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Abstract We study iterations of integral kernels satisfying a transience-type condi-
tion and we prove exponential estimates analogous to Gronwall’s inequality. As a
consequence we obtain estimates of Schrödinger perturbations of integral kernels,
including Markovian semigroups.
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1 Introduction

To motivate our results we consider the Gaussian transition density on Rd,

p(s, x, t, y) =
⎧
⎨

⎩

[4π(t − s)]−d/2 exp
−|x − y|2
4(t − s)

, if s < t,

0, if s ≥ t,
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where d ≥ 1, s, t ∈ R and x, y ∈ Rd. Note that −p is a left inverse of ∂t + �y:
∫

R

∫

Rd
p(s, x, t, y)

[
∂tφ(t, y) + �yφ(t, y)

]
dydt = −φ(s, x), φ ∈ C∞

c (R × Rd).

Let q(t, y) ≥ 0 be a Borel function on R × Rd. Let p0 = p, and for n = 1, 2, . . . ,

pn(s, x, t, y) =
∫

R

∫

Rd
pn−1(s, x, u, z)q(u, z)p(u, z, t, y)dudz. (1.1)

We define p̃ = ∑∞
n=0 pn. Under appropriate integrability conditions, − p̃ is the left

inverse of ∂t + �y + q [5]. We call p̃ the Schrödinger perturbation of p by q, because
∂t + �y + q is an additive perturbation of ∂t + �y by the operator of multiplication
by q. We see that p̃(·, ·, t, y) is a power series of iterates of an integral kernel operator
applied to p(·, ·, t, y), which may be considered as a control function.

Estimates of such series for rather general kernels are the main subject of the
paper, motivated by the results of [5, 15] on transition densities. The main feature
of our approach is majorization of the series by means of a control function, e.g.
f in our main result, Theorem 3.2. The assumptions on the kernel involve local
smallness (Eq. 3.1) and global boundedness (Eq. 3.2) with respect to an increasing
family of absorbing sets, which add a strong transience-type property of the kernel to
the picture. A representative application of Theorem 3.2 is given in Example 4.1 for
the potential kernel of two 1/2-stable subordinators.

In general we neither assume Chapman–Kolmogorov conditions on the kernel
nor any connection between the kernel and the control function. However, for
Schrödinger perturbations, these two are related by a multiplication operation, and
the setting of space-time is of special interest because it includes transition kernels.
The setting is dealt with in Theorem 4.6, which is complemented by Example 4.5 and
Corollary 4.11, and illustrated by Example 4.13.

Our results are analogues, and a strengthening, of Khasminski’s lemma [1, 9],
under a transience-type properties of the kernel. They may be regarded as extensions
of Gronwall’s lemma to the context of kernel operators. The results also apply to
Schrödinger perturbations of continuous-time transition densities by measures. They
may be used in discrete time, in fact in quite general settings, including partially
ordered state spaces. In a related paper [7] we use different methods to obtain slightly
more specific estimates for Schrödinger perturbations of kernels on space-time by
functions.

The paper is composed as follows. In Section 2 we consider integral kernels on
absorbing sets. In Section 3 we prove estimates of von Neumann series for such
kernels in presence of a control function. In Section 4 we give the application to
Schrödinger perturbations of the potential kernel of two subordinators. We also
discuss the local smallness and global boundedness for continuous-time kernels, with
focus on transition kernels and singular perturbations, including perturbations by
measures.

2 Kernels and Absorbing Sets

Let (E, E) be a measurable space and let K be a kernel on (E, E) [10]. That is, K :
E × E → [0,∞], each K(x, ·) is a measure on (E, E), and each function K(·, B) is
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E-measurable. We write f ∈ E+ if f : E → [0, ∞] and f is E-measurable. For f ∈ E+
we let

K f (x) =
∫

f (y) K(x, dy), x ∈ E, (2.1)

and call this K a kernel operator. The operator is additive, positively homogeneous,
and K fn(x) ↑ K f (x) whenever fn ↑ f . Conversely, every map from E+ to E+ having
these properties is of the form 2.1, see [10]. For instance, if q ∈ E+, then the
multiplication by q,

qf (x) := q(x) f (x), x ∈ E, f ∈ E+,

is a kernel operator. This is a simple but ambiguous notation, and it should always
be clear from the context which meaning of q we have in mind (the function or
the multiplication operator). The composition of kernel operators K and L on E+
and the composition of kernels, KL(x, B) = ∫

L(y, B)K(x, dy) on (E, E), agree in
the sense of Eq. 2.1, and so the composition of kernels is associative. We will often
consider the multiplication by 1A, the indicator function of A ∈ E .

A set A ∈ E is called K-absorbing, if K(x, Ac) = 0 for every x ∈ A, that is if
1A K1Ac = 0. Since 1E = 1A + 1Ac and 1A1Ac = 0, A is K-absorbing if and only if

1A K = 1A K1A (2.2)

as kernels. Clearly, ∅ and E are K-absorbing, and the union and intersection of
countably many K-absorbing sets are K-absorbing. If A is K-absorbing, then A is
L-absorbing for any kernel L ≤ K.

