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Abstract Let E be a compact set preserving the Markov inequality and m(E) be its
best exponent i.e., m(E) is the infimum of all possible exponents in this inequality on
E. It is known that α(E) ≤ 1

m(E)
where α(E) is the best exponent in Hölder continuity

property of the (pluri)complex Green function (with pole at infinity) of E. We show
that if E ⊂ CN (or RN) with N ≥ 2 then the Markov inequality need not be fulfilled
with m(E). We also construct a set E ⊂ R2 such that the Markov inequality holds at
the tip of exponential cusps composing E but for the whole set E we have m(E) =
∞. Moreover, we prove that sup m(E) = ∞ where the supremum is taken over all
compact sets E ⊂ R preserving the Markov inequality. Finally, we prove that if E is
a Markov set in C then its image F(E) under a holomorphic mapping F is a Markov

set too. More precisely, we prove that m(F(E)) ≤ m(E) ·
(

1 + max
∂ E∩{F ′(t)=0}

ordt F ′
)

.
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1 Introduction

Let K ⊂ CN (N ∈ {1, 2, ...}) be a compact set. The pluricomplex Green function
(with pole at infinity) of K is defined by the formula

VK(z) := sup{u(z) : u ∈ L and u ≤ 0 on K}, z ∈ C
N,

where L is the family of all plurisubharmonic functions in CN of logarithmic growth
at infinity, i.e.,

L :={u plurisubharmonic in C
N : u(z) − log ||z|| ≤ O(1) as ||z|| → ∞}

(for background information, see [9]). In the one dimensional case, VK coincides with
the Green function gK(·, ∞) of the unbounded component of Ĉ \ K with logarithmic
pole at infinity (as usual Ĉ = C ∪ {∞} is the Riemann sphere).

We are interested in the Hölder continuity of the (pluri)complex Green
function VK

|VK(w) − VK(z)| ≤ A |w − z|α (1)

with constants A > 0, α ∈ (0, 1] independent of w, z ∈ CN . By an argument due to
Błocki [18, Proposition 3.5], it is sufficient to verify condition 1 only for w ∈ K and
z ∈ Kr with some positive constant r, where

Kr := {z ∈ C
N : dist (z, K) ≤ r}. (2)

In other words, inequality (1) is equivalent to the existence of C > 0 such that

VK(z) ≤ C [dist (z, K)]α for z ∈ K1. (3)

This property is closely related to the arrangement of the level sets of VK and
condition (3) can be rewritten as

Kr ⊂ {z ∈ C
N : VK(z) ≤ Crα} (4)

for r ∈ (0, 1]. The exponent α is here the essential constant. Let α(K) be the best
exponent in inequality (3), i.e.,

α(K) := sup{α ∈ (0, 1] : ∃ C > 0 ∀ z ∈ K1 inequality (3) holds}. (5)

In order to estimate α(K), we can make use of the connection between the
(pluri)complex Green function and polynomials given by

VK(z)= lim
n→∞

1

n
log �n(K, z),

where

�n(K,z)=sup

{|P(z)|
||P||K

: P : C
N→C polynomial of degree n, P|K =0

}

and || · ||K is the maximum norm on K (see [15] or [9, Theorem 5.1.7]).
Consider the following property of the set K

K1/nm ⊂ {z ∈ C
N : �n(K, z) ≤ M} (6)
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with M, m > 0 independent of n, where Kr is defined by formule (2). The set
K satisfies condition (6) if and only if the well known Markov inequality holds
(see [11])

‖ |∇ P| ‖K ≤ M(degP)m ‖ P ‖K, (7)

where ∇ P := ( ∂ P
∂z1

, ..., ∂ P
∂zN

), |∇ P| =
(∑N

j=1 | ∂ P
∂z j

|2
)1/2

and the positive constants M, m

are independent of P. Every set K with property (7) (or equivalently (with prop-

erty (6))) is called a Markov set (with exponent m). Since |∇ P| = max
‖v‖2=1

∣∣∣∣∣
N∑

j=1
v j

∂ P
∂x j

∣∣∣∣∣ =
max

‖v‖2=1
|Dv P|, inequality (7) is equivalent to the existence of N linearly indepen-

dent vectors u1, . . . , uN and positive constants m1, . . . , mN , M1, . . . , MN such that
‖Du jP‖K≤ Mj(degP)m j‖P‖K, j = 1, . . . , N.

The Markov exponent of a Markov set K is, by definition, the best exponent in
inequality (7), i.e.,

m(K) := inf{m>0 : ∃ M>0 ∀P inequality (7) holds}. (8)

If K is not a Markov set, we put m(K) := ∞.
The notion of the Markov exponent was introduced in [2] and we refer the

interested reader to this paper for further information. We can check at once that any
compact set K ⊂ CN has m(K) ≥ 1 (it is sufficient to consider polynomials Pj,k(z) =
(z j + a j)

k, j = 1, . . . , N, where a = (a1, . . . , aN) is so chosen that ‖z j + a j‖K ≥ 1) and
m(K) = 1 for any ball in CN (see [15]). If K is a continuum in C, then m(K) ∈ [1, 2]
(see [12]). The real case is totally different. If K ⊂ RN = (�e C)N then m(K) ≥ 2 and
m(K) = 2 for any fat compact convex set K (see e.g. [8]).

