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Abstract
Using the connection between ellipsoids and positive semidefinitematriceswe provide
alternative proofs to some recently proven inequalities concerning the volume of L2
zonoids as consequences of classical inequalities for matrices.
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1 Introduction and background

Manyconnections exist between the theoryofmatrices and the theoryof convexbodies.
Within the realm of convex geometry, the fundamental Brunn–Minkowski inequality
[14], [22, Section 7.1], and the Aleksandrov–Fenchel inequality [22, Section 7.3]
have versions for positive semidefinite matrices. Appropriate analogue versions of
the classical Bergstrom and Ky-Fan inequalities within the theory of matrices have
been studied for convex bodies, as well as inequalities for mixed volumes have been
investigated in the context of mixed discriminants (see e.g. [1, 12, 13, 15, 19]). The
L2 Brunn–Minkowski theory of convex bodies provides us with a correspondence
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between positive semidefinite matrices and ellipsoids, which takes the usual sum of
matrices to the so-called L2 sum of ellipsoids into account.

This note aims to observe that some recently obtained inequalities for the particular
family of convex bodies known as L2 zonoids correspond to classical matrix inequal-
ities. On the other hand, a characterization result included in (one of) the mentioned
recently proven geometrical inequalities allows to establish directly the equality con-
ditions in one of the classical matrix inequalities, which, to the best of the authors’
knowledge, seem not to have been explicitly documented in the literature.

Let Mn be the vector space of real square symmetric matrices, and let the set of
positive semidefinite symmetric ones be denoted by Sn+. It is well-known (see e.g.
[18]) that Sn+ is a closed, convex cone. Next, we recall the Bergstrom and Ky Fan
classical matrix inequalities.

Theorem 1.1 (Bergstrom’s inequality) [5–7] Let A and B be two n×n positive definite
real symmetric matrices, and denote by Ai and Bi the two (n − 1) × (n − 1) matrices
resulting from A and B by deleting the i-th row and the i-th column. Then we have

det(A + B)

det(Ai + Bi )
≥ det(A)

det(Ai )
+ det(B)

det(Bi )
, (1.1)

for every i ∈ {1, . . . , n}.
Theorem 1.2 (Ky Fan’s inequality) [5, 10] Let A and B be two n × n positive definite
real symmetric matrices, and denote by A(k) and B(k) the principal k × k matrices of
A and B obtained by taking the first k rows and k columns from A and B, respectively.
Then we have

(
det(A + B)

det(A(k) + B(k))

) 1
n−k ≥ det

1
n−k (A)

det
1

n−k (A(k))
+ det

1
n−k (B)

det
1

n−k (B(k))
, (1.2)

for every k ∈ {1, . . . , n − 1}.
Inequalities (1.1) and (1.2) have motivated a number of questions concerning quo-

tients of sums of quermassintegrals of convex bodies, in particular, volume and surface
area, see e.g. [12, 13, 15], and the references therein.

The next result is Brunn–Minkowski’s (or Minkowski’s) inequality for positive
semidefinite symmetric matrices.

Theorem 1.3 [19, Theorem 7.8.21] Let A, B ∈ Mn be positive definite matrices.
Then

det((1 − λ)A + λB)1/n ≥ (1 − λ) det(A)1/n + λ det(B)1/n (1.3)

for any λ ∈ [0, 1], with equality if and only if A = cB, for some c > 0.

Next, we state the geometric analogue of the latter, namely, the Brunn–Minkowski
inequality for the volume of convex bodies. For that, we first need to introduce some
further notation.
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In the n-dimensional Euclidean spaceR
n , endowed with the standard inner product

〈·, ·〉 and the associated Euclidean norm || · ||, we denote by Kn the set of all convex
bodies, i.e., compact convex sets in R

n . We set Bn to be the n-dimensional unit ball,
and S

n−1 to be its boundary, the unit sphere of R
n . Let 1 ≤ k ≤ n, we denote by

Ln
k the set of all k-dimensional linear subspace of R

n . If L ∈ Ln
k and K ∈ Kn , then

we denote by PL(K ) ⊂ L the orthogonal projection of K onto L , which is also a
convex body. The subset of Kn consisting of all convex bodies containing the origin
will be denoted by Kn

