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Abstract

A mixed lattice vector space is a partially ordered vector space with two partial order-
ings and certain lattice-type properties. In this paper we first give some fundamental
results in mixed lattice groups, and then we investigate the structure theory of mixed
lattice vector spaces, which can be viewed as a generalization of the theory of Riesz
spaces. More specifically, we study the properties of ideals and bands in mixed lattice
spaces, and the related idea of representing a mixed lattice space as a direct sum of
disjoint bands. Under certain conditions, these decompositions can also be given in
terms of order projections.
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1 Introduction

The idea of equipping a vector space with two partial orderings plays an important
role in classical potential theory [4]. During the 1970s and early 1980s, M. Arsove
and H. Leutwiler introduced the notion of a mixed lattice semigroup which provides
arather general setting for axiomatic potential theory [2]. The novelty of their theory
was that it mixed two partial orderings in a semigroup in such way that the resulting
structure is not a lattice, in general, but it has many lattice-type properties, and the
interplay between the two partial orderings plays a fundamental role in the theory.
Although Arsove and Leutwiler formulated their theory in the semigroup setting, a
similar mixed lattice order structure can also be imposed on groups and vector spaces
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where non-positive elements are present. This gives rise to the notions of mixed lattice
groups and mixed lattice vector spaces. In this paper, we are mostly concerned with
the latter. A mixed lattice space is a real partially ordered vector space with two partial
orderings, where the usual lattice operations (i.e. the supremum and infimum of two
elements) are replaced with asymmetric mixed envelopes that are formed with respect
to the two partial orderings. As a consequence, the theory of mixed lattice structures
is asymmetric in nature. For example, the mixed envelopes do not have commutative
or distributive properties, in contrast to the theory of Riesz spaces, where the lattice
operations are commutative and distributive. On the other hand, mixed lattice spaces
have also many similarities to Riesz spaces. In fact, a Riesz space is just a special
case of a mixed lattice vector space, in which the two partial orderings coincide. Early
studies of mixed lattice groups were done by Eriksson-Bique [6, 7], and more recently
by the authors in [5]. The present paper is a continuation of the research that was
commenced in [5-7].

Ideals and bands are the main structural components of a Riesz space, and Riesz
spaces can be decomposed into order direct sums of disjoint bands. Apart from Riesz
spaces, these concepts have recently been studied in more general ordered vector
spaces [8, 9], as well as in mixed lattice semigroups in [2]. It is therefore natural to
explore these ideas also in the mixed lattice space setting, and this is the main topic
of the present paper.

First we give a brief survey of terminology, definitions and basic results that will
be needed in the subsequent sections. Section3 contains some important results on
the properties of the mixed envelopes. Many of these results are known in mixed
lattice semigroups through the work of Arsove and Leutwiler in [2], but they haven’t
been studied in the group setting. The main difficulty here is that many of the results
that hold in a mixed lattice semigroup depend on the fact that all the elements are
positive. Therefore, some of these properties do not hold in the group setting without
some limitations. We also give the mixed lattice version of the fundamental dominated
decomposition theorem.

The concept of an ideal in mixed lattice groups and vector spaces was introduced in
[5]. Many properties of the most relevant subspaces, including ideals, are determined
by their sets of positive elements. In this context, positive cones play a fundamental
role and we discuss some properties of mixed lattice cones, which generate mixed
lattice subspaces. In Sect.4 we study the structure of ideals, and we introduce the
notion of a band in mixed lattice spaces and give some basic results concerning bands.
The two partial orderings give rise to two different types of ideals, called ideals and
specific ideals, depending on which partial ordering is considered. Consequently, we
also have different notions of a band, depending on the type of the underlying ideal.
In addition to these, we introduce an intermediate notion of a quasi-ideal, which plays
an important role in the structure theory.

Disjoint complements are introduced in Sect.5. The disjointness of two positive
elements is defined in a similar manner as in Riesz spaces, by requiring that the lower
envelope of the two elements is zero. However, the asymmetric nature of the mixed
envelopes leads to two distinct one-sided notions of disjointness, the left and right
disjointness. The disjoint complements and direct sum decompositions in mixed lattice
semigroups were studied by Arsove and Leutwiler in [2], where they showed that the
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left and right disjoint complements of any non-empty set in a mixed lattice semigroup
have certain band-type properties. In mixed lattice vector spaces the situation is a
bit more complicated, again due to the existence of non-positive elements. In order
to obtain a satisfactory theory, we consider disjointness first for positive elements,
and we then define the left and right disjoint complements as the specific ideals and
ideals, respectively, generated by certain cones of positive elements that satisfy the
disjointness conditions. This approach turns out to be quite natural, and we also find
it to be compatible with the existing theory of mixed lattice semigroups. We then
investigate the structure and properties of the disjoint complements, such as the band
properties and the structure of the sub-cones that generate the disjoint complements.
We also introduce the notion of symmetric absolute value in mixed lattice spaces and
show that the right disjoint complement can be described in terms of the absolute
value. This approach corresponds to the usual definition of the disjoint complement in
a Riesz space. Finally, we give some results concerning bands in Archimedean mixed
lattice spaces.

In the final section we study decompositions of mixed lattice spaces, where the
space can be written as a direct sum of an ideal and a specific ideal that are disjoint
complements of each other. The direct sum decompositions give rise to band projec-
tions which can be expressed in terms of order projection operators. Of course, these
projection properties have their well-known analogues in Riesz space theory. For an
account of the theory and terminology of Riesz spaces, we refer to [10] and [11].

2 Preliminaries
The fundamental structure on which most of the theory of mixed lattice groups and
vector spaces is based on, is called a mixed lattice semigroup. Let S(+, <) be a positive
partially ordered abelian semigroup with zero element. The semigroup S(+, <) is
also assumed to have the cancellation property: x 4+ z < y + z implies x < y for all
x,y,z € S. The partial order < is called the initial order. A second partial ordering
< (called the specific order) is then defined on S by x < y if y = x 4+ m for some
m € S. Note that this implies that x > O for all x € S. The semigroup (S, +, <, ) is
called a mixed lattice semigroup if, in addition, the mixed lower envelope

x ANy =max{weS:w<xand w<y}
and the mixed upper envelope

xvyy=min{fweS: wix=xand w >y},
exist for all x, y € §, and they satisfy the identity

XYY+ YyAX=x-+y. 2.1

In the above expressions the minimum and maximum are taken with respect to the
initial order <.

@ Springer



32 Page4of35 J. Jokela

Typical examples of mixed lattice semigroups are constructed by starting with some
vector space V and a cone C in V which generates a partial ordering <. Then a sub-
cone S of C is taken as the semigroup in which the specific order < is defined as the
partial ordering induced by the semigroup S itself, that is, S is taken as the positive
cone for the partial ordering <. This procedure turns § into a mixed lattice semigroup,
provided that the conditions in the above definitions are satisfied. Many examples of
mixed lattice structures are given in [5].

A mixed lattice group is a partially ordered commutative group (G, +, <, <) with
two partial orderings < and < (called again the initial order and the specific order,
respectively) such that the mixed upper and lower envelopes x v y and x _\ y, as
defined above, exist in G for all x, y € G. A sub-semigroup S of a mixed lattice
group G is called a mixed lattice sub-semigroup of G if x -y y and x _\ y belong to
S whenever x, y € S. It should be remarked here that the additional identity (2.1) in
the definition of a mixed lattice semigroup is then automatically satisfied because the
identity holds in G (see further properties of the mixed envelopes below). A mixed
lattice group G is called quasi-regular if the set Gy, = {x € G : x = 0} is a mixed
lattice sub-semigroup of G, and G is called regular if G is quasi-regular and every
x € G can be written as x = u — v where u, v € Gg.

There are several fundamental rules for the mixed envelopes that hold in quasi-
regular mixed lattice groups. These are listed below, and will be used in this paper
frequently. For more details concerning these rules and their proofs we refer to [5] and
[7].

The following hold for all elements x, y and z in a quasi-regular mixed lattice group
G.

(M1) x~vy+yArx =x+y
(M2a) z +x~vy = (x+2v(y+2)
(M2b) z + x ANy = (x+2) A (y+2)
(M3) x~vy=—(—x A —y)
M4) xAy<sx<xvyy and x A\y<y=<x-yy
(M5) x<u and y<v = xvy<wuvyv and x ANy <uAv
(Mba) x Sy <= xyy=y & yAx=x
(M6b) x <y & yvyx=y << X Ay=x
MT7) x<y = x=y
(M8a) x <z and y<z — xVvy=<z

<

(M8b) z<x and zy = Z<XAYy

We should mention here that (M1)-(M6a) hold more generally in every mixed
lattice group. Moreover, quasi-regularity is equivalent to the properties (M8a) and
(M8b), and these in turn imply (M7) (but not conversely). A mixed lattice group in
which (M7) holds is called pre-regular.

@ Springer



Ideals, bands and direct sum decompositions in mixed... Page50f35 32

3 Additional properties of mixed lattice groups

In this section we give several further properties of mixed lattice groups. Many of
these have been studied in mixed lattice semigroups in [2], but some of them do not
carry over to the group setting without some restrictions.

We begin by introducing a useful tool (which is due to M. Arsove and H. Leutwiler,
[2]) for studying the properties of the mixed envelopes. For x, u € G we define the
mapping Sy () = min{w > 0 : u < w+x}, where the minimum is taken with respect
to <. We will first show that the element S, («) exists for all x, u € G and it has certain
basic properties.

Proposition 3.1 Let G be a quasi-regular mixed lattice group. The mapping Sy defined
above has the following properties.

(a) The element Sy(u) = min{fw > 0 : u < w + x} exists for all x,u € G and it is
givenby Sy(u) =x yu—x =u —u A\ Xx.

(b) If x = 0 then SxSy(u) = Sxyy(u) holds forallu,y € G. Moreover, ifx,y =0
then Sy Sy(u) = SySx(u) = Sxyy(u) forallu € G.

(c) Sxya(w+a) = Sx(w) forall x,u,a € G.

(d) If u < v then Sxy(u) = Sy—uSx(v) forallx € G.

Proof (a) Let A = {w = 0 : u < w+ x}. Let m = x ~yu — x. The equality
x vu—x =u—u A\ x follows immediately from (M1). First we note that m > 0
and

m+x=xvyu—x+x=xyu=>u,

and so m € A. Assume then that z € A. Then u < z + x and since z = 0, we
also have u < z + u. By (M5) and (M2) it now follows that u < (z + u) \ (z +
x) = z + u A\ x and this implies that m = u — u A\ x < z. This shows that
m=S,(u) =minfw > 0:u < w4+ x}.

(b) By part (@) wehaveu <y vu=(y vu—y)+y=_S5,u)+yforaly,uegG,
and similarly Sy(u) < SxSy(u) + x. It follows that u < S;S,(u) + x + y and
by the definition of S, we obtain the inequality Sy4y(u) < S¢Sy (u). Similarly,
exchanging the roles of x and y gives Sy (1) < Sy Sy (). On the other hand, we
have u < Sy4y(u) +x + y, and if x 3= O then Sy, (u) + x = 0, and it follows
again from the definition that Sy (1) < Syyy(u) + x. Hence, Sy Sy(u) < Sy, (u)
and so the equality S, Sy (#) = Sy4y(u) holds forall u, y € G. If also y = 0 then
we can exchange the roles of x and y above to get Sy Sy (u) = Sy Sy (1) = Sy4y (1)
forallu € G.

(c) The translation invariance property follows immediately from the definition of S, .