Due to the connection between the Markov inequality and the regularity of
(pluri)complex Green’s function VK for any compact set K ⊂ CN , we can find a
simply relationship between the best exponents in inequalities (3) and (7). Namely,
if VK satisfies Hölder property (3) then inequality (7) holds with any

m ≥ 1

α
(9)

(see [16, Lemma 3]). In particular, we obtain that α(K) ≤ 1
m(K)

.

The question about the converse implication between inequalities (3) and (7)
has been an open problem for many years. Moreover, up to now, it is also not
known whether VK is always continuous for a Markov set K ⊂ CN . The only answer
recognized is for K ⊂ R (see [5]). In this case the answer is positive. It seems that
all Markov sets are non(pluri)polar but it has been proved so far only for planar
compact sets [4].

However, all known examples suggest that inequalities (3) and (7) are equivalent
and α(K) = 1

m(K)
(see [3, 12, 17]). Moreover, it is easily seen that the Hölder

continuity of VK with exponent α = 1 is equivalent to the Markov inequality with
m = 1. Indeed, by estimate (9), we can check that if inequality (3) holds with α = 1
then properties (6) and (7) are satisfied with exponent m = 1. It appears that also
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the converse holds. Namely, for a fixed polynomial P of degree n, z ∈ Kr and z0 ∈ K
such that |z − z0| ≤ r, we have

|P(z)| ≤
n∑

j=0

∑

|β|= j, β∈Z
N+

1

β! |Dβ P(z0)| |z − z0| j ≤
n∑

j=0

∑
|β|= j

1

β! M jn j ||P||K r j

≤
n∑

j=0

N j

j! M jn jr j ||P||K ≤ eMNnr||P||K,

which leads to condition (4) that is equivalent to inequality (3) and α = 1.
An obvious question to ask is whether the supremum in expression (5) and the

infimum in formule (8) are attained or, in other words, whether condition (3) holds
with α = α(K) and whether inequality (7) is valid with m = m(K) for any compact
set K. The first question seems to be an intricate problem and remains open. We
answer the second question constructing Markov sets whose Markov exponent is
not attained. More precisely, for any p ≥ 1 we construct connected compact sets
Ep ⊂ CN , Ẽp ⊂ RN (for N ≥ 2) such that m(Ep) = p, m(Ẽp) = 2p and we prove
that inequality (7) holds neither with m = m(Ep) for Ep nor with m = m(Ẽp) for Ẽp

(see Propositions 2.5 and 2.6). The question about a similar result in C1 is still an
open problem.

Next we consider the set E = E1 ∪ E2, where

E1 =
{
(x, y)∈R

2 : |x| ≤ 1, |y| ≤ e− 1
|x|
}

, E2 =
{
(x, y)∈R

2 : |y| ≤ 1, |x| ≤ e− 1
|y|
}

with e− 1
0 := 0. E is the union of eight images of the Zerner set [20]

F = {(x, y) ∈ R
2 : x ∈ [0, 1], y ∈ [0, e− 1

x ]}
under certain isometries. It is known that a Markov inequality is satisfied at every
point of F \ {(0, 0)} but F is not a Markov set because at the tip of the exponential
cusp, a Markov inequality does not hold for F, i.e.,

lim inf
n→∞

log(|∇ Pn(0, 0)| ||Pn||−1
F )

log n
= +∞

for some polynomials Pn of degree n.
In contrast, for E, a Markov inequality holds at the point (0, 0), i.e., at the tip of

the exponential cusps. It is an easy consequence of the classical Markov inequality
on a segment which can be applied to the cross ([−1, 1] × {0}) ∪ ({0} × [−1, 1]).
Furthermore, the partial derivatives of any polynomial P are uniformly bounded:
∂ P
∂x and ∂ P

∂y on E1 and on E2, respectively (cf. [1, Example 4.1]). Note that for the
sets with cusps, the most intriguing points that often present a problem, are just the
tips of the cusps (see [1, 7, 10, 19, 20], Propositions 2.5, 2.6 below). As for E, the tip
of the cusps does not pose any problem. Moreover, every point of E \ {(0, 0)} can
be reached by a polynomial curve (e.g. an interval) contained in the interior of E
and thus (see [1]) a Markov inequality is satisfied at every point of E. However, E is
not a Markov set, in different words, m(E) = ∞ as will be shown in Proposition 3.1
below. It is worth additionally noting that by the analytic accessibility criterion (see
[9, Proposition 5.3.12]), the Green function of E is continuous in C2.

An interesting but very difficult problem is to find the precise value of the Markov
exponent of an arbitrary fixed set K, especially if K is totally disconnected. By the
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main result of [14], we can deduce that the Markov exponent of the Cantor ternary
set is less than 2.94 which is not a large number. Therefore, one may ask about the
existence of an upper bound for sup m(K), where the supremum is taken over all
Markov sets K. If we consider Markov sets K ⊂ KN (K = R or C) with N ≥ 2, we
have sup m(K) = ∞ (see [7] or Propositions 2.5, 2.6 below). We prove that also for
N = 1, sup m(K) = ∞, i.e., there is no bound for the Markov exponents in the case of
Markov sets contained in R or C. More precisely, for any μ > 2 we give an example
of a Markov set in R with the Markov exponent not less than μ (Proposition 4.1).
This implies that inf α(K) = 0 where α(K) is defined by formule (5).

