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Abstract We study a class of quasi-linear elliptic equations with model representative
Z:»l:l (Ju, |71 2y x)x; = 0, which solutions have singularities on a smooth manifold. We
establish the condition for removability of singularity on a manifold for solutions of such
equations.

Mathematics Subject Classifications (2010) 35B45 - 35J60

1 Introduction and Main Result

In this paper we study solutions to quasi-linear equations in the divergence form
—divA(x, Vu) = ap(x, Vu), xe€ Q\T, (1.1)

where Q is a domainin R”, n > 3 and I’ C Q is a manifold of dimension 1 <s <n — 2.
Throughout the paper we suppose that the functions A : Q2 x R” — R" and qp : Q X
R"™ — R" are such that A(-, £), ao(-, &) are Lebesgue measurable for all £ € R”, and
A(x,-), ap(x, ) are continuous for almost all x € Q, A = (aj, az, ..., a,).
We also assume that the following structure conditions are satisfied:

AGx, )& = v Y I&I7,

i=1

n 1,1)11_
Iai(x,%‘)lsvz<2|sj|"f) , i=1ln

j=1

n I_D't
lao(x, )] < v2(<2|a|"f> + 1), (1.2)
i=1
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where vy, v, are positive constants and

l<pr==pps = E (1.3)
i=1 P
1 1 &1 1 11
o < Pp—s+1 == Pn, ﬂzs Z L =I’ZZ L (14)
izn—s41 Pi p o Pi

m—1)p n—s—1

p = max(py—s, pn) < min( a), a<n-—s. (1.5)

n—p n—s—a
It is well known that the necessary and sufficient conditions for the harmonic function u
to have a removable singularity at xo is #(x) = o(|x — x0|2") as x — xp. Until recently
such a precise result for quasi-linear equations was known only for positive solutions since
the celebrated paper by Serrin [14], under relevant assumptions on the coefficients in terms
of L9-spaces (see [18] for the survey of the relevant results). For the sign changing solutions
Serrin’s result is expressed in terms of L4-conditions on the coefficients, and for removabil-
ity of isolated singularities and singularities on the manifolds it leads to a more restrictive
condition. A model example of the isotropic Eq. (1.1) is the following equation involving
p-Laplacian
—Apu=gulul”?+ f inQ\T, p> 1. (1.6)

For g, f € L1(Q2), q > Z Serrin’s condition [13, 14] on removability of singularities
on manifold I' with dimension s reduces to

u@x) = 0((d@, )" "t 550 p<n—s, (1.7

where d(x, I') is the distance from point x to the manifold I'. Further analysis of sufficient
conditions for removability of singularities of solutions has been made by many authors for
different classes of nonlinear elliptic and parabolic equations (c.f., e.g [18] and references
therein). The precise condition for the removability of singularity on the manifold I" for
Eq. (1.6) with g, f € L1(Q2), q > Z (and more general quasi-linear equations) has the
form

u@x) = o((d@x,T) " 1), l<p<n—s, (1.8)

which has been proved in [15]. In the case of an isolated singularity (s = 0) an analogous
result was obtained in [12].
Equations of the form

n
= (P Pug) sy = gululP 7+ f (1.9)
i=1
have not been much studied.
Examples constructed by Giaquinta [4] and Marcellini [9] show that Eq.(1.9) may have
unbounded solutions if p;s are too far apart. Local boundedness of solutions to Eq. (1.9)
has been obtained in [3, 6] under the condition

np
l<pi < <pa=< , p<n. (1.10)
n—p
This condition is sharp as there are unbounded solutions to Eq. (1.9) if condition
Eq.(1.10) is violated (cf. [3, 6]). Local boundedness of the gradient of a solution to Eq.
(1.9) was obtained in [8, 10] under condition Eq. (1.10) and sufficient smoothness of the
coefficients.
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Removable Singularities for Anisotropic Elliptic Equations 1129

It is worth nothing that the explicit fundamental solution to Eq. (1.9) is unknown. There-
fore until recently it has not been clear how a precise condition for the removability of an
isolated singularity of a solution to Eq. (1.9) can be stated. This question was successfully
answered in [11], where it was proved that a singularity at the point {xp} is removable if

g felLi(), qg> Z,and

esssup |u(x)| = o(r7;:7), p<n, (1.11)
D(R)\D(r)

where R is some fixed number and

n
D(r) = {x ey |y—x" < r}, (1.12)
i=1
(p—1
;= pitp =1 Ci=1,....n, (1.13)
p(n—1)—pi(n—p)
—1
l<pi<-i<pa<' = p. (1.14)
n—p

Existence of the positive fundamental solution to equation Eq. (1.9) was proved in [2]
under condition Eq. (1.14).

