate on R+ is a direct
consequence of the definitions. A similar assertions holds for u ∈ MRp(R, v) for all t ∈ R.

Proposition 4.14 (Trace estimate) For u ∈ MRp(R+, v), one has

‖u(t)‖Xvt ,p
≤ ‖u‖MRp(R+,v), t ∈ [0, ∞).
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A simple application of maximal regularity is that one can automatically consider
nonzero initial values. Note that without loss of generality we can let a = 0.

Proposition 4.15 Assume (A) and let T ∈ (0, ∞]. Assume A has maximal L
p
v -regularity

on (0, T ) with constant KA. For x ∈ X0 and f : (0, T ) → X0 strongly measurable the
following are equivalent:

(1) The data satisfies x ∈ Xv,p and f ∈ Lp((0, T ), v; X0)

(2) There exists a unique strong solution u ∈ MRp((0, T ), v) of
{

u′(t) + A(t)u(t) = f (t), t ∈ (0, T )

u(0) = x.
(4.16)

In this case there is a constant cv,p,T such that the following estimate holds:

max{cv,p,T ‖x‖Xv,p , ‖f ‖Lp((0,T ),v;X0)} ≤ ‖u‖MRp((0,T ),v)

≤ KA‖x‖Xv,p + KA‖f ‖Lp((0,T ),v;X0).
(4.17)

Proof (1) ⇒ (2): Let w ∈ MRp(R+, v) be such that w(0) = x. Let g(t) = −(w′(t) +
A(t)w(t)). Then g ∈ Lp((0, T ), v; X0). Let ũ be the solution to Eq. 4.16 with zero initial
value and with f replaced by f +g. Now u(t) = ũ(t)+w(t) is the required strong solution
of Eq. 4.16. Indeed, clearly u(0) = x and

u′(t) + A(t)u(t) = ũ′(t) + A(t)ũ(t) + w′(t) + A(t)w(t)

= f + g − g = f.

Moreover,
‖u‖MRp((0,T ),v) ≤ ‖ũ‖MRp((0,T ),v) + ‖w‖MRp((0,T ),v)

≤ KA‖f ‖Lp((0,T ),v;X0) + KA‖w‖MRp(R+,v).

Taking the infimum over all w ∈ MRp(R+, v) with w(0) = x also yields the second part
of Eq. 4.17.

(2) ⇒ (1): As u′ and Au are both in Lp((0, T ), v; X0), the identity in Eq. 4.16 yields
that f ∈ Lp((0, T ), v; X0) with the estimate as stated. To obtain the required properties
for x note that u ∈ MRp((0, T ), v) can be extended to a function u ∈ MRp(R+, v) with
cv,p,T ‖u‖MRp(R+,v) ≤ ‖u‖MRp((0,T ),v). In the case T = ∞ we can take cv,p,T = 1.

It can be difficult to identify Xv,p. For power weights this is possible. Including a power
weight has become an important standard technique to allow non-smooth initial data and to
create compactness properties. At the same time, the regularity properties of the solution to
Eq. 4.16 for t > 0 are unchanged. For more details and applications to evolution equations
we refer to [39, 59, 67, 72, 73, 83].

Example 4.16 Assume v(t) = tα with α ∈ (−1, p − 1). Then v ∈ Ap and Xv,p =
(X0, X1)1− 1+α

p
,p

(see [90, Theorem 1.8.2]). Here (X0, X1)θ,p stands for the real interpola-

tion space between X0 and X1. In the limiting cases α ↑ p − 1 and α ↓ −1, one sees that
the endpoint X1 and X0 can almost be reached.

As in [83] we find that for α ∈ [0, p−1), any u ∈ MRp(R+, v) has a continuous version
with values in (X0, X1)1− 1+α

p
,p

and

sup
t∈R+

‖u(t)‖(X0,X1)1− 1+α
p ,p

≤ C‖u‖MRp(R+,v). (4.18)
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Indeed, this follows from the boundedness and strong continuity of the left-translation in
Lp(R+, v; (X0, X1)1− 1+α

p
,p

) and Proposition 4.14.

On the other hand, for every −1 < α < p − 1 one has u ∈ C((0, ∞); (X0, X1)1− 1
p

,p
)

and for every ε > 0,

sup
t∈[ε,∞)

tα/p‖u(t)‖(X0,X1)1− 1
p ,p

≤ C‖t �→ tα/pu(t)‖MRp(ε,∞) ≤ Cε‖u‖MRp(R+,v),

where we used t−p ≤ max{1, ε−p}. If additionally u(0) = 0, then by Hardy’s inequality
(see [46, p. 245–246]) we can take ε = 0 in the last estimate.

Proof of Theorem 1.1 First of all we may use a constant extension of A to an operator
family on R. Clearly, we can do this in such a way that T (t, s) is uniformly bounded in
−∞ < s ≤ t < ∞ say by a constant M . For instance one can take A(t) = A0 for t /∈ (0, τ ).
Assumption (A) is clearly satisfied. Note that by the assumption and [62, Theorem 11.13],
A0 has a bounded H∞-calculus of angle < π/2 and hence (E) is satisfied.

By Proposition 2.4 {IkT : k ∈ K} is uniformly bounded. For p = 2, this implies R-
boundedness of {IkT : k ∈ K} ⊆ L (L2(R, v; X0)), because L2(R, v; X0) is a Hilbert
space. By Proposition 2.5 this implies that {IkT : k ∈ K} ⊆ L (Lp(R, v; X0)) is
R-bounded as well and hence condition (Rbdd) holds. Therefore, all the conditions of The-
orem 4.9 are satisfied, and we find that A has maximal L

p
v -regularity on R. This implies

that A has maximal L
p
v -regularity on (0, τ ), and hence the required result follows from

Proposition 4.15 and Example 4.16.

4.5 Perturbation and Approximation

In this section we will illustrate how the additional parameter λ from Eq. 4.14 can be used
to solve the perturbed problem

{
u′(t) + A(t)u(t) + B(t, u(t)) = f (t), t ∈ (0, T )

u(0) = x.
(4.19)

Here B : [0, T ] × X1 → X0 is such that there exists a constant ε > 0 small enough and
constants C, L ≥ 0 such that for all x, y ∈ X1 and t ∈ (0, T ),

‖B(t, x) − B(t, y)‖X0 ≤ ε‖x − y‖X1 + LB‖x − y‖X0 ,

‖B(t, x)‖X0 ≤ CB(1 + ‖x‖X1).
(4.20)

Recall that MRp((0, T ), v) = W 1,p((0, T ), v; X0) ∩ Lp((0, T ), v; X1).

