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Abstract Applying the new class of multiple weights functions and new sharp maximal
functions, we obtain the pointwise estimates, strong type and weak end-point estmates
for certain classes of multilinear operators and their iterated commutators with new BMO
functions.
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1 Introduction

Let T be a multilinear operator initially defined on the m— fold product of Schwarz spaces
and take values into the space of tempered distributions,

T:SR" x...xS®R") - S'®R").
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372 G. Pan, L. Tang

We study that T is a multilinear operator and satisfies the following conditions:

(1)  If there exists a function K, defined off the diagonal x = y; = ... = y,, in (R")"*!,
such that

T(fto-s fm)(x) = /(Rn)m K, yis o ym) i) - fmm)dyy - dym - (1.1)

forall x ¢ ﬂfle supp fj;
(2) Forany N > 0, there exists C > 0 such that
C

m mn m N’ (1.2)
(W0 e = i)™ (14 28— vk = wl)

K (y0, Y15 -+, Ym)| <

(3) For some ¢ > 0 and any N > 0, there exists C > 0 such that

K (30,3 ¥ os Ym) = K300 ¥ )]
Clyj —y;If (1.3)

< 9
(2 o vk = yi)™ (1 + 20 o by — i)™

provided that 0 < j < m and |y; — y;.| < %maX0§k§m ly;j — ykls
(4) Thereexist1 <gqi, -+, gm < oo and % = ql—l +---+ qim such that 7" is bounded from

L9 x ... x LI — L9, (1.4)

When N = 0 in Egs. 1.2 and 1.3, such kernels are called m-linear Calder6n-Zygmund
kernels. since the multilinear operator T satisfying (1.1)—(1.4) has better properties than an
m-linear Calderén-Zygmund operator, from [7] we know that

T:L!" x...x LI - L9, (1.5)
whereé:q—ll+-~-+q%,1<qj<ooforallj=1,~--,m;and
T: L7 x--.x LI - [T
where 1 < gqq,---,qnm < oo and q‘—l+. . .+qim = é.ln particular, it will be relevant the case

T:L'x--x L' — Liu™, (1.6)
If the operator T satisfies (1.1)-(1.4), we know that multilinear pseudodifferential
operator is only the special case of T'; see [1, 2, 14].
The commutator of a linear Calderén-Zygmund operator 7 and a BMO function b,
Ty (f) = [b, TI(f) =bT(f) — T(bS),

was first studied by Coifman, Rochberg, and Weiss [5] who proved that

T, : LP(R") - LP(R"),
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actually
I To(f) lLr < C Il b llBmoll f llLr .

Let _b) = (by,...,by) be in BMO™. The commutator of 7 and the m— Linear
Calderén-Zygmund operator 7', denoted here by Tz_b) , was introduced by Pérez and Torres
in [12] and is defined via

Tyg (Fioeees ) = D T3 (fisoes fon),
j=1

where each term is the commutator of b; and T in the j-th entry of 7', that is,
PR —
Tbjj(f):[bj,T](f)EbjT(fl,...,fj,...,fm)—T(fl,...,bjfj,...,fm).

It was shown in [12] that TE—I; satisfies the bounds (1.5) for all indices satisfying % =
q% + -+ i with 1 < ¢; <ooforall j =1,---,mandq > 1; The result was extended

in [8]toall ¢ > % The estimates are of the form

m m
—
I Tz (A e C LY by lsso | [T £5 Nl
j=1 j=1
Moreover, weighted-L? versions of the bounds (1.5) were obtained in [8] for weights
in the class A (see again the definitions in the next section). The end-point estimate (1.6)

does not hold for TE7. Instead the following estimate was also obtained in [8]

e iry g (== [T ([ o (252 )ar)".
j=1 ME

where ®(t) = (1 + log™t). The result is still true if the Lebesgue measured is changed by
an A~ weight.

For a multilinear operator 7 and b = (by,...,by) in BM O%(see the definition in the
next section), we define the iterated commutators Tn? to be

Thz (Ureeos fm) = [b1, (b2, - (b1, [bi, T lm—1 (. (1.7)

To clarify the notation, if T is associated in the usual way with a kernel K satisfying
(1.1), (1.2) and (1.3), then at a formal level

Tz (0 = [ TT0/0 = b0 K st 3 0 - Fumdyr
j=1

Recently, Lener, etc, [8] applied the new maximal functions and multiple weights to
study the weighted norm inequalities of multilinear Calderén-Zygmund operators and their
commutators with BMO functions. Futhermore, Pére, etc, [11] gave end-point estimates for
iterated commutators of multilinear singular integrals. Very recently, Tang [13] obtained
that weighted L” inequalities for pseudo-differential operators with smooth symbols and
their commutators by using a class of new weight functions. In addition, Bongioanni, etc,
[3] proved L?(R")(1 < p < oo) boundedness for commutators of Riesz transforms asso-
ciated with Schrodinger operator with BM Og (p) functions which include the class BM O
function, and they [4] established the weighted boundedness for some Schrodinger type
operators with weight Af,’e class which includes the weight class in [13].
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Inspired by the works above, in this paper we focus on the weighted boundedness of cer-
tain classes of multilinear operators for the new class of multiple weights and their iterated
commutators with the new BMO functions.

The article is organized as follows. Section 2 contains some basic definitions and facts
concerning on a new class of multiple weights, new sharp maximal functions, and Orlicz
spaces needed throughout the rest of this work. In Section 3, we give the pointwise and
strong(weak)-type estimates for maximal operators and multilinear operators. Finally, we
give the pointwise and strong(weak)-type estimates for multilinear iterated commutators in
Section 4.

Remark During preparing this paper, we learned that Bui [2] obtained the weighted bound-
edness of the operators T satisfying (1.1)—(1.4) and commutators generated by T satisfying
(1.1)—(1.4) and the new BMO function in the multiple weights setting (see Corollaries 3.2
and 4.2). It should be pointed out that, in this paper, we not only give these results by using
a different way posed in [13] (see also [9, 10]), but also we give some new results such as
the end-point estimates for commutators.

2 Some Preliminaries and Notations

We first recall some notations. Q(x, r) denotes the cube centered at x with the sidelength
r and AQ(x,r) = Q(x,Ar). Given a Lebesgue measurable set E, |E| will denote the

Lebesgue measure of E. For m exponents py, ..., pm, we will often write p for the number
—

given by % = i +...+ ﬁ, 77) forthevector? =(p1,...,p1)and 8 = (O,...,0p).

For any number r > 0, r? is defined by r_p> = (rp1, ..., "pm)- In this paper, we write

©(Q) = (1 +r), where r is the sidelength of Q and 6 > 0.
2.1 The New Class of Weights
In this section, we recall the definition of the new class of weights introduced by [4].

