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Abstract Let {Kt }t>0 be the semigroup of linear operators generated by a Schrödinger
operator −L = Δ − V (x) on R

d , d ≥ 3, where V (x) ≥ 0 satisfies Δ−1V ∈ L∞.
We say that an L1-function f belongs to the Hardy space H 1

L if the maximal function
MLf (x) = supt>0 |Ktf (x)| belongs to L1(Rd). We prove that the operator (−Δ)1/2L−1/2

is an isomorphism of the space H 1
L with the classical Hardy space H 1(Rd) whose inverse

is L1/2(−Δ)−1/2. As a corollary we obtain that the space H 1
L is characterized by the Riesz

transforms Rj = ∂
∂xj

L−1/2.

Keywords Hardy spaces · Schrödinger operators

Mathematics Subject Classifications (2010) 42B30 · 35J10 · 42B35

1 Introduction and Statement of the Result

Let L = −Δ+V(x) be a Schrödinger operator on R
d , where V(x) is a nonnegative locally

integrable potential and let {Tt }t>0 be the semigroup generated by −L. The action of the
semigroup is given by the Feynman-Kac formula

Ttf (x) = Ex
(
e−

∫ t
0V(Xs ) dsf (Xt )

)
, (1.1)
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where Xt is a Brownian motion associated with the heat semigroup Pt = etΔ (see, e.g.,
Chapter V of [18]). Let Tt (x, y) denote the integral kernel of the semigroup {Tt }t>0. Since
V(x) is non-negative, Eq. 1.1 implies that

0 ≤ Tt (x, y) ≤ (4πt)−d/2e−|x−y|2/4t =: Pt(x − y). (1.2)

It easily follows from Eq. 1.2 that the maximal function

MLf (x) = sup
t>0

|Ttf (x)| (1.3)

is a bounded operator on Lp(Rd) for 1 < p ≤ ∞ and of weak-type (1.1).
The real Hardy space H 1

L associated with L is defined as

H 1
L = {f ∈ L1(Rd) : MLf ∈ L1(Rd)} (1.4)

with the norm
‖f ‖H 1

L
= ‖MLf ‖L1(Rn). (1.5)

Let us note that the Hardy space H 1
L coincides with the Hardy spaces H 1

L,max,h(R
d) con-

sidered in Hofmann et al. [14, Chapters 7 and 8], where H 1
L,max,h(R

d) is defined as the
completion of the space

{f ∈ L2(Rd) : MLf ∈ L1(Rd)}
in the norm Eq. 1.5. We shall present a proof of this fact using standard arguments in the
Appendix.

In the present paper we consider the semigroup {Kt }t>0 of linear operators on R
d , d ≥ 3,

generated by a Schrödinger operator −L = Δ−V (x), where V (x) is a non-negative locally
integrable function which satisfies

Δ−1V (x) = −cd

∫

Rd

1

|x − y|d−2
V (y) dy ∈ L∞(Rd). (1.6)

Let Kt(x, y) denote the integral kernel of the semigroup {Kt }t>0. Clearly, the upper Gaus-
sian bounds (1.2) hold for Kt(x, y). It is known, see [17], that for V (x) ≥ 0 the condition
(1.6) is equivalent to the lower Gaussian bounds for Kt(x, y), that is, there are c,C > 0
such that

ct−d/2e−C|x−y|2/t ≤ Kt(x, y). (1.7)

The Hardy spaces H 1
L associated with Schrödinger operators with nonnegative potentials

satisfying Eq. 1.6 were studied in [12]. It was proved that the map f (x) �→ w(x)f (x) is an
isomorphism of H 1

L onto the classical Hardy space H 1(Rd), where

w(x) = lim
t→∞

∫
Kt(x, y) dy, (1.8)

which in particular means that

‖fw‖H 1(Rd ) ∼ ‖f ‖H 1
L
, (1.9)

see [12, Theorem 1.1]. The function w(x) is L-harmonic, that is, Ktw = w, and satisfies
0 < δ ≤ w(x) ≤ 1.

Let us remark that the classical real Hardy space H 1(Rd) can be thought as the space H 1
L

associated with the classical heat semigroup etΔ, that is, L = −Δ + V with V ≡ 0 in this
case. Obviously, the constant functions are the only bounded harmonic functions for Δ.