Proposition 4.17 Assume T < ∞. Assume (A) holds and assume there is a λ0 such that for
all λ ≥ λ0, λ+A has maximal Lp

v -regularity on (0, T ) and there is a constant CA > 0 such
that for all λ ≥ λ0 and f ∈ Lp((0, T ), v; X0), the strong solution u to Eq. 4.12 satisfies

λ‖u‖Lp((0,T ),v;X0) + ‖u‖MRp((0,T ),v) ≤ CA‖f ‖Lp((0,T ),v;X0). (4.21)

Assume the constant from Eq. 4.20 satisfies ε < 1
CA

. Then for every f ∈ Lp((0, T ), v; X0)

and x ∈ Xv,p, there exists a unique strong solution u ∈ MRp((0, T ), v) of Eq. 4.19 and

‖u‖MRp((0,T ),v) ≤ C(1 + ‖x‖Xv,p + ‖f ‖Lp((0,T ),v;X0)), (4.22)

where C is independent of f and x.
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The proof of this proposition is a standard application of the regularity estimate (4.21)
combined with the Banach fixed point theorem. A similar result holds on infinite time
intervals if one assumes ‖B(t, x)‖X0 ≤ CB‖x‖X1 .

Proof Let λ > 0 be so large that CALB

λ
< CAε := 1−θ and define the following equivalent

norm on MRp((0, T ), v):

‖u‖λ = λ‖u‖Lp((0,T ),v;X0) + ‖u‖MRp((0,T ),v).

We will prove that for all g ∈ Lp((0, T ), v; X0) and x ∈ Xv,p there exists a unique
strong solution w ∈ MRp((0, T ), v) of

w′(t) + (A(t) + λ)w(t) + B̃(t, w(t)) = g(t), w(0) = x. (4.23)

and that w satisfies the estimate (4.22) with (u, f ) replaced by (w, g). Here B̃(t, x) =
e−λtB(t, eλtx) and note that B̃ satisfies the same Lipschitz estimate (4.20) as B. To see that
the required result for Eq. 4.19 follows from this, note that there is a one-to-one correspon-
dence between both problems given by u(t) = eλtw(t) and f = eλtg. Therefore, from now
it suffices to consider Eq. 4.23.

In order to solve Eq. 4.23 we use the maximal regularity estimate Eq. 4.21 combined with
Proposition 4.15 and the special choice of λ. For φ ∈ MRp((0, T ), v) we write w = L(φ),
where w ∈ MRp((0, T ), v) is the unique strong solution of

w′(t) + (A(t) + λ)w(t) = g(t) − B̃(t, φ(t)), w(0) = x. (4.24)

Then for φ1, φ2 ∈ MRp((0, T ), v), by Eq. 4.21 one has

‖L(φ1) − L(φ2)‖λ ≤ CA‖B̃(·, φ1) − B̃(·, φ2)‖Lp((0,T ),v;X0)

≤ CAε‖φ1 − φ2‖Lp((0,T ),v;X1) + CALB‖φ1 − φ2‖Lp((0,T ),v;X0)

≤ (1 − θ)‖φ1 − φ2‖λ.

Hence L is a contraction on MRp((0, T ), v) with respect to the norm ‖ · ‖λ. Therefore, by
the Banach fixed point theorem there is a unique w ∈ MRp((0, T ), v) such that L(w) = w.
It is clear that w is the required strong solution of Eq. 4.23. To prove the required estimate
note that by Eq. 4.21 and Proposition 4.15 one has

‖w‖λ = ‖L(w)‖λ ≤ ‖L(w) − L(0)‖λ + ‖L(0)‖λ

≤ (1 − θ)‖w‖λ + CA(‖g‖Lp((0,T ),v;X0) + CB) + C‖x‖Xv,p .

Subtracting (1− θ)‖w‖λ on both sides, and rewriting the estimate in terms of f and u gives
the required result.

With a similar method as in Proposition 4.17 one obtains the following perturbation result
which will be used in the next Section 6.

Proposition 4.18 Assume T < ∞. Assume (A) holds and A(·) has maximal L
p
v -regularity

on (0, T ) and the estimate (4.13) holds with constant CA. Let ε < CA. If B : [0, T ] →
L (X1, X0) satisfies ‖B(t)x‖X0 ≤ ε‖x‖X1 for all x ∈ X1 and t ∈ [0, T ], then A + B has
maximal Lp

v -regularity with constant
CA

1−CAε
.
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Proof One can argue as in the proof of Proposition 4.17 with λ = 0, g = f , B̃ = B and
1 − θ = CAε. Moreover, if w = L(w), then

‖w‖MRp((0,T ),v) = ‖L(w) − L(0)‖MRp((0,T ),v) + ‖L(0)‖MRp((0,T ),v)

≤ (1 − θ)‖w‖MRp((0,T ),v) + CA‖f ‖Lp((0,T ),v;X0),

and the required estimate result follows.

Consider the sequence of problems:
{

u′
n(t) + An(t)u(t) = fn(t), t ∈ (a, b)

u(a) = xn.
(4.25)

Here we omit the initial condition if a = −∞.
Recall that va = v(· − a). The following approximation result holds.

Proposition 4.19 Assume (A) holds for A and An for n ≥ 1 with uniform estimates in n.
Assume A and An for n ≥ 1 have maximal L

p
v -regularity on (a, b) with uniform estimates

in n. Let fn, f ∈ Lp((a, b), v; X0) and xn, x ∈ Xva,p for n ≥ 1. Then if u and un are the
solutions to Eqs. 4.2 and 4.25 respectively, then there is a constant C only dependent on the
maximal Lp

v regularity constants and the constants in (A) such that

‖un − u‖MRp((a,b),v) ≤ C
[
‖xn − x‖Xva,p + ‖fn − f ‖Lp((a,b),v;X0)

+ ‖(An − A)u‖Lp((a,b),v;X0)

]
.

(4.26)

In particular if xn → x in Xva,p , for all z ∈ X1, An(t)z → A(t)z in X0 a.e. and fn → f

in Lp((a, b), v; X0), then un → u in MRp((a, b), v).

Typically, one can take An = ϕn ∗ A where (ϕn)n≥1 is an approximation of the identity.
If ϕn are smooth functions, then An will also be smooth and therefore, An will generate an
evolution system with many additional properties (see [67, 88]).

Proof The last assertion follows from Eq. 4.26 and the dominated convergence theorem. To
prove the estimate (4.26) note that wn = un − u satisfies the following equation

w′
n + Anwn = (fn − f ) + (An − A)u, wn(a) = xn − x.

Therefore, the Eq. 4.26 follows immediately from the maximal L
p
v -regularity estimate.

5 An Example: m-th Order Elliptic Operators

In this section let p, q ∈ (1, ∞), m ∈ {1, 2, ...} and consider the usual multi-index notation
Dα = D

α1
1 · ... · D

αd

d , ξα = (ξ1)α1 · ... · (ξd)αd and |α| = α1 + · · · + αd for a multi-index
α = (α1, · · · , αd)∈ N

d
0 . Below we let X0 = Lq(Rd , w) and X1 = Wm,q(Rd , w).

Recall that f ∈ Wm,q(Rd , w) if f ∈ Lq(Rd , w) and for all |α| ≤ m, ‖Dαf ‖Lq(Rd ,w) <

∞. In this case we let

[f ]Wm,q (Rd ,w) =
∑

|α|=m

‖Dαf ‖Lq(Rd ,w), ‖f ‖Wm,q(Rd ,w) =
∑

|α|≤m

‖Dαf ‖Lq(Rd ,w).