(d) Letu < v. Thena = v — u = 0 and using (b) and (c) gives

Sy() = Sxya(u+a) = SgSx(u+a) = Sy—u S (v).
O
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Using the above results for S, we can prove several additional properties of the
mixed envelopes. We begin with the following theorem, which gives two important
inequalities for the mixed envelopes. They were first studied in mixed lattice semi-
groups by Arsove and Leutwiler [2, Theorem 3.2]. Later, Eriksson-Bique showed
that they hold also in a group extension of a mixed lattice semigroup, and therefore
in every regular mixed lattice group [6, Theorem 3.5]. We will now prove that the
inequalities hold more generally in every quasi-regular mixed lattice group. Later on,
these inequalities will play an important role in the development of the theory.

Theorem 3.2 Let G be a quasi-regular mixed lattice group. If x <y then the inequal-
ities
UANX<UANY and uvyx=suvyy

hold for all u € G.

Proof First we observe that the first inequality is equivalent to
OsunNy—uANx=@U—uANx)— u—uAy)=Sc(u)—Syu).

Now if x < y then y = a + x, where a = y — x = 0. Using the properties of the
mapping S, we get

Sy(u) = Syta() = Sa(Sx(w)) = Sy—x(Sx @) = Sy(u) — Sx(u) A (y — x),
and this yields
Sx) = Syw) =Sx(W) AN (y—x) =@ —uAx)\(Q—x).

Hencewehaveu Ny —u ANx=w—uANx) AN(y—x).Nowu —u A x =0 and
y —x = 0, and since G is quasi-regular, it follows by (M8b) that (u —u A\ x) A\ (y —
x) = 0. Thus we have shownthatu Ay —u Ax =0,0oru ANx <u Ay

The proof of the other inequality is similar. O

The next example shows that the assumptions in the last theorem cannot be weak-
ened, that is, the inequalities do not hold if G is not quasi-regular.

Example 3.3 Let G = (Z x Z, <, <) and define partial orders < and < as follows. If
x = (x1,x2)and y = (y1, y2) then x < yiff x; < y; and xp < y;. In addition, x < y
iff x = yory; > x;+ 1 and y; > x3 + 1. Then G is a mixed lattice group which is
pre-regular but not quasi-regular (see [5, Example 2.23]). If x = (1,0), y = (2, 1) and
u=00,00thenuy vx=(,1)andu vy =2,1). Nowx < ybutu vx u~vy
does not hold.

The inequalities in Theorem 3.2 have several implications. For example, the fol-
lowing one-sided associative and distributive laws hold for the mixed envelopes.
The proof is exactly the same as in the mixed lattice semigroup case, see [2, The-
orems 3.3 and 3.5].
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Theorem 3.4 If G is a quasi-regular mixed lattice group then the following one-sided
associative laws

XA ANZ=Zx NN and X vyY)VvZ<xv (V2

and one-sided distributive laws

XANOYDZ@ANY) YN and x vy (Y A2 < (x vy AKX y2)

hold forall x, y, z € G.

In the sequel, sup E and inf E stand for the supremum and infimum of a subset £
with respect to the initial order <. The supremum and infimum of E with respect to
the specific order < are denoted by sp sup E and sp inf E, respectively.

The following result is originally due to Boboc and Cornea (see [3, Proposition
2.1.4]). The more general mixed lattice version is given in [2, Theorem 4.2].

Lemma 3.5 Let E be a subset of a quasi-regular mixed lattice group G such that
ug = sup E exists in G. If w € G is an element such that x <X w for all x € E then
ug < w. Similarly, if vo = inf E exists and w € G is such that w < x forall x € E
then w < vo.

Proof 1f ug = sup E then x < ug forall x € E, and so if x < w for all x € E then
by (MS), x < w A\ ug < ug for all x € E. This implies that ugp = w A\ ug < w. The

result concerning the infimum can be proved by a similar argument. O

We obtain stronger results if the supremum and specific supremum of a subset are
equal.

Definition 3.6 Let E be a subset of a mixed lattice group G such that sup £ and
spsup E existin G, and up = sup E = spsup E. The element u is called the strong
supremum of E and it is denoted by ug = strsup E. The strong infimum vg of E is

defined similarly, and it is denoted by vy = strinf E.

The following result can now be proved exactly the same way as in the theory of
mixed lattice semigroups (see [2], p. 23). We include the proof here for completeness.

Proposition 3.7 Let E be a subset of a quasi-regular mixed lattice group G such that
ug = strsup E exists in G. Then for all x € G

Strsup,cp(x A u) =x ANug and Strsup,cp(x ~yu) =x "y uo.
Similarly, if vo = strinf E exists then for all x € G

strinf,cp(x AN u) =x ANvg and strinf,cg(x ~yu) = x ~y vg.
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Proof If x € G and up = strsup E then By (M5), x ANu < x Augpand u yx <

<
ug v x forall u € E. Let w be any element such that x A u < w for all u € E. Then
by (M1) we have

X+u=x Nu+uvx=<xANu+uypvx<w-+uygvx

forallu € E. Thus w+ug v x —x is a (<)-upper bound of E, and since ug = sup E,
by (M1) this implies that

X ANugtugvx=ug+x <(w4Hupvx—x)+x=w-+uyvx.

Hence x A\ up < w, and this shows that x A\ ug = sup{x ANu : u € E}. On the
other hand, by Theorem 3.2 we have x AN u < x Nugforallu e E.If x Nu g w
for all u € E then it follows by Lemma 3.5 that x A\ up < w, and so x \ ug =
spsup{x A\ u : u € E}. This shows that x A\ ug = strsup{x A u : u € E}. The other
identities can be proved in a similar manner. O

In the sequel, we will use the following notation. The inequalities x < yandy < z
are written more concisely as x < y < z. Similarly, the notation x < y < z means
thatx < yandy < z.

We conclude this section by showing that mixed lattice groups have the dominated
decomposition property. We actually have different variants of this property that will
be useful.

Theorem 3.8 Let G be a quasi-regular mixed lattice group.

(a) Letu =0, vi > 0 and vy = 0 be elements of G satisfying u < vi-+v,. Then there
exist elements uy and uy such that 0 < uy < vy, 0 < up < vy and u = uy + us.
Moreover, if vy = 0thenuy = 0, and if u < vi + vy then uy < vs.

(B) Letu > 0, vy = 0 and vo > 0 be elements of G satisfying u < vi+vy. Then there
exist elements uy and uy such that 0 < uy < vy, 0 <up < vy and u = uy + us.
Moreover, if u = 0 then uy = 0.

Proof (a) The element u; = u _\ v; satisfies u; < vy and u; > 0 (and u; »= O if
vi =0).Letup =u —uj. Thenu = uy +up and up 3= 0, since u; < u. It remains to
show that up < v,. For this, we note that 0 < v, and u — v; < vy, and so we have

wy=u—uANvi=u+(u)v(v) =0y @—v) <v2vv="1.
If u < v1 + vy then u — v < vy and we can replace < by < in the above inequality,
by (M8a).
(b) The element u; = v A\ u satisfiesu; < u,u; < vyandu; > 0 (and u; > 0if
u >= 0). It follows from u < v; + vy and v; < v| + vy that u ~y v{ < v| + v2, and so
if we set up = u — u; we have up > 0 and

Up=uU—vy ANu=uvyvy—v v +v2—v] =12,

and the proof is complete. O
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4 Ideals and bands in a mixed lattice vector space

A mixed lattice vector space (or briefly, a mixed lattice space) was defined in [5] as a
partially ordered real vector space V with two partial orderings < and < (called the
initial order and the specific order, respectively) such that the mixed upper and lower
envelopes x -y y and x _\ y, as defined in Sect.2, existin V forall x,y € V.

We recall that a subset C of a vector space is called a cone if (1)aC C C for all
a >0, (i) C+ C C Cand (iii) C N (—C) = {0}. Cones play an important role in
the theory of ordered vector spaces because a partial ordering in a vector space can be
given in terms of the corresponding positive cone. For more information about cones
and their properties we refer to [1].

Before we proceed, let us introduce some notation. If V' is a mixed lattice space
thenV, ={x € V:x > 0}and Vy, = {x € V : x >= 0} are the (<)-positive cone and
the (X)-positive cone of V, respectively. Accordingly, an element x € V), is called
positive, and if x € Vj, then x is said to be specifically positive, or (X)-positive. In
mixed lattice spaces we are particularly interested in cones that are also mixed lattice
semigroups.

Definition 4.1 A cone C C Vj, in a mixed lattice space V is called a mixed lattice
cone if x -y y and x _\ y belong to C whenever x, y € C.

If E is any subset of V then we define £, = ENV, and E;, = E N Vy,. The
notions of regular and quasi-regular mixed lattice space are defined similarly as in
mixed lattice groups. Hence, using the notation just introduced, V' is quasi-regular if
Vip, the positive cone associated with the specific order, is a mixed lattice cone. If C
is a cone in a vector space V then § = C — C is called the subspace generated by C.
A mixed lattice space V is regular if Vj, is a generating mixed lattice cone, that is,
V =V — Vip.

The rules (M1)—(MS8) for the mixed envelopes remain valid in quasi-regular mixed
lattice spaces. In a mixed lattice space we can add to the list the following rules
concerning the scalar multiplication. If V is a mixed lattice space and 0 < a € R then
the following hold for all x, y € V

(M9) (ax) A\ (ay) =a(x A\ y) and (ax) v (ay) =a(x vy) (a=0).

The notions of upper and lower parts of an element and the generalized asymmetrical
absolute values were introduced in [5]. If x € V then the elements “x = x -y 0 and
x = (—x) ~v 0 are called the upper part and lower part of x, respectively. Similarly,
the elements x* = 0 -y x and x/ = 0~ (—x) are called the specific upper part and
specific lower part of x, respectively. These play a similar role as the positive and
negative parts of an element in a Riesz space. The generalized absolute values of x
are then defined as “x! = “x + x and x* = x + x*. The elements “x’ and /x* are
distinct, in general, and they are “asymmetrical” in the sense that uxl = l(—x)“ for
all x.
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The upper and lower parts and the generalized absolute values have several impor-
tant basic properties, which were proved in [5]. These properties are given in the next
theorem.

Theorem 4.2 Let V be a quasi-regular mixed lattice space and x € V. Then the
following hold.

(@) “x ='(=x) and x"* = (—x).

(b) x = x* —Ix =ux — xl.

(c) "x! = x~vyxl ="x +x! and 'x* ='x~vx" ="x + x"

(d) uxl — l(_x)u'

(€) “x+"y="(+y), x'+y' =@+n' and “x' 4y ="+ )
N x4y =@+’ "x+ly=la+y) and X+ =T+ )"
(g) x* ANlx =0 =x! A¥x.

(h) xu.ylx — Uy +lx — xl 4oxH ZXI'VMX

(i) x =0 ifandonlyif x ='x*="x'="x =x" and 'x =x' =0,

(j) x>0 ifandonlyif x ="x' ="x and x' = 0.

(k) Ux! >0 and 'x" > 0. Moreover, "x! =!x* =0 ifand only if x = 0.

(1) “(ax)! = a"x" and "(ax)* = a'x* foralla > 0.

(m) “(ax)! = |a|'x* and '(ax)* = |a|*x" foralla <O.

(M) 2@ Ay =x+y ==y and 20y Ax)=x+y—"(x -

The next theorem was also proved in [5], but under more general assumptions. If V
is assumed to be quasi-regular then we have a sharper version of the same theorem, as
given below. The proof is almost identical to the more general case, see [5, Theorem
3.6].