0 , meanwhile, the subset of Kn
0 consisting of all convex bodies

containing the origin in their interior is denoted by Kn
(o). The volume of a measurable

set M � R
n , i.e., its n-dimensional Lebesgue measure, is denoted by voln(M). If M is

contained in a k-dimensional affine subspace of R
n , we will write volk(K ) to denote

its k-dimensional volume.
The Minkowski sum of the convex bodies K , H is defined as K + H := {x + y :

x ∈ K , y ∈ H}. Moreover, if α ≥ 0, then αK := {αx : x ∈ K }. For every K , H ∈ Kn

and α, β ≥ 0, we have that αK + βH is again a convex body.
The Brunn–Minkowski inequality provides us with the concavity of the n-th root

of the volume with respect to the Minkowski sum. The Brunn–Minkowski inequality
is the content of the following theorem, which is a cornerstone of the classical Brunn–
Minkowski theory.

Theorem 1.4 [22, Theorem 7.1.1] Let K , H ∈ Kn be two convex bodies. Then, for
λ ∈ [0, 1]

voln
(
(1 − λ)K + λH

)1/n ≥ (1 − λ)voln(K )1/n + λvoln(H)1/n . (1.4)

Equality for some λ ∈ (0, 1) holds if and only if K and H either lie in parallel
hyperplanes or are homothetic.

We refer the interested reader to [14, 22] for details and a wealth of results and
contributions to the Brunn–Minkowski theory. Considering other additions of convex
bodies, other than the vectorial one, far-reaching extensions of the classical Brunn–
Minkowski theory have emerged [22, Chapter 9]. An example of those is the L p

Brunn–Minkowski theory.
The mentioned L2 sum of convex bodies -which contain the origin- is just a par-

ticular case of the more general L p sum, defined via the support function of a convex
body, within the L p Brunn–Minkowski theory. With the aim of introducing the latter
precisely, we need some further background on the theory of convex bodies.

Given a convex body K ∈ Kn , the support function of K in the direction x ∈ R
n

is defined as h(K , x) = max{〈x, y〉 : y ∈ K }, and it describes K uniquely. If
f : R

n → R is a positively 1-homogeneous and sub-additive function in R
n , then

there exists a unique convex body K ∈ Kn , such that f (x) = h(K , x), for every
x ∈ R

n , see [22, Theorem 1.7.1].
Now, for convex bodies K , H containing the origin, the latter ensures that the p-

mean of the support functions of K and H provides us with the support function of a
new convex body, K +p L , called the L p sum of K and H . More precisely, for x ∈ R

n
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and K , H ∈ Kn
0 (see [22, Chapter 9]), the function f : R

n → R, given by

f (x) := (h(K , x)p + h(H , x)p)
1
p (1.5)

is the support function of K +p H .
Observe that the origin belongs to K ∈ Kn , i.e., K ∈ Kn

0 , if and only if h(K , ·) ≥ 0.
Let furthermore λ ·p K := λ1/pK , i.e., h p(λ ·p K , x) = λh p(K , x), for x ∈ R

n .
With this notation, the following inequality is known as the L p Brunn–Minkowski
inequality. Although we will only use it in the case p = 2, we establish it in the
general case p ≥ 1, for completeness. For p = 1 we recover the Brunn–Minkowski
inequality above.

Theorem 1.5 (L p Brunn–Minkowski) [22, Corollary 9.1.5] Let K , H ∈ Kn
(0) be two

convex bodies containing the origin. Then

voln
(
(1 − λ) ·p K +p λ ·p M

) p
n ≥ (1 − λ)voln(K )

p
n + λvoln(H)

p
n , (1.6)

for λ ∈ [0, 1] and p ≥ 1. Equality holds if and only if K and H are dilates of each
other.