The weights in space will be used in combination with Theorem 2.6 to obtain R-
boundedness of the integrals operators arising in (Rbdd).
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Consider an m-th order elliptic differential operator A given by

(A(t)u)(t, x) :=
∑

|α|≤m

aα(t, x)Dαu(t, x), t ∈ R+, x ∈ R
d , (5.1)

where Dj := −i ∂
∂j

and aα : R+ × R
d → C.

In this section we will give conditions under which there holds maximal L
p
v -regularity

for A or equivalently we will prove optimal L
p
v -regularity results for the solution to the

problem
{

u′(t, x) + (λ + A(t))u(t, x) = f (t, x), t ∈ (a, b), x ∈ R
d

u(a, x) = u0(x), x ∈ R
d .

(5.2)

A function u will be called a strong L
p
v (L

q
w)-solution of Eq. 5.2 if u ∈ MRp((a, b), v) and

Eq. 5.2 holds almost everywhere.
With slight abuse of notation we write A for the realization of A on X0 = Lq(Rd , w) with
domain D(A) = X1. In this way (5.2) can be modeled as a problem of the form (4.16).
Also, we have seen in Section 4 (and in particular Proposition 4.15) that it is more general
to study maximal L

p
v -regularity on R. Therefore,we will focus on this case below.

5.1 Preliminaries on Elliptic Equations

In this section we introduce notation and present some results for elliptic equations which
will be needed below.

Let

A :=
∑

|α|≤m

aαDα,

with aα ∈ C constant. The principal symbol of A is defined as

A�(ξ) :=
∑

|α|=m

aαξα.

We say that A is uniformly elliptic of angle θ ∈ (0, π) if there exists a constant κ ∈ (0, 1)

such that

A�(ξ) ⊂ �θ and |A�(ξ)| ≥ κ, ξ ∈ R
d , |ξ | = 1.

If additionally there is a constant K such that |aα| ≤ K for all |α| ≤ m, then we write
A ∈ Ell(θ, κ, K).

The following result is on the sectoriality of the operator in the x-independent case. The
proof is an application of the Mihlin multiplier theorem.

Theorem 5.1 Let 1 < q < ∞ and w ∈ Aq . Assume A ∈ Ell(θ0, κ, K) with θ0 ∈ (0, π).
Then for every θ > θ0 there exists anAq -consistent constantC depending on the parameters
m, d, θ0 − θ, κ, K, q such that

‖λ1− |β|
m Dβ(λ + A)−1‖L (Lq(Rd ,w)) ≤ C, |β| ≤ m, λ ∈ �π−θ . (5.3)

In particular, there is a constant C̃ depending only on θ and C such that ‖e−tA‖ ≤ C̃.

The case of x-dependent coefficients can be derived by standard localization arguments,
but we will not need this case below (see [43, Theorem 3.1] and [61, Section 6]).
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Proof For Eq. 5.3 we need to check that for every λ ∈ �π−θ , and |β| ≤ m, the symbol
M : Rd → C given by

M(ξ) = λ1− |β|
m ξβ(λ + A�(ξ))−1

satisfies the following: for every multiindex α ∈ N
d
0 , there is a constant Cα which only

depends on d, α, θ − θ0, K, κ such that

|ξαDαM(ξ)| ≤ Cα, ξ ∈ R
d . (5.4)

Indeed, as soon as this is checked, the result is a consequence of the weighted version of
Mihlin’s multiplier theorem (see [34, Theorem IV.3.9]).

In order to check the condition for � ≥ 0 let F� be the span of functions of the form
ληgh−1, where η ∈ [0, 1], g : Rd → C is polynomial which is homogeneous of degree
ν ∈ N0 and h = (λ + A�)

μ with μ ∈ N and � = m(μ − η) − ν. It is clear that M ∈ F0.
Using induction one can check that for f ∈ F� one has Dαf ∈ F�+|α|.

We claim that for f ∈ F� the mapping ξ �→ |ξ |�f (ξ) is uniformly bounded. In order to
prove this it suffices to consider f = ληgh−1 with g and h as before, and � = m(μ−η)−ν.
As ξ �→ |ξ |−νg(ξ) is bounded it remains to estimate

ληh(ξ)−1|ξ |�+ν = sη(s + A�(ξ
∗))−μ,

where ξ∗ = ξ/|ξ | and s = λ|ξ |−m.
Write A�(ξ

∗) = reiϕ with r = |A�(ξ
∗)| and |ϕ| < θ0 and s = ρeiψ with ρ = |s| and

|ψ | < π − θ . Then

|sη(s + A�(ξ
∗))−μ| = ρη|ρeiψ + reiϕ |−μ = ρη(ρ2 + r2 + 2ρr cos(ψ − ϕ))−μ/2.

Since cos(ψ − ϕ) ≥ cos(π − (θ − θ0)) = − cos(θ − θ0) = −(1 − ε2) with ε ∈ (0, 1) and
−2ρr ≥ −(ρ2 + r2) and we find

|sη(s + A�(ξ
∗))−μ| ≤ ρη(ρ2 + r2)−μ/2ε−μ ≤ κμ−ηε−μ,

where in the last step we used r ≥ κ and μ ≥ η. This proves the claim.
In order to check (5.4) note that M ∈ F0 and hence by the above DαM(ξ) ∈ F|α|.

Therefore, the bound follows from the claim about F� and the observation that the functions
g arising in the linear combinations of the form ληgh−1 satisfy |g(ξ)| ≤ CK,d,α .

The assertion for e−tA follows from Eq. 2.7 and the estimate (5.3) with β = 0.

As a consequence we obtain the following:

Corollary 5.2 Let λ0 > 0. Under the conditions of Theorem 5.1, the operator A is closed
and for every λ ≥ λ0,

c‖u‖Wm,q(Rd ,w) ≤ ‖(λ + A)u‖Lq(Rd ,w) ≤ (K + λ)‖u‖Wm,q(Rd ,w),

where c−1 is Aq -consistent and only depends on m, d, θ0 − θ, κ, K, q and λ0.

Corollary 5.2 for x-dependent coefficients will be derived from Theorem 5.4 in
Remark 5.6.

Corollary 5.3 Letm ≥ 1, 1 < q < ∞ andw ∈ Aq . Ifm ≥ 2, then there is anAq -consistent
constant C depending only on d, q and m such that for all |β| ≤ m − 1

‖Dβf ‖Lq(Rd ,w) ≤ C‖f ‖Lq(Rd ,w)[f ]Wm,q (Rd ,w)

≤ C′λ
β
m ‖f ‖Lq(Rd ,w) + C′λ− m−|β|

|m| [f ]Wm,q (Rd ,w).
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Proof Note that for |β| = 1,

‖Dβf ‖Lq(Rd ,w) ≤ Cλ
1
2 ‖f ‖Lq(Rd ,w) + λ− 1

2 [f ]W 2,q (Rd ,w)

follows from Theorem 5.1 with A = −� and the required estimate follows by minimizing
over all λ > 0. The case m > 2 can be obtained by induction (see [61, Exercise 1.5.6]). The
final estimate follows from Young’s inequality.