Theorem 4.3 Let V be a quasi-regular mixed lattice space and x € V.

(a) If x =u—vwithu > 0andv > 0, then 0 < x" <uand 0 < v §lx.1fals0
vi=0then0 < x" <uand0 <'x < v.
(b) Conversely, if x =u — v withu \v=0thenu = x"and v ="x.

For the remainder of this paper, we shall always assume that V is a quasi-regular
mixed lattice vector space unless otherwise stated. Due to this convention, we shall
drop the term quasi-regular”, and henceforth, by a mixed lattice space we mean a
quasi-regular mixed lattice space.

The notions of mixed lattice subspaces and ideals were introduced in [5]. A subspace
S of a mixed lattice vector space V is called a mixed lattice subspace of V if x v y
and x _\ y belong to S whenever x and y arein S. A subset U C V is called (<)-order
convex, if x <z < yandx,y e U imply that z € U. Similarly, a subset U C V is
called ()-order convex, if x < z < y and x, y € U imply that z € U. A subspace A
is (<)-order convex if and only if 0 < y < x and x € A imply that y € A. Similarly,
a subspace A is (x)-order convex if and only if 0 < y < x and x € A imply that
y € A.If Ais a (<)-order convex mixed lattice subspace of V then A is called a mixed
lattice ideal of V. Similarly, a (<)-order convex mixed lattice subspace of V is called
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a specific mixed lattice ideal of V. For brevity, these will be called simply ideals and
specific ideals, respectively. This should not cause any confusion as we are mostly
dealing with mixed lattice ideals in this paper. If we refer to other type of ideals (such
as lattice ideals) then we will emphasize it accordingly.

To study the relationships between ideals and specific ideals, as well as the structure
of mixed lattice spaces in more detail, we introduce the following definitions.

Definition 4.4

(i) A subspace S is called regular, if S = S;p — Ssp.
(ii) A subspace S is called positively generated, if S = S, — S,,.
(iii) A subspace A is called mixed—order convex if y € A and 0 < x < y together
imply that x € A.
(iv) A mixed-order convex mixed lattice subspace is called a quasi-ideal.
(v) A specific ideal A is called a proper specific ideal if A is not a quasi-ideal.
Similarly, a quasi-ideal A is called a proper quasi-ideal if A is not an ideal.

Every mixed lattice subspace is positively generated. It is also easy to see that a
mixed lattice subspace S is regular if and only if for every x € S there exists some
z € Ssp such that x < z. There are ideals that are not regular (Example 5.15). In many
cases, proper specific ideals and proper quasi-ideals are regular, but it is not known
whether or not this is true in general.

Before we proceed, we should remark that if A is a subspace of V then, in order
to show that A is a mixed lattice subspace it is sufficient to show that x* € A for
every x € A. Indeed, if this holds and x,y € Atheny yx =y + (x — y)* € A.
Consequently, x A\ y =x +y —y vy x € A. This observation simplifies many of the
proofs that follow.

Now the following result holds.

Proposition 4.5 Every regular (X)-order convex subspace is a mixed lattice subspace,
and hence a specific ideal.

Proof If x € Athenx = u—v withu, v € Ay,. By Theorem 4.3 wehave 0 < x" < u
and so it follows that x* € A. Hence, A is a regular (<)-order convex mixed lattice
subspace, by the remark made before the proposition. O

The notion of a mixed-order convex subspace is intermediate between (<)-
order convex and (<)-order convex subspaces. Every (<)-order convex subspace is
mixed-order convex, and every mixed-order convex subspace is (=<)-order convex. In
particular, every ideal is a quasi-ideal, and every quasi-ideal is a specific ideal.

The following simple lemma is useful in the study of mixed-order convex subspaces.

Lemma 4.6 A subspace A is mixed-order convex if and only if 0 < x X ywithy € A
imply that x € A.

Proof Assume that 0 < x < y with y € A implies that x € A. We observe that if
0<u=<vwithv € Athen 0 < v —u < v, and this implies that v — u € A by
assumption. Thenu = v—(v—u) € A ssince A is a subspace. The converse implication
is similar. O
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Next we will study some basic properties of mixed lattice cones.

Theorem 4.7 Let V be a mixed lattice space and C a mixed lattice cone in V. Then
the subspace generated by C is a mixed lattice subspace. Conversely, if S is a mixed
lattice subspace of 'V then Sy is a mixed lattice cone in V.

Proof Let C be a mixed lattice cone. It is clear that S = C — C is a subspace. If
x,y€ Sthenx =u —vandy =a — b forsome u, v,a,b € C. Then

X ANy=@—-v)AN@—b)=u+b) A(a+v)—(v+b),

where (u +b) N (a+v) e C.Alsov+beC,sox Ny € S. Similarlyx vy e S
and so S is a mixed lattice subspace.

Conversely, if S is a mixed lattice subspace then S, is clearly a cone. If x, y € Sy,
thenx Ay € Sand x A\ y >= 0, by (M8b), and so x \ y € S;p. Similarly, x v y €
S¢p, and the identity (2.1) automatically holds, by (M1). Hence Sy, is a mixed lattice
cone. O

To gain more information about the structure of specific ideals, we introduce some
additional terminology. A mixed lattice cone C is called a mixed lattice sub-cone of
another mixed lattice cone C» if C; € C». A sub-cone F of a cone C is called a face
of Cifx+ye Fwithx,y € Cimply thatx, y € F.

First we observe that every face of Vj, is a mixed lattice sub-cone.

Proposition 4.8 Every face of Vi, is a mixed lattice sub-cone of V).

Proof Let F be aface of Vs, andx,y € F. Thenx vy+y Ax =x+y e F. It

follows that x -y y € Fand y A\ x € F, and so F is a mixed lattice sub-cone of Vj),.
O

The next two results are well-known but we give proofs for completeness.

Lemma 4.9 A sub-cone C of V), is (<)-order convex if and only if 0 < x < y with
y € C implies that x € C. Similarly, a sub-cone C of V), is (<)-order convex if and
only if 0 < x X ywithy € C implies that x € C.

Proof Clearly the given condition is necessary. Assume the condition holds and let
z<x<ywithz,y e C.Then0 <x —z <y—z <y whichimplies thatx —z € C,
and since z € C and C is a sub-cone, it follows that x = (x — z) + z € C. The proof
of the second statement is essentially the same. O

Proposition 4.10 A sub-cone F of V), is a face of V), if and only if F is (<)-order
convex. Similarly, F is a face of V), if and only if F is a ($)-order convex sub-cone
Of Vsp-

Proof Suppose that F is a face of Vyandlet0 < x < y withy € F. Thenx € V),
0<y—-xeVyand (y —x)+x =y € F.Itfollows that x € F and this shows that
F is (<)-order convex, by the preceding lemma. Conversely, if F is (<)-order convex
andx+ye Fthen0 <x <x+yand0 <y <x+ yimply that x, y € F. Hence
F is a face. The proof of the second assertion is identical, just replace < by <. O
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The following result is now an immediate consequence of the preceding results and
the definition of a specific ideal.

Corollary 4.11 A mixed lattice subspace A is a specific ideal if and only if Ay is a
Jace of Vyp.

Our nextresultis important for the theory of ideals. It shows that every ideal contains
a quasi-ideal.

Theorem 4.12 If A is anideal and W = Agp — Asp then W is a quasi-ideal, and there
is no ideal B such that W € B C A and B # A. In particular, if W is an ideal then
W = A.

Proof By Theorem 4.7, W is a mixed lattice subspace. Moreover, if 0 < x < y with
y € Wtheny € A, and A is an ideal, so x € Ay, € W. This shows that W is
mixed-order convex. Let B be any ideal contained in A such that W C B. Then for
every x € A, we have 0 < x < x" € B. This implies that x € B,so B = A. In
particular, if W is an ideal then W = A. 0

We recall that if E is a subset of V then the smallest ideal (with respect to set
inclusion) that contains E is called the ideal generated by E. The next result gives a
description of ideals generated by a mixed lattice cone.

Theorem 4.13 The ideal A generated by a mixed lattice cone C equals the subspace
generated by the cone S = {x € V : 0 < x < u for some u € C}.

Proof Since C is a cone, it follows immediately that S is also a cone. Evidently, every
ideal that contains C must contain S, so it contains also the subspace S — S. Therefore,
it is sufficient to show that the subspace S — S is an ideal. S — S is obviously (<)-order
convex, so it remains to show that it is a mixed lattice subspace. Let x € S — S. Then
x =x1 —xp withxy, x2 € §,and so x < x1 < u; for some u; € C. Since C C Vj,,
it follows by Theorem 4.2(i) that (11)* = u, and so by (M5) we have

0<x"=0vx<0vx1<O0~vu;=w)"=u; €C.

Thus, x* € S, and so S — S is a mixed lattice subspace. Hence we have proved that
S — S is a smallest ideal containing C. O

If A is an ideal then by Theorem 4.7 the set Ay, is a mixed lattice cone, and
by Theorem 4.12 A is the smallest ideal that contains Ag,. Now the two preceding
theorems yield the following corollary which tells that ideals are uniquely determined
by their sets of (<)-positive elements.

Corollary 4.14 Every ideal A equals the ideal generated by Ay, that is, the subspace
generated by the set S = {x € V : 0 < x < u for some u € Ayp}. In fact, S = A,,.
Consequently, if A and B are two ideals such that Asp = Bsp then A = B.

Proof The only thing that still needs proof is the claim that S = A,. The inclusion
S € A, is clear, and the reverse inclusion holds too, forif x € A, then0 < x <x" e
Agp. o
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The preceding results have yet another consequence. By Theorem 4.12, if A is an
ideal then the subspace W = Ay, — Ay, is a regular quasi-ideal. The following gives
the converse.

Theorem 4.15 If W is a regular quasi-ideal then there exists an ideal A such that
W = Ay, — Ayp. Hence, W is a regular quasi-ideal if and only if W = Agp — Agp for
some ideal A.

Proof Let W = Wy, — W, be a regular quasi-ideal and let A be the ideal generated
by W;,. By Theorem 4.7 the set W, is a mixed lattice cone, so by Theorem 4.13
A=S8—S8,where § ={x € V:0<x <u forsome u € Wy,}. Now we only need
to show that Ay, = W;,. Itis clear that Wy, C Ay, soletx € Ayp. Thenx =y —z
where y,z € S, so we have 0 X x <y < u for some u € Wj,. But this implies that
x € Wy since W is a quasi-ideal, so we conclude that Ag, = Wg),. m|

Next we will study the properties of algebraic sums of different types of subspaces.
For instance, if A and B are quasi-ideals, then what can be said about the sum A + B
? Another important question is if the sets of positive elements are preserved in these
sums, that is, does (A + B)sp = Asp + Bsp or (A + B)p, = Ap + By, hold.

Theorem 4.16 If A is a quasi-ideal and B is a positively generated (<)-order convex
subspace then A+ B is a mixed-order convex subspace. Moreover, if B is an ideal then
A + B is a quasi-ideal, and if, in addition, A is regular then (A + B), = A, + B.

Proof 1t is clear that A + B is a subspace. Assume first that 0 < x < y with y =
y1 + y2 € A+ B. By assumption, y, = v; — vy with 0 < vy, vy € B, and A is
a mixed lattice subspace, so (y1)* € A. Then0 < x < y; + y» < (y1)* + vy, so
we can now apply the dominated decomposition property (Theorem 3.8(a)) and write
x = x1 +x2, where 0 < x; < (y1)* and 0 < xp < vy. It follows that x; € A and
xp € B,sox € A+ B. This shows that A + B is mixed-order convex.