When p = 2, using the explicit expression of the support function of an ellipsoid,
there is a correspondence between positive definite matrices and ellipsoids, which
involves the L2 sum. In the next, we follow [11] to denote En the set of all ellipsoids
centered at the origin in R

n , i.e., E ∈ En if there is a linear map T : R
n −→ R

n , such
that E = T (Bn) =: T Bn . Indeed, if E ∈ En and T : R

n −→ R
n is a linear map such

that E = T Bn , then the support function of E is given by h(E, x) = h(T Bn, x) =
max{〈y, x〉 : y ∈ T Bn} = max{〈Tb, x〉 : b ∈ Bn}, for x ∈ R

n . Thus,

h(E, x) = max{〈b, T T x〉 : b ∈ Bn} = h(Bn, T
T x) = ||T T x ||

= 〈T T x, T T x〉1/2 = 〈x, T T T x〉1/2.

Thematrix A = T T T defines uniquely an element in the space of positive semidefinite
real symmetric matrices Sn+. Therefore, for every x ∈ R

n, h2(E, x) = 〈x, Ax〉. By
the latter, a centered ellipsoid E ∈ En determines uniquely a matrix A ∈ Sn+. On the
other hand, any matrix A ∈ Sn+ determines uniquely a centered ellipsoid E ∈ En via
its support function as follows:

h2(E, x) = 〈x, Ax〉, x ∈ R
n . (1.7)

In the next, we use the notation EA for the ellipsoid associated with the matrix
A ∈ Sn+. In this setting, we have also dim(EA) = rank(A) and

voln(EA) = κn
√
det(A). (1.8)

Moreover, as already mentioned, there is a correspondence of the sum of positive
semidefinite matrices to the L2 sum of ellipsoids, which follows directly from (1.5)
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and reads

E(1−λ)A+λB = (1 − λ) ·2 EA +2 λ ·2 EB, (1.9)

for every A, B ∈ Sn+ and λ ∈ [0, 1], where λ ·2 EA = √
λEA (see e.g. [11]).

Our first aim in this note is to use the mentioned correspondence of ellipsoids and
positive semidefinite matrices, along with (1.9), to observe that the classical deter-
minantal inequalities of Bergstrom and Ky-Fan provide us directly with alternative
proofs of the following two results proven in [12].

For those results, we first need to introduce the notion of L2 zonoid.An L p zonotope
is the L p sum of centered segments and an L p zonoid is the limit of L p zonotopes,
where the space of convex bodies has been endowed with the usual Hausdorff metric
(see e.g. [22, Section 1.8]). For p = 2, an L2 zonoid is a centered ellipsoid.We provide
a short argument of this fact, for completeness.

Remark 1.6 Let x1, . . . , xn ∈ R
n be points and [−xi , xi ] denote the centred segment

joining −xi and xi . We denote by X the n × n matrix whose columns are x1, . . . , xn .
Then, the support function of the L2 sum of these segments, [−x1, x1] +2 · · · +2
[−xn, xn], according to (1.5) satisfies

h([−x1, x1] +2 · · · +2 [−xn, xn], u)2 =
n∑

i=1

h([−xi , xi ], u)2 =
n∑

i=1

|〈xi , u〉|2

=
n∑

i=1

|〈Xei , u〉|2 =
n∑

i=1

|〈ei , XT u〉|2 = |XT u|2

= h(UBn, u)2,

where X is the matrix having x1, . . . , xn as columns andU = (XXT )1/2 is the square
root of the positive semidefinite real symmetric matrix XXT . Hence, [−x1, x1] +2
· · · +2 [−xn, xn] = UBn , which is an ellipsoid.

In the case that the sum consists ofm 
= n segments, the same argument proves that
the L2 sum of centered segments is an ellipsoid. We point out that L2 zonoids may
not have interior points. Indeed, if E ⊂ R

n is the sum of m < n centered segments,
then it is an L2 zonotope, and it has clearly empty interior (see [12] and the references
therein for further aspects of L p zonotopes and zonoids in this context).