Example 2.1 We will generalize the discussion of the Gaussian kernel from Intro-
duction. Let (X,M) be a measurable space. Let E = R × X, with the σ -algebra E
generated by the sets (a, b) × A, where a, b ∈ R, a < b and A ∈ M. Let p : E ×
E → [0,∞] be E ⊗ E-measurable and satisfy

p(s, x, t, y) = 0, whenever s ≥ t. (2.3)

Given a measure μ on (E, E), we define the kernel Kμ,

Kμ f (s, x) :=
∫

p(s, x, u, z) f (u, z) dμ(u, z), (s, x) ∈ E, f ∈ E+. (2.4)

We note that, for every t ∈ R, the “open half-space” (t,∞) × X and the “closed half-
space” [t, ∞) × X are absorbing for Kμ. Thus, the first coordinate has a distinguished
role for space-time E = R × X, which is the main setting of [7].

In many examples of interest p also satisfies the Chapman–Kolmogorov equa-
tions, i.e., there is a measure m on (X,M) such that for all s < u < t and x, y ∈ X,

p(s, x, t, y) =
∫

p(s, x, u, z)p(u, z, t, y) dm(z). (2.5)

For the Brownian transition density, m is the Lebesgue measure on Rd.



16 K. Bogdan et al.

Example 2.2 Let (T,T , ρ) be a measure space. Let {Kt , t ∈ T} be a family of kernels
on (E, E) such that (t, x) 
→ Kt(x, B) is T ⊗ E-measurable for each B ∈ E . Then
K := ∫

Kt ρ(dt) is a kernel. Furthermore, if A ∈ E is Kt-absorbing for every t ∈ T,
then A is also K-absorbing.

For instance, let α ∈ (0, 2) and let pt(y) be the density function of the α/2-
stable subordinator (ηt, t > 0) on R. Recall that (ηt) is time-homogeneous and
has independent increments, and pt(y) = 0 if y ≤ 0. Thus the right half-lines are
absorbing for the semigroup Kt(x, dy) := pt(y − x)dy. We have (see, e.g., [2, V.3.4]
or [6, (1.38)]),

∫ ∞

0
pt(y) dt = 
(α/2)−1 yα/2−1 , y > 0 .

Accordingly, the right half-lines are absorbing for the potential kernel of (ηt),

K(x, A) = 
(α/2)−1
∫

A
(y − x)

α/2−1
+ dy,

and also for

Kμ(x, A) = 
(α/2)−1
∫

A
(y − x)

α/2−1
+ μ(dy),

where μ is any Borel measure on R.

Example 2.3 If E is partially ordered and each measure K(x, dy) is concentrated
on 
x := {y : x ≺ y}, then the sets 
x are K-absorbing. This is the case, e.g., for
the semigroup and the potential operator of a vector of subordinators (see also
Example 4.1).

Example 2.4 Let (X ,W) be a balayage space [2, II.4]. Here X is a locally compact
space with countable base, and W denotes the class of nonnegative hyperharmonic
functions on X [2, III.1]. In particular, each w ∈ W is lower semicontinuous. Let
r be a continuous real potential on X [2, II.5] and let K be the potential kernel
associated with r in the sense of [2, II.6.17]. Thus, K1 = r, and for every bounded
Borel measurable function f ≥ 0 on X , the function K f is a continuous potential,
which is harmonic outside the support of f , see [2, III.6.12]. Let w ∈ W and A =
{x ∈ X : w = 0}. Then A is closed and K-absorbing. Indeed, let B be a compact
in Ac. There exists a number c > 0 such that cw > r on B. By the minimum principle
[2, III.6.6], cw ≥ K1B everywhere, hence K1B = 0 on A. In [2, V.1] such sets A
are called absorbing, too, and they have a number of equivalent characterizations,
of which we mention two: (a) A is closed and Pt(x,X \ A) = 0, for every t > 0,
x ∈ A, and sub-Markov semigroup (Pt)t>0 having W as excessive functions, and (b)
A is closed and Px[Xt ∈ A ∪ {∂}] = 1 for every t > 0, x ∈ A, and Markov process
(Xt, Px)t>0,x∈X having W as excessive functions and ∂ as the cementary state. The
details are given in [2, V.1.2].

Furthermore, if A is any Borel set containing the (fine) superharmonic support
of r, then K1A = K [2, II.6.3], and hence A is K-absorbing.

We will collect a few simple facts about K-absorbing sets.
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Lemma 2.5 Let A be K-absorbing and m ∈ N. Then

1A Km = (1A K)m = 1A Km1A. (2.6)

In particular, A is Km-absorbing. If furthermore f ∈ E+ and c ≥ 0 are such that K f ≤
cf on A, then Km f ≤ cm f on A.