Assume next that B is an ideal and let y = y; + y» € A+ B. Then 0 < y* <
(y)" + ()" and, applying Theorem 3.8(a) again we can find elements | and u»
such that y* = u; +up, 0 5 u; < (yp)* and 0 < uy < (y2)*. This implies that
u) € Aand uy € B, and hence y” € A + B. This shows that A 4+ B is a mixed lattice
subspace, and hence a quasi-ideal. It is clear that A, + B, € (A + B),. Conversely,
if 0 <x € A+ Bthen x = x| + x with x; € A and x, € B. If A is regular, we
can choose an element 0 < v € A such that x; < v. Also, x» < “xp € B, and so we
have 0 < x < v 4 ¥ xp. We can now apply Theorem 3.8(b) to find positive elements
u1 € A and up € B such that x = u + uy, completing the proof. O

Along the same lines we have the following result.

Theorem 4.17 In a mixed lattice space the following hold.

(a) If A and B are quasi-ideals then (A + B)sp = Agp + Byp. Moreover, if A and B
are regular then A + B is also a regular quasi-ideal.

(b) If A is a regular specific ideal and B is a regular quasi-ideal then A + B is a
regular specific ideal and (A + B)sp = Asp + Bsp. The last equality holds, in
particular, if B is an ideal.
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Proof (a) If x € (A+ B)spthen 0 < x = x14+x2 < (x1)" 4+ (x2) " with (x)* € Ay,
and (x2)" € Bsp. By Theorem 3.8(a) x = a + b for some elements a and b such
that 0 < a < (xp)" and 0 < b < (xp)". It follows that a € Ay, and b € By,
hence (A + B)yp € Ayp + Byp. The reverse inclusion is obvious. Assume then that
0 <y <xwithx € A+ B.If A and B are regular it follows that A + B is also regular,
and we may thus assume that x = 0. Hence, 0 < y < x = a + b where a € Ay,
and b € By,. Now the same argument as above (using Theorem 3.8(a)) shows that
y € A+ B, and so A + B is mixed-order convex. Then A 4+ B is a mixed lattice
subspace, by Proposition 4.5.

(b) If x € (A+ B)sp then x = x; + x2 withx; € A and x2 € B. Since A and B
are regular, there exist elements u € Ay, and v € By, such that x; < u and x2 < v.
Hence 0 < x = x1 + x2 < u + v, and by Theorem 3.8(a) we have x = a + b
for some elements @ and b such that 0 < a < v and 0 < b < v. It follows that
a € Agp and b € Byp, hence (A + B);p € Ayp + Byp. The reverse inclusion is clear.
In particular, if B is an ideal then W = B;, — By, is a regular quasi-ideal, and so
Vip = Asp + Wsp = Agp + By, The proof that A + B is a regular specific ideal is
similar to part (a). m]

Regarding the above theorem we note that by Theorem 4.15 regular quasi-ideals
are precisely those subspaces W that W = Ay, — Ay, for some ideal A. As with ideals
in Riesz spaces, these regular quasi-ideals form a distributive lattice.

Theorem 4.18 Let V be a mixed lattice space and denote by R(V) the set of all
regular quasi-ideals of V, ordered by inclusion. Then R(V') is a distributive lattice
where AV B = A+ B and AANB = AN B. Moreover, R(V) has the smallest element
{0} and the largest element V), — V).

Proof If A, B € R(V) then by Theorem 4.17 we have A + B € R(V), and A + B is
clearly the smallest regular quasi-ideal that contains both A and B, hence A + B =
A Vv B.Itis also clear that A N B is the largest quasi-ideal that is contained in both
A and B. To see that A N B is regular, let x € A N B. Since A and B are regular,
there exist elements u € A, and v € Byp such that x < u and x < v hold. Then
x =< u A v and the inequalities 0 < u Nv < u and 0 < u A v < v imply that
u A\ v € AN B, proving that AN B is regular, and hence AN B = A A B. To prove the
distributivity, it is sufficient to show that [(A N B) + (AN C)]sp = [AN(B + C)lsp,
since (AN B)+ (ANC)and AN (B + C) are both regular quasi-ideals. The inclusion
(ANB)+(ANC) € AN (B + C) is rather trivial, so let x € [AN (B + C)lp. Then
x € (B + C)gp, s0x = x1 + x2 where x; € By, and xo € Cyp, by Theorem 4.17.
Moreover, 0 < x1 < x € A implies that x; € A;p, and similarly, x, € Ay,. Hence,
x1 € (AN B);p and x3 € (AN C)yp, and therefore x € [(AN B) + (AN C)]yp. This
shows that R(V) is distributive. Finally, it is clear that {0} is the smallest element in
‘R(V), and by Theorem 4.12 the largest element is W = Vj, — V. u|

We do not know if the preceding theorem can be stated for regular specific ideals
in general. However, in many cases, a mixed lattice space is also a lattice with respect
to one (or both) partial orderings. In this case, we obtain stronger results as all the
lattice-theoretic tools are available to us. We will now briefly consider this situation.
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To avoid any confusion, we need to fix some terminology. If (V, <) is a vector lattice
then we will say that V is a (X)-lattice. If (V, <) is a vector lattice and A is a lattice
ideal in (V, <), then A is called a (X)-lattice ideal. We also denote the absolute value
and the positive and negative parts of an element x with respect to < by sp |x|, sp(x ™)
and sp(x ™), respectively.

Theorem 4.19 If V is a mixed lattice space such that (V, X) is a vector lattice then
A is a regular specific ideal in V if and only if A is a (X)-lattice ideal of (V, <X).

Proof 1t was proved in [5, Proposition 4.6] that every (=<)-lattice ideal is a specific
ideal. Moreover, a (<)-lattice ideal A is regular (since every x € A can be written
as x = sp(x™) — sp(x™) where sp(x™), sp(xT) € Ayp), so we only need to prove
the converse. Let A be a regular specific ideal. Then A is (<)-order convex and if
X € A then also “x! € A and 'x"* € A. Since A is regular, there is an element
u € Agp such that Ux! < yand 'x* < u. By [5, Proposition 3.16] the absolute value
of x formed with respect to < is given by sp |x| = spsup{“x’, ‘x*}. Thus we have
0<Zsplx|=sp sup{“xl, lx“} < u € A. Since A is ()-order convex, it follows that
sp |x| € A. This shows that A is a (<)-lattice ideal. ]

It is well known that the set of lattice ideals in a Riesz space is a distributive lattice.
Also, every regular quasi-ideal is a regular specific ideal, so putting all this together
with Theorems 4.19 and 4.18 we obtain the following:

Corollary 4.20 Let V be a mixed lattice space that is a lattice with respect to <, and
denote by L(V) the set of all regular specific ideals of V, ordered by inclusion. Then
L(V) is a distributive lattice where AV B = A+ Band AN B = AN B. Moreover,
L(V) has the smallest element {0} and the largest element V, and the set R(V) of all
regular quasi-ideals of V is a sub-lattice of L(V).

Now we turn to the discussion of bands in mixed lattice spaces.

Definition 4.21 Let V be a mixed lattice space. A specific ideal A is called a specific
band if spsup E € A whenever E is a non-empty subset of A such that sp sup E exists
in V. If A is a quasi-ideal with the above property then A is called a quasi-band. An
ideal B is called a band if sup E € A whenever E is a non-empty subset of A such
that sup E exists in V.

It follows from the identity inf E = — sup(—FE) that if A is a band and E is a
non-empty subset of A such that inf E exists in V then inf £ € A. Similarly, if A is a
specific band and sp inf E exists in V then spinf E € A.

It is also clear that every quasi-band is a specific band. For the sequel, we need to
introduce the following notions.

Definition 4.22 A specific ideal A is called a weak specific band if strsup E € A
whenever E is a non-empty subset of A such that str sup E exists in V. A quasi-ideal
with the above property is called a weak quasi-band, and an ideal with the above
property is called a weak band.
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Weak bands and weak specific bands in mixed lattice semigroups were introduced
by Arsove and Leutwiler [2].

Clearly, every specific band is a weak specific band, every quasi-band is a weak
quasi-band and every band is a weak band. Now we can state the following character-
ization for weak bands and weak specific bands.

Lemma 4.23 If A is a (specific) ideal in 'V then the following are equivalent.

(a) A is a weak (specific) band.

(b) strsup E € A whenever E is a non-empty subset of A, such that str sup E exists
inV.

(c) strsup E € A whenever E is a non-empty subset of A, such that str sup E exists
inV.

Proof The implication (a¢) = (b) is clear. Condition (b) obviously implies (¢),
since Agp € Ap. Assume that (¢) holds and let E be a non-empty subset of A such that
ug = strsup E existsin V.Fixanelementx € E anddefine D = {x yu—x : u € E}.
Then D is a non-empty subset of A, and since ug *= x, by property (M6a) we have
x v ug = up. Using Proposition 3.7 we then have strsup D = strsup{x vyu — x :
ueE}=xvuyg—x =uyg—x € A, and hence ug = x + (ug — x) € A. O

5 Disjoint complements

If x,y € Vand x A y = O then x is said to be left-disjoint with y and y is right-
disjoint with x. The reason for this terminology is, of course, the fact that in general
x Ay # y A x. Next we will investigate the sets of those elements that are left or
right disjoint with each element of a given subspace A. It follows immediately from
the inequalities x > x A yandy > x A ythatifx _\ y = 0 then we musthave x > 0
and y > 0. Because of this, we will first consider disjointness for positive elements
only. As it turns out, these sets of positive disjoint elements are in fact mixed lattice
cones. We then define the left and right disjoint complements as the specific ideal and
the ideal generated by these cones.
We begin with the left disjoint complement.

Lemma5.1 Ifx,y = 0and z > Owithy Nz = Othen (x + y) Nz =x ANz In
particular, if also x N\ z =0 then (x +y) XAz =0.

Proof If y A z = 0 and x = O then, using Theorem 3.2 we obtain
@+ Az @+ AN@E+2)=x+yrNz=ux.

On the other hand, (x + y) A\ z < z, so we have (x + y) A z < x A z. The reverse
inequality 0 < x A z < (x + y) A\ z holds by (M5), and the lemma is proved. O

We now introduce the set (LA)SP ={xeV:xnz=0foral z € Ay} and
study its properties.
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Theorem 5.2 Let V be a mixed lattice space and A a mixed lattice subspace of V.
Then the set (LA) sp defined above is a mixed lattice cone in V.

Proof Let x,y € (J-A)Sp and z € A,. Then (x + y) Az = 0 by the preceding
lemma, and hence x + y € (J-A)Sp. If0 < a € R and we put ¢ = max{«, 1}, then
0 < (xx) ANz <c(x ANz) =0.Thus, ax € (J-A)S,,. This shows that (J-A)s,, is a
cone in V. Next we note that if v = x A\ y then 0 < v < x and it follows that for
every z € Ap wehave 0 < v ANz < x Az =0, and thus v A\ z = 0. This shows
that v € (LA)S,,. If wesetw = x —x A\ ythen 0 < w < x, which implies that
O0<wAz=<xANz=0forallz € Ay,. Thus w € (LA)XP, and since (LA)SP is a
cone,wehavey+w =y+x—x A y=yyxeE (LA)SP. Hence, (lA)Sp is a mixed
lattice cone in V. O

The preceding result motivates the following definition.

Definition 5.3 Let A a mixed lattice subspace of a mixed lattice space V. The left
disjoint complement of A is the specific ideal - A generated by the cone (J-A)Xp =
{x=0:x Nz=0forall z € A,}.