For a vector u ∈ S
n−1, we denote by u⊥ the hyperplane orthogonal to u, i.e., the

(n − 1)-dimensional linear subspace having u as normal vector. Then, as before, for
K ∈ Kn , the orthogonal projection of K onto u⊥ is denoted by Pu⊥K .

Theorem 1.7 [12, Theorem 6.2] Let K , H be a pair of L2 zonoids in R
n and let

u ∈ S
n−1. Then

(
voln(K +2 H)

voln−1(Pu⊥(K +2 H))

)2

≥
(

voln(K )

voln−1(Pu⊥(K ))

)2

+
(

voln(H)

voln−1(Pu⊥(H))

)2

,

(1.10)
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with equality if and only if K and H have parallel tangent hyperplanes at ρK (u)u and
ρH (u)u, where ρK (u) = max{λ : λu ∈ K } is the radial function of the body K ∈ Kn

at u ∈ S
n−1.

The following theorem is a generalization of Theorem 1.7.

Theorem 1.8 [12, Theorem 6.6] Let n be an integer, then for any 1 ≤ k ≤ n and for
every pair of L2 zonoids K , H in R

n and any (n − k)-dimensional subspace L of R
n,

i.e., L ∈ Ln
k , one has

(
voln(K +2 H)

voln−k(PL(K +2 H))

) 2
k ≥

(
voln(K )

voln−k(PL(K ))

) 2
k +

(
voln(H)

voln−k(PL(H))

) 2
k

.

(1.11)

In [9], Bergstrom and Ky-Fan inequalities are used to obtain linearized versions of
inequalities within the realm of convex geometry. In particular, they are fundamental
to obtain a linearized version of the Brunn–Minkowski, and the Aleksandrov–Fenchel
inequalities for positive semidefinite matrices, that satisfy certain conditions on the
projection onto a subspace. In the last subsection of this note, we investigate connec-
tions of some of the results in [9] with other results coming from the context of convex
geometry, in the spirit of the previous results.

2 Ellipsoids, positive semidefinite matrices and projections

We start fixing the notation that will be used throughout the paper. Let A ∈ Mn be a
positive semidefinitematrix, and let S = {e1, . . . , en} denote the standard orthonormal
basis of R

n . With some abuse of notation, let A : R
n → R

n , x �→ A · x , denote the
linear map defined by the matrix A, when considered with respect to the standard basis
in R

n .
Let L be a linear subspace of R

n , and let BL , BL⊥ , BL,L⊥ = BL ∪̇BL⊥ be orthonor-
mal bases of L, L⊥, and R

n , respectively. We denote by AL the matrix of the linear
map associated with A, with respect to the bases BL,L⊥ .

The inclusion of the subspace L into R
n will be denoted by ιL : L → R

n , and the
orthogonal projection of R

n onto L will be denoted by PL : R
n → L . The linear map

ιL ◦ PL : R
n → R

n , which embeds the projection onto L into R
n will be denoted by

PL .
The following notion of projection of a matrix onto a subspace has been considered

in [3, 4], and it is inherited from the definition of the restriction of a quadratic form to
a linear subspace (see e.g. [20]).

Let L be a linear subspace of R
n , A ∈ Mn , and let qA be the quadratic form on

R
n associated to A, i.e., qA(x) = 〈x, Ax〉. The projection of the matrix A onto L is

defined as the matrix associated with the restriction of q to the subspace L ⊂ R
n , and

denoted by PL(A) ∈ Mdim L . The matrix PL(A) is well defined, and if A is positive
semidefinite, then so is PL(A).
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Proposition 2.1 [3, 4] Let A ∈ Mn be positive semidefinite matrix, and let L ⊆ R
n

be a linear subspace of R
n of dimension 1 ≤ k ≤ n, i.e., L ∈ Ln

k . The following
statements are equivalent:

i) Let qA : R
n → R be the quadratic form x �→ xT Ax. Then, the projection of the

matrix A onto the subspace L is the k × k positive semidefinite real symmetric
matrix of the restriction of qA to the subspace L.

ii) The projection of the matrix A onto L is the matrix PL(A) given by

⎛
⎜⎜⎜⎝
1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

... · · · ...
...