The present paper is a continuation of [12]. Our goal is to study the mappings

L1/2(−Δ)−1/2 and (−Δ)1/2L−1/2
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which turn out to be bounded on L1(Rd) (see Lemma 2.6). Our main result is the following
theorem, which states another characterization of H 1

L.

Theorem 1.10 Assume that L = −Δ + V (x) is a Schrödinger operator on R
d , d ≥ 3,

with a locally integrable non-negative potential V (x) satisfying Eq. 1.6. Then the mapping
f �→ (−Δ)1/2L−1/2f is an isomorphism of H 1

L onto the classical Hardy space H 1(Rd),
that is, there is a constant C > 0 such that

‖(−Δ)1/2L−1/2f ‖H 1(Rd ) ≤ C‖f ‖H 1
L
, (1.11)

‖L1/2(−Δ)−1/2f ‖H 1
L
≤ C‖f ‖H 1(Rd ). (1.12)

As a corollary we immediately obtain the following Riesz transform characterization
of H 1

L.

Corollary 1.13 Under the assumptions of Theorem 1.10 an L1-function f belongs to the
spaceH 1

L if and only if Rjf = ∂
∂xj

L−1/2f belong to L1(Rd) for j = 1, 2, ..., d . Moreover,

there is a constant C > 0 such that

C−1‖f ‖H 1
L
≤ ‖f ‖L1(Rd ) +

d∑
j=1

‖Rjf ‖L1(Rd ) ≤ C‖f ‖H 1
L
. (1.14)

Example 1 It is not hard to see that if for a function V (x) ≥ 0 defined on R
d , d ≥ 3, there

is ε > 0 such that V ∈ Ld/2−ε(Rd) ∩ Ld/2+ε(Rd), then V satisfies Eq. 1.6.

Example 2 Assume that Eq. 1.6 holds for a function V : R
d → [0,∞), d ≥ 3. Then

V (x1, x2) := V (x1) defined on R
d × R

n, n ≥ 1, fulfils Eq. 1.6.

The reader interested in other results concerning Hardy spaces associated with semi-
groups of linear operators, and in particular semigroups generated by Schrödinger operators,
is referred to [1, 2, 6–10, 14].

2 Boundedness on L1

We define the operators:

(−Δ)−1f (x) =
∫ ∞

0
Ptf (x) dt = cd

∫
f (y)

|x − y|d−2
dy =:

∫
Γ0(x − y)f (y) dy,

L−1f (x) =
∫ ∞

0
Ktf (x) dt =:

∫
Γ (x, y)f (y) dy,

(−Δ)−1/2f = c1

∫ ∞

0
Ptf

dt√
t
= c′d

∫
1

|x − y|d−1
f (y) dy =:

∫
Γ̃0(x − y)f (y) dy,

L−1/2f = c1

∫ ∞

0
Ktf

dt√
t
=:

∫
Γ̃ (x, y)f (y) dy,

where c1 = Γ (1/2)−1. Clearly, by Eq. 1.2,

0 ≤ Γ̃ (x, y) ≤ c′d |x − y|−d+1, 0 < Γ (x, y) ≤ cd |x − y|−d+2. (2.1)
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The perturbation formula asserts that

Pt(x − y) = Kt(x, y)+
∫ t

0

∫
Pt−s(x − z)V (z)Ks(z, y) dz ds

= Kt(x, y)+
∫ t

0

∫
Kt−s(x, z)V (z)Ps(z− y) dz ds. (2.2)

Multiplying the second inequality in Eq. 2.2 by w(x) and integrating with respect to dx

we get ∫
Pt(x − y)w(x) dx = w(y)+

∫

Rd

∫ t

0
w(z)V (z)Ps(z, y) ds dx, (2.3)

since w is L-harmonic. The left-hand side of Eq. 2.3 tends to a harmonic function, which
is bounded from below by δ and above by 1, as t tends to infinity. Thus there is a constant
0 < cw ≤ 1 such that

cw = w(y)+
∫

Rd

w(z)V (z)Γ0(z− y) dz. (2.4)

Similarly, integrating the first equation in Eq. 2.2 with respect to x and taking limit as t

tends to infinity, we obtain

1 = w(y)+
∫

Rd

V (z)Γ (z, y) dz. (2.5)

For a reasonable function f the following operators are well defined in the sense of
distributions:

(−Δ)1/2f = c2

∫ ∞

0
(Ptf − f )

dt

t3/2
, c2 = Γ (−1/2)−1,

L1/2 = c2

∫ ∞

0
(Ktf − f )

dt

t3/2
.