Proof The case of m = 1 follows from Eq. 2.2. If Eq. 2.6 holds for some m ∈ N, then

1A Km+1 = 1A Km K = (1A K)m1A K = (1A K)m1A K1A

showing that Eq. 2.6 holds for m + 1, and we can use induction. Further, 1A K f ≤ cf
yields that 1A Km f = (1A K)m f ≤ cm f . 
�

Lemma 2.6 Let A and B be K-absorbing, A ⊂ B, and m ∈ N. Then

1B Km1B\A = 1B(K1B\A)m = 1B\A(K1B\A)m. (2.7)

Proof Since A is K-absorbing, 1B K1B\A = 1A K1B\A + 1B\A K1B\A = 1B\A K1B\A.
By this and Lemma 2.5 (with B in place of A),

1B Km1B\A = (1B K)m1B\A = (1B K)m−11B\A K1B\A = . . . = 1B(K1B\A)m

= 1B K1B\A(K1B\A)m−1 = 1B\A K1B\A(K1B\A)m−1 = 1B\A(K1B\A)m.


�

The next result is a slight modification of [12, Proposition 7.4].

Proposition 2.7 Let A be K-absorbing, and let f ∈ E+ and c ≥ 1 be such that
∑∞

m=0 Km f ≤ cf on A. Then, for n = 0, 1, . . ., we have

Kn f ≤ c(1 − 1/c)n f on A. (2.8)

Proof Let g = ∑∞
m=0 Km f . We see that g = f + Kg ≥ (1/c)g + Kg on A, hence

Kg ≤ (1 − 1/c)g on A. By Lemma 2.5, for every n ∈ N,

Kn f ≤ Kng ≤ (1 − 1/c)ng ≤ c(1 − 1/c)n f on A.

The case of n = 0 is trivial. 
�

Remark 2.8 We note that, conversely, Eq. 2.8 yields that

∞∑

n=0

Kn f ≤
∞∑

n=0

c(1 − 1/c)n f = c2 f on A.

Thus, comparability of
∑

Kn f and f is equivalent to exponential decay of Kn f .

Remark 2.9 We will consider f = 1, the constant function. For every a ≥ 1, there
exist kernels K such that supx∈E K1(x) = a, but

∑∞
m=0 Km1 is bounded (see [14,



18 K. Bogdan et al.

Proposition 10.1]). Then the estimate for Kn1 given in Eq. 2.8 is asymptotically better
than the more evident upper bound by an.

3 Localization on Differences of Absorbing Sets

We first prove a discrete variant of Gronwall’s lemma.

Lemma 3.1 Let α, δ ∈ [0, ∞) and γ1, . . . , γk ∈ R be such that, for j = 1, . . . , k, we
have γ j ≤ α + δ

∑

1≤i< j
γi. Then γ j ≤ α(1 + δ) j−1 for every j = 1, . . . , k.

Proof We proceed by induction: γk+1 ≤ α + δ
∑k

i=1 α(1 + δ)i−1 = α(1 + δ)k. 
�

We fix K-absorbing sets A1, . . . , Ak such that

A1 ⊂ A2 ⊂ · · · ⊂ Ak.

Taking A0 := ∅, for 1 ≤ j ≤ k we define slices S j := A j \ A j−1 and operators

K j := K1S j .

Thus, in Example 2.1 we may choose −∞ < tk < · · · < t1 < ∞, and let A j be the
open half-space (t j, ∞) × X or the closed half-space [t j,∞) × X. Then each slice S j

equals I j × X, where I j is an interval, see also Example 4.1 and Fig. 1.

Theorem 3.2 Let 0 ≤ η < 1, β ≥ 0, and f ∈ E+ be such that

K j f ≤ η f on S j, j = 1, . . . , k, (3.1)

and

K j f ≤ β f on Ak, j = 1, . . . , k. (3.2)

Then, for j = 1, . . . , k,

∞∑

m=0

Km f ≤ 1

1 − η

(

1 + β

1 − η

) j−1

f on S j. (3.3)

Proof Let n ∈ N and gn := ∑n
m=0 Km f . For j = 1, . . . , k, we (recursively) define

γ j := 1

1 − η

⎛

⎝1 + β
∑

1≤i< j

γi

⎞

⎠ . (3.4)

We will prove by induction that gn ≤ γ j f on S j. Let 1 ≤ j ≤ k, and

gn ≤ γi f on Si, for every 1 ≤ i < j. (3.5)

Trivially, this assumption is satisfied for j = 1. By Eq. 3.2, K f ≤ kβ f on Ak. By
Lemma 2.5 we obtain a rough bound, gn ≤ ∑n

m=0(kβ)m f on Ak. Let γ ≥ 0 be the
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smallest real number such that gn ≤ γ f on S j. If j < l ≤ k, then 1S j Kl = 0. By Eqs. 3.5
and 3.2 for all x ∈ S j we have,

gn(x) ≤ f (x) + Kgn(x) = f (x) +
j∑

i=1

Kign(x)

≤ f (x) +
j−1∑

i=1

γi Ki f (x) + γ K j f (x) ≤
(

1 + β

j−1∑

i=1

γi

)

f (x) + γ η f (x).