5.2 Main Result on R
d

For A of the form (5.1) and x0 ∈ R
d and t0 ∈ R let us introduce the notation:

A(t0, x0) :=
∑

|α|≤m

aα(t0, x0)D
α.

for the operator with constant coefficients.

(C) Let A be given by Eq. 5.1 and assume each aα : R × R
d → C is measurable. We

assume there exist θ0 ∈ [0, π/2), κ and K such that for all t0 ∈ R and x0 ∈ R
d ,

A(t0, x0) ∈ Ell(θ0, κ, K). Assume there exists an increasing function ω : (0, ∞) →
(0, ∞) with the property ω(ε) → 0 as ε ↓ 0 and such that

|aα(t, x) − aα(t, y)| ≤ ω(|x − y|), |α| = m, t ∈ R, x, y ∈ R
d .

As θ0 < π/2, the above ellipticity condition implies that m is even in all the results
below.

The set of parameters on which all constant below will depend is given by

P = {κ,K,ω, [v]Ap , [w]Aq , p, q, d, m, θ0}. (5.5)

Moreover, all the dependence on the weights will be in an Ap and Aq -consistent way.

Theorem 5.4 Let p, q ∈ (1,∞). Let v ∈ Ap(R) and w ∈ Aq(Rd). Assume condition (C)
on A. Then there exists a λ0 ∈ R depending on the parameters in P such that for all λ ≥ λ0
the operator λ + A has maximal L

p
v -regularity on R. Moreover, for every λ ≥ λ0 and for

every f ∈ Lp(R, v; X0) there exists a unique u ∈ MRp(R, v) which is a strong Lp(Lq)

solution of

u′(t, x) + (λ + A(t))u(t, x) = f (t, x), a.e. t ∈ R, x ∈ R
d

and there is constant C depending on the parameters in P such that

λ‖u‖Lp(R,v;X0)) + ‖u‖MRp(R,v) ≤ C‖f ‖Lp(R,v;X0). (5.6)

Recall that MRp(R, v) = W 1,p(R, v; X0) ∩ Lp(R, v; X1).
Also note that the estimate (5.6) also holds if one replaces R by (−∞, T ) for some

T ∈ R. The above result also implies that λ + A has maximal L
p
v -regularity on (0, T ) for

every T < ∞ and every λ ∈ R.
The proof of the above result is a based on Theorem 4.9, standard PDE techniques and

extrapolation arguments. The proof of Theorem 5.4 is divided in several steps of which
some are standard, but we prefer to give a complete proof for convenience of the reader. In
Steps 1 and 2 we assume aα = 0 for |α| < m and show how to include these lowers order
terms later on.
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Step 1: Consider the case where the coefficients aα : R → C are x-independent. Choose
δ > 0 small enough and set A0 = δ(−�)m/2. Note that by Corollary 5.2 D(A0) = X1. We
write

A(t) =
∑

|α|=m

aα(t)Dα, Ã(t) = A(t) − A0.

It is a simple exercise to see that there exist δ0 > 0, θ ′ ∈ (θ, π
2 ) and κ ′ > 0 depending

on κ and θ that for all δ ∈ (0, δ0], Ã(t) ∈ Ell(θ ′, κ ′,K). Therefore, each Ã(t) satisfies the
conditions of Theorem 5.1 with constants only depending on δ0, κ, θ, K . The same holds
for operators of the form Ãab := 1

b−a

∫ b

a
Ã(t) dt , where 0 ≤ a < b < ∞. Note that Ãab

and Ã(t) are resolvent commuting and have domain X1. Therefore, by Example 4.4 the
evolution system for Ã exists and is given by

T (t, s) = exp
(

− (t − s)Ãst

)
, 0 ≤ s ≤ t < ∞.

Moreover, for all λ > 0,

‖T (t, s)‖L (Lq(Rd ,w)) ≤ C, 0 ≤ s ≤ t, (5.7)

where C only depends on δ0, κ, θ, θ0,K, q, [w]Aq . Since A0 is also resolvent commuting

with Ãab and Ã(t), it follows from Lemma 4.8 that the evolution system generated by A

factorizes as

S(t, s) = e− 1
2 (t−s)A0T (t, s)e− 1

2 (t−s)A0 , 0 ≤ s ≤ t < ∞.

We check the hypothesis (A), (E) and (Rbdd) of Theorem 4.9. Condition (A) follows
Corollary 5.2 with λ = 1. For condition (E), recall from Section 2.3 that A0 has a bounded
H∞-calculus of angle < π/2. Moreover, X0 = Lq(Rd) has finite cotype (see [25, Chapter
11]). Finally, (Rbdd) follows from Theorem 2.6 and Eq. 5.7. Therefore, by Theorem 4.9 we
find there is a constant C such that Eq. 5.6 holds for all λ ≥ 1.

Step 2: Next we consider the case where the coefficients of A are also x-dependent, but
still with aα = 0 for α < m. We start with a standard freezing lemma.

Lemma 5.5 (Freezing lemma) Let ε > 0 be such that ω(ε) ≤ 1
2C

, where C is the constant
for Eq. 5.6 obtained in Step 1. If u ∈ MRp(R, v) and for some x0 ∈ R

d for each t ∈ R,
u(t, ·) has support in a ball B(x0, ε) = {x : |x − x0| < ε}, then for all λ ≥ 1, the following
estimate holds:

λ‖u‖Lp(R,v;X0) + ‖u‖MRp(R,v) ≤ 2C‖(λ + A)u + u′‖Lp(R,v;X0). (5.8)

Proof Let f := (λ+A)u+u′ and observe that u′ + (A(·, x0)+λ)u = f + (A(·, x0)−A)u.
By Eq. 5.6, we find

λ‖u‖Lp(R,v;X0) + ‖u‖MRp(R,v) ≤ C‖f ‖Lp(R,v;X0) + C‖(A(·, x0) − A)u‖Lp(R,v;X0).

Note that by the support condition on u and the continuity of x �→ aα(·, x),

‖(A(t, x0) − A(t))u(t)‖X0 ≤ ω(ε)‖u(t)‖X1 .

Therefore, C‖(A(·, x0) − A)u‖Lp(R,v;X0) ≤ 1
2‖u‖MRp(R,v) and hence

λ‖u‖Lp(R,v;X0) + ‖u‖MRp(R,v) ≤ C‖f ‖Lp(R,v;X0) + 1

2
‖u‖MRp(R,v).

and the result follows from this.
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Step 3: In this step we use a localization argument in the case p = q to show that there
is a constant C such that for all u ∈ MRp(R, v),

λ‖u‖Lq(R,v;X0) + ‖u‖Lq(R,v;X1) ≤ C‖(λ + A)u + u′‖Lq(R,v;X0). (5.9)

(a) Take a φ ∈ C∞(Rd) with φ ≥ 0, ‖φ‖Lq(Rd ) = 1 and support in the ball Bε = {x :
|x| < ε} where ε > 0 is as in Lemma 5.5. Note that

|∇mu(t, x)|q =
∫

Rd

|∇mu(t, x)φ(x − ξ)|qdξ. (5.10)