We are interested here in pointwise conditions on solutions to guarantee that the singu-
larity on I" is removable, that is, the solution can be extended to 2. Before formulating the
main results, let us remind the reader the definition of a weak solution to Eq. (1.1). Let I
be a manifold of class C! without boundary of dimension s contained in . Without loss of
generality assume that I' C {x; = x2 = -+ = x,—; = 0}. We say that u is a weak solution
to Eq. (1.1) in  \ T if for an arbitrary function ¥ € C'(2), vanishing in a neighborhood
of ', we have the inclusion uy € W!-P1--+Pr(Q) and the integral identity

/{A(x, Vu)V(py) — ag(x, Vi)pyr} dx = 0 (1.15)
Q

We say that a solution u(x) of Eq. (1.1) has a removable singularity on the manifold I"
if u(x) can be extended to I" so that the extension i (x) of u(x) satisfies Eq. (1.1) in € and
u(x) € WPt Pi(Q).

Let
i(a—1
b; = pile ) , i=1,...,n,
an—s—1)—pin—s—a)

x/=(xl»-~~»xn7s)» x”=(xn7s+l»--~»xn)» (1.16)
n—s b\ b1 n b\ b1

p(x) = <Z|xi|bn> Cop) = < > |x,-|hl) :
i=1 i=n—s+1

For Ry, Hy > 0 set

D(Ry, Hp) = {x : p(x") < Ro, p(x") < Hy},
Di(Ro) ={x": p(x) < Ro}, Dz(Ho) = {x": p(x") < Ho}.

We can assume that Ry, Hy are sufficiently small such that

Hy ,
DRy, H)) € Q, T C D(Ro, ; ) N{x' =0},
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1130 I. I. Skrypnik

Next we define the number M (r) characterizing local behaviour of the solution u in the
neighborhood of the manifold I'.

M (r) :=esssup{|u(x)| : x € D(Ro, Hp) \ D(r, Ho)}.

The regularity result from [3, 6] yields that M (r) < oo for » > 0. Now we are ready to
formulate our main result.

Theorem 1.1 Let u be a weak solution to Eq. (1.1) in Q \ T'. Let conditions Eq. (1.2)—(1.5)
be fulfilled. Assume also that

limr' e o1 M(r) =0, 1<s<n-—2. (1.17)
r—0
Then a singularity of u(x) on T is removable.

Remark 1.1 In the critical case « = n — s the condition of removability on the manifold I"
takes the form

lim m(r)|Inr|~' =0 (cf. [11]),
r—0
where m(r) = esssupf{lu(x)| : x € D(RU, Hp) \ D(r, Hp)}, D(Ro, Hy) = {x : d(x) <
e Pi py Pi pp
Ro, d(x") < Ho}, d(x') = Q_[= Ixil 7)) n ,d(x") = Qi _gpy 1Xil 1) .
The result analogous to Theorem 1.1 can be proved for this case with respective changes
in Lemmas 2.1-2.4 (see Section 2). We will not pursue this issue here.

The main step in proving Theorem 1.1 is the following result.

Theorem 1.2 Let the conditions of Theorem 1.1 be fulfilled. Then there exist positive
constants Ko, ¢ depending only on vy, v2, s, n, pi, ..., pn, Ro, Ho such that

M(r) < Kor~"«" %<, r >0, (1.18)
We Point out that our approach continues the studies of I. V. Skrypnik [16, 17] on point-
wise estimates of nonlinear capacity potentials. The rest of the paper contains the proof of
the above theorems.
2 Proof of Theorem 1.2

2.1 Auxiliary propositions

The following lemmas will be used in the sequel. The first one is the well-known embedding
lemma (see [1]).

Lemma 2.1 Ler Q C R", n > 2 be a bounded domain, v € WH1(Q) and

5[

i=1g

dv |pi
v)dx<oo, o >0, pi > 1.
8x,~
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Removable Singularities for Anisotropic Elliptic Equations 1131

g;d< p <n, thenv € LY(Q), q = n”_pp(l + rl, Yo Zi) and the following inequality
olds

1
n
| dv |Pi npi (14 ) yon_ %k
vllze@) = Klr[(/ | . dx) k=) 2.1)
i=l Vg !
where the constant K| depends onlyonn, a;, pi, i =1,...,n.
The next lemma is an immediate consequence of Lemma 2.1.
Lemma 2.2 Letv € WHI(Q) and
" o | OV |Pi
Z |v] lax) dx <00, 0=<a; <pi, pi>1. (2.2)
1

i=lg

;{}d< p <n, thenv € L1(Q), q = n”fp(l — rll Yo ;i) and the following inequality
olds

1
n
_.| 0v |Pi npi (1= by ok
Il < K2 ]| (/ o~ . dx) k=1 ) (2.3)
i=1 \g !
with positive constant Ko depending only onn,a;, pi, i =1,...,n.

In what follows we will frequently use the following lemma [7, Chapter II, Lemma 4.7].