Thus γ ≤ γ j (see Eq. 3.4), gn ≤ γ j f on S j, and the result follows by Lemma 3.1. 
�

Remark 3.3 We shall refer to Eq. 3.1 as local smallness and to Eq. 3.2 as
global boundedness. In many important cases, the local smallness already implies
the global boundedness with β = η. In particular, it is so in Example 2.4, if
f, 1 ∈ W . This follows from the minimum principle [2, III.6.6] applied to the func-
tions η f − K1L min{ f, n}, for compacts sets L ⊂ S j and n ∈ N. It is also true in
Example 2.1 provided f = p(·, ·, t, y), each A j is a half-space, μ does not charge
the “hyperplanes” {t} × X, t ∈ R, and the Chapman–Kolmogorov equations are
satisfied, see Lemma 4.9 below.

The following result is motivated by Proposition 2.7 and Remark 2.8.

Corollary 3.4 Assume c > 1 and N ∈ N are such that η := c (1 − 1/c)N < 1. Let β ≥ 0
and f ∈ E+ be such that K f ≤ β f on Ak and

∞∑

m=0

Km
j f ≤ cf on S j (3.6)

for every 1 ≤ j ≤ k. Then, for every 1 ≤ j ≤ k,

∞∑

m=0

Km f ≤
(

N−1∑

n=0

βn

)
1

1 − η

(

1 + β

1 − η

) j−1

f on S j. (3.7)

If Eq. 3.6 holds on Ak for every 1 ≤ j ≤ k, then K f ≤ ckf on Ak.

Proof Let 1 ≤ j ≤ k. Since each Km
j f vanishes on A j−1, Eq. 3.6 means that

∑∞
m=0 Km

j f ≤ cf on A j. By a remark following Eq. 2.2, A j is K j-absorbing. By
Lemma 2.6 and Proposition 2.7,

(KN)(1S j f ) = (K j)
N f ≤ η f on A j.

An application of Theorem 3.3 yields that

∞∑

m=0

(KN)m f ≤ 1

1 − η

(

1 + β

1 − η

) j−1

f on S j.

By Lemma 2.5,
∑N−1

n=0 Kn f ≤ ∑N−1
n=0 βn f on Ak. We finally note that

∞∑

m=0

Km f =
∞∑

m=0

(KN)m

(
N−1∑

n=0

Kn f

)

≤
(

N−1∑

n=0

βn

) ∞∑

m=0

(KN)m f.
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If Eq. 3.6 holds even on Ak for 1 ≤ j ≤ k, then K f ≤ ∑k
j=1 K j f ≤ ckf on Ak, and we

can take β = ck. 
�

4 Examples and Applications

We may use Theorem 3.2 to estimate Schrödinger-type perturbations of kernels. As
a rule, auxiliary estimates of the kernels are needed for such applications.

Example 4.1 For t > 0 and x ∈ R we define

ft(x) =
{

(4π)−1/2 t x−3/2e−t2/(4x), if x > 0,
0 , else,

the density function of the 1/2-stable subordinator. By [20, Example 2.13],
∫ ∞

0
ft(x)e−uxdx = e−tu1/2

, u ≥ 0 .

For φ ∈ C∞
c (R) (smooth compactly supported real-valued functions on R) we let

Ptφ(x) =
∫ ∞

0
φ(x + z) ft(z)dz , x ∈ R .

The generator of the semigroup (Pt) is the Weyl fractional derivative,

∂1/2φ(x) =
∫ ∞

0
(4π)−1/2 z−3/2 (φ(x + z) − φ(x)) dz

= π−1/2
∫ ∞

0
z−1/2φ′(x + z) dz .

Schrödinger perturbations of ∂β for β ∈ (0, 1) were considered in [7]. We shall discuss
those for the generator L = ∂

1/2
s + ∂

1/2
x of the semigroup of two independent 1/2-

stable subordinators,

Ttϕ(s, x) =
∫ ∞

0

∫ ∞

0
ϕ(s + u, x + z) ft(u) ft(z)dudz , s, x ∈ R .

Here and below, ϕ ∈ C∞
c (R × R). For s, x ∈ R we have

ϕ(s, x) = −
∫ ∞

0

d
dt

Ttϕ(s, x) dt = −
∫ ∞

0
Tt Lϕ(s, x) dt . (4.1)

In view of Eq. 4.1 we need to calculate the potential kernel
∫ ∞

0 Ttdt. Let

κ(s, x) =
∫ ∞

0
ft(s) ft(x)dt

=
{

(4π)−1/2(s + x)−3/2 , if s, x > 0,
0 , else,

where the latter formula follows from direct integration. Define

κ(s, x, u, z) = κ(u − s, z − x) , s, x, u, z ∈ R .
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By Eq. 4.1, we obtain
∫

R

∫

R
κ(s, x, u, z)