By the product rule, we can write

∇m[u(t, x)φ(x − ξ)] = ∇mu(t, x) · φ(x − ξ) +
∑

|α|≤m−1

cαDαu(t, x)Dg(α)φ(x − ξ),

with |g(α)| ≤ m and cα ≥ 0. Therefore,

|∇mu(t, x) · φ(x − ξ)| ≤ |∇m[u(t, x)φ(x − ξ)] + C̃
∑

|α|≤m−1

|Dαu(t, x)|,

where used
∑

|α|≤m−1 cα|Dg(α)φ(x)| ≤ C̃. Taking Lq(R, v)-norms on both sides gives

‖∇mu‖Lq(R,v;X0) =
(∫

Rd

‖∇muφ(· − ξ)‖q

Lq(R;X0)
dξ

)1/q

≤
(∫

Rd

‖∇m(uφ(· − ξ))‖q

Lq(R,v;X0)
dξ

)1/q

+ L,

(5.11)

where L = C̃
∑

|α|≤m−1 ‖Dαu‖Lq(R,v;X0). For each fixed ξ in the case p = q, Lemma 5.5
applied to x �→ u(t, x)φ(x − ξ) yields

‖∇m(u(t)φ)‖Lq(R,v;X0) ≤
(∫

Rd

‖∇m(uφ(· − ξ))‖q

Lq(R,v;X0)
dξ

)1/q

+ L

≤ C
( ∫

Rd

‖(λ + A)(uφ(· − ξ)) + u′φ(· − ξ)‖q

Lq(R,v;X0)
dξ

) 1
q + L,

(5.12)

Note that for each ξ ∈ R
d ,

(λ + A)(uφ(· − ξ)) =
∑

|α|=m

aαDα[uφ(· − ξ)] + λuφ(· − ξ)

= (λ + A)u · φ(· − ξ) +
∑

|α|≤m−1

cαaαDαuDg(α)φ(· − ξ).

Thus we also have
( ∫

Rd

‖(λ + A)(uφ(· − ξ)) + u′φ(· − ξ)‖q

Lq(R,v;X0)
dξ

) 1
q

≤
( ∫

Rd

‖[(λ + A)u + u′]φ(· − ξ)‖q

Lq(R,v;X0)
dξ

) 1
q + KL.

= ‖(λ + A)u + u′‖Lq(R,v;X0) + KL.

Combining the latter with Eqs. 5.11 and 5.12 gives

‖∇mu‖Lq(R,v;X0) ≤ C‖(λ + A)u + u′‖Lq(R,v;X0) + (K + 1)L,
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where K is as in condition (C). We may conclude that

‖u‖Lq(R,v;X1) ≤ C‖(λ + A)u + u′‖Lq(R,v;X0) + C‖u‖Lq(R,v;Wm−1,q (Rd ,w)). (5.13)

To include the lower order terms, let

B(t)u(t, x) =
∑

|α|≤m−1

aα(t, x)Dαu.

By Eq. 5.13 with f = (A + B + λ)u + u′ and the triangle inequality, we find

‖u‖Lq(R,v;X1) ≤ C‖f ‖Lq(R,v;X0) + C(K + 1)‖u‖Lq(R,v;Wm−1,q (Rd ,w)). (5.14)

In a similar way, one sees that for all λ ≥ 1

λ‖u‖Lq(R,v;X0) ≤ C‖f ‖Lq(R,v;X0) + C(K + 1)‖u‖Lq(R,v;Wm−1,q (Rd ,w)). (5.15)

In order to obtain Eq. 5.9 from Eqs. 5.14 and 5.15 note that it follows from the interpolation
inequality from Corollary 5.3 that for all ν > 0

‖u‖Wm−1,q (Rd ,w) ≤ Cνm−1‖u‖Lq(Rd ,w) + Cν−1‖u‖Wm,q(Rd ,w). (5.16)

Therefore, choosing ν small enough we can combine the latter with Eq. 5.15 to obtain

λ‖u‖Lq(R,v;X0) + ‖u‖Lq(R,v;X1) ≤ C‖f ‖Lq(R,v;X0)

+ 1

2
‖u‖Lq(R,v;X1) + Cν‖u‖Lq(R,v;X0).

Setting λ0 = max{2Cν, 1}, it follows that for all λ ≥ λ0,

1

2
λ‖u‖Lq(R,v;X0) + 1

2
‖u‖Lq(R,v;X1) ≤ C‖f ‖Lq(R,v;X0).

This clearly implies Eq. 5.9.
Step 4: To extrapolate the estimate from the previous step to p �= q, let u : R → X1

be a Schwartz function. Then by Eq. 5.9 we have for all v ∈ Aq there exists Aq -consistent
constants λ0, C > 0 such that for all λ ≥ λ0

‖Fλ‖Lq(R,v) ≤ C‖Gλ‖Lq(R,v),

where Fλ = ‖u‖X1 , Gλ = ‖(λ + A)u + u′‖X0 . Therefore, by the extrapolation result
Theorem 2.1 it follows that for all v ∈ Ap there exist a Ap-consistent constants λ′

0 and C′
such that for all λ ≥ λ′

0,
‖Fλ‖Lp(R,v) ≤ C′‖Gλ‖Lp(R,v),

This yields
‖u‖Lp(R,v;X1) ≤ C′‖(λ + A)u + u′‖Lp(R,v;X0).

Similarly, one proves the estimate for λ‖u‖Lp(R,v;X0). As u′ = (λ + A)u + u′ − (λ + A)u,
Eq. 5.6 with righthand side f = (λ + A)u + u′ follows.

Step 5: Let A be as in the theorem. For s ∈ [0, 1] let As = sA + (1 − s)(−�)m/2, where
we recall that m is even. Then As satisfies condition (C) with constants κ and K replaced
by min{κ, 1} and max{K, 1}, respectively. Therefore, for all λ ≥ λ0, Eq. 5.6 holds with
right-hand side f = (λ + As)u + u′ with a constant C which does not dependent on s. For
s = 0 for all λ ≥ λ0, for every f ∈ Lp(R, v; X0), one has existence and uniqueness of a
strong solution u ∈ MRp(R, v) to u′ + (λ + As)u = f by step 1. Therefore, the method of
continuity (see [36, Theorem 5.2]) yields existence and uniqueness of a strong solution for
every s ∈ [0, 1]. Taking s = 1, the required result follows and this completes the proof of
Theorem 5.4.
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Remark 5.6 In the proof of Theorem 5.4 we applied Corollary 5.2 only for the case of
x-independent coefficients. It is rather simple to derive Corollary 5.2 with x-dependent
coefficients from Theorem 5.4 (cf. [61, Exercise 4.3.13]). Indeed, let A be t-independent
but such that (C) holds and let u ∈ Wm,q(Rd , w). Applying Eq. 5.6 to ũ : R → X1 given
by ũ(t) = e−μ|t |u with μ > 0 and v = 1, and letting μ ↓ 0, we find

λ‖u‖Lq(Rd ,w) + ‖u‖Wm,q(Rd ,w) ≤ C‖(λ + A)u‖Lq(Rd ,w).

Finally we show how to derive Theorem 1.2 from Theorem 5.4.