Lemma 2.6 There is a constant C > 0 such that

‖(−Δ)1/2L−1/2f ‖L1 ≤ C‖f ‖L1 , (2.7)

‖L1/2(−Δ)−1/2f ‖L1 ≤ C‖f ‖L1 . (2.8)

Proof From the perturbation formula (2.2) we have

(−Δ)1/2L−1/2f (x) = c2

∫ ∞

0
(Pt − I)L−1/2f (x)

dt

t3/2

= c2

∫ ∞

0
(Pt −Kt)L

−1/2f (x)
dt

t3/2 + c2

∫ ∞

0
(Kt − I)L−1/2f (x)

dt

t3/2

= c2

∫ ∞

0

∫ t

0

∫∫
Pt−s (x − z)V (z)Ks(z, y)L

−1/2f (y) dy dz ds
dt

t3/2
+ f (x).

(2.9)

Consider the integral kernel W(x,u) of the operator

f �→
∫ ∞

0

∫ t

0

∫∫
Pt−s(x − z)V (z)Ks(z, y)L

−1/2f (y) dy dz ds
dt

t3/2
,
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that is,

W(x,u) =
∫ ∞

0

∫ t

0

∫∫
Pt−s (x − z)V (z)Ks(z, y)Γ̃ (y, u) dy dz ds

dt

t3/2
.

Clearly 0 ≤ W(x,u). Integration of W(x,u) with respect to dx leads to

∫
W(x, u) dx =

∫ ∞

0

∫ t

0

∫∫
V (z)Ks(z, y)Γ̃ (y, u) dy dz ds

dt

t3/2

= 2
∫ ∞

0

∫∫
V (z)Ks(z, y)Γ̃ (y, u) dy dz

ds√
s

≤ 2c−1
1

∫∫
V (z)Γ̃ (z, y)Γ̃ (y, u) dy dz

= 2c−1
1

∫
V (z)Γ (z, u)dz. (2.10)

Using Eq. 2.1 we see that
∫
W(x,u) dx ≤ 2c−1

1 ‖Δ−1V ‖L∞ , which completes the proof of
Eq. 2.7. The proof of Eq. 2.8 goes in the same way. We skip the details.

We finish this section by proving the following two lemmas, which will be used in the
sequel.

Lemma 2.11 Assume that f ∈ L1(Rd). Then

∫
(−Δ)1/2L−1/2f (x) dx =

∫
f (x)w(x) dx. (2.12)

Proof From Eqs. 2.9 and 2.10 we conclude that

∫
(−Δ)1/2L−1/2f (x) dx = c2

∫ ∫
W(x,u)f (u) dudx +

∫
f (x) dx

= 2c2c
−1
1

∫
V (z)Γ (z, u)f (u) dz du+

∫
f (x) dx

=
∫
(w(u)− 1)f (u) du+

∫
f (x) dx,

where in the last equality we have used Eq. 2.5.

Lemma 2.13 Assume that f ∈ L1(Rd). Then

∫
(L1/2(−Δ)−1/2f )(x)w(x) dx = cw

∫
f (x) dx. (2.14)
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Proof The proof is similar to that of Lemma 2.11. Indeed, by the perturbation formula (2.2)
we have∫

(L1/2(−Δ)−1/2f )(x)w(x)dx

= c2

∫ ∫ ∞

0
(Kt − Pt)((−Δ)−1/2)f )(x)

dt

t3/2
w(x) dx

+c2

∫ ∫ ∞

0
(Pt − I)((−Δ)−1/2)f )(x)

dt

t3/2
w(x) dx

=−c2

∫ ∫ ∞

0

∫ t

0

∫∫
w(x)Kt−s(x, z)V (z)

×Ps(z− y)((−Δ)−
1
2 f )(y) dydz ds

dt

t3/2
dx

+
∫

w(x)f (x) dx

=−c2

∫ ∞

0

∫ t

0

∫

Rd

∫

Rd

w(z)V (z)Ps(z−y)((−Δ)−1/2f )(y)

×dydz ds
dt

t3/2
+

∫
w(x)f (x) dx,

where in the last equality we have used that w is L-harmonic. Integrating with respect to dt

and then with respect to ds yields∫
(L1/2(−Δ)−1/2f )(x)w(x)dx

= −2c2

c1

∫ ∫
w(z)V (z)Γ̃0(z− y)((−Δ)−1/2f )(y) dy dz+

∫
f (x)w(x)dx

=
∫

w(z)V (z)Γ0(z − u)f (u) du dz+
∫

f (x)w(x) dx

=
∫

cwf (x) dx −
∫

w(y)f (y) dy +
∫

f (x)w(x)dx,

where in the last equality we have used Eq. 2.4.