(
∂1/2

u + ∂1/2
z

)
ϕ(u, z) dudz = −ϕ(s, x) , s, x ∈ R . (4.2)

We observe a 3G-type inequality: if s < u < t and x < z < y, then

κ(s, x, t, y) ≤ κ(s, x, u, z) ∧ κ(u, z, t, y) ≤ 2
√

2 κ(s, x, t, y) , (4.3)

since t − s + y − x ≥ (u − s + z − x) ∨ (t − u + y − z) ≥ (t − s + y − x)/2. Thus,

κ(s, x, u, z)κ(u, z, t, y) ≤ 2
√

2 κ(s, x, t, y)
[
κ(s, x, u, z) ∨ κ(u, z, t, y)

]
,

(4.4)

where s < u < t, x < z < y, and this is sharp, since Eq. 4.3 also yields

κ(s, x, u, z)κ(u, z, t, y) ≥ κ(s, x, t, y)
[
κ(s, x, u, z) + κ(u, z, t, y)

]
/2 .

For 0 < p < 1/2 and a number c > 0 we let

q0(u, z) =
{

c(u + z)−p, if u, z > 0 ,

0, else.

We consider 0 ≤ q ≤ q0 and the kernel

K f (s, x) :=
∫

R2
κ(s, x, u, z)q(u, z) f (u, z)dzdu .

We will use Theorem 3.2 to compare κ with κ̃ defined as

κ̃ =
∞∑

m=0

(κq)mκ, (4.5)

or, more precisely,

κ̃(s, x, t, y) =
∞∑

m=0

Km f (s, x) ,

where we fix t, y ∈ R and denote (the control function)

f (s, x) := κ(s, x, t, y) .

We let s < t and x < y, because otherwise κ̃(s, x, t, y) = 0 = κ(s, x, t, y). Further-
more, we assume that t + y > 0, else κ̃(s, x, t, y) = κ(s, x, t, y). Let h > 0 and k ≥ 1
be such that (k − 1)h ≤ t + y < kh (h is defined later on). For j = 0, . . . , k, we let
a j = (k − j)h. For j = 1, . . . , k − 1, we define A j = {(u, z) : u + z ≥ a j}. We also let
A0 = ∅, and Ak = R2. The sets A j are increasing and absorbing. For j = 1, . . . , k,
we define S j = A j \ A j−1, see Fig. 1. We will call {(u, z) : u + z = ξ}, ξ ∈ R, the level
lines. We define K j = K1S j , as in Theorem 3.2. We have

K j f (s, x)/ f (s, x)

≤ 2
√

2c
∫

S j∩{s≤u≤t, x≤z≤y}
[(u + z − s − x)−3/2 + (t + y − u − z)−3/2](u + z)−pdzdu .

(4.6)



22 K. Bogdan et al.

Fig. 1 Notation for Example 4.1

We will estimate the right-hand side of Eq. 4.6. Denote α = s + x, ω = t + y and
ξ = u + z. Let α < a j−1 and ω > a j (otherwise the integral is zero). The integrand is
constant along the level lines. The integral is the largest when {(s, u) ∈ R2 : s ≤ u ≤
t, x ≤ z ≤ y} is a square, because the square’s intersections with the level lines have
the largest length, namely

√
2[(ξ − α) ∧ (ω − ξ)], see Fig. 1. Taking this into account

or substituting ξ = u + z, η = (u − z)/2, we bound the integral in Eq. 4.6 by
∫ ω∧a j−1

α∨a j

(ξ − α)(ξ − α)−3/2ξ−p + (ω − ξ)(ω − ξ)−3/2ξ−p dξ

≤
∫ a j−1

a j

(ξ − a j)
−1/2−p + (a j−1 − ξ)−1/2(ξ − a j)

−p dξ

= [
B(1/2 − p, 1) + B(1/2, 1 − p)

]
(a j−1 − a j)

1/2−p ,

where B is the Euler beta function.
By Theorem 3.2, if we let η = β = 2

√
2c[B(1/2 − p, 1) + B(1/2, 1 − p)]h1/2−p < 1

(the inequality determines h), then

κ̃(s, x, t, y) ≤
(

1

1 − η

) j

κ(s, x, t, y) for (s, x) ∈ S j. (4.7)

In fact, j < k + 1 − (s + x)/h ≤ (t + y − s − x)/h + 2. We see that κ and κ̃ are locally
comparable. We also note that the first coordinate does not play a distinguished role
here, in contrast to the examples in [7] and below. Finally, κ̃ may be considered a
Schrödinger perturbation of κ , because

∫

R×R
κ̃(s, x, u, z)

[
∂1/2

z + ∂1/2
u + q(u, z)

]
ϕ(u, z) dzdu = −ϕ(s, x), (4.8)

for s, x ∈ R and φ ∈ C∞
c (R × R). The identity 4.8 is proved by using [7, (31)]. Indeed,

the absolute integrability of the integrals in [7, (31)] follows by considering the
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supports of the involved functions (we leave details to the reader). We also wish to
note that if q0(u, z) depends only on u or u ∧ z, then it is more convenient to consider
absorbing sets {(u, z) ∈ R2 : u > s} or {(u, z) ∈ R2 : u > s, z > x}, correspondingly.