Proof of Theorem 1.2 By Theorem 5.4 there is a λ ∈ R such that λ + A has maximal Lp-
regularity on R and hence on (0, T ) as well. By the observation after Definition 4.11 this
implies that A has maximal Lp-regularity on (0, T ) and hence we can find a unique solution

u ∈ W 1,p(0, T ; Lq(Rd)) ∩ Lp(0, T ;Wm,q(Rd))

of Eq. 1.2 with u0 = 0. By Proposition 4.15 with v ≡ 1, we can allow nonzero initial values
u0 ∈ Xv,p = (Lq(Rd),Wm,q(Rd))1− 1

p
,p

(see Example 4.16). By [11, Theorem 6.2.4]

or [90, Remark 2.4.2.4] this real interpolation space can be identified with Bs
q,p(Rd) with

s = m(1 − 1/p). Finally, the fact that u ∈ C([0, T ];Bs
q,p(Rd)) follows from Example 4.16

as well.

In the next remark we compare Theorems 1.2 and 5.4 to part of the literature on such
equations.

Remark 5.7

(1) In the case A is time-independent and v ≡ 1, Theorem 5.4 reduces to [43, Theorem
3.1] in case of scalar equations.

(2) In a series of papers by Kim and Krylov several maximal Lp-regularity results for
Eq. 1.2 have been derived under VMO conditions on the coefficients. In [61, Theorem
4.3.8] the case p = q and m = 2 has been considered under the same assumptions
under the coefficients. Extensions to the case 1 < q ≤ p < ∞ have been given in [57]
and [61, Chapter 7]. Here only VMO conditions in the space variable are required. In
the x-independence case results for p, q ∈ (1, ∞) can be found in [58, 60]. For further
results and references in the case p = q we refer to [26].

In future works we will consider other examples and applications of the above methods:

Remark 5.8

(1) One can extend Theorem 5.4 to systems of equations. This is more complicated as
the evolution family is not explicitly given in this situation. This will be addressed in
future works.

(2) With standard methods one can extend the result of Theorem 5.4 to half spaces and
domains. This will be presented elsewhere.

(3) The same method gives new information on stochastic maximal Lp-regularity for
SPDEs with coefficients which depend on time in a measurable way. The case of
continuous dependence on time was considered in [75].
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6 Quasilinear Evolution Equations

In this section we illustrate how the results of the paper can be used to study nonlinear
PDEs. We extend the result of [14] and [81] (see [59] for the weighted setting) to the case
of time-dependent operators A without continuity assumptions. Our proof slightly differs
from the previous ones since we can immediately deal with the nonautonomous setting. For
notational simplicity we consider the unweighted setting only.

6.1 Abstract Setting

Let X0 be a Banach space and X1 ↪→ X0 densely, 0 < T ≤ T0 < ∞, J = [0, T ],
J0 = [0, T0] and p ∈ (1,∞). Let Xp = (X0, X1)1− 1

p
,p

equipped with the norm from

Eq. 4.15. Consider the quasi-linear problem
{

u′(t) + A(t, u(t))u(t) = F(t, u(t)), t ∈ J

u(0) = x.
(6.1)

where x ∈ Xp and

• A : J0 × Xp → L(X1, X0) is such that for each y ∈ X1 and x ∈ Xp , t → A(t, x)y

is strongly measurable and satisfies the following continuity condition: for each R > 0
there is a constant C(R) > 0 such that

‖A(t, x1)y − A(t, x2)y‖X0 ≤ C(R)‖x1 − x2‖Xp‖y‖X1 , (6.2)

with t ∈ J0, x1, x2 ∈ Xp, ‖x1‖Xp , ‖x2‖Xp ≤ R, y ∈ X1.
• F : J0 × Xp → X0 is such that F(·, x) is measurable for each x ∈ Xp, F(t, ·) is

continuous for a.a. t ∈ J0 and F(·, 0) ∈ Lp(J0; X0) and F satisfies the following
condition on Lipschitz continuity: for each R > 0 there is a function φR ∈ Lp(J0) such
that

‖F(t, x1) − F(t, x2)‖X0 ≤ φR(t)‖x1 − x2‖Xp ,

for a.a. t ∈ J0, x1, x2 ∈ Xp, ‖x1‖Xp , ‖x2‖Xp ≤ R.

Theorem 6.1 Assume the above conditions on A and F . Let x0 ∈ Xp and assume that
A(·, x0) has maximal Lp-regularity. Then there is a T ∈ (0, T0] and radius ε > 0 both
depending on x0 such that for all x ∈ Bε = {y ∈ Xp : ‖y − x0‖Xp ≤ ε}, Eq. 6.1 admits a
unique solution u ∈ MR(J ) := W 1,p(J ;X0) ∩ Lp(J ;X1). Moreover, there is a constant C
such that for all x, y ∈ Bε the corresponding solutions ux and uy satisfy

‖ux − uy‖MR(J ) ≤ C‖x − y‖Xp .

The proof will be given in Section 6.3.

6.2 Example of a Quasilinear Second Order Equation

Let T0 > 0 and J0 = [0, T0]. In this section we will give conditions under which there exists
a local solution of the problem:

u′(t, x) +
∑

|α|=2

aα(t, x, u(t, x),∇u(t, x))Dαu(t, x) = f (t, x, u(t, x),∇u(t, x)), (6.3)

with initial value u(0, x) = u0(x), t ∈ J0, x ∈ R
d and where Dj := −i ∂

∂j
. The main new

feature here is that the above functions aα are only measurable in time. Note that possible
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lower order terms aα can be included in f . We will provide an Lp(Lq)-theory for Eq. 6.3
under the following conditions on p and q:

(i) Let X0 = Lq(Rd), X1 = W 2,q (Rd), Xp = B
2(1− 1

p
)

q,p (Rd) where p, q ∈ (1, ∞) satisfy

2
(

1 − 1

p

)
− d

q
> 1. (6.4)

This condition is to ensure the following continuous embedding holds (see [90, Theorem
2.8.1])

B
2(1− 1

p
)

q,p (Rd) ↪→ C1+δ(Rd), for all 0 < δ < 2
(

1 − 1

p

)
− d

q
− 1. (6.5)

Also note that B
2(1− 1

p
)

q,p (Rd) = (X0, X1)1− 1
p

,p
by [90, 2.4.2(16)].

On a and f we assume the following conditions:

(ii) Assume each aα : J0 × R
d × R × R

d → C is a measurable function such that
supt,x,y,z |aα(t, x, y, z)| < ∞ and there is an θ ∈ (0, π) and κ ∈ (0, 1) such that for
all t ∈ J0, x, z ∈ R

d , y ∈ R,
∑

|α|=2

aα(t, x, y, z)ξα ⊂ �θ and
∣∣∣

∑

|α|=2

aα(t, x, y, z)ξα
∣∣∣ ≥ κ, ξ ∈ R

d , |ξ | = 1.