For1 < p < oo and # > 0, the weight @ (w is a nonnegative and locally integrable
function) is said to be in the class A(; if there holds

7 S\
(/ a)) (f wﬁ) <Clo|(1+7r)° 2.1)
0 0

for all cube Q(x, r). In particular case when p = 1, is understood
1 / (Mdy < C(A+r) inf o)
— | w()dy < r)” inf w(x).

|Q| Q xeQ

Then we denote A7° = U@ngf, and A = U1 A7°. We remark that A(,)7 coincides with
the Muckenhoupt’s class of weights A, in [6] for all 1 < p < co. However, in general, the
class A% is strictly larger than the class A, forall 1 < p < oo. The following properties
hold for the new classes AC;,O, see proposition 5 in [4].

Proposition 2.1 ([4]). The following statements hold:

(i) AY CAP forl <p =g <oo.

@ Springer



New Weighted Norm Inequalities for Certain Classes of Multilinear... 375

(ii) Ifw € A%, with p > 1 then there exists ¢ > 0 such that v € A1°7°76. Consequently,
AR = AS°,
Ug<p q
(iii) Ifa) € A°° with p > 1, then there exist positive numbers 6, | and C so that for all
cubes Q,

(|;|/le+8(x)dx> - <c(|;| / w(x)dx) A+r)'.

Proposition 2.2 ([13]). The following statements hold:

—1
(i) weAG if and only if wP=1 eAi,, Where%ﬁ—% 1.
(ii) Ifo1, wr € A%, p > 1, then w‘l"w;"‘ € Af,foranyO <a<l.

(iii) Ifw € A, for1 < p < o0, then

1

1
OOl d C p d
¢9<Q>|Q|/Q'f(y)' = ( (5Q)/ f1Fom) Y>

In particular, Let f = xg for any measurable set E C Q,
Bl _ ( w(E) )L
v (D)1 0| w(50)

m
Let1 < pi..... pw < 00.For @ = (@1, ... wp). Set vz = [ [ !/" . For6 = 0, we
j=1

say that @ is in the class A% if

1 1l n p/
(Qfgvg(X)dx) H(IQI/- (x)dx)

1
1 1-p', A
for all cubes Q. When p; =1, <—/ W, by (x)dx) "I is understood (inf wi(x))_l.
10 Jo xeQ

)

<Cca+n"

For 1 < p1,..., pm < 00, we set A°7),° = nger_p). When 6 = 0, the class A%,
coincides with the class of multiple weights A— introduced by [8]. The following result
gives a characterization of the class A%.

Proposition 2.3 ([2]). Let 1 < pi,..., pm < 00 and @ = (w1, ...,wn). Then the
following statements are equivalent:

(i) & e A°°

. 1
(ii) a)} /e A;Op;’ j=1....,mandvg € Afnop.

The class A% is not increasing which means that for 7 = (pi,..., pm) and ¢ =
(q1,-..,qm) with p; < q;, j = 1,...,m, the following may not be true A% C A?.

However, we have the following result.
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Proposition 2.4 ([2]). Let 1 < py, ..., pu <00 and @ = (w1, ..., on) € A% Then,
(i) Foranyr > 1, @ e Af%;
(ii) If1 < p1,..., pm < 00, then there exists r > 1 so that @ € A°% .

p/r

2.2 New BMO Function Spaces BM O,

In this section, we will recall the definition and some basic properties of the new BM O
function spaces. According to [3], the new BMO space BM Oy with 6 > 0 is defined as a
set of all locally integrable function b satisfying

L / Ib(y) — bpldy < C(1+ 1)’ (2.2)
10l Jo

where Q = Q(x,r) and bp = IiéI/ b. A norm for b € BM Oy, denoted by ||b||g, is given

by the infimum of the constants satisfying (2.2). Clearly BM Op, C BM Og, for 6 < 6,
and BM Oy = BM O. We define BM O, = Ug>0BM Op.

The following result can be considered to be a variant of John-Nirenberg inequality for
the spaces BM Ox.

Proposition 2.5 ([4]). Let6 > 0, s > 1. If b € BM Og then forall Q = Q(x,r)
(i)

1

1 s
(7/ 1b(y) — bQ|SdX> <l b e (47
101 Jo

(ii)

1 1
(|3"Q| /3kQ 16 = bBlsdx> <Il'b llg k(1+3)7,

forall k € N.

Proposition 2.6 ([14]). Suppose that f is in BM Oy, there exist positive constants y and C

such that
supL/ exp{ yIfx) — fol }dxfC
o 101 Jo I f llBmo, (1+r)?

2.3 Orlicz Norms

For @ (1) = 1(1 + log™t) and a cube Q in R" we will consider the average || f |lo,o of a
function f given by the Luxemburg norm

I f lo.o= inf(h > 0 |;|/Qd>(|fix)|>dx <1

We will need the several basic estimates from the theory of Orlicz spaces. For more
details about these spaces the reader may consult the book [15] or [16], we first recall that

I £ llo.o> 1if and only if -5 [, @ f(x)dx > 1.
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Next, we note that the generalized Holder inequality in Orlicz spaces together with the
John-Nirenberg inequality implies that

1
@/Q |(b() —be) fW|dy <l b lsmoll f lLizogr).o -
By proposition 2.6 and the generalized Holder inequalitiy in Orlicz spaces, we get
1
@/ I(b(y) = bo) fDIAY <1l b l8mo, |l f llL(Logry,0 (1+1). (2.3)
Q

We will employ several times the following simple Kolmogorov inequality. Let 0 < p <
q < oo, then there is a constant C = C), ; such that for any measurable function f, we have

I f ”Lp(Q’ ‘dx) <|I f ”Lq(Q O
2.4 Maximal Functions and Sharp Maximal Functions

We now define a maximal operator M,, , for 0 < n < oo by

M
nf 0= sup w(Q)"IQI/ FOIdy.

Proposition 2.7 ([13]). Let1 < p < oo, p/ -5 and suppose that » € A’7 forn > 0.
There exists a constant C > 0 such that

| My pn f lLr@=<C Il f lLr(w) -

Let 0 < n < 0o. As in [13], we define the dyadic maximal operator M(ﬁ n by

A —
M(N]f(x) = x)|dx.

1
sup o / |f (x)
x€Q(dyadiccube) (/)(Q)W|Q| Q
And the dyadic sharp maximal operator Mf,’,ﬁ is defined by

A 1
Mgy f(x) = sup f) — foldy+ sup [ f()dy
- veor<1 10! Q(xo,n' ol err>1<P(Q)”|Q| 0G0.r)
1 1
>~ sup inf — [f(y)—Cldy+ sup lf")ldy,
xe0,r<1C 191 Joo,n err>1<P(Q)"|Q| 0(x0,7)

where fo = @ fQ f(x)dx and Q’s are dyadic cubes.