...
...

0 0 . . . 1 0 . . . 0

⎞
⎟⎟⎟⎠ · AL ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 0
0 . . . 0
... · · · ...

0 . . . 1
0 . . . 0
... · · · ...

0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the identity submatrices in the left and right-hand sides are of size k × k.
We observe that the left and right matrices in the above product are, indeed, the
matrix representations, with respect to BL , BL⊥ , and BL,L⊥ , of the inclusion ιL
and the projection PL .We also remark that PL(A) is the k×k principal submatrix
of AL given by the first k columns and rows of AL .

The next lemma provides us with a connection between the projection of a matrix
and its principal submatrices.

Lemma 2.2 [9, Lemma 3.4] Let A ∈ Sn+ be a positive definite matrix and 1 ≤ i ≤ n.
Let Ai denote the (n − 1) × (n − 1) matrix obtained from A by removing the i-th row
and the i-th column, and let A(i) denote the i × i matrix obtained from A by taking
the first i columns and i rows. Then,

i) Ai = PL(A) for L = e⊥
i ,

ii) A(i) = PL(A) for L = lin {e1, . . . , ei }.
The following two remarks will be useful in the next.

Remark 2.3 [3, Proof of Lemma 2.3.1] Let A ∈ Mn and let u ∈ S
n−1. Let O be an

orthogonalmatrix such that O u = ei .AsO is orthogonal,we also have O
(
u⊥) = e⊥

i .

Consequently, det
(
Pu⊥(A)

) = det
(
Pe⊥

i
(OAOT )

)
.

In a similar manner, let L ∈ Ln
k be a k-dimensional linear subspace of R

n , and
let O be an orthonormal matrix such that O(L) = Lk , where Lk = lin {e1, · · · , ek}.
As before, the orthonormality of O yields O(L⊥) = L⊥

k and thus, det (PL(A)) =
det

(
PLk (OAOT )

)
.

Next, we will describe the existing connection between the projection of a matrix and
the ellipsoids associated with the given matrix, and the projection of that matrix.
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For any A ∈ Sn+, let EA ∈ En be the ellipsoid given by A, i.e., h(EA, x)2 = 〈x, Ax〉,
for every x ∈ R

n .
Let L ∈ Ln

k . Then the projection of A onto L , i.e., PL(A), is a k × k symmetric and
positive semidefinite matrix. Therefore, there exists a unique ellipsoid EPL (A) ∈ Ek ,
such that h(EPL (A), x)2 = 〈x, PL(A)x〉, for every x ∈ L , where the inner product is
taken in L and inherited from R

n .
We consider now the projection of the ellipsoid EA onto L , i.e., the ellipsoid

ιL(PL(EA)) ⊆ R
n . We recall the notation PL = ιL ◦ PL for the projection onto

L embedded in R
n , in contrast to PL , the projection onto L , where L is the ambient

space.
As from the very definition ιL(PL(EA)) = PL(EA) ⊆ R

n is an ellipsoid in R
n ,

there exists a unique matrix C ∈ Sn+ such that h(PL(EA)), x)2 = 〈x,Cx〉, for every
x ∈ R

n .
We point out that we need to distinguish the projected ellipsoid as a subset of L ,

being L a k-dimensional space, and as a subset of (L embedded into) R
n , which

explains the introduction of the matrix C , of rank k, defining the projected ellipsoid as
a subset of R

n . The next proposition establishes the precise relation between EPL (A)

and EC .