In the remainder of the paper we shall adopt the setting of Example 2.1. More
precisely, we consider the space-time E = R × X, with the product σ -algebra E , and
an E × E-measurable function p ≥ 0 on E × E such that Eq. 2.3 holds, but we do not
assume Eq. 2.5. For a measure μ on (E, E) we define kernel Kμ by Eq. 2.4. Motivated
by the discussion in Section 1 and Example 2.1, we let

pμ =
∞∑

n=0

pμ
n , (4.9)

where pμ

0 = p, and the positive functions pμ

1 , pμ

2 . . . on E × E are defined as follows,

pμ
n (s, x, t, y) :=

∫

pμ

n−1(s, x, u, z)p(u, z, t, y) dμ(u, z). (4.10)

By induction, pμ
n (s, x, t, y) = 0 for n ≥ 0, (s, x), (t, y) ∈ E, if s ≥ t. According to

Introduction, we perturb p by the measure μ (but see Example 4.5, too). We regard
(t, y) as fixed when iteratively transforming f (s, x) := p(s, x, t, y) by Kμ:

pμ
n (·, ·, t, y) = (Kμ)n p(·, ·, t, y).

Remark 4.2 Similar perturbations may be studied for signed measures, say ν. We
clearly have |pν | ≤ pμ, where μ = ν− + ν+ is the variation measure of ν. We will not
further concern ourselves with signed kernels or functions in this paper.

In Examples 4.3, 4.4 and 4.5 we will additionally suppose that p is a transition
density, that is, the Chapman–Kolmogorov Eq. 2.5 hold with respect to a σ -finite
measure m on X.

Example 4.3 Let ρ ≥ 0 be a Radon measure onRhaving no atoms, and let μ := ρ ⊗ m.
Then, for all (s, x), (t, y) ∈ E and n ∈ N, pμ

n (s, x, t, y) = ρ((s, t))n p(s, x, t, y)/n! by
induction, and we obtain the transition density

pμ(s, x, t, y) = eρ((s,t)) p(s, x, t, y). (4.11)

Example 4.4 Let η > 0, u0 ∈ R, μ := ηεu0 ⊗ m. Here εu0( f ) = f (u0) is the Dirac
measure. Then μ is concentrated on the “hyperplane” {u0} × E, and for (s, x),

(t, y) ∈ E we have by Eq. 2.5,

pμ

1 (s, x, t, y) =
∫

p(s, x, u, z)p(u, z, t, y) dμ(u, z) =
{

ηp(s, x, t, y), if s < u0 < t,

0, otherwise.

For n = 2, 3, . . . and all (s, x), (t, y) ∈ E, we obtain pμ
n (s, x, t, y) = 0, hence

pμ(s, x, t, y) :=
∞∑

n=0

pμ
n (s, x, t, y) =

{
(1 + η) p(s, x, t, y), if s < u0 < t,

p(s, x, t, y), otherwise.
(4.12)

There is, however, an alternative approach to perturbations by such measures.
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Example 4.5 Let u0 ∈ R and μ := εu0 ⊗ m. For g ∈ E+ we define

Kg(s, x) =
⎧
⎨

⎩

0 , if s > u0 ,

g(s, x) , if s = u0 ,∫

Rd p(s, x, u0, z)g(u0, z) dm(z) , if s < u0 .

Let t > u0 and y ∈ Rd be fixed. We consider f (s, x) = p(s, x, t, y), (s, x) ∈ E.
By Chapman–Kolmogorov equations, K f (s, x) = 1s≤u0 p(s, x, t, y). By induction,
Kn f (s, x) = 1s≤u0 p(s, x, t, y), for n = 1, 2, . . .. If 0 < η < 1, then

p̃(s, x, t, y) :=
∞∑

n=0

(ηK)n f (s, x) =
{

(1 − η)−1 p(s, x, t, y) , for s ≤ u0 ,

p(s, x, t, y) , otherwise,
(4.13)

whereas η ≥ 1 leads to explosion of p̃. We observe that p̃ satisfies Chapman–
Kolmogorov equations, but not pμ defined in Example 4.4.

More generally, for an arbitrary Radon measure ρ on R, we let

Kg(s, x) = ρ({s})g(s, x) +
∫

(s,∞)

∫

X
p(s, x, u, z)g(u, z)dm(z)ρ(du).