Finally we consider a problem of the behaviour of m(K) under holomorphic defor-
mations f of a compact set K ⊂ C. We assume that f is defined in a neighbourhood
of the polynomial hall K̂ of K. We show (Theorem 4.2) that only the zeros of f ′ that
are lying on the boundary ∂K of K have an effect on the value of m(K).

We now give the details and the proofs of the results mentioned above.

2 A Class of Markov Sets in C2

Theorem 2.1 Let ϕ be a convex, increasing C1 function def ined on [0, 1] such that
ϕ(0) = ϕ′(0) = 0, ϕ(1) = 1 and let

α = lim inf
t→0+

ln ϕ(t)
ln t

, β = lim sup
t→0+

ln ϕ(t)
ln t

.

Def ine
E = E(ϕ, K) = {(z, w) ∈ K

2 : |z| ≤ 1, |w| ≤ ϕ(1 − |z|)}.
Then

α ≤ m(E(ϕ, C)) ≤ β. (10)

and

2α ≤ m(E(ϕ, R)) ≤ 2β (11)

Lemma 2.2 Suppose that the function ϕ satisf ies the assumptions of Theorem 2.1.
Then for arbitrary s, t ∈ [0, 1] we have the inequalities

ϕ(1 − st) ≥ tϕ(1 − s) + ϕ(1 − t) (12)

1 − st − ϕ−1(tϕ(1 − s)) ≥ 1

ϕ′(1)
(1 − t). (13)

Proof of Lemma 2.2 Since ϕ is a C1 function then its convexity is equivalent to the
fact that ϕ′ is nondecreasing.

Fix t ∈ [0, 1]. We need only to consider the nontrivial case t ∈ (0, 1). In such a case
fix t and let f (s) := ϕ(1 − st) − ϕ(1 − t) − tϕ(1 − s). We have f (1) = 0 and, by the
remark at the beginning of the proof,

f ′(s) = −tϕ′(1 − st) + tϕ′(1 − s) = t(ϕ′(1 − s) − ϕ′(1 − st)) ≤ 0.

Thus f is a nonincreasing function, in particular, f (s) ≥ f (1) = 0 and inequality (12)
holds.
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In order to get the second inequality, we put σ := ϕ(1 − s). Then estimate (13) is
equivalent to the inequality

tϕ−1(σ ) − ϕ−1(tσ) ≥
(

1

ϕ′(1)
− 1

)
(1 − t).

To prove it, we fix t ∈ [0, 1] and introduce the function g(σ ) := tϕ−1(σ ) − ϕ−1(tσ).
We check that g′(σ ) ≤ 0 and therefore g(σ ) ≥ g(1) = t − ϕ−1(t). Finally consider

the function h(t) := t − ϕ−1(t) +
(

1 − 1
ϕ′(1)

)
(1 − t). Since h′(t) ≤ 0, we have h(t) ≥

h(1) = 0 and the proof is completed. ��

In the Proof of Theorem 2.1 we shall also need the following fact that is a complex
version of the classical Schur theorem for the interval [−1, 1].

Proposition 2.3 (Schur’s theorem for the unit disc) Let Pn ∈ C[z] be a polynomial of
degree n ≥ 1 such that

|Pn(z)| ≤ 1

(1 − |z|)γ (14)

for |z| < 1 with a positive constant γ . Then

|Pn(z)| ≤ (n + γ )n+γ

nnγ γ
=: C(n, γ ) = (1 + n

γ
)γ (1 + γ

n
)n < eγ (1 + n

γ
)γ (15)

for all |z| ≤ 1.
Moreover, this bound is sharp, because for the polynomial Pn(z) = C(n, γ )zn

condition (14) is fulf illed and Pn(1) = C(n, γ ).
The above facts are equivalent to the following Schur inequality

‖P‖
D

≤ max{|P(z)|(1 − |z|)γ : z ∈ D}
max{|z|n(1 − |z|)γ : z ∈ D} ,

where D = D1 and DR = D(0, R), where D(z0, R) = {z ∈ C : |z − z0| ≤ R}.

Proof Let �(E, z) := lim
n→∞ (�n(E, z))

1
n be the Siciak extremal function of a compact

set E ⊂ CN . We refer to [9] for the basic properties of this function. In particular, we
have the following Bernstein–Walsh–Siciak inequality

|P(z)| ≤ ‖P‖E(�(E, z))deg P, z ∈ C
N. (16)

It is well known that �(DR, z) = max(1,
|z|
R ). If we put R = n

γ+n then, by esti-
mates (14) and (16), we get for z ∈ D

|P(z)| ≤ ‖P‖
DR

R−n ≤ (1 − R)−γ R−n = C(n, γ ),

which gives the first of inequalities (15). The second statement is a consequence of
the easy to verify fact that max{|z|n(1 − |z|)γ : |z| ≤ 1} equals nnγ γ

(n+γ )n+γ and is attained
for |z| = n

γ+n . ��

Proof of Theorem 2.1 Let us remark that ϕ(t) = ϕ((1 − t)0 + t · 1) ≤ t which means
that α ≥ 1. We first examine the case K = R.
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The inequality m(E(ϕ, R)) ≤ 2β was proved in [2]. In the same paper it was also
shown that m(E(ϕ, R)) = ∞ if α = ∞. Since m(E) ≥ 2, it suffices to consider the
case 1 < α < ∞.