Lemma 2.3 Let {y;} be a sequence of non-negative numbers such that for any j =
0,1,2,... the inequality

i1 < Cblyi*e 2.4)
holds with positive constants ¢, C > 0, b > 1. Then the following estimate is true

(1+e)/ -1 (+e)d 1 _J (l+£)j

yj < C € b &2 & yO (25)

1
Particularly, if yo < C*slb 2, thenlim;_ o y; = 0.
2.2 Integral estimates for the gradient of solutions

Let 1 € C®(R!) be such that 7(¢r) = Ofort < 1,7(t) = lfort > 2,0 < t(¢) < 1,
0< 40 <2 [ eR!
Fix a point |£”] < 1;0, forr >0, h > 0 set
U@ =107 o@)), GG =1-th T p(" —§").
For 0 < r < Ry set
up =W —M(r))y, E(r)={x € D(Ro, Ho) :u(x) > M(r)}.

By the known parameters we understand the numbers vy, vy, n, s, p1, ..., Pn, Ro,
Hy, m, where m is a fixed positive number such that m > 1 4+ p. In what follows y stands
for a generic constant that depends on known parameters only and may vary from line to
line.
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1132 I. I. Skrypnik

Lemma 2.4 Let the conditions of Theorem 1.2 be fulfilled. Then there exists a positive
constant ¢\ depending on the known parameters only such that the inequalities

Hy
0<r<p=Ro, 0<h52, p=h (2.6)
imply that
n
Z / lux 179" gt dx < crM(r)h™ (u(r) + 1) 2.7)
=lEG()

where ag = s(1+ "5~ ](ﬁ — 1), u@r) = Z;':—]S(r";i_la M(r)Pi—t

Proof Without loss assume that lim,_,.o M (r) = oo and suppose that R satisfies the addi-
tional condition M (Rp) > 1. Testing Eq. (1.15) by ¢ = u,,t//r’”’lg“}:”, ¥ = i, and using
conditions Eq. (1.2) we have

n _ 1
pi oy _
3 [mirvras < v 5 [ (D)l it
=E(p) =g = l
n n -1
) Pi 3{;,
b X [(S) a3 s
i:n—s+lE(p) j=1
n 17(1¥
+y / ((Z |ux,|Pf) + l)upw:"c,;"dx-
E(p) !
From this using Young’s inequality we get
n n—s
) | 0y |Pi
Z/ g, 1Py gptdx <y Y / uﬁf)axf g dx
=1E(p) =1E(NK () l
Ly |Pi
+y Z / bi ;h Y dx
i=n— S+1E(p)
sy [ ugurepax+y / ureas,
E(p) E(p)
(2.8)
where K(r) = {x' : r < p(x") < 2r}.
Using the definition of M (r) we have
aw n—s e
) / |20 < yrnmenes 3 My e
=ENK () i=1
n—s o
=y M(h® Y (et M(r)" .
i=1
(2.9)

@ Springer



Removable Singularities for Anisotropic Elliptic Equations 1133

Using condition Eq. (1.17) and inclusion E(p) C D(p, Hp) we deduce

n
}: ‘/ b ?f Mudx < yM@peTe Y pT e
i=n— 3+1E(p) ! i=n—s+1
y / oS5 D (1)

r<p(x)=<p

Let introduce new independent variables

5
bi

xj:=y; 'signy;, yi=1,...,n, =2 max (l,b;),

! 1<i<n-s
then after simple computation we get
e (pi—n_s

STy dy <y (zw) 1"[|y,|h Ly’

i=1

r<p(x)<p r<ly'l’<p
b
(n s—a)(p;—1) o
y/l A [§ Y
0
<yt D),
(2.10)
Therefore, using Eq. (1.5) we get
K " a+" " (a—pi)
Z / gh Yl'dx <y M(r)h% Z ('Z) <yM@)h®.
i=n— 3+1E(p) i=n—s+1
2.11)

Similarly

/ uS Y ' dx <y M(r)h® / p "Xy dx < yM(r)h®pt. (2.12)

E(p) r<px)H=<p

The last term in the right-hand side of Eq. (2.8) we estimate using the inclusion E(p) C
D(p, Hp). Thus collecting Eq. (2.8)—(2.12) we arrive at the required Eq. (2.7).

For0 < 6p < p < Ry set
E@©p,p) ={x € E(p) : u(x) < M©@p)}, u%(x) = minfu,(x), M©Bp) — M(p)}.