We note that K = Kρ⊗m (see Eq. 2.4), if ρ has no atoms. On one hand this motivates
our interest in Kμ later in this section. On the other hand, atoms are intrinsically
related to the estimates obtained in [7, 15] and in Theorem 4.6 below, because they
produce inflation of mass very close to that given by the estimates. Indeed, let us
fix numbers u1 < u2 < . . . < uk, and let ρ = εu1 + εu2 + . . . + εuk . Assume that uk < t.
We have K f (s, x) = L(s)p(s, x, t, y), with f as before and

L(s) := #{1 ≤ i ≤ k : ui ≥ s}.
By induction we verify that

Kn f (s, x) = #{(i1, . . . , in) : s ≤ ui1 ≤ . . . ≤ uin}p(s, x, t, y)

=
(

L(s) + n − 1

n

)

p(s, x, t, y). (4.14)

Notably, a similar combinatorics is triggered by gradient perturbation series in [17,
Lemma 5]. If 0 < η < 1, then, by Taylor series expansion [15, p. 51],

p̃(s, x, t, y) :=
∞∑

n=0

(ηK)n f (s, x, t, y) =
(

1

1 − η

)L(s)

p(s, x, t, y). (4.15)

This should be compared with Theorem 4.6 below.

We now return to functions p as specified before Eq. 4.9, i.e., we do not assume
Chapman–Kolmogorov conditions, unless we explicitly say otherwise.

Let I ⊂ R be an interval and let

μI(A) := μ(A ∩ (I × X)), A ∈ E .

For n = 0, 1, 2, . . . , we denote (see above in this section)

pn := pμ
n and pI

n := pμI
n .

We also note that pn(s, x, t, y) = p(s,t)
n (s, x, t, y), which follows by induction.
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The half-spaces (t,∞) × X and [t,∞) × X are Kμ-absorbing for t ∈ R. The
differences of such sets are of the form I × X, where I is an interval. For I, J ⊂ R,
we write I ≺ J, if s < t for all s ∈ I and t ∈ J.

Theorem 4.6 Let −∞ < r < t < ∞, y ∈ X, η ∈ [0, 1). Suppose that [r, t) is the union
of intervals Ik ≺ · · · ≺ I1, such that for all j = 1, . . . , k, and x ∈ X,

∫

I j×X
p(s, x, u, z)p(u, z, t, y) dμ(u, z) ≤ η p(s, x, t, y), r ≤ s < t. (4.16)

Then, for j = 1, . . . , k and x ∈ X,

pμ(s, x, t, y) :=
∞∑

n=0

pn(s, x, t, y) ≤
(

1

1 − η

) j

p(s, x, t, y), s ∈ I j. (4.17)

Proof We may apply Theorem 3.2 to f (s, x) := p(s, x, t, y), A j = (I j ∪ . . . ∪ I1) × X,
K j := KμI j , and β := η, since Eq. 4.16 implies both Eqs. 3.1 and 3.2. 
�

Corollary 4.7 Let −∞ < r < t < ∞, y ∈ X, β ≥ 0 and c ≥ 1 . Suppose that

p1(s, x, t, y) ≤ β p(s, x, t, y), for all s > r, x ∈ X, (4.18)

and [r, t) is a union of disjoint intervals I1, I2, . . . , Ik satisfying,

∞∑

n=0

p
I j
n (s, x, t, y) ≤ c p(s, x, t, y), for s ∈ I j, x ∈ X (1 ≤ j ≤ k). (4.19)

Then there exists a constant C such that
∑∞

n=0 pn(s, x, t, y) ≤ C p(s, x, t, y) for all s ≥ r
and x ∈ X.

Proof We proceed as in the proof of Theorem 4.6, using Corollary 3.4. We let C =(∑N−1
n=0 βn

) [
1 + β/(1 − η)

]k−1
/(1 − η), where η = c(1 − 1/c)N < 1. 
�

Remark 4.8 If the inequality in Eq. 4.19 holds on [r, ∞) × X, for 1 ≤ j ≤ k, then

p1(s, x, t, y) =
k∑

j=1

p
I j

1 (s, x, t, y) ≤ kc p(s, x, t, y), s ≥ r, x ∈ X,

and Eq. 4.18 holds with β = kc.

If p satisfies Eq. 2.5, then we can localize Eq. 4.16 as follows.

Lemma 4.9 Suppose that p satisf ies the Chapman–Kolmogorov equations. Let
(t, y) ∈ E, η ≥ 0, and let an interval I ⊂ (−∞, t) satisfy, for all (s, x) ∈ I × X,

∫

p(s, x, u, z)p(u, z, t, y) dμI(u, z) ≤ η p(s, x, t, y). (4.20)

Then Eq. 4.20 holds for all (s, x) ∈ E.
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Proof If s ∈ I or s is to the right of I, then Eq. 4.20 clearly holds, see Eq. 2.3. If s is
to the left of I, a ∈ I, J := [a,∞) ∩ I, and x ∈ E, then by Eqs. 2.5 and 4.20,

∫

p(s, x, u, z)p(u, z, t, y) dμJ(u, z)

=
∫ ∫

p(s, x, a, w)p(a, w, u, z)p(u, z, t, y) dm(w) dμJ(u, z)

≤ η

∫

p(s, x, a, w)p(a, w, t, y) dm(w) = η p(s, x, t, y).