Let γ > 1 be chosen such that γ < α. Then there exists M = M(γ ) such that
ϕ(t) ≤ Mtγ . Let l := [2γ ] ∈ N, r = {2γ } ∈ [0, 1). (Here, as usual, we denote by [x] the
integer number such that x − 1 < [x] ≤ x and {x} = x − [x] ∈ [0, 1) is the fractional
part of x.) Then γ = 1

2 l + 1
2r. Put

Pk(x, y) =
[

1

k
T ′

k(x)

]l+1

y

where Tk denotes the k-th Tchebyshev polynomial (and 1
k T ′

k(x) = Uk−1(x) is the (k −
1)st Tchebyshev polynomial of the second kind). Then deg Pk = (k − 1)(l + 1) + 1
and, since

∣∣∣∣
1

k
T ′

k(x)

∣∣∣∣ ≤ (1 − x2)−1/2 ≤ (1 − |x|)−1/2, x ∈ [−1, 1],

using the fact that |T ′
k(x)| ≤ k2 for x ∈ [−1, 1], we have

|Pk(x, y)| ≤ M

∣∣∣∣
1

k
T ′

k(x)(1 − |x|)1/2

∣∣∣∣
l+r ∣∣∣∣

1

k
T ′

k(x)

∣∣∣∣
1−r

≤ Mk1−r

for (x, y) ∈ E. Therefore
∣∣∣∣

∂

∂y
Pk(1, 0)

∣∣∣∣ = kl+1 = kl+rk1−r ≥ 1

M
k2γ ‖Pk‖E,

which implies the estimate m(E) ≥ 2γ . Hence m(E) ≥ 2α and inequality (11) fol-
lows.

Now consider the case K = C.
Let S = {v = (v1, v2) ∈ C2 : |v1|2 + |v2|2 = 1} be the unit Euclidean sphere. For

a compact subset E of C2, v ∈ S and u ∈ E we introduce the following distance of
u = (z, w) to the boundary of E in direction of v

ρv(u) = ρv(u, C
2 \ E) = sup{r : u + ζv ∈ E for |ζ | ≤ r}.

Fix a polynomial P ∈ C[z, w] of degree n ≥ 1 with ‖P‖E(ϕ,C) = 1. We have Dv P(u) =
∂
∂ζ

P(u + ζv)|ζ=0 = Q′(0), where Q(ζ ) = P(u + ζv). By Cauchy’s formula, |Q′(0)| ≤
inf
r>0

1
r sup

|ζ |=r
|Q(ζ )|. Hence

|Dv P(u)| ≤ inf
r>0

1

r
sup
|ζ |=r

|P(u + ζv)|. (17)

The next lemma can be understood as a complex version of a property of UPC sets
introduced by Pawłucki and Pleśniak and slightly modified by Baran, cf. [1, 2, 10].

Lemma 2.4 Let ψ = (ψ1, ψ2) : C −→ C2 be a polynomial mapping of degree d =
max(deg ψ1, deg ψ2)≥1 such that ψ(D) ⊂ E ⊂ C2 and for some M>0, m ≥ 1

ρv(ψ(ζ ), C
2 \ E) ≥ M(1 − |ζ |)m, ζ ∈ D,

where v ∈ S is a f ixed vector.
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If P is a polynomial of degree n ≥ 1 with ‖P‖E = 1 then

|Dv P(ψ(ζ ))| ≤ em

M

(
1 + (n − 1)d

m

)m

≤ (de)m

M
nm, ζ ∈ D.

Proof of Lemma 2.4 Put Q(ζ ) = Dv P(ψ(ζ )). Applying inequality (17) we get

|Q(ζ )| ≤ inf
r>0

1

r
sup
|η|=r

|P(ψ(ζ ) + ηv)| ≤ 1

ρv(ψ(ζ ))
sup

|η|=ρv(ψ(ζ ))

|P(ψ(ζ ) + ηv)|

≤ 1

ρv(ψ(ζ ))
≤ 1

M(1 − |ζ |)m

and, since deg Q ≤ (n − 1)d, estimate (15) yields the desired conclusion. ��

We proceed to prove Theorem 2.1. We can assume that β < ∞. Fix γ > β. Then
there exists a positive constant A = A(γ ) ≤ 1 such that

ϕ(t) ≥ Atγ , t ∈ [0, 1].
Now we consider two special cases of v: v = e1 = (1, 0) and v = e2 = (0, 1) and

ψ(ζ ) = ψ(z,w)(ζ ) = ζ(z, w), where ζ ∈ D, (z, w) ∈ E(ϕ, C) \ {(0, 0)}. It is easy to
check that

ρe1(z, w) = 1 − |z| − ϕ−1(|w|), ρe2(z, w) = ϕ(1 − |z|) − |w|, (z, w) ∈ E(ϕ, C),

whence

ρe1(ψ(ζ )) = 1 − |ζ ||z| − ϕ−1(|ζ ||w|), ρe2(ψ(ζ )) = ϕ(1 − |ζ ||z|) − |ζ ||w|, ζ ∈ D.