Proposition 2.4 Let A ∈ Sn+, and let L ∈ Ln
k . Then

EPL (A) = PL(EA) ∈ Ek and ιL(EPL (A)) = EC ∈ En . (2.1)

Further,

PL(C) = PL(A). (2.2)

Proof Let BL , BL⊥ , BL,L⊥ = BL ∪̇BL⊥ be orthonormal bases of L, L⊥, and R
n ,

respectively. Further, let A ∈ Sn+, and let L ∈ Ln
k . We denote by ιL : L −→ R

n both,
the inclusion of L into R

n , and the matrix of it w.r.t. BL , and BL,L⊥ , where we are
again making some abuse of notation. It is enough to prove that the support functions
of EPL (A) and PL(EA) coincide. For that, observe first that EPL (A), PL(EA) ⊂ L ,
and, moreover, by definition, PL(A) is the k × k matrix satisfying

〈PL(A)x, x〉 = 〈AιL x, ιL x〉,

for every x ∈ L . Thus, for x ∈ L ,

h(EPL (A), x)
2 = 〈PL(A)x, x〉

= 〈AιL x, ιL x〉 = h(EA, ιL x)
2

= h(PL(EA), PL ιL x)
2

= h(PL(EA), x)2.
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For the second equality, we first state the following property of the support function:
for K ∈ Kn and L ∈ Ln

k , then for every x ∈ L , we have

h(K , x) = h(ιL(PL(K )), x). (2.3)

Using EPL (A) = PL(EA) and (2.3), we obtain

h(ιL(EPL (A)), x)
2 = h(PL ιL(EPL (A), PLx)

2 = h(EPL (A), PLx)
2

= h(PL(EA), PLx)
2 = h(ιL PL(EA), ιL PL x)

2

= h(EC , x)2,

for all x ∈ R
n . Finally, Eq. (2.2) follows from (2.1). Indeed, as

EC = ιL(EPL (A)) = ιL PL(EA),

projecting onto L yields PL(EC ) = PL ιL PL(EA) = PL(EA). Therefore, by the
definition of C , one gets PL(A) = PL(C). ��

3 Main results

3.1 Inequalities for L2 zonoids via determinantal inequalities

In this section, we provide proofs for Theorems 1.7 and 1.8, alternative to those in [12],
based on classical inequalities for matrices. We remark here, that we do not provide a
proof of the equality case, stated in [12]. Instead, we use the equality case of Theorem
1.7 proven in [12] to provide Bergstrom’s inequality with a characterization of the
equality case.

We prove first Theorem 1.7 for the particular case of u = ei , 1 ≤ i ≤ n, i.e., when
u is one of the vectors of the orthonormal canonical basis ofR

n , as a direct application
of the Bergstrom’s inequality.

Theorem 3.1 Let K , H be two L2 zonoids in R
n, let 1 ≤ i ≤ n, and let ei , be the i-th

vector of the canonical orthonormal basis of R
n. Then,

(
voln(K +2 H)

voln−1(Pe⊥
i
(K +2 H))

)2

≥
(

voln(K )

voln−1(Pe⊥
i
(K ))

)2

+
(

voln(H)

voln−1(Pe⊥
i
(H))

)2

.

(3.1)

Proof Let K and H be two L2 zonoids. From Remark 1.6 we know that K and H
are two centered ellipsoids. Hence, there exist A, B ∈ Sn+ such that K = EA and
H = EB . Using (1.8) we have

vol2n(K ) = κ2
n det(A) and vol2n(H) = κ2

n det(B).
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Taking now Proposition 2.4 into account we have

Pe⊥
i
(K ) = EP

e⊥i
(A) ∈ En−1 and Pe⊥

i
(H) = EP

e⊥i
(B) ∈ En−1.

Moreover, Lemma 2.2 i) yields

Pe⊥
i
(K ) = Ai and Pe⊥

i
(H) = Bi .

FromProposition 2.1 andLemma2.2 i),weknow that Ai and Bi are two (n−1)×(n−1)
positive semidefinite real symmetric matrices, and determine uniquely the ellipsoids
Pe⊥

i
(K ) and Pe⊥

i
(H). Hence by (1.8) we have

κ2
n−1 det(Ai ) = vol2n−1(Pe⊥

i
(K )) and κ2

n−1 det(Bi ) = vol2n−1(Pe⊥
i
(M)).