3 Atoms and Molecules

Fix 1 < q ≤ ∞. We say that a function a is an (1, q,w)-atom if there is a ball B ⊂ R
d such

that suppa ⊂ B , ‖a‖Lq(Rd ) ≤ |B| 1
q−1,

∫
a(x)w(x)dx = 0. The atomic norm ‖f ‖H 1at,q,w

is defined by

‖f ‖H 1
at,q,w

= inf

⎧⎨
⎩

∞∑
j=1

|λj |
⎫⎬
⎭ , (3.1)

where the infimum is taken over all representations f = ∑∞
j=1 λj aj , where λj ∈ C, aj are

(1, q,w)-atoms.
Clearly, if w0(x) ≡ 1, then the (1, q,w0)-atoms coincide with the classical (1, q)-atoms

for the Hardy space H 1(Rd), which can be thought as H 1−Δ.
As a direct consequence of Theorem 1.1 of [12] (see Eq. 1.9) and the results about atomic

decompositions of the classical real Hardy spaces (see, e.g., [3, 15, 19]), we obtain that
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the space H 1
L admits atomic decomposition into (1, q,w)-atoms, that is, there is a constant

Cq > 0 such that

C−1
q ‖f ‖H 1

at,q,w
≤ ‖f ‖H 1

L
≤ Cq‖f ‖H 1

at,q,w
. (3.2)

Let ε > 0, 1 < q < ∞. We say that a function b is a (1, q, ε,w)-molecule associated
with a ball B = B(x0, r) if

(∫

B

|b(x)|q dx
) 1

q ≤ |B| 1
q−1

,

(∫

2kB\2k−1B

|b(x)|q dx
) 1

q ≤ |2kB| 1
q−12−εk (3.3)

and ∫
b(x)w(x)dx = 0. (3.4)

Obviously every (1, q,w)-atom is a (1, q, ε,w)-molecule. It is also not hard to see that for
fixed q > 1 and ε > 0 there is a constant C > 0 such that every (1, q, ε,w) molecule b can
be decomposed into a sum

b(x) =
∞∑
n=1

λnan,

∞∑
n=1

|λn| ≤ C,

where λn ∈ C, an are (1, q,w)-atoms.
The following lemma is easy to prove.

Lemma 3.5 Let 1 < q < ∞, δ, ε > 0 be such that δ > d
(

1 − 1
q

)
+ ε. Then there is a

constant C > 0 such that if b(x) satisfies Eq. 3.4 and

(∫ ∣∣∣∣∣b(x)
(

1 + |x − y0|
r

)δ
∣∣∣∣∣
q

dx

)1/q

≤ r−d+d/q

C
, (3.6)

then b is a (1, q, ε,w)-molecule associated with B(y0, r).

In order to prove Theorem 1.10 we shall use general results about Hardy spaces asso-
ciated with Schrödinger operators −L = Δ − V(x) with non-negative locally integrable
potentials V(x) which were proved in [11]. We say that a function a is a generalized
(1,∞,L)-atom for the Hardy space H 1

L if there is a ball B = B(y0, r) and a function b
such that

supp b ⊂ B, ‖b‖L∞ ≤ |B|−1, a = (I − Tr2)b.

Then we say that a is associated with the ball B(y0, r). It was proved in Section 6 of [11]
that the space H 1

L admits atomic decomposition with the generalized (1,∞,L)-atoms, that
is, ‖f ‖H 1

L
∼ ‖f ‖H 1

at,∞,L
, where the norm ‖f ‖H 1

at,∞,L
is defined as in Eq. 3.1 with aj (x)

replaced by the general (1,∞,L)-atoms aj (x).