Proposition 2.8 ([13]). Let 1 < p <oco,w € A, 0 <n <ooand f € LP(w), then
I e <1 My f e < C Il M3 lLrw) -

We define a variant of dyadic maximal operator and dyadic sharp maximal operator as
follows

ME, Fe = M2, (1FP) @),
MSy, F) = MED (1£1P) (o).
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Proposition 2.9 ([13]).Let 1 < p < o0, w € AL, 0 < n < ocoand s > 0. Let y :
(0, 00) +— (0, 00) be doubling, that is, ¥ (2a) < (a) for a > 0. Then, there exists a
constant C depending upon the A condition of w and doubling condition of Y such that

iuI(J)W(k)w({y eR": My, f(3) > 2) < Ciul())W(k)w({y eR": M, F(3) > 2D,

1
ML (LogL),p.nJ (X) = sup ; I f llzrogr),0 -
xeQ @ (Q)
Given _f) = (f1,--., fm), we define the maximal operators M, , and M (rogr),4,7 DY

M. (7)) = supH (Q),, AP

and

—
ML (LogL),p,n( f)(X) = Sup 1_[ (Q)’? | fi lLcLogLy, 0 -

3 Estimates for Multilinear Operators

Theorem 3.1 Let T is a multilinear operator satisfying (1.1)—(1.4) and let 0 < § < % and

6
n > 0. Then for all f in any product of LY (R") spaces, with 1 < q; < oo, there exists a
constant C such that

M " n(T(f))(X) < CM, n(f)(X) (3.1)

Proof Wefixx € R" andLetx € Q = Q(xo, r)(dyadic cube). To prove (3.1), we consider
two cases about r.

Case 1. Whenr < 1.Since0 < 4§ < % < 1, for any number C we can estimate

(IQI/ irHor -l ’d2> <<|Q|f rFro-cf dz)

Let O* = 3Q, we split each f; as f; = fl.O + f2° where fl.O = fxo+ and
12 = f; — 0. This yields

[Tron="3 o0 f8om =100+ 100 £ ).
j=1 j=0

/
where each term in Z contains at least one a; # 0.

Thus, Let C = Y.'Cy,, - - -, Cq,,, e have

1
—I+11
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By Kolmogorov inequality, we have

ool
FCUTU ot g a .QQ—CH@AQ”"(Z)"”
j=1

<[l agmma f re0az = M)
j=1
since T : L' x -+ x L! —>Lm.

We set now Co,l, oy = T, - - fam)(x), for any z € Q, we will show the
following estimate:

Z | T fm) @ = T - fam)(x) |< CM, n(f(X))
Consider first the case when @ = - - - = «, = 00 and define T'( f ) = 1T(f100’ e ).

] 8
<@f |T(flooa"'s nozo)(Z)—T(floo’...’ rzo)(x)rst)
1
5 (lQl/ I (fl [ foo)(z)_T(floo,7 frzo)(x)ldz)

L S
|Q| (RM3Q)™" (Iz—y1|m+ <+ |z = yp|)rmte
1_[, 1|fj(yj)|

(1+|Z—y1|+ +|z—ym|
|fipld Y dz
/;Z (p(2k+l Q)N /3k+1Q)’"\('§kQ)m l_[ I

3 ke m

= Ckz pETON | 1_[ | fil3e g < CMy, (£,

if taking N > mn.
We are now to consider aj; = - -- = aj; = 0 for some {ji,---, ji} C {l,---,m}and
1<l <m.

)Nd‘y’dz

1

Ol17._.’ O _T ogl’”.7 m Ed)a
(|Q|/| E o M@ = T fim @l

= |Q|/| o M@ = TR 3o lds
1
=TI /Ifj(yj)ldyj
|Q| Jriny 738

@3yt (2= yil+ -+ 12— yu D" A+ [z = yi[+ -+ [z =y DV
=C 1_[ f £ pldy;
J€ Jui}
|Q/ /
XZ @R+ gyn—t 1_[ [fi(yildy;

k= 1(3I‘|Q|")"”""‘E @IV J( j¢{j1,-~-,j1}

e e]

|Q¢/m
= CZ (3k|Q|]/n)nm+s(p(2k+lQ)N /(3k+IQ) 1_[ |f/()’/)|d y

o0

k
5c27]_[|f‘|k+1 < CM,., f (),
k k+10\N J13¥ 0 @1
o e T
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if taking N > mn.

Case 2. Whenr > 1,since 0 < § < % < 1, and n > 0, by Kolmogorov’ s inequality and
T:L'x..-x L' - LY™ we have

1
(w(Q)”IQI/ rreorar)
1
1 3
= Co o (@/me, v fﬁ)(x)ﬁdx)

1

Co 1 5
+§ — [ — T(f*, ..., fom 5)
¢(Q)1V? (lQ\/Q' Ui I @)

0
I TG T g )

1
<C
T @™ ]
+Z’¥<if T f“m)(z)ﬁ)g
9@ \|Q| boooam e

m
1

|| d R ,5>§

<o U agr [ 10w+ X g <|Q|/' U fa @)
CM L T(FY ..., fom a)

< My, (FHHo+ % W(Q)”/S (\QI/gl fy Femy(2)]

Consider now o] = - - - = o, = 00, taking N = mn, we obtain that

1
- T e £ () c_ / T e Pl
(@ (IQI/' i d m') =Cigp Jo MU @M

1fi( )I
- / /‘ 1_[, 117 Ndydz
|Q| ( m\3Q)m (|z—y1|+ +|Z—y1|)"m+
/ /‘ [Tio 1fiGpl
IQI 02 g aerigmasgr (3=l + - Sz = ym N

d¥dz

1
<C / Lfiildy -
; (3k|Q| >N @1elnym Jator | H o
o0
—
=< ]; W 1_[ |f] 3+l = CM(p,,,(f)(x).
Next we consider the case aj; = aj, = --- = «aj, = 0 forsome {ji,---, ji} C{L,---, m},

where 1 <[ < m and take N = mn + 1, then
1

! ! 1 A ) o

o (Q)1° @/"”f m>(z>|)
[t /i )1y

i — d

|Q|/ 1_[ /. |fj(yj | y] ﬁR"\3Q)ml (|Z_yl|+"'+|z—ym|)N+nm Z

Ui [F1 Oy
—c 1_[ f |fj(yl)|dy12/ e, i 501

jE i Bk+LQym—I\(3k Qym—I (3k|Q|;)nm+N

1 = -
= CZ-” kW l_[ | fjlsk1g = CMlp () (x).
k=1 ¢ j=1
The proof is complete. O
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Theorem 3.2 Let1 < p; < o0, j = 1,---,m,and% = ﬁ—f—---—i—p]?.Letv,a)j € Agfor
some 6 > 0. Then the inequality

N m
I My CF) Lrewy< CTT I fi Neriy)

Jj=1
—
holds for any f if and only if

lp] A
(w(Q)"IQI/) (¢<Q>9|Q|/ ) =%

1
where / ) " in the case pi = 1 is understood as (inf wi)~ L
(so(Q)‘)IQI ! e

The proof of Theorem 3.2 is almost the same as the proof of Theorem 3.3 in [8], so we
omit the details here.
Theorem 3.3 Let1 < p; < oo, j = 1,---,mand% = ﬁ+---+p%.Let?)) IS A%?, then

there exists some 1y > 0 depending on p, m, p;j and the condition on)) € A‘i);’ such that
. . — —
the inequality || Mg o ( f) llLrwo) < C]_['}Ll I fillzri (@) holds for every f .