Lemma 2.5 Let the conditions of Theorem 1.2 be fulfilled. Then there exists a positive
constant ¢y depending on the known parameters only such that the inequalities

a(ax—1)

6 c(0,1), O<A<min(1,
n—s—uo

0
),0<r< 2p<p§Ro,p§h
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1134 I. I. Skrypnik

imply that

n

. Apn n
> wh g Py dx < e (M(Op) — M(p))m=1 Y

=1E@p.p) i=l

I P )
X / Up ””_lluxilp’l//rm;fdx

E(6p)
1 alp |Pi
+c ubi—l+A "M dx
IO N A
1=nfs+lE(p)
—14A
+c / ufy Y tdx
Elp)

n—s—

_ AMn—s—a) _ _ AMn—s—a)
+e2(0p)” ot " h%4eour (r)(0p)” et R,
(2.13)

n—s—o p— 1
where wi(ry =Y 1 (r o1 M(r))1 7, and ag was defined in Lemma 2.4.
Proof TestEq. (1.15)by ¢ = (u®)*ym=1¢m o = 4. Using Eq. (1.2) we have
n

n—s n I*p]- 31[/'
2 / i g Py <y Y / (Zlux,v*f) W@

— 0x;
"=YEp.p)

-1
Sy dx
=lgpnke) =1

n n -1
+y Z /(Z'“x,/lpj) ”‘(u(gp))x‘gi}:

t=n7s+lE(p) j=1

v da
n I,(L

+7’/ ((Z luex, |pj> +1>(u((’p))“/f;”{,i"dx=11+12+13.
E(p =

(2.14)

First we estimate /. By the Holder inequality, Eq. (1.17) and Lemma 2.4 we obtain

8xi

n—s n lfpli v
n=ywen (X [ wimvegad) ([
=t I=EG) E(p)

1
i pi
! g“hmdx>
_ An—s—a) ns n—s—a 1— 1 _ Mn—s—a)
<y@p) e Y ¢ M@+ @) T < y@p) T ().
i=1
(2.15)

To estimate I, we decompose E(p) as E(p) = E(@p,p) U E(@p). By the Young

inequality and using the evident inequality u;l < (M(0p) — M(p))~! for x € E(6p), we
have
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Removable Singularities for Anisotropic Elliptic Equations 1135

1< _ , i s | Ok (P
12742 / Wi g 1Py gt < v > / ubi =t ox, \ y)'dx
l=lE(9p,p) lzn_S_HE(Gp,p)

Apj
+y Y (M(Bp)— M(p)ri!

i=n—s+1

—1—
% /“p /), |ux, |p, 1//’"{md

E(Op)

d pi
Ty Z /up,flﬂ aih‘ W dx

i=n—. Y_HE(Q/J)

< y(M©p) - M(p)m"1 Y

i=1

i p—_
1 )
X /up P g | g d x

E(9P)
— 8{ m
+y Z /u’" 12 axlj Tdx.
i=n—. Y_HE(p)
(2.16)
Similarly to Eq. (2.16) we have
I ¢ A—1 Di of, M 1 o
L=, > wh ™ |Py gt dx 4+ y (M (6p) — M(p)) =1 )
=lE@p.p) =l
1= *
x / wp " [P g dx
E(®p)
+y / o— 1+Aw ;;l’ndx
E(p)
+ 9 7)L(n7_slfa) nishaj
y(@p)” o1 p .
(2.17)

Collecting Eq. (2.14)—(2.17) we arrive at the required Eq. (2.13).

Lemma 2.6 Let the conditions of Lemma 2.5 be fulfilled. Then there exists a positive
number c3 depending on the known parameters only such that

n —1- _ "
> / wp TP g PP dx < (M (6p) — M) e 3
i:IE(Bp) i=n—s+1
. ALy |Pi
i —14+A
X / ub 8x,~‘ yl'dx
E(p)
Apn
+e3(M(8p) — M(p)) ™ m1 f us Iy
E(p)

+c3(M(0p) — M(p)) -t w1 (r) +c3(M(6p)

~M(p)” i P
(2.18)
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1136 I. I. Skrypnik

where 1 (s) was defined in Lemma 2.5.
Proof Test Eq. (1.15) by

0 = [(M(©p) = M(p)™ = = max ~mi=1 (up, M(Op) = M) '8, = vy,

using Eq. (1.2) and the Young inequality we have

n o X

pn—1 N )
> [ s
=l E@©p)

L s n ]_r]i
<y (M©p)— M(p) 11 Y / <Z|ux,-|f’f)

=lE@nke) =]

oY,

m—1.m
d
8xi l/fr gh .

Mpi=1)
+pi—1 3{;, pi
yrdx

Y M@ -y [
i=n—s+1 E(0p)
AMa—1)

Ao a—1 ok
+y(M©p) — M(p)) rm~! / ug"! ! Vg dx +y (M(0p) — M(p)) ™ !

E(0p)

8x,~

X / Yo dx.
E(0p)
(2.19)

The first term in the right-hand side of Eq. (2.19) has been estimated in Eq. (2.15),
therefore we arrive at the required Eq. (2.18).