(iii) Assume that for every R > 0 there exists a function ωR : R+ → R+ with
limε↓0 ωR(ε) = 0 such that for all t ∈ J0, x1, x2 ∈ R

d , |y|, |z| ≤ R,

|aα(t, x1, y, z) − aα(t, x2, y, z)| ≤ ωR(|x1 − x2|).
(iv) Assume that for each |α| = 2 for every R > 0 there exists a constant Cα(R) such that

for all t ∈ J0, x ∈ R
d , |y1|, |y2| ≤ R, and |z1|, |z2| ≤ R,

|aα(t, x, y1, z1) − aα(t, x, y2, z2)| ≤ Cα(R)(|y1 − y2| + |z1 − z2|), (6.6)

(v) Assume f : J0 × R
d × R × R

d → C is a measurable function such that
∫

J0

( ∫

Rd

|f (t, x, 0, 0)|q dx
) p

q
dt < ∞.

For every R > 0 there exists a function φ(R) ∈ Lp(J0) such that for all t ∈ J0,
x ∈ R

d , |y1|, |y2| ≤ R and |z1|, |z2| ≤ R,

|f (t, x, y1, z1) − f (t, x, y2, z2)|X0 ≤ φ(R)(t)(|y1 − y2| + |z1 − z2|).
Let MRp(J ) = W 1,p(J ;Lq(Rd)) ∩ Lp(J ;W 2,q (Rd)) and note that by Eq. 6.5

MRp(J ) ↪→ C(J ; Xp) ↪→ C(J ; C1+δ(Rd)).

In order to apply Theorem 6.1 to obtain local well-posedness define A : J0 × Xp →
L (X1, X0) and F : J0 × Xp → X0 by

(A(t, v)u)(x) =
∑

|α|≤2

aα(t, x, v(x),∇v(x))Dαu(x),

F (t, u)(x) = f (t, x, u(x),∇u(x)).
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Then A and F satisfy the conditions of Theorem 6.1. Indeed, applying Eq. 6.6 we find that
for R > 0 and ‖v1‖Xp , ‖v2‖Xp ≤ R and u ∈ X1,

‖A(t, v1)u − A(t, v2)u‖X0 ≤ K(R)
(
‖v1 − v2‖X0 + ‖∇v1 − ∇v2‖X0

)
‖u‖X1

≤ K(R)C‖v1 − v2‖Xp‖u‖X1 .

Here we have used that for k ∈ {0, 1} and v ∈ Xp , ‖Dkv‖∞ ≤ C‖v‖Xp by Eq. 6.5.
Next we check that for every g ∈ Xp , A(·, g) has maximal Lp-regularity. In order

to do so we check that A(t, g) satisfies the conditions of Theorem 5.4. Indeed, let R =
‖g‖C1(Rd ) < ∞. By Eq. 6.5, g ∈ C1+δ(Rd) and therefore,

|aα(t, x1, g(x1), ∇g(x1)) − aα(t, x2, g(x2), ∇g(x2))|
≤ |aα(t, x1, g(x1), ∇g(x1)) − aα(t, x2, g(x1), ∇g(x1))|
+ |aα(t, x2, g(x1), ∇g(x1)) − aα(t, x2, g(x2), ∇g(x2))|

≤ ωR(|x1 − x2|) + |g(x1) − g(x2)| + |∇g(x1) − ∇g(x2)|
≤ ωR(|x1 − x2|) + ‖g‖C1+δ(Rd )(|x1 − x2| + |x1 − x2|δ).

Thus A(t, g) satisfies the required continuity condition in the space variable. Hence Theo-
rem 5.4 yields that A(·, u0) has maximal Lp-regularity. The conditions on F can be checked
in a similar way and we obtain the following result as a consequence of Theorem 6.1.

Theorem 6.2 Assume the above conditions on p, q ∈ (1, ∞) and aα and f . Let g ∈ Xp :=
B

2(1− 1
p

)

q,p (Rd) be arbitrary. Then there is a T ∈ (0, T0] and radius ε > 0 both depending on
g such that for all u0 ∈ Bε = {v ∈ Xp : ‖v − g‖Xp ≤ ε}, Eq. 6.3 admits a unique solution

u ∈ W 1,p(J ;Lq(Rd)) ∩ Lp(J ;W 2,q (Rd)) ∩ C(J ; Xp).

Moreover, there is a constant C such that for all u0, v0 ∈ Bε the corresponding solutions u

and v satisfy

‖u − v‖W 1,p(J ;Lq(Rd )) + ‖u − v‖Lp(J ;W 2,q (Rd )) + ‖u − v‖C(J ;Xp) ≤ C‖x − y‖Xp .

Remark 6.3

(1) If aα only depends on u and not on its derivatives, then one can replace Eq. 6.4 by the

condition 2
(

1 − 1
p

)
− d

q
> 0.

(2) Theorem 6.2 can be extended to higher order equations. Then aα is allowed to depend
on the (m − 1)-th derivatives of u. Moreover, by [33] one can also consider higher
order systems.

6.3 Proof of Theorem 6.1

From the trace estimate (4.18) and a simple reflection argument one sees see that there exists
a constant C independent of T such that for all u ∈ MRp(J ) with u(0) = 0 one has

‖u‖C([0,T ];Xp) ≤ CTr‖u‖MRp(J ). (6.7)

Without the assumption u(0) = 0, one still has the above estimate but with a constant which
blows up as T ↓ 0 (see Eq. 4.17 and use a translation argument).
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For u, v ∈ MR(J ) with u(0) = v(0) ∈ Xp , the following consequence of Eq. 6.7 will be
used frequently:

‖u‖C(J ;Xp) ≤ ‖u − v‖C(J ;Xp) + ‖v‖C(J ;Xp)

≤ CTr‖u − v‖MRp((0,T )) + ‖v‖C(J ;Xp).
(6.8)

Proof of Theorem 6.1 We modify the presentation in [59] to our setting. By the assumption
and Proposition 4.15 we know that for each x ∈ Xp, there exists a unique solution wx ∈
MRp(J ) of the problem

{
w′(t) + A(t, x0)w(t) = F(t, x0), t ∈ J0
w(0) = x.

Moreover, by linearity

‖wx − wy‖MRp(J0) ≤ C0‖x − y‖Xp .

By Eq. 4.17 and a translation argument we see that

‖wx − wy‖C(J0;Xp) ≤ C1‖wx − wy‖MRp(J0) ≤ C1C2‖x − y‖Xp . (6.9)

Step 1. Let CA be the maximal Lp-regularity constant of A(·, u0). We show that for a
certain set of function u ∈ MRp(J ) maximal Lp-regularity holds with constant 2CA. Fix
R > 0. Since wx0 : [0, T ] → Xp is continuous we can find T ∈ (0, T0] such that

‖wx0(t) − x0‖Xp ≤ 1

4C(R)CA

, t ∈ [0, T ]. (6.10)

Let

r0 := 1

4C(R)CA(CTr + CTrC2 + C1C2)

and write

Br0 = {v ∈ MRp(J ) : ‖v(0) − x0‖Xp ≤ r0 and ‖v − wx0‖MRp(J ) ≤ r0}.
From the assumptions we see that for all v ∈ Br0 and t ∈ [0, T ], writing x = v(0),

‖v(t) − x0‖Xp

≤ ‖v(t) − wx(t)‖Xp + ‖wx(t) − wx0(t)‖Xp + ‖wx0(t) − x0‖Xp

≤ CTr‖v − wx‖MRp(J ) + C1C2‖x − x0‖Xp + 1

4C(R)CA

≤ CTrr0 + CTr‖wx0 − wx‖MRp(J ) + C1C2‖x − x0‖Xp + 1

4C(R)CA

≤ CTrr0 + CTrC2r0 + C1C2r0 + 1

4C(R)CA

≤ 1

2C(R)CA

,

(6.11)

where we used Eqs. 6.7 and 6.9. Therefore by Eq. 6.11 and the assumption

‖A(t, v(t)) − A(t, x0)‖L (X1,X0) ≤ C(R)‖v(t) − x0‖Xp ≤ 1

2CA

.