Proof Since @ € A%, then there exists #; > 0 such that @ € A%. By proposition 2.3

/

1-p’
each w; Pie A , and v € Ai),zm By proposition 2.1(iii), there exist #; > 1,/ > 0 and

¢ > 0 such that for all 1 <t < t; and for any cube Q,

1
I/w”’t‘ <c 1/ij1| (140 (32)
10l Jo 7 o \olJy Y " '

where r is the length of the cube Q.

pm
pm+ (1= H(p; -

Let £ = minj<j<;, rj and ¢ = max|<j<p , and note that gp; >

1 for any j.
By Holder’s inequality, we obtain that

1 . 17#
: j ! APiw; /v=)1 - v— R q. 1—q\ar;—T aPj
@/Q|f]| = |Q|(fQ(|f]|p wj/vg)? Vw) (/Q (a)] = ) ) . (3.3)

qpj —

T T A= pm = 1)
inequality, we get

Lety; = . By the definition of ¢, y; > 1 for any j, and using Holder’s

’
—qv;

/(w?v%’qwr‘ < (/ w7 (/ V%"") n (3.4)
0 0 0

Note that for any j,

q(pj — 1))’,/- B q(pj—1)
gpj —1  qpj—D—1—gq)pm ~
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Thus, by (3.2) we obtain that

_p 49— 1)1/

qpj—1 pj—T qp;-T
/wj j :/ wj/ J
0 o

9=y} 3.5)
1_q<pj—1>yj’- L a1 apj =yl
<clol ™ / o)’ (I+r) 7T
0

Using (3.4) and (3.5) and v € A,,m, set 0’ = (Gomp(1 — q)l)/(qup;.), we obtain

(s

1 ! (A=g)(pm—1)

1--L
—pm(1—q) —_— pj 1 i i
<Cl|Q| i (/ w]{’, 1) a+ ) )</ vém_l) arj
0 o
-4
1 -1 J ’
et () T
i Q

Vo (Q)

Combing this inequality with (3.3), Proposition2.2 (iii) and @ € A%‘;, we obtain

1 ool
@ }]@fg'f-"

m 1

chn(u@(@/('fflp'w,/w)qw) p

H<“*(5Q> v (0) /Qﬂf]'pjwf/vz)"vg))

I/\

1
Oym m

1 ) ap;
<C(+r)« jl:[l (VB’(SQ) /Q(|fj|p’wj/‘)z})q‘)z}> .

Therefore, we have

1 m m

1
| 1
(1 + r)@1+0+62/q)m H] @/Q fil=€ 1_[ ( =50) / A1 wﬂvﬁ)%ﬁ)
J=

j=1

LetOy = 0 + 0’ + 02/q and g > 6y, we have

m e
M%no?(x) <C l_[(Mv3 W fi1P @) v)T)) 1T

j=1
By Holder’s inequality and Proposition 2.7, the theorem is proved. (]
Corollary 3.1 Let T be a multilinear operator satisfying (1.1)—(1.4). Suppose w € A,

n > 0and p > 0. There exists C > 0 depending on the AY constant of w so that the
inequalities

— —
I TCf) ler@=C Il Mg y( f) llLrw) (3.6)
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and N N
I TCH) lre@=C I Mgy(f) llrow) (3.7
hold for all bounded functions 7‘) with compact support.

Proof 1t is enough to prove (3.6) when the right-hand side is finite (or there is nothing to
prove). Applying Proposition 2.8 and Theorem 3.1, we have

— A — g,A — —
ITCH) e =l My,  (TCI) lr@y= C Il Mgy ((TCF)) lLr@)= C | My y(f) lLr ) -

Using similar arguments, we can obtain the weak-type estimate (3.7). The proof is
complete. O

Applying Proposition 2.3, Theorem 3.2, Theorem 3.3 and Corollary 3.1 above we get the
following estimates, which has been proved by Bui in [2].

Corollary 3.2 Suppose T is a multilinear operator satisfying (1.1)—(1.4), W e A? and

I _ 1 4. . .41
b= + +pm.wehave

(i) Ifl<pj<oo, j=1,---,m,then

N m
ITCH e = CTTI £ i) -
j=1

(ii)) Ifl1 <pj<oo, j=1,---,m, and atleast one of pj = 1, then

- m
ITCH) ey < CTT I fi L2 ) -
j=1

4 Estimates for Multilinear Commutators

We first give a pointwise estimate using sharp maximal functions. To state the pointwise
result we need to induce some additional for m-linear commutators involving j BM Oy
functions with j < m. As in [11], for positive integers m and j with 1 < j < m, we denote
by C;?1 the family of all finite subsets 0 = {o(1),--- ,0(j)} of {1,---,m} of j different
elements, where we always take o (k) < o(l) if k < [. Forany o € C ;”, we associate the
complementary sequence o’ € C'_ i given by ¢’ = {1,--- ,m} \ o with the convention
C(’)" = (). Given an m-tuple of functions _b) ando € C ;?1, we also use the notation _b)(, for
the j-tuple obtained from b given by (b (1), - -+ » bs(j))-

Similarly to (1.6), we define for a multilinear operator T, ¢ € C ;”, and _b) =
(bs(1), - -+ » bg(j)) in BM O%, the iterated commutator

—
Tnb—;(fl, e Sm) = bo1)s [bo2)s - - - [bo(j=1)s [Po(jy, Tlo(Hlo(j=1 - Jo@lo)(f)-

That is, formally

N J
Tl—lb_)(f)(x)zf H(ba(i)(x)_ba(i)(ya(i)))K(x’ ylv-~~sym)fl(y1)--~fm(ym)dyl~--dym-
o Rnm i1
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Clearly Tnb—> = Tn7 as defined before when o = {1, 2, -, m}, while Tnb—> = Tbé when
o = {j}. The pointwise estimate that will serve our purposes is the following.

Proposition 4.1 Let T be a multilinear commutator with b € BM 0%1) (5) =

61, -+ ,0m) and T is a multilinear operator satisfying (1.1)~(1.4). Let0 < <& < 1/m
andn> 01+ ---+6,)/(1/5 —1/¢e). Then

My (T <f))<x><cr]"[|| bj 1m0y, (Mraogty.on(F)0) +ME, (T(F))@)

j=1
m—1

+Ccy > H 1600) 1183100, Me (T € e
j=1 JEC’” i=1
4.1)
for all m-tuples 7) = (f1, ", fm) of bounded measurable functions with compact support.

Proof We only prove the case m = 2 and 6y = 6, = 0 for simplicity. In the general case,
there is no different computations but only more complicated. Fix then b1, b, € BM Oy and
for any constants A1 and A7,

Tn7(7)(x) = (b1(x) = M) (b2(x) = 22)T (f1, f2)(x) = (b1(x) — A1) T (f1, (b2 — 22) f2)
—(b2(x) = A2)T (b1 — M) f1, f2) + T ((b1 — A1) f1, (b2 — A2) f2)(x).