Using (1.9)

vol2n(K +2 H) = κ2
n det(A + B) and vol2n−1(Pe⊥

i
(K +2 H) = κ2

n−1 det(Ai + Bi ).

Inserting all the previous equalities in (1.10) yields that (3.1) holds if and only if

det(A + B)

det(Ai + Bi )
≥ det(A)

det(Ai )
+ det(B)

det(Bi )
, (3.2)

holds, which corresponds to Bergstrom’s inequality (1.1) and finishes the proof.
��

The proof of Theorem 1.7 is now a direct consequence of Theorem 3.1 and Remark
2.3.

Proof of Theorem 1.7 Let K , H be two L2 zonoids in R
n , and let u ∈ S

n−1. Theo-
rem 1.7 yields the validity of (3.1) for every ei , 1 ≤ i ≤ n. Using now Remark
2.3, and an orthogonal matrix O such that Ou = ei , we have that det(Pu⊥ A) =
det

(
Pe⊥

i
(OAOT )

)
, and det(Pu⊥ B) = det

(
Pe⊥

i
(OBOT )

)
. Since, clearly, det(A) =

det(OAOT ), det(B) = det(OBOT ), a direct application of Theorem 3.1 for OAOT ,
OBOT , and (OAOT )i , and (OBOT )i , yields the result. ��

As alreadymentioned, we are not proving the equality case, but wewill be using the
equality case characterization proven in [12, Theorem 6.2] to state a characterization
of the equality case of Bergstrom’s inequality. Equality in the inequality established
in [12, Theorem 6.2], i.e., in Theorem 1.7, holds for some u ∈ S

n−1 if and only if
the L2 zonoids K and H have parallel tangent hyperplanes at the boundary points
ρK (u)u ∈ K and ρH (u)u ∈ H . The following remark is also established in [12], in
connection to the equality case of [12, Theorem 6.2].

Remark 3.2 [12, Remark 6.3] Let K = T1Bn and H = T2Bn forT1, T2 ∈ Sn+. Then,
the condition of equality in Theorem 1.7 is equivalent to the fact that there is λ > 0
such that (T−2

1 − λT−2
2 )u = 0, or simply that u is an eigenvector of T 2

1 T
−2
2 .
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Proposition 3.3 Let A and B be two n × n positive definite real symmetric matrices,
let 1 ≤ i ≤ n, and let Ai and Bi the (n − 1) × (n − 1) matrices given by A and
B deleting the i-th row and the i-th column. Then, there is equality in Bergstrom’s
inequality (1.1):

det(A + B)

det(Ai + Bi )
= det(A)

det(Ai )
+ det(B)

det(Bi )
, (3.3)

if and only if lin {A−1ei } = lin {B−1ei }.
Proof Let A, B ∈ Sn+, be two n×n positive definite real symmetric matrices, such that
equality holds in Bergstrom’s inequality (1.1) for some i ∈ {1, · · · , n}. Let further T1
and T2 be the unique square root of A and B, respectively, i.e., A = T 2

1 and B = T 2
2 .

It is well-known that T1, T2 ∈ Sn+ (see e.g. [19, Exercise 1.3.P7 and Theorem 2.6.3]).
Let us consider EA and EB the centered ellipsoids defined by A and B, respectively.
Thus, by (1.7), we have that EA = T1Bn and EB = T2Bn . The latter considerations
yield equality in (3.1) for EA and EB . Therefore, by Remark 3.2, T 2

1 T
−2
2 ei = λei ,

which implies lin {A−1ei } = lin {B−1ei }. ��

3.2 Other inequalities

In the last part of this note, we consider other results within convex geometry, which
have found a sort of counterpart in matrix theory, in particular involving the projection
of a matrix. We are mostly looking at refinements of inequalities of the type of Brunn–
Minkowski inequality (1.4). We start recalling the following result.