Since E(ϕ, C) = ⋃
(z0,w0)∈∂ E(ϕ,C)

ψ(z0,w0)(D) (or by the maximum principle for holomor-

phic functions) we can assume |w| = ϕ(1 − |z|). Then, by Lemma 2.2, we get the
estimate

ρe1(ψ(ζ )) ≥ 1

ϕ′(1)
(1 − |ζ |), ζ ∈ D

ρe2(ψ(ζ )) ≥ ϕ(1 − |ζ |) ≥ A(1 − |ζ |)γ .

Applying Schur’s theorem (Proposition 2.3) and Lemma 2.4 we obtain

|De1 P(ψ(ζ ))| ≤ ϕ′(1)en, ζ ∈ D,

|De2 P(ψ(ζ ))| ≤ A−1eγ nγ , ζ ∈ D.

Consequently, the Markov inequality holds with exponent γ . Hence m(E) ≤ β.
Now let 1 < α < ∞ and fix 1 < γ < α. There exists a constant A = A(γ ) ≥ 1 such

that ϕ(t) ≤ Atγ , t ∈ [0, 1].
Consider P = Pk(z, w) = zkw. We have

∥∥ ∂ Pk
∂w

∥∥
E = 1 and

‖Pk‖E ≤ max
t∈[0,1]

Atk(1 − t)γ

= A
(

k
γ + k

)k (
γ

γ + k

)γ

≤ A
1 + γ

γ γ (γ + k)−γ = B(γ )(γ + k)−γ .
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Finally we get

∥∥∥∥
∂ Pk

∂w

∥∥∥∥
E

≥ 1

B(γ )
(k + 1)γ ‖Pk‖E,

which implies m(E) ≥ α, and estimate (10) is proved. ��

Observe that, by Taylor’s formula, any convex function ϕ ∈ Ck([0, 1]) such that
ϕ(1) = 1, ϕ(0) = ϕ′(0) = ... = ϕ(k−1)(0) = 0 and ϕ(k)(0) = 0 satisfies the assumptions
of Theorem 2.1 and we have α = β = k.

Note that (cf. [1]), if ϕ(t) = t
(
1 + ln 1

t

)−1
, t ∈ [0, 1] and E = E(ϕ, R), then α =

β = 1 and therefore m(E) = 2. For p ≥ 1, the function ϕp(t) := ϕ(tp) satisfies the
assumptions of Theorem 2.1. Moreover, we have

lim
t→0+

ln ϕp(t)
ln t

= p.

Proposition 2.5 Let Ep = E(ϕp, C), p ≥ 1. Then the Markov inequality on Ep does
not hold with exponent m(Ep) = p.

Proof We use similar arguments to those given above. Consider the polynomial

Pk(z, w) = zk

⎛
⎝1 + p

k∑
j=1

z j

j

⎞
⎠w.

One can easily check that

‖Pk‖Ep ≤ max
|z|≤1

{
|z|k

(
1 + p ln

1

1 − |z|
)

ϕp(1 − |z|)
}

= max
|z|≤1

{|z|k(1 − |z|)p}

≤ pp

(p + k)p(1 + p)
,

∥∥∥∥
∂ Pk

∂w

∥∥∥∥
Ep

≥
⎛
⎝1 + p

k∑
j=1

1

j

⎞
⎠ ≥ 1 + p ln(k + 1)

≥ 1 + p
pp

(p + k)p(1 + p ln(k + 1))‖Pk‖Ep,

which completes the proof. ��

Proposition 2.6 Let Ẽp = E(ϕp, R), p ≥ 1. Then the Markov inequality on Ẽp does
not hold with the exponent m(Ẽp) = 2p.

Proof Let l = [2p]. Then l + 1 > 2p. Define

Pk(x, y) = Uk−1(x)l+1

⎛
⎝1 + p

k∑
j=1

x j

j

⎞
⎠ y.
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Applying arguments from the proof of the real case of Theorem 2.1, we obtain for
(x, y) ∈ Ẽp

|Pk(x, y)| ≤
∣∣∣∣
1

k
T ′

k(x)

∣∣∣∣
l+1
⎛
⎝1 + p

k∑
j=1

|x| j

j

⎞
⎠ϕp(1 − |x|) ≤

∣∣∣∣
1

k
T ′

k(x)

∣∣∣∣
l+1

(1 − |x|)p

≤
∣∣∣∣
1

k
T ′

k(x)

∣∣∣∣
l+1−2p

·
∣∣∣∣
1

k
T ′

k(x)

∣∣∣∣
2p

(1 − |x|)p ≤ kl+1−2p

and thus ‖Pk‖Ẽp
≤ kl+1−2p. Moreover,

∥∥∥∥
∂ Pk

∂y

∥∥∥∥
Ẽp

≥ kl+1

⎛
⎝1 + p

k∑
j=1

1

j

⎞
⎠ = k2p

⎛
⎝1 + p

k∑
j=1

1

j

⎞
⎠kl+1−2p,

which gives
∥∥∥∥
∂ Pk

∂y

∥∥∥∥
Ẽp

≥ (1 + p ln k)k2p‖Pk‖Ẽp
.