If we fix x € R”, adyadic cube Q > x and any constants ¢, ¢2, ¢3, thensince 0 < § < %
we can estimate (4.1) in two cases.

s

Case 1: r < 1. We have

o=

(|Q| /Q|| S YR SUR

j=1

ol —

1 3
@/Q T2 (@ = ejldz

Jj=1
1

1
<C <@ /Q [(b1(2) — 21)(b2(2) — AT (f1, fz)(z)lﬁdz) ’

1

1
+C <|Q|/Q|(b1(z)—M)T(fl,(bz—)»z)fz)(Z)—Cl|5d2)5

1
+C <@/ |(b2(2) = A2)T (b1 — A1) f1, f2)(2) — Cz|5dZ) 5

1
<|Q|/ IT((Br = A1) f1, (b2(2) = A2) [2)(2) — c3] dz)
=1+ + 11T +1V.
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By selecting appropriate constants we estimate each term separately. Let Q* = 3Q and
Aj = (bj)p* be the average of b; on Q*, j = 1,2. Forany 1 < g1, ¢2,q3 < oo with
1= qi +-L + L And choosing 8 sufficiently small so that 8g; < 1,i = 1,2 and g3 < &/8.

By Proposition 2.5 and Holder’s inequalities, we have

1 1
1 Sq1 Sqy
I <C(— [ 1biz) =2 P9d /b A S‘Dd)
< (IQI/ 1b1(2) 1 Z) )(IQI |D2(2) — A2|°*2dz
T(fi, 5‘/3d> "
(IQI/' (f1, L) (@)|°Pdz

< C 1 by llswoyll b2 Moy Miyn(T(f1. 2))().

Since II and III are symmetric, we only estimate II. we split each f; as f; = fl.O + £
where f0 = fixo+ and f° = f; — f0. Let ¢y = (b1(z) — A1) Y}, 1. where ¢jy =
T(fL, (b2 — 1) £5°)(2), c12 = T(f7°, (ba — 22) [)(@). c13 = T(f°, (b2 — 12) £5°)(2).

Choosing 1 < p < % and using Holder’s inequality, note that » < 1, we then obtain

1 0 0 s 7
I1 < C |l b1 llBmo, <@/ IT(fy, (b2 = 22) ) (@IP dZ)
1
<|Q| / IT(f7. (b2 = A2) £5°)(2) — cu|” dz)

(lQl/ IT(f°, (b2 = A2) £) (@) — c1al” dz)

1

1 78
+C<|Q|/ |T(ff’°,(b2—xz)f2<’°)(z)—c13|1’5dz>
=C || b1 llpmo, U1 + 11 + 113 + 11).

Using pé§ < %, Kolmogorov inequality and (2.2)

m=c T(fl,aaz—xz)fz) It
101

<c / I (z>|dz@f ((b2(2) — 1) 2 dz
<Clfilo Il b2 Mo, | f2 llLaogry,o (1 +1)?
< C |l b2 lIBM0y MLogL),0,n(f1, f2)(x).

Since 11, and I I3 are symmetric, we only estimate the first one. By Proposition 2.5, we
have

/3 o b2 = Aall () ldys < Ch(1 430 | by w0, 135 QLI f2 Il Lgogry 3441 -
4.2)
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When taking N = 0 + 27, we get

I <c@/ TP, (by — 32) 5932 — T(FO, (ba — ) f5°)(0)ld

IQIf (/ 'fl(yl)'d”>

[x — z|?[b2(y2) — A2l f2ldy2 )
®n\30) (12 =yl + 1z — yzl)z””(l +lz—=yil+lz = yDV

o0

ol [
C d by — A d
=c(f, mow m) (2: . o Ly el yz)

=1 GK|QIm)2n+e(1 4 35| Qm)N

e (14351
=C b2 llBmo, Zk3 m|fl|3k+lg|f2|L(lggL) 3kt

<C |l b2 llBmo, ML(Z()gL) e (f1, [2)(0).

For 114, using Proposition 2.5 and (4.2) and taking N = 2n 4+ 6, we have

I < C@IT(fI (b2 = 22) 7)) = T(f°, (b2 — A2) f3°)(x)|dz
/ (/ [ f1(y1) (b2 — A2) f2(y2)lIx — z/° dyldy2> dz
- |Q| @302 (2= yil+ |z = v D2t (L4 |z — yil + |z = 2DV
1O .
< C}; ol (1 3 ol /3k+1Q [f1(yDldy /3k+1Q [D2(y2) — A2l| f2(y2)|dy2

00 k+1,.\2n+6
ke (L3512
<C b2 llamo, Zk3 ksw

<C b2 llBmo, ML(Z()gL) o (f1, f2)(X).

ML(lagL),(p,n(fl , f2)(x)

We now estimate V.

RS _ 0 _ NI
IV <C 0l QlT((bl M)y (b2 — A) [5)(2)1°dz

1
+C <@/ IT((by — 1) £, (b2 — 22) f5°)(2) — C31|5dz) 3

1

(|Q|/ T (b1 = 2 £, (by = A £)(2) — e3a] dz)

1
e <@ /Q IT((b1r = A0 f{%5 (b2 = 22) [9)(2) = c33|8d2>
=IVi A+ IV2 + 1V + 1 Vs,

where

31 =T ((br — M) fY. (ba — A2) f5°)(x),
e =T((by — M) 72, (br — 22) f)(x),
c33 =T ((b1 — A f7°, (b2 — 22) [5°)(x).
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The estimate of 7V is similar to 7/, we obtain
IVi <C || T ((by —A)f2, (by — 22) 2
1 SCIT (i —a)f), (b2 2)f2) ||L7 ~0.45)
< /I(blz—kl)fl @Ddz— /I(bz(z)—kz)fzo(z)ldz
IQI 101 Jo

<cCc +r)29 | b1 lBmoy |l B2 IBMOG I f1 ILGogr), 0l f2 ILGogL), 0
< C | b1 llBmogll b2 |BM0y MLt0gL)..n(f1, f2)(X).

Since 1V, and I V3 are symmetric, we only study the first one.

v <c@ 7 (1= 200 b2 = 32 £5°) @ = T (1 = )L, (b2 = 32) £5°) () dz

b — A d
|Q\// [(b1(y1) — A1) fi(yDldy

[x = z|°] (b2(y2) — 12) f2(32)]
30 (12— i+ 12— D2 (L4 2 — yil + 1z — DV
107
1 (3k1QIm)2nFe (1 4 3K QN

X <f [(b1(y1) —AD N (Y1)|d)’1> (/ [(b2(32) — Kz)fz(yz)ldm)
3k+1Q 3kt

1+ 3k+lr)29’+2917
(I + 3N

Mg

o0
< C | b1 lIBmogll b2 | BM0y MLiogL). 0. (f1 fz)(x)ZkZTke

k=1
< C | by llBmogll b2 1BM0oy MLaogLy,0,n(f1, f2)(X),

where taking N = 2(n + 0).
Finally, in the similar way we estimate / V4 and obtain

IV4a < C |l by lBmoyll b2 | BMOy MLogL),0,n(f1, [2)(X).