Remark 5.4 We should point out that, more generally, if E is any subset of V such that
E, is non-empty, then LE p 1s a mixed lattice cone in V. However, for the purposes
of the present paper it is sufficient to restrict ourselves to mixed lattice subspaces. By
doing so we can avoid some unnecessary complications that arise if one considers
non-trivial subspaces S such that §, = {0}. For instance, in such cases the algebraic
sum of a subspace and its disjoint complement would not be a direct sum, in general.
We will discuss these matters further at the end of this paper.

Theorem 5.5 If E is a subset of (J-A)Sp such that sp sup E exists in V thenspsup E €
(J-A)Sp. In particular, - A is a regular weak specific band in V. Moreover, if - A is an
ideal, then it is a weak regular band.

Proof We will first show that ~ A is regular. Let W = (L A), = (L A), p- Itis clear that
W is a subspace and W C LA, so we only need to show that W is a specific ideal. It
follows from Theorem 5.2 and Theorem 4.7 that W is a mixed lattice subspace in V.
Moreover, if 0 < y < x withx € W then forevery z € A, wehave 0 < y Az <
x Az=0,s0y A\ z=0andthus y € W. Hence, W is a regular specific ideal, and
soW ="TA.

Let E be a non-empty subset of (+A4) sp such that ug = spsup E exists in V. Then,
using (M1) and Theorem 3.2 we have

U—UNZ=ZVU—ZRKIYU)—I=U)—U)NZ

forallu € E and z € Ap,. But u Az = 0, so the above inequality reduces to
u < uo—uo A z. Thus the element ug — ug A z is a (<)-upper bound of the set E, so
we have ug < ug — ug A z. This implies that 0 < ug A\ z < 0 (where the inequality
0 < ug A z follows by (M5), since ug = 0 and z > 0), and so ug A z = 0. Hence,
uy € (lA)Sp. In particular, if ug is the strong supremum then LA is a weak specific
band, and if - A is an ideal then - A is a weak band, by Lemma 4.23. O
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Next we turn to the right disjoint complement which we define in a similar manner
as the left disjoint complement, but the situation is slightly more complicated. Let A be
a mixed lattice subspace and consider the set S(A) = {x > 0:z A x =0 forall z €
Agp}. It is easy to see that S(A) is closed under multiplication by positive scalars, by
using a similar argument as in the proof of Theorem 5.2. However, in general, S(A)
is not closed under addition (see Example 5.15).

To get a better understanding of the situation, let us briefly examine the set S(A)
more closely. Let B be the family of all those subsets of S(A) that are closed under
addition. Notice that B is non-empty since {0} € . Let B be ordered by inclusion. If
C is atotally ordered subset of B then | J{C : C € C} is an upper bound of C, and so by
Zorn’s lemma 5 has maximal elements. Let us denote by M (A) the set of maximal
elements of B, that is, the set of those subsets of S(A) that are maximal with respect
to the property of being closed under addition. If S(A) itself is closed under addition
then S(A) is the only element of M(A). Clearly, S(A) = J{C : C € M(A)}, and
each set in M (A) is a (<)-order convex cone.

Proposition 5.6 The set S(A) is (<)-order convex, and eachC € M(A) isa (<)-order
convex cone.

Proof We divide the proof into 5 steps.

(HDIf0<x<ywithy e S(A)then0 <z A x <z A y=0forallz € Ay, and
soz A x = 0forall z € Ay, proving that S(A) is (<)-order convex.

(2) Let C € M(A). Then C is closed under addition by definition.

(3) If0 < x < ywithy € C, then x € S(A) by step (1). Now, if x ¢ C and
x+zeS(A)forallz e Cthen0 <ax+bz <(a+b)(x+27) € S(A)forallz € C
anda, b € R;. By step (1) this implies thatthe set D = {ax+bz :z € C, a,b € R4}
is contained in S(A). Clearly, D is closed under addition, and C is contained in
D, contradicting the maximality of C. Hence, there exists some z € C such that
x+2z¢ S(A).Butthen0 < x +z < y 4z € C, and by step (1) this implies that
x +z € §S(A), a contradiction. Thus x € C, and C is (<)-order convex.

(4) If x € C then an inductive argument applied to step (2) shows that nx € C
for all n € N. If a € R4 then we can find some m € N such that a < m, and so
0 < ax < mx € C. By step (3) this implies that ax € C, showing that C is closed
with respect to multiplication by positive scalars.

(5) Finally, C N (—C) = {0}, because the elements of C are positive and 0 € C.
By steps (2)—(5), C is a (<)-order convex cone. m]

Due to the above result, we will call M(A) the set of maximal right disjoint cones
of A. It was noted above that, in general, the set S(A) is not closed under addition. In
this sense, the set S(A) is “too large”. However, we have the following result which
is the analogue of Lemma 5.1.

Lemma5.7 Ifz,x = 0andy > Owithz Ny =0thenz N\ (x +y) =z Ax.In
particular, ifalso z N\ x =0thenz A\ (x +y) =0.

Proof Letv = z A (x +y). Then v < x 4+ y, s0o v — x < y. On the other hand,
since x = Owehave v —x < v < z.Hence,v —x <z Ay =0,andsov < x.
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Since we also have v < z, it follows that 0 < v < z A x. The reverse inequality
0 <z Ax <z (x+y)holds by (M5), and the desired result follows. O

It is clear that the set (Al)sp ={x>0:z A x =0 forall z € Ay} is contained
in S(A). The set (Al)sp is in fact a mixed lattice cone.

Theorem 5.8 If A is a mixed lattice subspace of V then the set (A+) sp defined above
is a mixed lattice cone in V.

Proof The proof of the fact that (A1) sp 1s a mixed lattice cone is similar to the proof
of Theorem 5.2. The only real difference is in showing that the set (A1), p 18 closed
under addition, and this follows immediately from the preceding lemma. O

Definition 5.9 Let V be a mixed lattice space and A a mixed lattice subspace of V.
The right disjoint complement of A is the ideal A+ generated by the cone (AJ-)S,, =
{(x =0:z2Ax=0 forall z € Ag,}.

Remark 5.10 In the above definition we require A to be a mixed lattice subspace
for similar reasons that were explained in Remark 5.4 considering the left disjoint
complement. The assumption that A is a mixed lattice subspace guarantees that A
contains non-zero specifically positive elements (except, of course, in the trivial case
A ={0}).

Theorem 5.11 AL is a weak band and z A x = Oforall0 <x € At andz € Agp.

Proof We will first show that (AJ-)S,, = {w € AL : w = 0}, that is, the ideal A+ does
not contain any (<)-positive elements that are not in (AL)S,,. This will also justify the
notation used for the set (A1), in Definition 5.9. For this, let W = (A1), — (A1);),
and0 < x <y € W.Then y = u — v for some u,v € (AJ-)sp,andSOO <x <
u e (AJ-)S[,. This implies that 0 < z A x <z A u = 0forall z € Ay, and therefore
zANx=0,s0x € (AJ-)s,, C W. This shows that W is a regular quasi-ideal, and so
by Corollary 4.14 and Theorem 4.15, W, = (AJ-)S,, ={we At :w =0}

Now, if z € Agpand 0 < x € At then 0 < x < x* € (A1), 500 <z Ax <
z A x"* =0, which implies that 7 A\ x = 0. Next, let E C (AL)sp be a non-empty set
and assume that xo = str sup E exists in V. Then xq = 0, and since z A x = 0 for all
x € E and z € Ay, it follows by Proposition 3.7 that z A\ xg = strsup,cg(z A x) =
0, and hence xq € (AJ-)SP. By Lemma 4.23 this shows that A~ is a weak band. O

The next result provides more information about the relationship between A+ and

S(A).
Theorem 5.12 If A is a specific ideal then (AJ-),, CC:C e M(A)}.

Proof We will first show that that (AJ-)S,, C(C : C € M(A)}. Let A be a specific
ideal and C € M(A) with x € C. Then it follows by Lemma 5.7 that for every
w e Agpand z € (Al)sp we have w A\ (x +z) = 0, and so x + z € S(A). This
shows that (Al)sp 4+ C € S(A). But C is, by definition, a maximal cone in S(A), so
we must have (Ai)sp C C. This proves that (AJ-)SP C({C:C e M(A)}.
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Next,if0 <y € AL then 0 < yte (AJ-)S,,. Thus, by what was just proved above,
we have y"* € ({C : C € M(A)}, and the inequality 0 < y < y* then implies that
y € ({C : C € M(A)}, by Proposition 5.6. Hence, (AL)I, C(){C:CeM(A})O

In the next theorem we collect some basic properties of the disjoint complements.
Some of them are straightforward consequences of the definitions.

Theorem 5.13 If A is a mixed lattice subspace then the following hold.

(a) ANLA =1{0}and AN AL = {0).

(b) AC (A

(c) If A is regular then A € +(A™h).

(d) If A is a quasi-ideal then (AL);, C (*A)y).

(e) If A is a quasi-ideal and LAis quasi-ideal then (AJ‘)SP = (J‘A)sp. Moreover, if
A is a quasi-ideal and * A is an ideal then ~A = A+

Proof (a) If x € A N 1A then also x*,x! € AN =LA, since A and +A are mixed
lattice subspaces. It follows that x* = x* A x* = 0 and so x < 0. Similarly
x! = 0, which implies that x > 0. Hence x = 0. By a similar argument we have
AN A+ ={0).

(b) This follows from the observation that A, C (+tahH p- Indeed, it follows from
the definitions that Ay, C ((lA)L)Sp. Hence, if x € A, we have x" € Ay, C
(+A)1)sp. Since (FA)L is an ideal, it follows from 0 < x < x“ that x €
((A)H)p.and s0 4, € (FA)),.

(c) It is evident that Ay, C J‘(Al)s,, and if A is regular then A = A, — Ay, C
(AL = H(Ah) = A,

p p

(d) Let x € (AL)SP and z € Ajyp. Then the inequalities 0 < x Az < x and 0 <
x A\ z < zimply that x A z € (A1);, N Ay, = {0}, and so x € (LA)s).

(e) Ifx € (tA)pandz € A thenitfollows from0 < z A x < zand0 < z A x <x
that z A x € ANLA = {0}. Hence, x € (A1);, and so (*A),, € (A1),. The
reverse inclusion follows from (e). Then A = (+A),, — (*A),, = (A1), —
(AJ-)X,,, by Theorem 5.5, so if + A is an ideal then the equality *A = A+ follows
from Theorem 4.12.

O

Remark 5.14 We note that, in particular, {0}~ = V and -V = {0}. Moreover, V+ =
{0} holds always, and 1{0} = V holds if and only if V is regular. Indeed, if V is not
regular then +{0} = V,, — Vi, # V.

We now give an example to illustrate some of the ideas presented above.

Example 5.15 Let V = R3 where < is the standard partial ordering where (x, y, z) >
(0,0,0) if x, y,z > 0. Define < to be the partial ordering with the positive cone
Vip =1{(x,x,2) : x,z > 0}. Then V is a quasi-regular mixed lattice space. Consider
the following subspaces: A = {(0,0,2) : z € R}, B = {(x,y,0) : x,y € R},
C ={(x,x,2) :x,z € R, D ={(x,x,0) : x € R}, E ={(x,x,x) : x € R}
Then A is a regular ideal and B is an ideal (but not regular) such that B = A+ and
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A = 1 B. Moreover, C = Vsp — Vip is a quasi-ideal, and it is the largest quasi-ideal
in V. Also D = By, — By, is a quasi-ideal, and it is the largest quasi-ideal contained
in B. Finally, E is a regular mixed lattice subspace but not a specific ideal.