��

Corollary 2.7 For an arbitrary p ≥ 1 and for each N ≥ 2 there exists a compact set
E in CN such that m(E) = p and the Markov inequality on E does not hold with
exponent p.

Remark 2.8 Let Ep = {(x, y) ∈ R2 : x ∈ [0, 1], 0 ≤ y ≤ xp} for p ≥ 1. It was proved
by Goetgheluck [7] that m(Ep) = 2p. It was the first example of a set with a
cusp for which Markov exponent was calculated. A difficult part of Goetgheluck’s
proof was to show that m(Ep) ≥ 2p. Actually, it can be done easily by consid-

ering the polynomials Pk(x, y) = [
1
k T ′

k(1 − x)
]l+1

y where l = [2p] with deg Pk =
(l + 1)(k − 1) + 1. Then ∂ Pk

∂y (0, 0) = kl+1 and ‖Pk‖Ep ≤ k1−r where r = {2p} =
2p − [2p]. This implies that ‖ ∂ Pk

∂y ‖Ep ≥ k2p‖Pk‖Ep and therefore m(Ep) ≥ 2p.

3 An Example of a Non-Markov Cuspidal Set Where the Cusp
is Not the Problem

Now we take up the set

E = {(x, y) ∈ R
2 : |x| ≤ 1, |y| ≤ e− 1

|x| } ∪ {(x, y) ∈ R
2 : |y| ≤ 1, |x| ≤ e− 1

|y| }
with e− 1

0 := 0. E is the union of eight images of the Zerner set [20]

F = {(x, y) ∈ R
2 : x ∈ [0, 1], y ∈ [0, e− 1

x ]}
under certain isometries. A pointwise Markov inequality is satisfied at every point of
F \ {(0, 0)} but F is not a Markov set, because at the tip of the exponential cusp, i.e.,
at the point (0, 0), a Markov inequality does not hold.
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Regarding E, the tip of the exponential cusps does not pose any problem. Namely,
by the classical Markov inequality for the interval [−1, 1], we have

|∇ P(0, 0)| ≤ √
2 (deg P)2 ||P||E

for any polynomial P of two variables. Moreover, a Markov inequality is satisfied
at every point (x, y) of E, because each (x, y) = (0, 0) can be attained by two
perpendicular segments contained in the interior of E (without (x, y) if necessary).
However, E is not a Markov set as is shown below.

Proposition 3.1 The set E def ined above is not a Markov set.

Proof Put

Pn(x, y) = xy (1 − x2)n(1 − y2)n.

It is sufficient to prove that

lim inf
n→∞

ln(||∇ Pn||E ||Pn||−1
E )

ln n
= +∞. (18)

We can easily check that ||Pn||E = max |x||y|(1 − x2)n(1 − y2)n where the maxi-
mum is taken over all (x, y) ∈ E such that |x| = e− 1

|y| , |y| = e− 1
|x| . Thus

||Pn||E = max{te− 1
t (1 − t2)n(1 − e− 2

t )n : t ∈ [0, 1]}
≤ max{e− 1

t (1 − t2)n : t ∈ [0, 1]}.
Put f (t) := e− 1

t (1 − t2)n. An easy computation shows that f ′ vanishes once in the
interval (0, 1) and f ′(( 1

2n )1/3) < 0, f ′(( 1
3n )1/3) > 0. Hence for any n > 1 we can find

b = b(n) ∈ (2, 3) such that f ′(( 1
b n )1/3) = 0. Therefore,

||Pn||E ≤ f

((
1

b n

)1/3
)

< e− 3√b n < e− 3√n.

Moreover,

||∇ Pn||E ≥
∣∣∣∣∇ Pn

(
1√
n

, e−√
n
)∣∣∣∣ ≥

∣∣∣∣
∂ Pn

∂y

(
1√
n

, e−√
n
)∣∣∣∣

= 1√
n

(
1 − 1

n

)n(
1 − e−2

√
n
)n−1(

1 − e−2
√

n − 2ne−2
√

n
)

which tends to zero like 1√
n . By the above,

lim inf
n→∞

ln(||∇ Pn||E ||Pn||−1
E )

ln n
≥ lim inf

n→∞
ln(e

3√nn−1/2)

ln n
= +∞,

and the proof is completed. ��
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4 Markov Sets in C

At the beginning of this section we show that

sup{m(K) : K⊂C is a Markov set} = sup{m(K) : K⊂R is a Markov set} = ∞.

Recall that an analogous result in CN and RN with N ≥ 2 has been obtained in [7]
(or is a consequence of Propositions 2.5, 2.6 in this paper).

Proposition 4.1 Let μ be a positive number and A = 2[μ] + 12. Then

Eμ = {0} ∪
∞⋃

k=1

[ak, b k] with b k = e−Ak
, ak = b 2

k for k = 1, 2, ...

is a Markov set and m(Eμ) ∈ [ μ,∞).