Now Proposition 4.18 yields that A(·, v(·)) has maximal Lp-regularity with constant 2CA

for each v ∈ Br0 .
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Step 2. Let R = 1 + CTr + CTrC2 + C1C2 + ‖wx0‖C(J0;Xp). Fix 0 < r ≤ min{1, r0} and
T as in Step 1. Note that by Eqs. 6.8 and 6.9 for v ∈ Br and x = v(0),

‖v‖C(J ;Xp) ≤ CTr‖v − wx‖MRp(J ) + ‖wx − wx0‖C(J ;Xp) + ‖wx0‖C(J ;Xp)

≤ CTr‖v − wx0‖MRp(J ) + CTr‖wx0 − wx‖MRp(J ) + C1C2‖x − x0‖Xp + ‖wx0‖C(J ;Xp)

≤ CTrr + (CTrC2 + C1C2)‖x − x0‖Xp + ‖wx0‖C(J ;Xp)

≤ CTrr + (CTrC2 + C1C2)r + ‖wx0‖C(J ;Xp) ≤ R,

where we used r ≤ 1. Similarly, for x ∈ Br , ‖x‖Xp ≤ r + ‖x0‖Xp ≤ R.
For x ∈ Br , let Br,x ⊆ Br be defined by

Br,x = {u ∈ MRp(J ) : u(0) = x and ‖u − wx0‖MRp(J ) ≤ r}.
Before we introduce a fixed point operator argument on Br,x , let

f (v1, v2) = F(t, v1(t)) − F(t, v2(t)),

a(v1, v2, v3)(t) = (A(t, v2(t)) − A(t, v1(t)))v3(t).

for vj ∈ Br,xj
with xj ∈ Br for j ∈ {1, 2} and v3 ∈ MRp(J ). Observe that by Eqs. 6.8

and 6.9

‖v1 − v2‖C(J ;Xp) ≤ CTr‖v1 − v2 − (wx1 − wx2)‖MRp(J ) + ‖wx1 − wx2‖C(J ;Xp)

≤ CTr‖v1 − v2‖MRp(J ) + (CTrC2 + C1C2)‖x1 − x2‖Xp .

Let CJ = ‖φR‖Lp(J ). For f we find

‖f (v1, v2)‖Lp(J ;X0) ≤ ‖φR(v1 − v2)‖Lp(J ;Xp) ≤ CJ ‖v1 − v2‖C(J ;Xp)

≤ CJ CTr‖v1 − v2‖MRp(J ) + CJ C3‖x1 − x2‖Xp ,

where C3 = (CTrC2 + C1C2). Similarly, applying the estimate for v1 − v2 again,

‖a(v1, v2, v3)‖Lp(J ;X0) ≤ C(R)
∥∥‖v2 − v1‖Xp‖v3‖X1‖

∥∥
Lp(J ;X0)

≤ C(R)‖v1 − v2‖C(J ;Xp)‖v3‖MRp(J )

≤ C(R)‖v3‖MRp(J )

[
CTr‖v1 − v2‖MRp(J ) + C3‖x1 − x2‖Xp

]
.

For v ∈ Br,x and x ∈ Br let Lx(v) = u ∈ MRp(J ) denote the solution of
{

u′(t) + A(t, v(t))u(t) = F(t, v(t)), t ∈ J0
u(0) = x.

For v1, v2 as before let uj := Lxj
(vj ) for j ∈ {1, 2}. We find that u := u1 − u2 in MRp(J )

satisfies u(0) = x1 − x2 and

u′(t) + A(t, v1(t))u(t) = f (v1, v2)(t) + a(v1, v2, u2)(t), t ∈ J.

Therefore, by Step 1, Proposition 4.15 and the previous estimates, we find

‖Lx1(v1) − Lx2(v2)‖MRp(J )

≤ 2CA

(
‖x1 − x2‖Xp + ‖f (v1, v2)‖Lp(J ;X0) + ‖a(v1, v2, u2)‖Lp(J ;X0)

)

≤ K1(‖u2‖MRp(J ))‖x1 − x2‖Xp + K2(‖u2‖MRp(J ))‖v1 − v2‖MRp(J ),

(6.12)

where for s ≥ 0,
K1(s) = 2CA(1 + CJ C3 + C(R)C3s),

K2(s) = 2CA

[
CJ CTr + C(R)CTrs

]
.
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Extending the definitions of L, f and a in the obvious way we can write wx0 = Lx0(x0).
Estimating as before, one sees that for x ∈ Br and v ∈ Br,x ,

‖Lx(v) − Lx0(x0)‖MRp(J )

≤ 2CA

(
‖x − x0‖Xp + ‖f (v, x0‖Lp(J ;X0) + ‖a(v, x0, w

x0)‖Lp(J ;X0)

)

≤ 2CA

(
‖x − x0‖Xp + [

CJ + C(R)‖wx0‖MRp(J )

]‖v − x0‖C(J ;Xp)

)
,

≤ 2CA

(
‖x − x0‖Xp + [

CJ + C(R)‖wx0‖MRp(J )

] 1

2C(R)CA

)
,

(6.13)

where in the last step we used Eq. 6.11.
Choose 0 < r ≤ min{1, r0} such that

4CArC(R)CTr ≤ 1

4
Choose T such that Eq. 6.10 holds,

2CACJ CTr ≤ 1

4
,

CJ

C(R)
≤ r

4
, and ‖wx0‖MRp(J ) ≤ r

4
.

Let ε = min{ r
4CA

, r}. Then from Eq. 6.13 we obtain that for all x ∈ Bε, Lx maps Br,x into
itself. In particular, for all x ∈ Bε and v ∈ Br,x ,

‖Lx(v)‖MRp(J ) ≤ ‖Lx(v) − wx0‖MRp(J ) + ‖wx0‖MRp(J ) ≤ r + r

4
≤ 2r. (6.14)

Moreover, for all xj ∈ Bε and vj ∈ Br,xj
for j ∈ {1, 2},

‖Lx1(v1) − Lx2(v2)‖MRp(J ) ≤ K1(2)‖x1 − x2‖Xp + 1

2
‖v1 − v2‖MRp(J ), (6.15)

where we used Eqs. 6.12 and 6.14. In particular, Lx defines a contraction on Br,x and by
the Banach contraction principle we find that there exists a unique u ∈ Br,x such that
Lx(u) = u. This yields the required result.

The final estimate of the theorem follows from Eq. 6.15.
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