Lemma 3.7 There is a constant C > 0 such that for every a being a generalized (1,∞,L)
atom associated with B(y0, r) one has

|L−1/2a(y)| ≤ Cr1−d

(
1 + |y − y0|

r

)−d

.
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Proof The proof follows from functional calculi (see, e.g., [13]). Note that L−1/2a =
m(r)(L)b with m(r)(λ) = r(r2λ)−1/2(e−r2λ − 1) and b such that supp b ⊂ B(y0, r),
‖b‖L∞ ≤ |B(y0, r)|−1. From [13] we conclude that there is a constant C > 0 such that for
every r > 0 one has

m(r)(L)f (x) =
∫

Rd

m(r)(x, y)f (y) dy,

with m(r)(x, y) satisfying

|m(r)(x, y)| ≤ Cr1−d

(
1 + |x − y|

r

)−d

. (3.8)

Now the lemma can be easily deduced from Eq. 3.8 and the size and support property
of b.

4 Proof of Theorem 1.10

For real numbers n > 2, β > 0 let

g(x) = (1 + |x|)−n−β, gs(x) = s−n/2g

(
x√
s

)
.

One can easily check that
∫ t

0
gs(x) ds ≤ C|x|2−n

(
1 + |x|√

t

)−2−β

; (4.1)

∫ ∞

r2
gs(x) ds ≤ Cr2−n

(
1 + |x|

r

)−n+2

for r > 0. (4.2)

Moreover, it is easily to verify that for 1 < q < ∞, d
(

1 − 1
q

)
< α ≤ d, β > 0 one has

∥∥∥∥|x|α−d
(

1 + |x|√
t

)−d−β
∥∥∥∥
Lq(Rd , dx)

= Cα,βt
(α−d+d/q)/2 (4.3)

and
∫

|z − y|2−d

(
1 + |z− y|

r

)−β (
1 + |y|

r

)−d+γ

dy ≤ Cr2
(

1 + |z|
r

)−d+γ+2−β

(4.4)

for 0 < γ < β < 2 .

Lemma 4.5 Assume that V (x) satisfies the assumptions of Theorem 1.10. Then for 0 <

γ ≤ 2 and r > 0 one has
∫
Rd

V (z)

(
1 + |z− y|

r

)−d+γ

dz ≤ c−1
d rd−2‖Δ−1V ‖L∞ . (4.6)

Proof The left-hand side of Eq. 4.6 is bounded by
∫

|z−y|≤r
V (z)

(
r

|z − y|
)d−2

dz +
∫

|z−y|>r

V (z)

( |z− y|
r

)−d+2

dz

≤ c−1
d rd−2‖Δ−1V ‖L∞ .
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Proof of Theorem 1.10 We already have known that the operators (−Δ)1/2L−1/2 and
L1/2(−Δ)−1/2 are bounded on L1(Rd). It suffices to prove Eqs. 1.11 and 1.12. Set γ = 1

10

and fix q > 1 and ε > 0 such that γ > d
(

1 − 1
q

)
+ ε. Set w0(x) ≡ 1. According to the

atomic and molecular decompositions (see Section 3) the proof of Eq. 1.11 will be done if
we verify that (−Δ)1/2L−1/2a is a multiple of a (1, q, ε, w0)-molecule for every general-
ized (1,∞, L)-atom a with a multiple constant independent of a. Identical arguments can
be then applied to show that L1/2(−Δ)−1/2a is a multiple of a (1, q, ε,w)-molecule for a
being a generalized atom for the classical Hardy space H 1(Rd) = H 1−Δ with a multiple
constant independent of a.

Let a = (I − Kr2)b be a generalized (1,∞, L)-atom for H 1
L associated with B(y0, r).

By Lemma 2.11, since
∫
w(x)a(x)dx = 0, we have

∫
(−Δ)1/2L−1/2a(x) dx = 0.

Set

J (x) =
∫ ∞

0

∫ t

0

∫∫
Pt−s(x − z)V (z)Ks(z, y)(L

−1/2a)(y)dy dz ds
dt

t3/2

=
∫ r2

0

∫ t

0

∫∫
...+

∫ ∞

r2

∫ t/2

0

∫∫
+

∫ ∞

r2

∫ t

t/2

∫∫
...