Next, K1 = {(0,y,2) : y,z > 0}and K = {(x,0, z) : x,z > 0} are the maximal
right disjoint cones of D and S(D) = K; U K3, which is clearly not closed under
addition. Moreover, (D) p» = Asp = K1 N K3 (Theorem 5.12). The inclusion in
Theorem 5.12 may be proper. To see this, let us modify the mixed lattice space, and
consider U = R3 where < is the same as above, and define < as the partial ordering
with the positive cone U, = {«(0,0,1) + (0, 1,0) +y(1,1,0) : o, B,y > O}. Let
all the subspaces be the same as above. Then U is a regular mixed lattice space, and
F = {(0,y,0) : y € R} is a regular ideal in U. Now S(F) = K> which is closed
under addition, but (F l) » = Agp € K3. Note also that A and B are still ideals in U,
this time they are both regular, and B = A+ and A = 1 B holds.

Our definitions of the left and right disjoint complements differ from the corre-
sponding definition in the theory of Riesz spaces. We recall that if E is a subset of
a Riesz space L then the disjoint complement of E is defined as E+ = {x € L :
x| Alyl =0 forall y € E}.

In mixed lattice spaces the generalized absolute values exist, and this naturally raises
the question whether it is possible to give the definitions of the disjoint complements
in terms of the absolute values, like in Riesz spaces. The main difficulty here is that
the asymmetric generalized absolute values are not necessarily positive with respect
to the specific order. To deal with this issue we introduce the notion of a symmetric
absolute value, which is defined in terms of the asymmetric absolute values. It has the
advantage of being positive with respect to both partial orderings while retaining most
of the other important properties of the absolute value.

Definition 5.16 Let V be a mixed lattice vector space and x € V. The element
s(x) = %(“xl +!x") is called the symmetric generalized absolute value of x.

Next we derive some basic properties of the symmetric absolute value. The first item
gives useful alternative expressions and the rest of the properties show that, in many
ways, the symmetric generalized absolute value behaves like the ordinary absolute
value in Riesz spaces.

Theorem 5.17 Let V be a mixed lattice vector space and x € V. Then the following

statements hold.

(@) s(x) = x"*~vlx ="x +'x = x + x* = x' v¥x.

(b) s(ax) = |a|s(x) forallx € R.

(c) s(x) =0 and s(x) > 0. Moreover, s(x) =0 ifandonlyif x =0.

(d) x =0 ifandonly if x = s(x). In particular, s(s(x)) = s(x).

(e) s(x+y) = s(x)+s().

(f) x Ay+yrx=x+y—sx—y).

Proof (a) All the equalities apart from the first one were given in Theorem 4.2(h). The
first equality follows from

25(0) ="xl 4l =ty +x + xl + 1% =20 + xH =2 v x),
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where we used Theorem 4.2 (c) and (h).

(b) This follows from Theorem 4.2 (1) and (m).

(c) Since x* 3= 0 and x! = 0 we have s(x) = x* + x! = 0. Also, “x > Oand'x > 0
imply s(x) = “x + Ix > 0.1t is clear that x = 0 implies s(x) = 0. Assume

then that s(x) = 0. Now s(x) = “x +/x =0, or “x = —!x. Hence 0 < “x =
—!x < 0, which implies “ x = 0. On the other hand, s(x) = x* + x!' =0, or
x!=—x% 80,0 < x! = —x" < 0, which in turn implies xl=o. Consequently,

x=4x—xl=0.
(d) This follows immediately from (a), (¢) and Theorem 4.2 (i).
(e) Using (a) together with Theorem 4.2 (e) and (f) we get

s ="+ +H @+ <“x+ y+x+ly =s5x) +sO).

(f) This follows by adding the two identities given in Theorem 4.2 (n).

We can now characterize ideals in terms of the symmetric absolute value.

Theorem 5.18 Let V be a mixed lattice space and A a subspace of V. The following
conditions are equivalent.

(a) A is an ideal.
(b) If s(x) <s(y) and y € A then x € A.

Proof Assume that (a) holds and let s(x) < s(y) with y € A. Thens(y) € A, and the
inequalities 0 < x! < s(x) < s(y)and 0 < “x < s(x) < s(y) imply that“x, x' € A
andso“x —x! = x € A.

Conversely, assume that (») holds and let y € A. Then by Theorem 5.170 < y* =
s(y"*) < s(y).Itfollowsthat y” € A andso A isamixed lattice subspace. Next, assume
that0 < x < ywithy € A. Then y! = x/ = 0andsos(y) = y* and s(x) = x*. Now
the above assumption implies that x* = s(x¥) < y* = s(y") < s(y). It follows that
x" = s(x) € A and since s(x) < s(s(x)) by Theorem 5.17(d), we infer that x € A
and so A is (<)-order convex, and hence an ideal. O

Next we will show that the right disjoint complement can also be given in terms of
the symmetric absolute value, and for Riesz subspaces, the usual Riesz space definition

of the disjoint complement can thus be viewed as a special case of the next result.

Theorem 5.19 If A is a mixed lattice subspace then the right disjoint complement is
givenby At ={x € V :s5(2) As(x) =0 forall z € A).

Proof Let X = {x € V :5(z) As(x) =0 forall z € A}. We first note that Ay, =

{s(z):z€eAlandso X ={x € V:z As(x) =0 forall z € A;p}. Letx,y € X
and z € Ayp. Since s(x) = 0 and s(y) = 0 we have

0<zAs(x+Yy) <zAG@ +s) <zAsx)+zAs(y) =0,
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and so z A s(x + y) = 0 (here we used Theorem 5.17 and Lemma 5.7). This shows
that X is a subspace. To show that X is an ideal, we note thatif s(x) < s(y)andy € X
then0 < z A s(x) <z A s(y) =0,and so x € X and by Theorem 5.18 X is an ideal.

Clearly, At C X.If x € X then s(x) € Aj,,, and it follows from 0 < x* < s(x)
and 0 <'x < s(x) that x = x* —'x € A*. Hence A+ = X. u]

Theorem 5.19 thus gives an alternative (but equivalent) definition of the right dis-
joint complement by means of the symmetric absolute value. The reason this works
is implied by Theorem 5.18, for if A is an ideal then x € A if and only if s(x) € A.
However, if A is a specific ideal, then x € A implies s(x) € A, but not conversely in
general. This is the fundamental reason why we cannot similarly characterize the left
disjoint complement - A in terms of the symmetric absolute value.

In the next section we consider the situation where A is aband such that A = (- A)+.
We will now give sufficient conditions for this to hold. The next couple of results have
their counterparts in the theory of Riesz spaces, and the methods used in their proofs
are also similar. First we recall some terminology. A mixed lattice space V is called
(=)-Archimedean if the condition nx < y for all n € N implies x < 0. Similarly, V
is called (X)-Archimedean if the condition nx < y for all n € N implies x < 0. It
is easy to see that if V is (<)-Archimedean then it is also (<)-Archimedean, but the
converse is not true as the next example shows.

Example 5.20 Let V = (Rz, <, <), where < is the lexicographic ordering defined as
(x1,x2) <1,y = (x1 <y or xy=y and x2 <y2),

and < is the usual coordinatewise ordering (x1, x2) < (y1, y2) ifx1 < yrand xp < y».
Then V is a mixed lattice space which is (x)-Archimedean but not (<)-Archimedean.

Next we will show that in (<)-Archimedean mixed lattice spaces every band A
has the property that A = (+A)L. First we consider the following order-denseness
property of quasi-ideals with respect to their second right disjoint complements.

Proposition 5.21 If A is a quasi-ideal and x € (*~A)* is a non-zero element such that
x = 0, then there exists a non-zero element y € A such that0 < y < x.

Proof Let 0 < x € (*A)* be a non-zero element. Then x ¢ A, and there exists an
element 0 < w € A such that x A\ w # 0. Since A is a quasi-ideal, the inequality
0 < x A w < w implies that x A w € A. The element y = x _\ w then satisfies
0 < y < x, as required. O

Remark 5.22 The above proposition holds also if A = {0}, because then + A = Vip —
Vsp and (+A)+ = {0}, so there are no non-zero elements in (+ A)L which makes the
proposition vacuously true.

In (x)-Archimedean mixed lattice spaces the order-denseness property of the pre-
ceding proposition has the following consequence.

Theorem 5.23 Let V be a (X)-Archimedean mixed lattice space and A a quasi-ideal
inV.IfM, ={ve A:0=<xv < u}thenu = spsup M, foreveryu € ((J-A)i)xp.
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Proof LetO0 < u € (FA)and M, = {fve A:0<v < u}. Clearly, u is a specific
upper bound of M,. Assume that u # spsup M,. Then there exists some specific
upper bound wg of M, such that u < wg does not hold. If we put w = u A\ wy then
0 < w < uholds,and w € (LA)l, since (LA)l is an ideal. Moreover, 0 < u — w €
(+A)* and so we can apply Proposition 5.21 to find a non-zero element z € A such
that 0 < z < u — w < u. In particular, we have z < u and z < wo, and consequently,
z < w. Hence

02z=z4+zxw—w)+w=u,

and clearly 2z € A, so in fact we have 2z € M,. Hence, we can repeat the same
argument for the element 2z. That is,

0<3z=z+2zx(w—w)+w=u,

and so 3z € M,,. Continuing this way we find thatnz € M, foralln,andso0 < nz < u
for all n. But 0 < nz # 0, which is impossible since V is (x)-Archimedean. Hence,
u = spsup M,,, and the proof is complete. O

The following result is now a rather immediate consequence of the preceding the-
orem.

Corollary 5.24 IV is a (X)-Archimedean mixed lattice space and A is a quasi-band
in'V, then Agp = (FA))sp.

6 Direct sum decompositions and projections

The sum of subspaces A and B of a mixed lattice space V is called a direct sum if
A N B = {0}, and this is denoted by A @ B. If V has a direct sum decomposition
V = A @ B then each element x € V has a unique representation x = xj + x2, where
x1 € A and xp € B. The elements x| and x; are called components of x in A and
B, respectively. A vector space can usually be written as a direct sum of subspaces
in many ways, but we are mainly concerned with direct sum decompositions that are
compatible with the mixed lattice structure in the sense that the order structure of V
is determined by its direct sum components.

In this section we give some results concerning direct sum decompositions of a
mixed lattice space in terms of ideals and specific ideals. First we show that if a mixed
lattice space V can be written as a direct sum of a regular specific ideal A and an ideal
B then A and B are necessarily the disjoint complements of each other. Moreover, A
has stronger band properties than those implied by Theorem 5.5.

Theorem 6.1 If A is a regular specific ideal and B is an ideal such that V. = A & B
then A is a regular specific band and B is a weak band such that A = + B = +(A1)
and B = AL = (J-B)J-. Moreover, Vs, = Agp + Byp.
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Proof Assume that V = A @ B, thatis, AN B = {0}. Letu € A and v € B such
that u 3= 0 and v > 0. Then, since B is an ideal, it follows from 0 < u A\ v < v that
u A\ v € B, and consequently (z A\ v)* € B. On the other hand, u A\ v < u and by
Theorem 3.2 we have

O AV"=0vyurNV)<0vu=u"=u,

and so (u \ v)* € A, since A is a specific ideal. Hence, we have (u A\ v)* € AN B,
and so (u A\ v)* = 0. Since u \ v > 0, this implies that u A\ v = 0. Hence, A C 1B
and B C A+,

To prove the reverse inclusions, let x € L+ B. Since V = A @ B, the element x has
a unique decomposition x = x1 + x» with x; € A and x» € B. But we showed above
that A € +B,andsox; € *B. Since LB isa subspace, we have x — x] = xp € LB.
Thus xp = 0 (by Theorem 5.13) and x = x| € A. Hence, 1B C Aandso A =1B.
From this it follows that AX = (*B) and V. = A @ B = -B @ B. Thus, every
x € AL = (LB)L has a unique decomposition x = x; 4+ xp with x| € 1B and
x2 € BC (+B)L, and so by Theorem 5.13 we have x; = x —x» € (1 B)L. But then
x1€+BN (J-B)J- = {0}, so we deduce that x = x» € B, and therefore A+ C B, and
so AT = B. Hence, wehave A = +B = 1 (A1) and B = A+ = (+ B)L.