Proof The fact that Eμ is a Markov set is a consequence of Goncharov and Uzun
(Markov’s property of compact sets in R (manuscript)).

In order to prove that m(Eμ) ≥ μ, we use the following theorem (see e.g.[6]): A
compact set F ⊂ R is a Markov set if and only if there exist positive constants M, m, s
independent of x0 ∈ F, r ∈ (0, 1], n ∈ N and of any polynomial P of degree at most n,
such that

|P′(x0)| ≤ Mnm

rs
||P||F∩[x0−r,x0+r]. (19)

An inspection of the proof shows that if F is a Markov set then inequality (19) is
satisfied with every

s > m(F) + 5 (20)

(but it can also be satisfied with some s ≤ m(F) + 5). Put

s(F) := inf{s>0 : ∃ M, m>0 ∀x0 ∀r ∀P inequality 19 holds}.
By the above, s(F) ≤ m(F)+5.

We shall have completed the proof if we show that μ+5 ≤ s(Eμ). Suppose that,
contrary to our claim, there exists s ∈ (s(Eμ), μ+5). For such an s inequality (19) is
satisfied with F replaced by Eμ. Fix k ∈ {1, 2, ...}. Take x0 = 0, P(x) = x, r = ak

2 . It
is easy to see that b k+1 < r < ak. From estimate (19) we get

1 = |P′(x0)| ≤ M
(ak

2

)−s ||P||Eμ∩[0,r]

with some M > 0 depending only on s. Thus

1 ≤ 2s Ma−s
k b k+1 = 2s M e−Ak(A−2s).

Letting k → ∞ we would have a contradiction with s<μ + 5.
Consequently, we have μ + 5 ≤ s(Eμ) ≤ m(Eμ) + 5 and thus μ ≤ m(Eμ), which

completes the proof. ��



On the Best Exponent in Markov Inequality 647

Now we consider a problem of the change of the Markov exponent under a
holomorphic deformations.

Theorem 4.2 Let E be a polynomially convex compact subset of C, for which
Markov’s inequality is satisf ied with an exponent m. Denote by U an open neigh-
borhood of E and let F : U −→ C be a holomorphic mapping, that is not-constant on
each component V ⊂ U such that V ∩ E = ∅.

Then F(E) has the Markov property and the Markov inequality for F(E) holds
with an exponent m1 ≤ k · m, where

k = 1 + max
t∈∂ E

ordt F ′,

and

ordt0 F ′ = l j if lim
t→t0

(t − t0)−l j F ′(t) = α0 = 0.

In the proof of the theorem we shall use a lemma, where the assumption on the
polynomial convexity is essential.

Lemma 4.3 (cf. [2], Lemma 2.2) Assume that E and F are as in Theorem 4.2. Let M2

be a positive constant such that
⋃
t∈E

D(t, M2) ⊂ U. Then

|(P ◦ F)(t)| ≤ M3‖P ◦ F‖E provided that dist(t, E) ≤ M2

nm
,

for a positive constant M3 independent of P ∈ Pn(C).

Proof of Theorem 4.2 Let t j be one of the points {t1, . . . , ts} = E ∩ {t ∈ U : F ′(t) =
0} = ∅ (if F ′(t) = 0 on E we refer to [2]). We shall consider two cases: an easy one
with the assumption t j ∈ int(E) and the more difficult situation where t j ∈ ∂ E.

Firstly assume that t j ∈ int(E). Choose r j > 0 such that D(t j, r j) ⊂ E and D(t j, r j) ∩
(F ′)−1({0}) = {t j}. Then each set F(∂D(t j, r j)) is an analytic closed curve that, by a
theorem of Szegö [13, Theorem 15.3.5], admits a Markov inequality with exponent 1.
Thus for a fixed polynomial P ∈ Pn(C)

‖P′‖F(∂D(t j,r j))
≤ C j(r j)n‖P‖F(∂D(t j,r j))

and, by the maximum principle for holomorphic functions,

‖P′‖F(D(t j,r j))
≤ M0n‖P‖F(D(t j,r j))

≤ M0n‖P‖F(E), M0 = max
t j∈int(E)

C j(r j).

We now turn to the case t j ∈ ∂ E for some j ∈ {1, ..., s}. For fixed polynomial P ∈
Pn(C) and k j = 1 + ordt j F

′, we define a holomorphic function

GP(t) = 1

(t − t j)
k j−1

(P ◦ F)′(t), t ∈ U.
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Applying Cauchy’s integral formula we get

GP(t) = 1

2π i

∮

|ζ−t|=ρ

1

(ζ − t j)
k j−1

(P ◦ F)′(ζ )

ζ − t
dζ

= 1

(2π i)2

∮

|ζ−t|=ρ

1

(ζ − t j)
k j−1(ζ − t)

∮

|η−ζ |=σ

(P ◦ F)(η)

(η − ζ )2
dηdζ,

for sufficiently small positive numbers ρ and σ .
We shall find a bound for |GP(t)|. We have

|GP(t)| ≤
(

1

2π

)2

· 2πρ sup
|ζ−t|=ρ

{
|ζ − t j|−(k j−1)|ζ − t|−1 · 2πσ sup

|η−ζ |=σ

|(P ◦ F)(η)|
|η − ζ |2

}

= 1

σ
sup

|ζ−t|=ρ

{
|ζ − t j|−(k j−1) sup

|η−ζ |=σ

|(P ◦ F)(η)|
}

.