Case2:r > 1.Let0 < 8 < & < 1. Denote Q* = 3Q and Let A; = (b;) o+ be the average
ofbjon Q* j=1,2.Forany 1l < q1,q92, 93 < oowithqil—kqiz—i—qi3 =landgs < §

1

(L/ T (Fronld )
00110 J, ' nE S I 1

1 1 !
C———(— | 11 = 2D)(b2 = 1T (£, 5,
=" o(Q)/? (|Q|/QI( 1= A)(b2 = 2T (f1, f2)(2)] z)

1 1
C———(— [ 11 = 2T (1. (b2 — 2 sd)
@(Q)/8 <|Q|/ (b1 DT (f1, (b2 — A2) f2)(2)|°dz

1
C——=75 by — AT ((by — A J
() <|Q|/ (b — A)T (b1 — A1) f1, f) @I z)

o=

l

1 1 !
()8 <|Q|/Q| ((by — A1) f1, (b2 — X2) f2)(D)|°dz
=T+ 11 +111+1V.
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By Holder’s inequality, choosing 7 so that n(% - é) > 26, we have

I<c (i/ b1(2) — 2 |ql<3dz>q:‘“
= e \Jol Jo !

b 928 4 > ( qﬁ)ig
(IQI/ 1b2(2) — Aal?dz |Q|/ T )l

1437 || b b <7/T , Ed)g
( +3r)7 | b1 Moyl b2 | BMO, 00| IT(f1, f2)@)|"dz

1

Q)"

C
()8

CW 1 b1 lBpop || b2 llBMOy M, (T (f1. f2))(x)

< Cbilsmogll b2 lBMO, MsA,¢,n(T(f17 ).

A

By Holder’s inequality and Proposition 2.5, we have

! ( / b (2) — m”dz) ( f T, (bz—mfzw"%zz)]‘s
=2 g 0]

1
/ IT(f, (b2 — A2) £y )(z)|p5dz)

<C | b1 llamo,

1
p(Q)/o-0 (IQI

1
W(IQI/ T (b2 = 22) f5° )(Z)|p8d2)
1

1 )
+C || b1 llBmo, W (@/ IT(fr° ,(b2—)\2)f2)(1)|p dZ)

3=

+C | b1 IBMo,

3=

1

1 00 8 »
+C | b1 Mo, 2(0)0 <|Q|/ IT(f°, (b2 = A2) [32)(@)IP dz)

=1L+ 1L+ 15+ 114

Choosing 71 so that n(% —2) — 26 > 0, we now estimate //;.

I =Clblismo, ——=75— | T(f). (ba =2 ) Il rs

(Q)” ©.15)

1 0
<C b1 lsmo, W@/ 11 (Z)|dZ@/ [(D2(2) — A2) fr (2)ldz

<C |l b1 llBmo, 2(0)1/0 | b2 lBao, ¢(DIfilo I f2 lILgogL). 0

p(Q

<C b1 llBmo,ll b2 lBMo, ML gogr),p,n(f1, f2)(x)

1
p(Q)1 2%
< C |l b1 lIBmosll b2 l1BM 0Oy MLG0gL),0,n(f1. f2) ().
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Since /1, and 113 are symmetric, we only estimate /7. By Proposition 2.5, (4.2) and
Holder’s inequality, we have

1
1L = C | by llBmo, (Q),]/(g 7 IQI_/ IT(f7. (b2 — 22) £5°)(2)|dz

<C 1 billsmo, (Q)n/B 5 IQI./ (/ |f1(y1)|dy1>

30
I(bz(yz) A2) f2(y2)dya| )
x z
r3o (12— yil+1z —y2|)2”(1 +lz = y1l + 1z = 2DV
1 1 1
<C|b d
b1 llzmos o Z(3k|Q|”)Qn(l+3le| ~ (/3H1Q|f1(y1)| y1>

X (/ [(b2(y2) — )xz)llfz(yz)ldyz)
3k+lQ

1 ¢! +3k+1 )9+2nk
ONn/5—6 | (x) Z - 1
p(Q)" i1 (1+3KQ|m)N
We need to take N = 6 + 2n + 1 and choose 7 so that n/§ — 6 > 0, then we obtain

I < C |l by lIBMogll b2 1BMOs MLGogL),0,n(f1, f2)(X).
For the last term [ 14, taking N = 6 + 2n + 1 and n which satisfies /6 — 6 > 0, we have
1 1
0(0)=7 Q]

y i / LAIODIAG2)1b2(2) = 2ol i
= Jargnaiop (2 =yl + 1z = nD* (A +lz = yil + 1z — »hY

1
(Q)”/5 0

<C b1 llBmo, | b2 lBMOy MLgogL),p.n(f1, f2)

11, <C || b] ||BM09

<C |l b1 llBmo,
x Z

<C | b1lBmo,

[ JAGDIAGD02) = dalddya
L (1+34018 )N(3"IQ|")2” A

(Q)'l/5 7 102 IBMoy MLogry.on(fis f2)(x )Z

S C by lIBMogll b2 1BMOs MLGogL),0,n(f1, f2)(X).
We now estimate I V. As before, we first split any function

k(1 + 3k+1r)9+2ﬂ
(1 + 35V

1
V= (E/ T(“’l—M).flo’<bz—kz>f2°)(z)|5dz)5

1

1 1 . N
+<p(Q)n/5 (j/ Ir <(bl — A frs (b2 = 22) f5 )(z)l dz)1
1 1 N NS
Teh (E/ T (G =20 (b2 = 32 £7) @) dz) |

1 1 . 1
+W (@/ 1T (b1 — A1) f7°, (b2 — A2) f5°) (2] dz)

=IVi+1IVy+1V3+ 1Vy.
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The estimate of 1V is similar to /7. Taking 5 so that n(% —2) > 26, we obtain

IV < C by lBmoy |l b2 |BM0y MLogL),0,n(f1, [2)(X).

Since IV, and I V3 are symmetric, we only estimate / V,, (similar to I15). Taking N =
20 +26n + 1, we get

1 1 0 oo
IV, < CW@/Q IT((by — A1) f1, (b2 — A2) [57)(2)]dz

1 > 1
= L., o0 =20 sio0in )
g"(Q)'”ak:l(1+3’<|Q|r'r>N(3k|Q|»‘w>2n(wlg T A e

x ( / (b2 (y2) — x2>fz(yz)|dyz)
3k+1 Q

+ 3k+lr)29+271
(+ 3"

gy =761
< C Il by llBmo, |l b2 1BM0y MLaogLy.pn(f1s f2)(X) Y

k=1
< C | by lIBMOoyll b2 I1BMOy MLiiogL),0,n(f1, f2)(x).

Finally, we estimate I Vy in the similar way and we obtain

IVy < C |l by l1BMog I b2 1BMOs MLGogL),0,n(f1, f2)(X).

From the estimates above, we see that it is enough to take n > 26/(1/8 — 1/¢). The proof
is complete. O

We note that we can also obtain analogous estimates to (4.1) for m-linear commutators
involving, j < m function BM Oy.