= J1(x)+ J2(x)+ J3(x). (4.7)

Thanks to Eq. 2.9 and Lemma 3.5 it suffices to show that there is a constant Cq > 0,
independent of a(x) such that

∥∥∥∥
(

1 + |x − y0|
r

)γ

J (x)

∥∥∥∥
Lq(Rd )

≤ Cqr
−d+d/q . (4.8)

Applying Lemma 3.7 and Eq. 4.1 with n = d + 1, we obtain

|J1(x)| =
∣∣∣∣∣
∫ r2

0

∫ t

0

∫∫
Pt−s(x − z)V (z)Ks(z, y)(L

−1/2a)(y)dy dz ds
dt

t3/2

∣∣∣∣∣

≤ C

∫ r2

0

∫ t

0

∫
Pt−s(x − z)V (z)r1−d

(
1 + |z− y0|

r

)−d

dz ds
dt

t3/2

≤ C

∫ r2

0

∫
Ps(x − z)V (z)r1−d

(
1 + |z − y0|

r

)−d

dz
ds√
s

≤ CN

∫
|x − z|1−d

(
1 + |x − z|

r

)−N

V (z)r1−d

(
1 + |z− y0|

r

)−d

dz.

(4.9)

Consequently,

|J1(x)|
(

1 + |x − y0|
r

)γ

≤ CNr
1−d

∫
|x − z|−d+1

(
1 + |x − z|

r

)−N+γ

V (z)

(
1 + |z − y0|

r

)−d+γ

dz.

(4.10)
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Therefore, using the Minkowski integral inequality together with Eqs. 4.3 and 4.6, we get

∥∥∥∥J1(x)

(
1 + |x − y0|

r

)γ ∥∥∥∥
Lq(dx)

≤ Cr−d+d/q. (4.11)

In order to estimate J2(x) we use Lemma 3.7 and Eq. 4.1 with n = d to obtain

|J2(x)|
(

1 + |x − y0|
r

)γ

≤ C

∫ ∞

r2

(
1 + |x − y0|

r

)γ ∫ t/2

0

∫∫
t−d/2e−c|x−z|2/tV (z)

×Ks(z, y)r
1−d

(
1 + |y − y0|

r

)−d

dy dz ds
dt

t3/2

≤ C

∫ ∞

r2

∫∫
t (2γ−d−3)/2e−c|x−z|2/tV (z)

×|z− y|2−d

(
1 + |z− y|√

t

)−N+γ

r1−d−2γ

×
(

1 + |y − y0|
r

)−d+γ

dy dz dt. (4.12)

Setting N = β + γ with 0 < γ < β < 2 and applying the Minkowski integral inequality
together with Eqs. 4.4 and 4.6 we conclude that

∥∥∥∥J2(x)

(
1 + |x − y0|

r

)γ ∥∥∥∥
Lq(dx)

≤ C

∫ ∞

r2

∫∫
t−(d+3−2γ−d/q)/2V (z)

×|z− y|2−d

(
1 + |z− y|√

t

)−β

r1−d−2γ
(

1 + |y − y0|
r

)−d+γ

dy dz dt

≤ C

∫ ∞

r2

∫∫
t−(d+3−2γ−d/q)/2V (z)

×|z− y|2−d

(
1 + |z− y|

r

)−β (√
t

r

)β

r1−d−2γ
(

1 + |y − y0|
r

)−d+γ

dy dz dt

≤ C

∫
r−2d+2+d/qV (z)

(
1 + |z− y0|

r

)−d+2+γ−β

dz

≤ Cr−d+d/q. (4.13)
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By Lemma 3.7 and Eq. 4.1 with n = d , we have

|J3(x)| ≤ C

∫ ∞

r2

∫ t

t
2

∫∫
Pt−s(x − z)V (z)t−

d
2 e−

c|z−y|2
t

×
(

1 + |y − y0|
r

)−d

r1−d dy dz ds
dt

t
3
2

≤ CN

∫ ∞

r2

∫∫
|x − z|2−d

(
1 + |x − z|√

t

)−N

V (z)

×t−
d
2 e−c|z−y|2/t

(
1 + |y − y0|

r

)−d

r1−d dy dz
dt

t3/2
. (4.14)

Hence,

|J3(x)|
(

1 + |x − y0|
r

)γ

≤ C

∫ ∞

r2

∫∫
|x − z|2−d

(
1 + |x − z|√

t

)−N+γ

tγ V (z)

×t−
d
2 e−c′|z−y|2/t

(
1+ |y − y0|

r

)−d+γ

r1−d−2γ dy dz
dt

t3/2
.