The equality Vy, = Ay, + By, holds by Theorem 4.17(b). By Theorem 5.11, B is a
weak band, and by Theorem 5.5, A is a weak specific band, but we must show that A
is a specific band. For this, let E be a subset of A such that w = spsup E exists in V.
Then for any x € E we have z = w — x = 0, and so z = z1 + z2 with z1 € Ay, and
72 € Byy,. On the other hand, we have w = wy + w» with wy € A and wy € B, and
therefore z = (w; —x)+wy where w; —x € A. Since the representation of z is unique,
we have 71 = w; —x € Ay and 2o = wy € By,. Hence, x < wy < wy + wp = w.
Since this holds for any x € E, it follows that wy = 0 and w = w; € A, and so A is
a specific band. O

For a regular mixed lattice space we have the following result.

Theorem 6.2 Let A be a regular specific ideal and B an ideal such that V = A ® B.
Then V is regular if and only if A and B are both regular.

Proof If A and B are both regular then clearly V is also regular. If V is regular and
x € Bthenx < u forsome u € Vy,. Now by the preceding theorem u = uy +u; with
uy € Agpanduy € Byp. The inequality x < u1 +up isequivalentto O < ug + (u2 —x),
and, again by Theorem 6.1, we have uy — x € Bp. This implies that B is regular. O

If there is a weak band A such that V = A @ A then the components of specifically
positive elements in A and - A are given by the next theorem.

Theorem 6.3 Let A be a weak band such that V.= ~A @& A. Then for every x € Vsp
the elements

x;=spsupfv e A: 0 v=x} and x2=spsup{velA:O-\<v-\<x}
exist, and x| and x5 are the components of x in A and - A, respectively.
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Proof Let x € Vj, have the decomposition x = x1 + xp with x; € A and x; € LA,
Let M ={ve A:0=<v=<x}.Ifve M then the element x — v = 0 has the unique
decomposition x — v = (x; — v) + x2 where x; —v € A, and xp € (J-A)Sp, by
Theorem 6.1. Thus, v < x1 and so xj is a (XX)-upper bound of M. But we also have
0<x; =x—x2 < x,and so x; € M. This shows that x; = spsup M. The formula
for x; is proved similarly. O

In accordance with the Riesz space terminology, the components given by the
above theorem are called specific projections of x on A and - A. We will return to the
discussion of projection elements later.

In the above theorems we considered a direct sum V = A @ B such that V;, =
Agp + Bgp. If also V,, = A, + B), holds then we obtain stronger results, and this
motivates the following definition.

Definition 6.4 Let A and B be subspaces of a mixed lattice space V such that V =
A © B. This direct sum is called a mixed-order direct sum if Vs, = A;p + Byp and
Vp,=A,+ B,.

Mixed-order direct sums can be characterized as follows.

Theorem 6.5 Let A and B be subspaces of V suchthat V.= A® B. Then the following
are equivalent.

(a) V = A @ B is a mixed-order direct sum
(b) A is a regular band and B is a band such that A = *B and B = A™+.

Proof Assuming that V = A @ B is a mixed-order direct sum, we first show that A is
(<)-order convex. Let 0 < v <uwithu e A. If weputw =u —vthenu =v+w
and v, w > 0. Now by assumption v and w have representations v = v| + vy and w =
w1 + wp where vy, wy € Ay and v, wy € B,. Hence, u = (v1 +v) + (w1 +wy), or
va+wr = u—(v1+wp). A and B are subspaces, sova+w> € Bandu—(vi+wp) € A.
Butthen v, +wy € ANB = {0}, and it follows that v; = w; = 0. Thus,v = v; € A,
and this shows that A is (<)-order convex.

Next we need to prove that A is a mixed lattice subspace. By assumption, the
elements x“ and / x can be written as x* = a; +b; and ' x = ap + b, where a; € Asp,
by € Bspanday € Ay, by € B,. Now x = x" — Iy = (ay — ap) — (by — by), so
b> — by = x — (a1 — ay). Since A and B are subspaces, we have b, — by € B and
x — (a1 —ap) € A.Butthen b — b1 € AN B = {0}, and it follows that x = a; — ay,
and so we have two representations x = x " — Iy and x = a; —ap witha; € Agp and
ar € Ap. By Theorem 4.3 we have 0 < x* < ay and 0 < Iy < a. It follows that
Ix,x" € A, since A is order-convex. This shows that A is a mixed lattice subspace,
and hence an ideal. Similar arguments show that B is also an ideal.

To show that A is regular, we note that 0 < x ANy <xand0 < x Ny <y for
all x € Asp and y € B), and since A and B are ideals such that A N B = {0}, it
follows that x Ay = O forall x € Ay, and y € Bj,. Hence, A C L B. Next, let
0<zelB. By assumption we can write z = a +b wherea € A, and b € Bj,. Then
b=z—aec' B, because A tBand tBisa subspace. Thus, b € BN 1p = {0},
by Theorem 5.13. Hence, z =a € A andso A = L1 B, which is a regular weak band
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by Theorem 5.5. It now follows from Theorem 6.1 that B is a weak band such that
B = AL, To see that B is actually a band, let E be a subset of B such that w = sup E
exists in V. Then for any x € E we have z = w — x > 0, and so z = z1 + z» with
71 € Ap and 22 € B). On the other hand, w = w; + w; with w; € A and w; € B,
and so z = w; + (w2 — x) where wy — x € B. Since this representation is unique, we
have z1 = w; € Ay and 220 = wy — x € B,. Hence, x < wy < w; + wy = w. Since
this holds for any x € E, it follows that w; = 0 and w = w; € B, and so B is a band.
A similar argument shows that A is also a band.

To prove the implication (b) = (a), assume that A is a regular band such that
V=A®AL IfW = (A1);, — (A1), then by Theorem 4.12 W is a quasi-ideal, so
by Theorem4.17 we have V;,, = As,,—i-(AJ‘)sp = Agp+Wsp. ThenV), = A,,—}—(AJ-),,,
by Theorem 4.16, and hence V = A @ A< is a mixed-order direct sum. O

Now, if V. = A @ At is a mixed-order direct sum then the left and right disjoint
complements of A are very closely related, and they are equal if V is regular.

Theorem 6.6 IfV = A® A~ is a mixed-order direct sum then A = -(A+) = (A1)*L.
Moreover, A C AL, and if A+ is regular then + A = AL In this case, A = L(A+) =
(AHL =+ A) = (LAY In particular, all these equalities hold if V is regular.

Proof The equality A = +(A™1) follows from Theorem 6.5, and since A and A~ are
both ideals, it then follows from Theorem 5.13(e) that “ (A1) = A = (A1)L. By
Theorem 5.13(d) (AJ-)S,, c (LA)S,,. To prove the reverse inclusion, let x € (LA)sp.
Then by assumption we can write x = x1 + x2 where x1 € Ay, and xp € (Al)sp -
(LA)sp. Then for every z € Ay, we have xp A z = 0, and it follows by by Lemma 5.1
that0 = x A z = (x14+x2) A 2 =x1 A\ z.Hencex; € (LA)Sp,andsoxl eltAnA =
{0}. Thus x = x5 € (A1);p, and so (LA);, = (A1), Since LA = (L A),, — (L A)sp,
it follows that *A € AL, and if A is regular then the equality A = A* holds. In
this case we therefore have A = (A1) = (ALt =11 A) = 1AL In particular,
this holds if V is regular, by Theorem 6.2. O

The next theorem shows that disjoint components of elements in a mixed lattice
space have similar properties as in Riesz spaces. In particular, the symmetric absolute
value behaves as one would expect.

Theorem 6.7 Let V = A & B be a mixed-order direct sum. If x € A and y € B then
the following hold.

(@) x+y)"=x"+y* and '(x +y) ="'x+"y.

(b) “(x+y)="x+"y and (x+y)=x"+yl.

(C) u(x+y)l=uxl+uyl Cli’ld l(x+y)u=lxu _i_lyu.

(d) s(s(x) —s(») = s(x +y) = s(x —y) = s(x) +50) = s(x) vs(y) =
s(y) v s(x) = spsup{s(x), s(y)}.

Proof To prove (a), we start by noting that 0 < x* A ((x+'y) < x* A (x+(y)").
Now x* A !x = 0(by Theorem4.2)andx* A (' y)* = 0 (since ( y)* € By,). Hence,
by Lemma5.7 wehavex* A (‘x+('y)*) = 0,and consequently, x* A (‘x+'y) = 0.
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Nowletw = (x*+y*) A (‘x+'y). Thenw <! x+!yand,since y* = 0, by Theorem
3.2 we also have

wxE Y)Y NG F x4+ ) =y x A (Cx+ly) =y

This implies that 0 < w < y* A (lx +ly). Next we note that y" € By, = (AJ-)X[, -
(1 A),, (by Theorem 5.13(d)), and (' x)* € Agp, 500 < y* Alx < y* A (x)* =0.
Moreover, y* A ly = 0, so we can use Lemma 5.7 again to obtain 0 < y* A\ (lx +
Iyy <y A ((x)" +'y) = 0. Hence, we have shown that y* A (‘x +'y) =0, and
consequently, w = 0.

Sincex +y = (x* 4+ y*) — (x +y)yand (x* + y*) A ((x +'y) =0, we have
(x+y*=x"+y"and'(x +y) ='x +'y, by Theorem 4.3. Similar reasoning
proves (b), and adding the equalities in (a) and (b) gives the equalities in (c). Adding
the equalities in (c) then gives s(x + y) = s(x) + s(y). Since this holds for all x
and y, we can replace y by —y to get s(x — y) = s(x) + s(—y) = s(x) + s(y).
The equality s(s(x) — s(y)) = s(x) + s(y) then follows immediately from Theorem
5.17(f) by replacing x with s (x) and y with s(y), and using the fact that s (x) A s(y) =
s(y) A s(x) = 0. Indeed, since s(x) € A,p and s(y) € By, = (AL)SP, then by
Theorem 5.13(d) we have s(y) € (lA)sp, and so s(x) A s(y) = s(y) A s(x) = 0.
Consequently, s(x) v s(y) = s(y) v s(x) = s(x) + s(y) = spsup{s(x), s(y)}. Here
the last equality follows by noting that s(x) 4 s(y) is clearly a (x)-upper bound of
{s(x),s(y)}, and if s(x) < c and s(y) < c then s(x) v s(y) < ¢, completing the
proof. O

If C is a mixed lattice cone then the following inequalities hold for all x, y, z € C.
(For the proofs we refer to [2, pp.13] and [2, Theorem 3.6.])

IN@X+Yy)<zAx+zAY 6.1)
x+y) Az xANZ+YANZ (6.2)

With these inequalities we obtain the following formulae for the mixed envelopes of
specifically positive elements.