Proposition 4.2 Let p > 0 and w be a weight in AY. Suppose that Thg isa multilinear
commutator with Z) € BMO% (5) = (01, - ,6p)) and T satisfying (1.1)—(1.4). Let

n > 0. Then there exists a constant C > 0 depending on the A constant of w such that

/R T2 (HoPowdx < ] 1 bi lsmo, /R Mrostypn (£ 0 (x)dx
i=1

and

wp sanery @ (0 R Tz (Hl > )
< Csup

>0 (D(m)(%) Y + YL (logL),¢.n y

for all 7) = (f1, -+, fm) bounded with compact support.

Proof Applying Proposition 2.8, Theorem 3.1 and Proposition 4.1, in the similar way as in
Theorem 3.2 in [11], we can get the estimates above. We omit the details here. O
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—

Theorem 4.1 Let Tn? be a multilinear commutator with b € BM O%(? =
1, ,6m) and T satisfying (1.1)~(1.4). Let W € A with % = % + p%, and
l < pj<oo,j=1,---,m. Then, there exists a constant C such that

m m
—
I Ty () vy = CTT 10 smon, [T fi v ) -
j=1 j=1
Proof Since @ € A%, by Proposition 2.3 we get the weight v is in A7}, Applying
Proposition 4.2, we have that

/Rn |T (f)(x)|”v—>(x)dx <C H Il b ||BM09 / Mz ogL),e, ,,(f)(x)”v—>(x)dx

j=1
If £ > 1 and since ®(¢) = 1(1 +log™(¢)) < t*,t > 1, we have

1 w
| £ logty.0= € (— / If(y)l"dy>
21 /o

Thus, we have

1

1
o =< *d
pigyr |/ Intesty.0 = w(Q)”(IQI/ ) y)

1

C Hd ,
= <¢<Q>"|Q|f'f(”' y)

— — .
and Mz jogrL),p,n f (*) < My .»( f)(x). Now we obtain

— —
I Tqz () )= C Il Mg n () llzrog)s

Now to prove I M, e, n(f) lrws)=< C]_[ =1 I fi Npes ©@)) is equivalent to prove ||

(M(f) o)< C]_[j=l I f; ||L"/(w,)~ Taking n = ng, by Theorem 3.3, this is
equivalent to prove that @ € A% " In fact, we already know that this is ture for some
@ > 1 because of Proposition 2.4(ii). Thus we get

(D) e =€ H 10 llzpo, H I fi e (@)

j=1

Thus, Theorem 4.1 is proved. O

Proposition 4.3 Let @ e A9_1> and n > 20. Then there exists a constant C such that

1
v x € R Mogrypn (7)) > ") < C H (f S (M) wj(x>dx) ,

4.3)
where ® (1) = t(1 + logtt) and ™ = do-- -0 d.
——
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-

Proof Our goal is to estimate || = {MLqogr),4,n( f)(x) > 1}|. The set 2 is open and

we may assume it to be not empty. It is enough to control the size of every compact set F
contained in 2. Denote': N f ||¢,¢,,7,Q=_ 207 Il f llo,o -
For x € F, there exists a cube Q with x € Q such that

m
[T1 /i logno> 1. (4.4)

j=1

Thus, by Vitaly covering lemma, we can extract a finite family of disjoint cubes {Q;}
such that F € U;3Q; and {Q;} satisfies [T}_; Il fj llo,¢,n,0,> 1. Let C} denote the family
of all subset 0 = (o (1), - - -, 0(h)) from the index {1, - - -, m} with 1 < h < m different
elements. Given o € C" and a cube Q;, we say that i € By if | foq) llo,p,n,0,> 1 for
k=1, hand || fow) logno<lfork=h+1,--- m.

Now we consider 0 € C}' and i € B,. Denote [[;, = l_[];-=1 I fo(j) lo,pn 0 and
[1op = L. Then it is easy to check that [, > 1 for every 1 < k < m. It follows that

L <Tg =ll fow logn o Diet = ——— || for k=1 llo,0; -
o (k) v.n,0 (0" o (k) 0]
. 1
Since @ () = t(1 +log*tt), from 1 < ——— || fou k-1 llo,0, We get that
p(@i)"
l<———— ®(foupk-1). 4.5)
900l Jo, 7
In particular, taking k = m, we have
1 L O (fomm-1) < L D(for(m) P Tn—1) (4.6)
< -1) = -1)- :
90 Jo, 7Y = gom il Jo, T

From the following equivalence

. w
~ inf — [ O )
I flleo ,120{M+ 01 /o (|f|/M)}

We have

1 . n 12
I f logmo= o 1/ lle.o ,iﬂo{ga(g)nw(gmg , (Ifl/u)}

If1<j<m—h—1,by(4.5) we get

S/ (My—j) = D/l foom—jm—j—1 llo,0,)
< CP/

1
1 &Ly m iy T i
207 +</><Q,-)'7|Qi|fQ,. (Jotn—pTln=j ‘)>

= chj( D (fom—jHm—j-1) ) -

1
e(@)"Qil Jo,
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From (4.6), by iterating the inequality above, since ® is submultiplicative, we obtain

1
C—— D (fom)PI1,,—
= w(Qi>'7|Q,-|/Q,. (Forn) S (Tn—1)

1
<C——— | O(fom)———— | P form-1)P*(u—2)
0(@"0il Jo, " 9@ Qil Jg, T
m—h—1 1
<C _— cI)j+1(f ) (bmfh(nh)
JE) 90" Qil Jo, om=p
m—h—1 1 i
SC N q)j+1(f 7') qu—h(” f ' ”cb )
0 @(Q)" 0;l 0; om=Jj) ljll o(j) l®.0,n,0;
J= j=
Since i € By, we have || fo(j) llo,g,n,0,> 1,for j =1, -, h, and it follows

m—h—1 h
1 ; 1
l<C | o (fims — | e .
) (H oo Jo, T ”)) (E woo Jo, &V “)))
4.7)

Sincefor 1 <h <mand0 < j <m —h — 1, we obtain that ®/+1(r) < ") < D™ (1)
and ®"~"*1(t) < &™(r). From (4.7) we obtain that

m 1
1<C _— D™ (f),
<<l SGoian Jo, o0

or

e(0)"0il < C[] (/ d>’”(f,-)>m .
j=1 (]

Since 1 > 26, we obtain that

I|—

p0n¥10i =[] (/

I, d>"'(fj)) : (4.8)
Applying Proposition 2.2(iii) and (4.8) we obtain that
v3 (301 = Co(Q) vz (Q)
= Cw(Q,»>29|Q,»|¢("QZi§9Q|]gi|

m m m hs
C D"(f inf w: " 4.9)
- /1:[1 /Q,- )l <xlenQ- I (x)>
<c[] (/ <1>’”(f,-)wj)
j=1 Qi

j=1 ’