By Minkowski’s integral inequality combined with Eq. 4.3 we arrive to∥∥∥∥J3(x)

(
1 + |x − y0|

r

)γ ∥∥∥∥
Lq(dx)

≤
∫ ∞

r2

∫∫
t (−d+2+d/q)/2+γ−3/2V (z)

×t−d/2e−c′|z−y|2/t
(

1 + |y − y0|
r

)−d+γ

r1−d−2γ dy dz dt.

Application of Eq. 4.2 with n = 2d + 1 − d
q
− 2γ and then Eq. 4.6 yields

∥∥∥∥J3(x)

(
1 + |x − y0|

r

)γ ∥∥∥∥
Lq(dx)

≤ C

∫∫
r2−3d+d/qV (z)

(
1 + |z− y|

r

)−2d+1+d/q+2γ (
1 + |y − y0|

r

)−d+γ

dy dz

≤
∫

r2−2d+d/qV (z)

(
1 + |z− y0|

r

)−2d+1+d/q+3γ

dz

≤ Cr−d+d/q.

The above inequality together with Eqs. 4.11 and 4.13 gives desired Eq. 4.8 and, conse-
quently, the proof of Eq. 1.11 is complete.

Let us note that in the proof Eq. 1.11 we use only Lemmas 2.11, 3.7, and the upper
Gaussian bounds for the kernels. The proof of Eq. 1.12 goes identically to that of Eq. 1.11
by replacing Lemma 2.11 by Lemma 2.13.

5 Proof of the Riesz Transform Characterization of H 1
L

Proof Proof of Corollary 1.13 Assume that f ∈ H 1
L. Then, thanks to Theorem 1.10, there is

g ∈ H 1(Rd) such that f = L1/2(−Δ)−1/2g. By the characterization of the classical Hardy
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space H 1(Rd) by the Riesz transforms we have

∂

∂xj
L−1/2f = ∂

∂xj
L−1/2L1/2(−Δ)−1/2g = ∂

∂xj
(−Δ)−1/2g ∈ L1(Rd). (5.1)

Conversely, assume that for f ∈ L1(Rd) we have ∂
∂xj

L−1/2f ∈ L1(Rd) for j = 1, 2, ..., d .

Set g = (−Δ)1/2L−1/2f . Then by Lemma 2.6, g ∈ L1(Rd) and

∂

∂xj
(−Δ)−1/2g = ∂

∂xj
(−Δ)−1/2(−Δ)1/2L−1/2f = ∂

∂xj
L−1/2f ∈ L1(Rd), (5.2)

which implies that g ∈ H 1(Rd). Consequently, by Theorem 1.10, f ∈ H 1
L. Finally Eq. 1.14

can be deduced from Eqs. 5.1, 5.2, and Theorem 1.10.

Acknowledgments The authors want to thank the referee for her/his comments which improved presenta-
tion of the paper.

Appendix

In the appendix we shall prove that the spaces H 1
L and H 1

L,max,h(R
d) defined in the

introduction coincide. The proof goes by standard arguments and we do not use atomic
decompositions. Let us note that the proof works in more general settings, e.g. for
semigroups satisfying Gaussian bounds on spaces of homogeneous type in the sense of
Coifman-Weiss [4].

Since {Tt }t>0 is a strongly continuous semigroup in e.g. L2(Rd), one can easily deduce
from Eq. 1.2 and the semigroup property that {Tt }t>0 is a pointwise approximate of the
identity, that is,

lim
t→0

Ttf (x) = f (x) a.e. for f ∈ L1(Rd)+ L∞(Rd). (6.1)

Consequently,

|f (x)| ≤ MLf (x) a.e. for f ∈ L1(Rd)+ L∞(Rd). (6.2)

Let fn ∈ L2(Rd) be a Cauchy sequence in the norm Eq. 1.5 and let q =
limn→∞ ‖fn‖H 1

L
. By virtute of Eq. 6.2 we have ‖fn − fm‖L1(Rd ) ≤ ‖fn − fm‖H 1

L
.