Combining Lemmas 2.5, 2.6 we get

Theorem 2.1 Let the conditions of Theorem 1.2 be fulfilled. Then there exists a positive
constant c4 depending on the known parameters only such that the inequalities 0 < 6 <
1, 0 < A < min(1, Z(_“s__loz), 0<r< 92’) < p < Ry, p < himply that

n

n
0 i
> / wh g \P g dx < e Y /ugi_]""\ ;h‘pw;”dx (2.20)

, | 0x;
=E©p.p) i=n=stlg ()

+cy / ws Myt etdx + G p, by, (221)

E(p)
(2.22)
_ Mn—s—a) _ Mn—s—a)

where G(r, p, h) = (6p)~ o=t p" " h% 4 (Op)~ -t h%pui(r).
2.3 Integral estimates of solutions
Let

n—s n—s (2.23)

<q < , .
n—s—(pp—a)" 1= _s—a
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set

Iy = p" " f dx”( f <u%““1/f:”c,;">qu’)q. (2.24)

D, (Ho) Di(Ro)

Lemma 2.7 Let the conditions of Theorem 1.2 be fulfilled and 0 < A <
min(1, Z(_“s__loz, D‘gl"__ss__;) — pn)- Then there exists a positive constant c5 depending on the
known parameters only such that

=" (pa—)

-1
I(p. h) < 20 1 Hhg=0=0 1<9p,h>+c5(2)a [(p.2h) + ¢sG1(r. p. ).

(2.25)
where
rn—s—a)

Gi(r,p,h) = (Bp)~ et p'Fep®
n n
An—s—a) n—s—a . n—s—a _ 1
+(Op) a1 p“h“s( AT {05) L N SN Ay V{(9)) m)
i=n—s+1 i=n—s+1

n
(n—s—1) hs—a  n—s— v
_,_pahas*“a_gl E B P pMry)Pi I
i=n—s+1

PR (e M ()T

Proof Let x (E(0p, p)), x (E(6p))denote the characteristic functions of the sets E(8p, p),
E(9p) respectively. We will estimate 7 (p, k) using the inequality

’/t¢;_]-|-)V < u%—l+}»X(E(0p’ ,0)) 4 2Dt—l+)»(ug;l+}n + (M(Gp) — M(p))a—l+A)X(E(0p))

< 2a71+kug;l+AX(E(0p))+2a71+)u(u(9,0))a71+)h, x € E(p).

Thus
[(p, by < 22~ 9= 1os 1y ™97 g, (2.26)
where 1
Iy = / dx”( f ((u@P))“—]“vf:”a;”)qu’) " 2.27)
Dy (Ho) Di(Ro)
Using the Holder ine%l:il]i%and Lemma2.2 withay = -+ = o,y = 1—A, and choosing

m from the condition m — p > 1, we obtain

a—1+Ar

n—s—a
n—s

—1 n—s
Iy < ypf(nfs)qq +a f dx” f ((u(Gp))a_1+)‘¢;"§';L")n—:—a dx')

D> (Hp) D1 (Ro)
1 n—s p1—14x pr—1+1
< yp—(n—s)‘lq +a Z / ui;—l luy, |Pi w;" a—1+i C}’:n a1tk g
=l E@Gp.p)
+yp—(n—AY)q;1+a§ / (u(G’P))pifl+k ‘r:;[fr p"{;’il—_llj—; dx.
=1E(p) .
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1138 I. I. Skrypnik

By Theorem 2.1

n—s pr=l+i pr=l+
Z / u;—llunlp,-]/}r’” a—1+4x ;.}’l” a-lth gy
=l E@p,p)
<y Y /ug_m giéw;"’l‘i%xw / R e N
i=n=s+1g(p) l E(p)
+yG(r, p, h).

From this and form the fact that {{;, # 0} C {¢2;, = 1} we obtain

n—s n
(n—g) 9! ) a Pi (g 9]
L < yp "9 oy /(u(ep))p,71+X‘ a‘fr thdx + yp 9 3
1

l:]E(p) i=n—s+1

o gy |Pi
X yhi—1+A ‘ " dx
/ P x; ¥r oy,
E(p)

—(n—s)97! C(n—s) 9!
Hyp Tt /u“’l+*wr§5’}1dx+yp G p, b,

E(p)
(2.28)
Similarly to Eq. (2.9) we have
— Yy |pi AMn—s—a) < nes—
3 / @OPHPER T fhdx < y @)™ e Y 6 e M) (229)
“ X .
=1E(p) l i=1
Using Eq. (1.17) and the Ho6lder inequality we obtain
- ALy |Pi
Z f ul’i—H—A h) l/f:nféZdX
A ax;
t=n7x+lE(p)
< yh%e 3 B e P My e e (et
i=n—s+1
- ALy |pi
_n—s—a i — ’ —14n i
+y > / p et P (g M‘ vy Ly
=S HEE\K ()
n
D D N ey V() L
i=n—s+1
n
+yI(p,2h) Z h*a*";iqa (Otfpi)p* " (pi—a)
i=n—s+1
n —5—
n—s— n—s—a ,  n—s—a =" (=)
= ph Y WS My (), 2m.
i=n—s+1
(2.30)

@ Springer



Removable Singularities for Anisotropic Elliptic Equations 1139

Similarly to Eq. (2.30) we have

n—s—o _ -1
/ WS dx < y R (e M) T e 1o 2. (231
E(p)

Combining estimates Eq. (2.26)—(2.31) we arrive at the required Eq. (2.25).