If |ζ − t| = ρ and t ∈ D(t j,
ρ

2 ) then

|ζ − t j| = |ζ − t + t − t j| ≥ |ζ − t| − |t − t j| = ρ − |t − t j| ≥ ρ

2
.

Thus

|GP(t)| ≤ 1

σ

(ρ

2

)−(k j−1)

sup
|ζ−t|=ρ

(
sup

|η−ζ |=σ

|(P ◦ F)(η)|
)

≤ 1

σ

(ρ

2

)−(k j−1)

sup
|η−t j|≤ 3

2 ρ+σ

|(P ◦ F)(η)|.

Taking σ = 3
2ρ we obtain for |t − t j| ≤ ρ

2

|GP(t)| ≤ 1

3
2k jρ−k j sup

|t−t j|≤3ρ

|(P ◦ F)(t)|.

According to Lemma 4.3, for ρ = 1
3 M2n−m, t ∈ D(t j,

ρ

2 ) we obtain

|GP(t)| ≤ 1

3
2k j

(
1

3
M2n−m

)−k j

M3‖P ◦ F‖E = M4( j)nk jm‖P‖F(E),

where

M4( j) = M3

3
(6M−1

2 )k j .

By the assumptions, lim
t→t j

(t − t j)
−(k j−1) F ′(t) = α j = 0 and therefore, there exists an

ε j > 0 such that for t ∈ D(t j, ε j) we have
∣∣∣∣

F ′(t)
(t − t j)

k j−1

∣∣∣∣ ≥ |α j|
2

> 0,
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hence

|F ′(t)| ≥ |α j|
2

· |t − t j|k j−1.

We can assume that 1
6 M2 ≤ ε j. For t ∈ D(t j,

1
6 M2n−m) \ {t j} we get

|P′(F(t))| =
∣∣∣∣
(P ◦ F)′(t)

F ′(t)

∣∣∣∣ = |GP(t)| ·
∣∣∣∣
(t − t j)

k j−1

F ′(t)

∣∣∣∣ ≤ M4( j)nk jm‖P‖F(E) · 2

|α j| .

In addition, for 1
6 M2n−m ≤ |t − t j| ≤ ε j we have

|P′ (F(t)) | =
∣∣∣∣
(P ◦ F)′(t)

F ′(t)

∣∣∣∣ ≤ |(P ◦ F)′(t)| · 2

|α j| · |t − t j|−(k j−1)

≤ |(P ◦ F)′(t)| · 2

|α j| ·
(

1

6
M2n−m

)−(k j−1)

= 2

|α j|
(
6M−1

2

)(k j−1)
n(k j−1)m|(P ◦ F)′(t)|.

For suitable τ > 0, we have

|(P ◦ F)′(t)| ≤ 1

2π

∮

|ζ−t|=τ

|(P ◦ F)(ζ )|
|ζ − t|2 |dζ |

≤ 1

2πτ 2
· 2πτ · sup {|(P ◦ F)(ζ )| : |ζ − t| = τ }

= 1

τ
sup {|(P ◦ F)(ζ )| : |ζ − t| = τ } .

Putting τ = 1
12 M2n−m and using the lemma once more we obtain for t ∈ E

|(P ◦ F)′(t)| ≤ 12

M2
nm · M3‖P ◦ F‖E. (21)

Finally, for t ∈ E such that 1
6 M2n−m ≤ |t − t j| ≤ ε j we have the estimate

|P′(F(t))| ≤ 4

|α j| · 6k j M
−k j

2 M3nk jm‖P‖F(E) ≤ M5( j)nk jm‖P‖F(E),

where M5( j) = 4M3
|α j| · 6k j M

−k j

2 .
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Summarizing, for t ∈ E ∩ D(t j, ε j), we have

|P′(F(t))| ≤ M6( j)nk jm‖P‖F(E),

where M6( j) = max
(
2M4( j)|α j|−1, M5( j)

)
.

Put r = min
1≤ j≤s

ε j. For t ∈ E ∩
s⋃

j=1
D(t j, r) we get

|P′(F(t))| ≤ M6nkm‖P‖F(E),

where M6 = M0 + max
1≤ j≤s, t j∈∂ E

M6( j).

Let M7 = sup
t∈E\E1

|F ′(t)|−1. Then for t ∈ E\E1 we have

|P′(F(t))| =
∣∣∣∣
(P ◦ F)′(t)

F ′(t)

∣∣∣∣ ≤ M7|(P ◦ F)′(t)|

and according to estimate (21)

|P′(F(t))| ≤ 12

M2
M3 M7nkm‖P‖F(E).

Finally, for M8 = max(M6, 12M−1
2 M3 M7) we get the inequality

‖P′‖F(E) ≤ M8nkm‖P‖F(E).

��
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