Theorem 3.4 [22] Let K , H ∈ Kn be convex bodies such that there exists a direction
u ∈ S

n−1 with voln−1(Pu⊥(K )) = voln−1(Pu⊥(H)). Then

voln
(
(1 − λ)K + λH

) ≥ (1 − λ)voln(K ) + λvoln(H), (3.4)

for all λ ∈ [0, 1].
We point out that inequality (3.4) refines the Brunn–Minkowski inequality (see [14,
Section 10]), as the inequality

[(1 − λ)voln(K ) + λvoln(H) ≥
(
(1 − λ)voln(K )1/n + λvoln(H)1/n

)n
,

holds for every K , H ∈ Kn , λ ∈ [0, 1], see [14, Section 10]. We refer to [22, Section
7] and to [8, 16, 17] for results in the direction of Theorem 3.4 within the theory of
convex geometry.

In the next result, using the connection of positive semidefinite real symmetric
matrices and ellipsoids, we obtain, as a corollary of Theorem 3.4, a refinement of
the Brunn–Minkowski inequality for matrices, assuming that the determinants of the
projections of the two matrices onto a hyperplane coincide.
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Corollary 3.5 Let A, B ∈ Sn+ be positive definite matrices, and let u ∈ S
n−1 be such

that det
(
Pu⊥(A)

) = det
(
Pu⊥(B)

)
. Then,

det((1 − λ)A + λB)
1
2 ≥ (1 − λ) det(A)

1
2 + λ det(B)

1
2 , (3.5)

for every λ ∈ [0, 1].
Proof Let A, B ∈ Sn+ be positive definite matrices, and let EA and EB the associ-
ated ellipsoids. We observe first, that he assumption det

(
Pu⊥(A)

) = det
(
Pu⊥(B)

)
is

equivalent to the fact that voln−1(Pu⊥(EA)) = voln−1(Pu⊥(EB)) by means of (1.8),
and Proposition 2.4. Then, taking (1.9) into account, direct application of (1.8) yields
the result. ��

However, under the same assumptions, a sharper inequality is known to hold. In
[9], the authors established a linear refinement inequality of the Brunn–Minkowski
inequality for the determinant, inequality (1.3), under the assumption that the matrices
involved share equal determinant of their projection onto a common hyperplane.

Theorem 3.6 [9, Theorem 5.7] Let A, B ∈ Sn+ be positive definite matrices, and let
u ∈ S

n−1. Assume that det
(
Pu⊥(A)

) = det
(
Pu⊥(B)

)
. Then,

det((1 − λ)A + λB) ≥ (1 − λ) det(A) + λ det(B), (3.6)

for every λ ∈ [0, 1].
Using the latter, we can now write the linear Brunn–Minkowski inequality for

matrices, inequality (3.6), by means of (1.8), as a linear refinement of the L2 Brunn–
Minkowski inequality (1.5), in the case of L2 zonoids. That is the content of the
following proposition.

Proposition 3.7 Let K , H be two L2 zonoids in R
n and let u ∈ S

n−1. If there exists a
direction u ∈ S

n−1, such that voln−1(Pu⊥(K )) = voln−1(Pu⊥(H)), then

voln
(
(1 − λ) ·2 K +2 λ ·2 H

)2 ≥ (1 − λ)voln(K )2 + λvoln(H)2, (3.7)

for all λ ∈ [0, 1].
We point out the following result on the equality case of the linear refinement of

Brunn–Minkowski inequality for the determinant.

Theorem 3.8 [21, Theorem 5.1] Equality in inequality (3.6) holds if and only if there
exists a matrix R of rank at most 1, such that B = A + R.

We observe that there is also equality in (3.5) in the case B = A+ R, namely, when
the condition in Theorem 3.8 holds.
Further, we observe that Theorem 3.8 allows us to establish a characterization of
equality in (3.7).

Corollary 3.9 Equality holds in (3.7) if and only if there exists a segment S in R
n, i.e.,

a 1-dimensional L2 zonoid, such that K = H +2 S.
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