So Eq. 4.20 holds, if inf I ∈ I (take a = inf I). If not, it follows by monotone conver-
gence, by letting a ∈ I approach inf I. 
�

Lemma 4.10 Suppose that p satisf ies the Chapman–Kolmogorov equations. Let η ≥ 0
and an interval I be such that, for all s, t ∈ I and x, y ∈ X,

∫

p(s, x, u, z)p(u, z, t, y) dμI(u, z) ≤ η p(s, x, t, y). (4.21)

Then Eq. 4.21 holds for all (s, x), (t, y) ∈ E.

Proof Let us fix (t, y) ∈ E. By Eq. 2.3 we may replace I by I ∩ (−∞, t). An applica-
tion of Lemma 4.9 finishes the proof. 
�

Corollary 4.11 Suppose that p satisf ies the Chapman–Kolmogorov equations.
Let −∞ < r < t < ∞, y ∈ X and η ∈ [0, 1). Let [r, t) be the union of intervals
Ik ≺ · · · ≺ I1. Assume that for j = 1, . . . , k and I := I j, Eq. 4.21 holds for all s ∈ I j

and x ∈ X. Then Eq. 4.17 holds for j = 1, . . . , k and x ∈ X.

Proof The result follows from Theorem 4.6 and Lemma 4.10. 
�

Remark 4.12 To prove comparability of p and pμ under Eq. 2.5 in specific situations,
it is enough to choose intervals I j such that μ(E \ (I1 ∪ . . . ∪ Ik) × X) = 0, and for all
s, t ∈ I, x, y ∈ X, j = 1, . . . , k,

∫

I j

p(s, x, u, z)p(u, z, t, y) dμ(z) ≤ η p(s, x, t, y). (4.22)

If Eq. 4.21 fails, then pμ may be much bigger than p, see Example 4.5.

Our last example is essentially from [5].

Example 4.13 We consider the Cauchy transition density on Rd, i.e. we let

p(s, x, t, y) =
{

cd(t − s)
[
(t − s)2 + |y − x|2]−(d+1)/2

, if s < t,

0, if s ≥ t.

We observe the following power-type asymptotics of p:

p(s, x, t, y) ≈ t − s
|y − x|d+1

∧ (t − s)−d , x, y ∈ Rd , s < t , (4.23)
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where L ≈ R means that L/R is bounded away from zero and infinity. In conse-
quence, there is a constant c depending only on d, such that

p(s, x, u, z) ∧ p(u, z, t, y) ≤ c p(s, x, t, y) , x, z, y ∈ Rd , s, u, t ∈ R , (4.24)

see the 3P Theorem in [3]. For numbers a, b ≥ 0 we have ab = (a ∨ b)(a ∧ b) and
a ∨ b ≤ a + b . Therefore Eq. 4.24 yields the following variant:

p(s, x, u, z)p(u, z, t, y) ≤ c p(s, x, t, y)
[

p(s, x, u, z) + p(u, z, t, y)
]
, (4.25)

and we obtain

p1(s, x, t, y) ≤ c p(s, x, t, y)

∫

Rd

∫ t

s

[
p(s, x, u, z) + p(u, z, t, y)

]
dμ(u, z) .

Assume that μ is of Kato class, to wit,

k(h) := sup
x,y∈Rd, s<t≤s+h

∫

Rd

∫ t

s

[
p(s, x, u, z) + p(u, z, t, y)

]
dμ(u, z) → 0 as h → 0 .

Let h > 0 and η := ck(h) < 1. If s + ( j − 1)h < t ≤ s + jh, where j is a natural
number, then, by Corollary 4.11, for all x, y ∈ Rd,

pμ(s, x, t, y) ≤
(

1

1 − η

) j

p(s, x, t, y) ≤
(

1

1 − η

)1+(t−s)/h

p(s, x, t, y) .

This is a special case of [15, Theorem 1]. In particular, if d > 1, then, by Eq. 4.23,
∫ t

s
p(s, x, u, z)du ≈ |z − x|1−d ∧ [

(t − s)2|z − x|−d−1
]
, x, y ∈ Rd , s < t ,

and if |dμ(u, z)| ≤ |z|−1+εdzdu for some ε ∈ (0, 1], then μ is of Kato class.

We refer the reader to [5] for a comparison of different Kato conditions. We also
refer to [1] for a discussion of discontinuous multiplicative functionals of Markov
processes, which bring some analogies with Example 4.5. We also wish to mention
recent results [4, 8] for non-local Schrödinger-type perturbations (see [18] and [21],
too). Schrödinger perturbations of the Gaussian transition density are studied in
[19, 22], see also [11]. We refer to [3, 5, 13, 14, 16] for further instances, applications
and forms of the 3P (or 3G) inequality 4.24. In a related paper [7] we present
a more specialized approach to Schrödinger perturbations by functions for transition
densities, transition probabilities and general integral kernels in continuous time.

Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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