3=
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By (4.9) and Holder’s inequality at discrete level, we have

v (F)" <C (Z v (3Qi)>

\"m
(X% STI([, e osone)
h=loeC}ieB; j=I
<C ]‘[ /R " (fj(Mw;()dy,
=1
which concludes the proof of (4.3). The proof is complete. O
In the end-point case, we obtain the following result.
Theorem 4.2 Let Tl_[ 7 be a multilinear commutator with b € BM O%( 0 =
01,---,6)) and T satisfying (1.1)—(1.4). Let RS A?. Then there exists a constant C

such that
1

vg (e R 1T 2 (D@1 > M) < cl_[] (/R oM (U’tﬂ) a)j(X)dx)E :
j=

where ® (1) = t(1 + logtt) and ™ = do-- -0 d.
B —

m
Proof By homogeneity it is enough to assume ¢ = 1 and hence we must prove
n — m " m)
vz (ke R T 5 (Hwl = 1) =[] (/R @ (If;(x)l)wj(x)dx> .
j=1
Now, since & is submultiplicative, we have by Propositions 4.2 and 4.3,
—_ m
v (ke RT3 (Dl > 1)
<Cswp g (1 e B 15 (Dl > )"
T - >
?Eg (D(m)( ym Ve \X b X

1 n v m m
Cfggm @ ({x € R" : Mprogry,pn( f)(x) >t })

| £ ()]
(m) J
C;>8®(M)( )ml—[/n ( ) ]( x)dx

1 1
<Csup —— q)(m)( )m 1_[/ q>('n)(|f] x)Ho™ ( )“)J (x)dx

t>0
=C l_[ /I;n ™ (| f; (x)hw; (x)dx.
j=1

The proof is complete. O

Finally, we consider the commutator 7y, . Similar to the proof of Proposition 4.1 and
the linearity of 7, we get
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%
Corollary 4.1 Let T27 be a multilinear commutator with b € BM 0%(5) =

@1, - ,0m).Let0 <6 <e <1/mand> 2614 --+6y)/(16 — 1/€). Then there exists
a constant C > 0, depending on § and ¢ such that

My (Tom (D)@ = €Y 1bs 1m0y, (D Migoer g (FI@+ME,,(T(F)) ()
j=1 i=1

Sfor all m-tuples 7) = (f1, -, fm) of bounded measurable functions with compact support.

By Corollary 4.1 and the linearity of Tz_l; , we have

— —
Corollary 4.2 Let Ty be a multilinear commutator with b € BMO%(G =

1, ,6p) and T satisfying (1.1)~(1.4). Let W € A with % = ﬁ + p%, and
l < pj<oo,j=1,---,m. Then, there exists a constant C such that

m m

—_

I Ty () vy = €D b smon, [T 1 £i leriw)) -
j=1 j=1

We remark that Corollary 4.2 has been proved in [2].
— —
Corollary 4.3 Let Ty be a multilinear commutator with b € BM O%ﬁ( 6 =

©1, -+ ,0n)) and T satisfying (1.1)—(1.4). Let p > 0 and w be a weight in AZ. Then there
exists a constant C > 0 depending on the A3 constant of @ such that

fR Ty (H@Po@ds = C Y 11 b lsmo,, /R Y Mgy (0 ()
i=1 i=1

and

1
p o (b € R 5 1755 (1ol = 1)
t

>0
l 1 " . —
<Csup—o({y eR": Y M pop) () > 1"}
>0 D(7) i=1
forall 7) = (f1,- -+, fm) bounded with compact support.

Proof Similar to the proof of Theorem 3.19 in [8], We can get the desired result by
Proposition 2.9, Theorem 3.1 and Corollary 4.1. We omit the details here. O
Proposition 4.4 Let D e A9_l> and n > 20. Then there exists a constant C such that

vl € R My 0 (F)0) > " < C T </ ® ('f"(x”) w,-(x)dx> "

t

j=1
where ®(t) = t(1 +log™1).

Proof Without loss of generality we may assume i = 1. Also, by homogeneity, we may
—_
also assume that + = 1. Finally, we may also assume that f > 0. Definite the set
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Q={xeR": M}‘(logm 0 7)(f)(x) > 1}. It is easy to see that Q2 is open and we may
assume that it is not empty (or there is nothing to prove). To estimate the size of €2, it is
enough to estimate the size of every compact set F' contained in 2. We can cover any such
F by a finite family of cubes {Q;} for which

< I A ﬁlf £
e(Q;)m 1 IL(logL),Q; j=2|Qi| 0, J :

Using Vitaly’s covering lemma, we can extract a subfamily of disjoint cubes {Q;} such
that F C U;3Q;. By homogeneity,

1 m
[1Fe l file.o=

< I [ TDer e
p(o™ 1 H !

(Q )

We then get

A [T a | dy-

j=2

<o [ @
0@ 0il Jo,

Using now that @ is submultiplicative and Jensen’s inequality, we get

m

1
ool ), STy
<,»1:[1¢(Qi>"|Qi| /Q (f5dy

Thus we get

1
m

(01011 < H/Q (f;(»)dy
j=170i

Since n > 260, we have

m

00104 < ]"[/Q_q><fj(y>>dy

Since @ € Ae_r, sovg € A(f‘ by Proposition 2.3. By Proposition 2.2(iii) and the inequality
above, we get

v5 (301 = Co(Q; )Gv—>(Q)
= Cp(0)” Qi

i

(Q )10l

m m L
<c|[] /Q O(f;(»)dy H(xiengwjm) .
j=175 j ’

Jj=1

S
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Finally by the condition on the weights, Holder’s inequality at discrete level and the

inequality above, we have

vg (F)" < (Z v3(3Qi)>

i=1

i

= {1 s | ouioma
j=1 ! i
<c(X11 ( /Q O(f;()w; (y)dy) !
i j=1 i

<c] /R (1 f; ()N (1,
j=1

which concludes the proof. O
Theorem 4.3 Let Tz? be a multilinear commutator with b € BM 0%( 6 =
01, ,0n)) and T satisfying (1.1)—(1.4). Let @ e A?. Then there exists a constant C

such that

Ve ({x cR": |T}:Z’(?)(x)| - lm}) < Cl—ll </Rn ® <|fjt(x)|
/:

where ®(t) = t(1 + log™1).

1

) wj (x)dx) 8 ,

Proof By linearity it is enough to consider the operator with only one symbol. By

homogeneity it is enough to assume ¢ = 1 and hence we must prove

vg (e R T, (Hwl = 1) = ¢ I </R d><|fj(x)|)wj(x)dx) :
j=

Now, since @ is submultiplicative, we have by Corollary 4.3 and Proposition 4.4,

vo (e R T (HI = 1)

— m
< Csup—1—vg ({xe]R” T ()| >tm})
t>0 n
| L\
= Csup q)( T (tx € R Mgy gy (D00 > 1)
< Csup ) 1_[/ <|f'(x)|>a)j(x)dx)
>0 ; j=1
1 m
< Csup I ]_[/ d>(|f,(x)|)d>< )wj(x)dx
t>0 d) ; -1

=¢ I_I/Rn ®(1f; () (x)dx.
j=1

The proof is complete.

O
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