Hence the sequence fn converges to a unique function f in L1(Rd). We shall prove that
MLf ∈ L1(Rd) and the convergence of fn to f is also in the ‖ · ‖H 1

L
-norm. To see this

take a subsequence nk such that

‖fnk − fnj ‖H 1
L
≤ 3−k for j ≥ k ≥ 1 (6.3)

and write

f = fnk +
∞∑
j=k

(fnj+1 − fnj ) (convergence in the L1 − norm). (6.4)

Obviously, ‖MLf ‖L1(Rd ) ≤ ‖fnk‖H 1
L

+ ∑∞
j=k ‖fnj+1 − fnj ‖H 1

L
, which gives

‖MLf ‖L1(Rd ) ≤ q . Further, by Eqs. 6.4 and 6.3, we have

‖ML(f − fnk )‖L1(Rd ) ≤
∞∑
j=k

‖fnj+1 − fnj ‖H 1
L
→ 0 as k → ∞.
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Thus we have proved that H 1
L,max,h(R

d) ⊂ H 1
L.

Assume now that f ∈ H 1
L, that is, f ∈ L1(Rd) and MLf ∈ L1(Rd). By Eq. 1.2 for

t > 0 we have Ttf ∈ L2(Rd), and so Ttf ∈ H 1
L,max,h(R

d). We shall prove that

lim
t→0+

‖ML(Ttf − f )‖L1(Rd ) = 0. (6.5)

It is well-known that there are constants C, c > 0 such that

|∂tTt (x, y)| ≤ Ct−1t−d/2 exp(−c|x − y|2/t) (6.6)

(see e.g., [5], [16, Theorem 6.17], [7] and references therein). We claim that there exists a
constant C1 > 0 such that for every t > 0 and A > 1 one has∥∥∥∥ sup

s>At

|Tt+sf (x)− Tsf (x)|
∥∥∥∥
L1(Rd )

≤ C1A
−1‖f ‖L1(Rd ). (6.7)

To prove the claim, we note that for s > At , thanks to Eq. 6.6, we have

|Tt+s(x, y)− Ts(x, y)| =
∣∣∣∣
∫ t

0
∂uTs+u(x, y) du

∣∣∣∣

≤ C

∫ t

0
(t + s)−1−d/2 exp(−c′|x − y|2/(t + s)) du|

≤ C

∫ t

0
s−1−d/2 exp(−c′|x − y|2/s) du|

≤ Cts−1−d/2 exp(−c′|x − y|2/s).
Hence,

sup
s>At

|Tt+s(x, y)− Ts(x, y)| ≤
{
Ct(At)−1−d/2 if |x − y| ≤ √

At,

Ct |x − y|−2−d if |x − y| > √
At,

and, consequently,
∫

Rn

(
sup
s>At

|Tt+s(x, y)− Ts(x, y)|
)
dx ≤ C1A

−1,

which implies Eq. 6.7.
We are now in a position to complete the proof of Eq. 6.5. Using Eq. 6.7 we obtain

‖Ttf − f ‖H 1
L

≤
∥∥∥∥ sup
s>At

|Tt+sf − Tsf |
∥∥∥∥
L1(Rd )

+
∥∥∥∥∥ sup
s≤At

|Tt+sf − Tsf |
∥∥∥∥∥
L1(Rd )

≤ C1A
−1‖f ‖L1 +C

∥∥∥∥∥ sup
s≤At

|Tt+sf −f |
∥∥∥∥∥
L1(Rd )

+C

∥∥∥∥∥ sup
s≤At

|Tsf − f |
∥∥∥∥∥
L1(Rd )

≤ C1A
−1‖f ‖L1(Rd ) + 2C

∥∥∥∥∥ sup
s≤(A+1)t

|Tsf − f |
∥∥∥∥∥
L1(Rd )

. (6.8)

Fix ε > 0 and then take A = ε−1. Clearly,

sup
s≤(A+1)t

|Tsf (x)− f (x)| ≤ 2MLf (x) ∈ L1(Rd). (6.9)

Since limt→0 sups<(A+1)t |Tsf (x) − f (x)| = 0 a.e., we get Eq. 6.5 from Eqs. 6.8 and 6.9
by applying the Lebesgue dominated convergence theorem.



930 J. Dziubański, J. Zienkiewicz

Let us finally remark that thanks to the subordination formula and results of [14, Chapter
8] we can adapt the above arguments to prove the equivalence of the definitions of Hardy
spaces given by means of the Poisson semigroup e−t

√L.
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