We choose A such that
—5s—1 -1 -1
0<A<min<1,a(n y )—pn, * (a—(n—s)q )) (2.32)
n—s—ao n—s—ao q

Theorem 2.2 Let the conditions of Theorem 1.2 be fulfilled. Then there exist positive
numbers cg, c7 depending on the known parameters only such that the inequalities

O0<r<2p<Ry, p=<ceh (2.33)
imply that

An—s—a) —s—a

A(n )
I(p, h) < erh™ 87 %7 Vet egh® p" T Namt T 4 01Ga(r o, h), (2.34)

where

n—s n—s
(h—s—a n—s—a n—s—a _ 1
Ga(r, p, ) = p= e h{ Do MEP T Y My T

i=1 i=1

n
n—s—1 _ n—s—a n—s—a n—s—a
+ Z h™% a1 T a1 Pi(p a1 M(r))PiflJrA_i_(r o M(r))aflJrA}.

i=n—sl

1 _n—s—a _
Proof let A = a—ltig=(1=9)% ,B = C5cg ast” (=) and choose integers N1, N
such that
H
2 < poNt < . 20 <2Mp < Hy. (2.35)

Thus the inequality Eq. (2.25) can be rewritten in the form
I(p,h) < AI(Bp,h) + BI(p,2h) +yG(r, p, h).

From this we deduce

Ny—1 Ni—1
I(p.h) < @AM @BY 1Q2r.2h) + 2B)")_ A 1’ p. Ho)
j=0 1=0
Ni—1Ny—1
+ Z Z A'BIG(r,0'p,27h). (2.36)
=0 j=0

Let us estimate the terms in the right-hand side of Eq. (2.36). By Eq. (1.17) we have

(n—s—a)

12r,27h) <y @IS MOy < @7y " My
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1140 I. I. Skrypnik

choose ¢ < 1 such that

_n—s—a —a 1
a—1 (pn ) <

o
24t B = 2% Hlese <.,
2

(2.37)

hence Eq. (2.37) yields

Np—1
@AM Y @BY1@2r.27h) <y @A)V
j=0
By Eq. (2.35) we have

T S My T (238)

_y41 4 ata
@AM < V(p)(n e
r
choosing 8 € (0, 1) from the condition
A -1 An-—s-—
a+1§ot—(n—s)q _AMn=s—a) (2.39)
log, , q a—1
we conclude from Eq. (2.38) that
Na—1 e e
QAN S @B) 1(2r,27h) < yh® p* emt (e M)t T (2.40)
j=0

Using Eq. (1.17) we have

-1 n—s—a
10'p, Ho) < y(@' )™ / dx”( / p="e (“—‘“)‘f(x/)dx’)

D, (Hop) p(x")<6lp
1 aik(nfsfa)
sy@p)" et
The last inequality ensures that
Ni—1 s
@B Y QA 10'p, Ho) < y 2B e
1=0
Nf Sath)l glla—(n—s) 11 H0 )
X a el 7,
1=0
(2.41)
Choosing 0, c¢ small enough so that
A+ -1 rxn—s-—
AL T M) (2.42)
log, , q a—1
2B =2csc; o Pn=e) _ p—n—agts (2.43)
we conclude from Eq. (2.41) that
Ni—1 o
@B Y @A) 160" p, Ho) < yh"H 70 p e (2.44)
1=0
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Finally from the condition Eq. (1.17) we have

rn—s—a)

A'BIG\(r,0'h,27h) < y A'BI (27 )™ (9’p>“{(9’p)"‘S‘

+ @' w(Dr M+ Y ey )

i=1 i=1
n
+ 3 @y ST R M) 4 e M) l“} (2.45)
i=n—s+1

First, choose c¢ from the condition

— s a n—1 n—s—1 _n—s—a
298 =20y o P < S (2.46)
next choose 6 from the condition
-1 n—s—a n—s—a
2a+)heot7(nfs)qq {ansf“ 1—s-2) +9,k(a71 ) 1< ;’ 2.47)

we conclude from Eq. (2.45) that

Ni—1Ny—1
3 ST ABIGI 00,27 h) < yGar, p )+ y % p" T (248)
=0 j=0

Combining estimates Eq. (2.36)—(2.48) we arrive at the required Eq. (2.34).

2.4 Pointwise estimates of solutions
nRO .
Fixp >0,forj=1,2,..., J = ]n‘,’ ]+ 1set pj = Rof’. Let xo be an arbitrary point in
4
D(Ro, Ho)\ D(p;, Ho).Forl =0,1,2, ... set R; = (1 —9)p,(1 S+ k). Ri=y(Ri+

Riy1), Br,(x0) = {x : p(x' —x{) < Ri, p(x" — x{) < cg 'R}, ki = 2ko — ’;,
{x € Br(xo) : u, i = k}, here 6, cg were defined in Theorem 2.2, ko is a positive number
depending on the known parameters only, which will be specified later.

Ak R =

Let & € Cg°(Bg) be such that & = 1 for x € Bg,,(xo), |"5'| <
oc» 7n;s—oc o -1
y2,ojp’ b ,i=1,...,n.

Testing Eq. (1.15) by ¢ = (up,_, k1+1)i(§lm_l, ¥ = &, using Eq. (1.2) and the
Young inequality we have

Z / oy, — ki)™ a7 dx <y2yfﬂ e

"1+| R
X / (Up;_, — kip )P~ dx
Akva/
a—1+Ar
+v / W,y = kit1) dx + V1Aksr
Akm-Rz

(2.49)
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1142 I. I. Skrypnik

Using Eq. (1.17) we conclude from Eq. (2.49) that

n

_ ) s_n_)\(no:'—oc)
> / oy, = ki)™ My |PiEdx < y2"p, YA m D (250)
i=1,
kip1.Ry
Using Eq. (1.5), the Holder inequality and Lemma 2.2 witho; = -+ =, = 1 — A, we

obtain

_ — -1+
/ (upj;l —k1+1)a 1+Adx < / (upjfl —kl+l)a 1+A$;n(a + )dx

Al 1.Ryg AkHlARI
(a—1421)(n—p)
s (PR (p=1+i)n 1 (@=14+1)(0—p)
<v (g, — kg DEM) o dx Ayl
ARy
n 9 i
. —14+x (a—1421)(n—p)
A—1gm(r=1) my | P ’ -0
< y(Z / oy —kir)* '] o, (o =k DEM)|dx A rl e
. 1
ki1 Ry
Mi—soe)y a1+ i
! (s n— )pl+/‘» |po-i+hp
<y2”p ‘Akm,Rz‘ p=lthm (2.51)

Using the evident inequality

_ (=141 _
A, gy < 2@ TR @D / (up;_y — k)~ hdx
Ak R
and setting y; = fAk N (wp;_, — k)*~1*2dx we obtain
1.

(s— n_)L(n 5 — Ot))Dt 1+ —(0(—]+)»)(]+Dt—l+)" [7) l+a—l+lp

Vi1 < yzy p/ p—1+r kO p=1+in yl p—1+i n , l — 0, 1, 2, o

Due to Lemma 2.3 this inequality implies that y; — 0 asl — oo if ko satisfies the following
condition
Yo = yp_(s_”—x(" T ”))”k(“—lﬂ)(” - }iim

From this we obtain that

A(n 9 )\ n
) a—14+a+" (p—1424) (s=n— )y 142
(ess sup{up, (x) 1 x € Bl;opj (xo)}) P < vp, f u%j | dx.

E(pj-1)
(2.52)

Since xq is an arbitrary point in D(Ro, Hy) \ D(p;, Hp), from Eq. (2.52) it follows

_ neo (s— 71(;1 §— Dt))n
(M(pj) = M(pj—)* HHp =0 <y p 77 / uS

E(pj-1)
Using Theorem 2.2 with p = p; 1, h = ¢4 1 pj—1 and the Holder inequality we obtain

)»(/x r a)
(s—n— )

ag+n—s+a— ;"("7;"17“)

—14+2+" (p—1+Ar o
(M(pj)=M(pj1)*~HHp P <y p 0]

+Ga(r, pj-1, 06_1,01‘—1)}~
(2.53)
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Passing in Eq. (2.53) to the limit » — 0, by Eq. (1.17) we obtain

n+a_)»(n‘;_slfoz)+(s_n )L(n §— a))n

; (2.54)

In order to complete the proof of Theorem 1.2 we sum up Eq. (2.54) with respect to j
from 1 to J

(M(pj) = M(pj_)* "o rm1H) <

n—s—o

— =+ _n—s—a
M(p) < M(ps) < M(Ro)+yp; “ < M(Ro)+yp~ w1 T (2.55)
? (p—s—1)— —s—D(n—1="""
where ¢ = pormsDontstato ) o p > 0 by Eq. (1.5).

(a=D(a+1+2+7 (p—14+1)
From this the required Eq. (1.18) follows, which proves Theorem 1.2.

3 Proof of Theorem 1.1

3.1 Boundedness of the solutions

For j = 0,1,2,... set p; = Ro(1 =} + Z,LI), pi = 3o+ pjv0)s by = Ho(1 -

Yyt ) By = 0y ek =2k = K, Ak, = b € Dloj k) u = k),
where ko is a positive number depending on the known parameters only, which will be
specified later. Let ¢;(x") € C3°(D1(p;)) be such that ¢;(x") = 1 for x’ € Di(pj41),
|8"’/(X)| <y2,i=1,...,n—s5¢") € C(‘)’O(Dz(i_zj)) be such that £;(x”) = 1 for

x" € Dy(hji1), |W" <y i=n—s+1,... . nSetéi(x) = j)(x"). Test
(1.15) by p(u — j+1)+éj’?’ Y"1 4 =y, where ¢ depending on the known parameters

only is small enough to be determined later. Using Eq. (1.2) and the Young inequality we
have

oy |Pi
7]
ax; E'] x

Z / (u — j+1)E 1|”,\1|plé 1# dxf)’z / (u_kj_*_l)m*lJrs

"/1 bjhj Kjs1:0jh

+y2fVZ / u—kj)P Y e P dxty / (u—kje)*TEYPE dxty 1A 50 -

= o A
Kj1pjsh WA RAED

3.1

Let us estimate the first term in the right-hand side of Eq. (3.1). By Theorem 1.2 we
obtain

pi £

n—s

. oY
Z / (u — k)P =1te ax'r
=la, 7 l

JHLPj

n—s n—s
P e e L (1 — n—s—a n—s—a
SV} :rn s—a=" N lmp) pypi— e (1) < VE pepimlHO=e T < pelpi=D=e T 0T (3.2)
i=1 i=1

where ¢ > 0 was defined in Eq. (2.55). Choosing ¢ > 0 small enough so that
L ( C(Pl—l)(a—l))
= min(l,

2 n—s—auo

(3.3)
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1144 I. I. Skrypnik

and passing to the limit » — 0, by Eq. (3.1), Eq. (3.2) we obtain

" n
Z / (u_k”])gil'”%mfjmdx <y2” Z / (u—kj+1)pf’1+£§;n_1’dx
=1y i=1,

Kja1pjoh; kja1pjoh;

by [kt e A (3.4)

Aj1.7y0
Choose g > 1 such that
p—1 —1 —
p + € . { (p +&)n ’ n—s }7 3.5)
(a—14+e)n—p) n—s—«

using the Young inequality from Eq. (3.4), Eq. (3.5) we obtain

n
> / (u—k,»+])8*1|ux,v’fg;”dxgyz-/y< / (u—kj)(“71+8)qu+|Akj+lﬁj.,;j\).

i:IAijvﬁ/-’;j Akjsr0jhj
(3.6)
Similarly to Eq. (2.51) we have
/ (u— k)@~ Max
Akjprpjirhjp
(afllﬂ‘)q
. p—l+e (a—1+4¢e)g(n—p)
N\ (a—1+¢) - 1= —14&)n
< ),211/< / (u—kj) o 9dx + |Ak,-+1§,,hj|) |Ak,-+1§,,h,-| (p—1+e)
Akjopjoh
3.7
Using the evident inequality
_ j(@—1+e)q ,—(@—1+¢) N (a—1+¢)
|Ak_,-+|/3,-,h,-| <2/ Tk (u—kj) 9dx
Akjpjhj
i - — k) e—1+e) i
and setting y; = fAk,.p,,h,- (u— k@ 9dx we obtain
) li(lx—lts)qén—p) l+(0t—_l+szpq a—14 1+(oc—_l+sg)pq
Vit Eyzj]/(ko (p—1+e)n +k, (» 1+>n) (o S)qy< (p=ttein j=01,2,...
J
(3.8)

Due to Lemma 2.3 this inequality implies that y; — 0 as j — oo if kg satisfies the
following condition

(p—1+e)" —1+ —(a=14e)q","?
Yo = vk kST kg ). 3.9)
From Eq. (3.9) we get
1
R 3H, p—1+e) ! —(@—1+e)g " P
esssup{lu(x)l:xeD( 20, 40)}§V+)’( / Iul(a71+5)qu>(’ oy eint, ,
D(Ro, Ho)
(3.10)
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this completes the proof of the boundedness of u in the whole of D( IZ‘) , 3210 ).

3.2 End of the proof of Theorem 1.1

Let K be a compact subset of domain 2. Let n € C5°(R) be such that n(x)Eq. = 1 for
x eK.

Testing Eq. (1.15) by ¢ = un™y™~!, ¥ = v, using Eq. (1.2) the Young inequality, the
boundedness of # and passing to the limit » — 0 we get

i/';;‘l 'pidxgy. G.11)

i=1y

Let 9 € WhP(Q). Test Eq. (1.15) by ¢, using Eq. (3.11) and the boundedness of the
solution we pass to the limit r — 0. So we obtain the required integral identity with an

arbitrary ¢ € VOVl'ﬁ(Q) and ¢ = 1. Thus Theorem 1.1 is proved.
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