Proposition 6.8 Let V = A @© B be a mixed-order direct sum. If x,y € Vg, are
elements with components x = x1 + x2 and y = y| + y» where x1,y1 € Ay and
X2, ¥2 € By, then

XANYy=Xx1 AYy1+x2 Ay and x~yy=2Xx1Yy +Xx2V .

Proof Ay, and By, are mixed lattice cones, so using 6.1 and 6.2 together with the fact
that x; A\ y2 = 0 = x2 \ y; (where the last equality follows from Theorem 6.6, since

y1 € A=1B C Bt) we get
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(x1 +x2) A 1+ y2)

X1 AN (1 + y2) +x2 A (1 + y2)

XL AYL+XT AYy2+xX2 Ay +x2 AWM
X1 A y1r+x2 Ay

XAy

A Al

Onthe other hand, wehave x; A\ y1+x2 A\ y2 < x1+x2 = xandx; A yi+x2 A » <
Y1+ y2 =y,50x1 A Y1 +x2 A Y2 <X \Y, and the first identity follows. Similar
reasoning shows that y A\ x = y; A\ x1 + y2 A x2.

Substituting these intox v y =x +y — y A x gives

xvyy=x1+x2+y1+y2— 1 Ax1+y2Ax2)
=1+ y1 =yt Ax)+ 2+ y2—y2 A X2)
=X1 7YYL+ X2y .

O

If V=A@ Al is a mixed order direct sum then the components of a positive
element in A and AL are given by the next theorem, which is proved exactly as
Theorem 6.3.

Theorem 6.9 Let A be a band such that V. = A @ AL is a mixed order direct sum.
Then for every x € V), the elements

x;=sup{lve A:0<v <x} and xz:sup{veAJ‘:Ofvgx}

exist, and x1 and x> are the components of x in A and AL, respectively.

Asinthe theory of Riesz spaces, it turns out that the existence of a mixed order direct
sum is equivalent to the existence of the associated order projection. Let V = A @ A+
be a mixed order direct sum. If x € V has the components x; € A and x; € A+ then
we define the mapping P4 : V — V by P4(x) = x1. We can immediately see that
P4 has the following properties:

(P1) Py, is alinear operator and P7 = Py.
(P2) 0 < Ps(x) <x forevery x > 0.
(P3) 0 < Pa(x) < x forevery x = 0.

A mapping with these properties is called a mixed order projection and the associ-
ated band A is called a projection band. (Note that the specific projection elements in
Theorem 6.3 can be given similarly in terms of a specific projection operator that has
the properties (P1) and (P3)).

Conversely, if P is a mixed order projection on V then there exists a corresponding
mixed order direct sum decomposition of V. Apart from a few minor modifications,
the proof is essentially the same as in the case of Riesz spaces (see [11, Theorem
11.4]).
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Theorem 6.10 If P : V — V is a mapping with properties (P1)—(P3) then there exists
a regular band A such that V.= A @ AL is a mixed order direct sum and P is the
associated projection on A and I — P is the projection on A™.

Proof Let A ={Px:x € V}and B ={(I — P)x : x € V}. Then A and B are clearly
subspaces of V.If x €¢ AN Bthenx = Pyandx = (I — P)z forsome y,z € V.
Using the property (P1) we get

x=Py=P(Py)=P(I — P)z=Pz— P?2=0.

This shows that A N B = {0}, so A & B is a direct sum. Moreover, for any x € V we
have x = Px+ (x — Px) = Px+ (I — P)x,so V = A & B. It now follows from
(P2) thatif x > O then Px > 0and 0 < x — Px = (I — P)x. Hence, V, = A, + B).
Similarly, (P3) implies that Vs, = Ay + Bsp, and so V. = A @ B is a mixed order
direct sum. It then follows from Theorem 6.5 that A is a regular band and B = AL,
Clearly, P and I — P are the projections on A and A, respectively. O

If x > 0 then by Theorem 6.9 the element P4 (x) is given by P4 (x) = sup{v € A :
0 < v < x}. Since every element can be written as a difference of positive elements,
we obtain the projection of an arbitrary element.

Theorem 6.11 IfV = AP A~ is a mixed order direct sum and P4 and Py =1—-Py
are the associated projections on A and A+, respectively, then for any x € V we have

x = PA(0) + Pyr(x0) = Pa(x™) = Pa('x) + Py (x") = Py ('),
or alternatively,

x = PA(x) + Pyr(x) = Pa("x) — PA(x)) 4+ Pyi(“x) — Py (x)).
Proof Every x € V can be written as x = x* — ' x (or alternatively, x = “x — x/, but
this case is treated similarly). The elements x * and / x have the components x* = a+b

and’x = u+v,wherea, u € Aandb, v € AL. On the other hand, x = Xx1+xp with the
components x; € Aand xp € Al By Theorem 6.7 we havea +b = x* = x1 " +xp"

and u +v = 'x = 'x; +xp, where x;%,'x; € A and x2“,'xy € AL. Since
AN ALt = {0}, this implies that x;* = a, x"* = b, x| = u and ' x = v. These
components are the projection elements, and the proof is thus complete. O

Next we consider some examples. First it should be noted that there are non-trivial
mixed lattice spaces in which non-trivial ideals do not exist, and hence non-trivial
mixed lattice decompositions do not always exist either.

Example6.12 Let V = R? and define < as the partial ordering with the usual positive
cone V, = {(x,y) : x > 0,y > 0}. Let < to be the partial ordering induced by the
positive cone Vs, = {a(2, 1) + B(1,2) : a, B > 0}. Then V is aregular mixed lattice
space. If C1 = {(x,y) : ¥y = %x} and C; = {(x,y) : y = 2x} then C; and C, are
both specific ideals, but there are no other ideals in V than {0} and V itself.
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If we change < to be the partial ordering with the positive cone Vy, = {a(1,0) +
B(1,1) : a, B > 0} then V is again a regular mixed lattice space. Let A = {(x, y) :
y =x}and B = {(x,y) : y = 0}. It is easy to see that A is a regular specific ideal
and B is a regular ideal such that V = A @ B. The conditions of Theorem 6.1 are
thus satisfied and A = 1B and B = AL. Moreover, (A + B)sp, = Asp + Bgp, holds.
However, this is not a mixed-order direct sum. For instance, the element x = (1, 2)
cannot be written as x = x1 + x2 where x; € A, and x; € B,.

The next one is related to the setting of Theorem 6.1.

Example 6.13 This example is adapted from [2, pp. 34]. See also [5, Example 2.15].
Let V = BV([O0, 1]) be the set of all functions of bounded variation on the interval
[0, 1]. Define the initial order as f < g if f(x) < g(x) for all x € [0, 1], and the
specific order as f < gif f < g and g — f is non-decreasing on [0, 1]. Then V is a
regular mixed lattice space.

Now fix some ¢ € (0, 1) and let A be the subspace consisting of those functions
that are constant on the closed interval [c, 1], and let B be the subspace consisting of
those functions that vanish on the closed interval [0, c]. Then A is a regular specific
ideal and B is a regular ideal such that A N B = {0}. It is well known that every
g € V can be written as a difference of two non-decreasing non-negative functions on
[0, 1]. Hence, to see that V = A @ B it is sufficient to note that every non-decreasing
non-negative function f on [0, 1] can be written as f = f| + f> where f| € A and
f>» € B.Indeed, define f] by fi1(x) = f(x)forallx € [0, c],and fi(x) = f(c) forall
x € [c, 1]. Then define f> by fo(x) =0 forall x € [0, c] and f>(x) = f(x) — f(c)
for all x € [c,1]. Then f; € A, f, € B and f = f; + f>, and by Theorem 6.1
A = 1B is a specific band and B = A~ is a weak band.

If we consider the space W of all continuous functions of bounded variation on
[0, 1], and we put ¢ = O with A and B defined as above, then A is just the set of all
constant functions on [0, 1] and B = {g € W : g(0) = 0}. Then W = A & B as
above, and B is a weak band by Theorem 6.1, but not a band. This can be seen by
choosing f(x) = 1 forall x € [0, 1] and defining f;, by f,,(x) = nx forx € [0, 1/n],
and f,(x) = 1forx € (1/n, 1]. Then {f,} € B forall n € N and sup{f,} = f, but
f ¢ B. Note also, that now f is not the specific supremum (and hence not the strong
supremum) of { f;,}.

Special cases of mixed-order direct sums are provided by Dedekind complete Riesz
spaces, where all bands are projection bands. We give some other examples below.

Example 6.14 Let U be the same mixed lattice space as in Example 5.15, with the
subspaces C = {(0,y,z) : y,z € R} and D = {(x,x,0) : x € R}. Now C is
a regular ideal and D is a regular specific ideal such that U = C @ D. Hence,
the conditions of Theorem 6.1 are satisfied and we have C = D+ and D = 1C.
Moreover, (C + D);, = Csp + Dyp but this is not a mixed-order direct sum. If
A=1{0,0,2):z€R}and B = {(x, y,0) : x, y € R} then A and B are both regular
ideals such that U = A @ B. This is a mixed-order direct sum where B = AL and
A="1B.

Similarly, if V is the same as in Example 5.15, then in V, A is a regular band and
Bisaband such that B = AL, A = 1B and V = A @ B is a mixed order direct sum.
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Example 6.15 Let V be the set of all n-by-n matrices and define < as the usual element-
wise ordering and define specific order by M = 0 if M > 0 and M is a symmetric
matrix. Then V is a quasi-regular mixed lattice space (see [S5, Example 2.19]), where
the set A consisting of all diagonal matrices is a band and the set B of those matrices
with zero diagonal elements is a band such that A = 1B, B=AtandV =A@ B
is a mixed order direct sum.

As we have seen in Example 6.13, the mixed lattice space of functions of bounded
variation has direct sum decompositions of the type described in Theorem 6.1, but it
does not possess non-trivial mixed-order direct sum decompositions. The following
example is somewhat analogous to the situation in the Riesz space C([0, 1]) of con-
tinuous real functions on the interval [0, 1], where non-trivial projection bands do not
exist. Before discussing the example we need the following lemma.

Lemma 6.16 The ideal I(u) generated by a single element u € V is given by I (u) =
{x € V:s(x) < ns(u) for some n € N}.

Proof We first show that 7 (u) is a subspace. If x, y € I(u) then s(x) < ns(u) and
s(y) < ms(u) for some n, m € N. Then forall a, b € R,

s(ax +by) < lals(x) + |bls(y) < (laln + |blm)s(u) < ps(u),

where p € N is a number such that |a|n + |b|m < p. Thus, ax + ny € I(u). Next,
let x € I(u) and s(y) < s(x). Then s(y) < s(x) < ns(u) for some n € N and
so y € I(u). It follows that I(u) is an ideal, by the condition of Theorem 5.18.
To show that 7(u) is the smallest ideal that contains u, let J be another ideal such
that u € J. Then also ns(u) € J forall n € N, and if x € I(u) the inequality
s(x) < ms(u) = s(mu) holds for some m € N. It follows again by Theorem 5.18 that
x € J.Hence, I(u) C J.

Example 6.17 Consider the regular mixed lattice space V. = BV ([0, 1]), as in Example
6.13.1f f, g € V then the mixed lower and upper envelopes are given by ([2, Theorem
21.1.D)

(f A @) =inf {fu) = (f(x) —g(x)T : x €[0,ul}

and

(f v &)@ =sup {f @) + (gx) — fxNT 1 x € [0, ul},

where r* = max{0, r} is the positive part of the real number r.

Now V = V @ {0} is the only mixed order direct sum decomposition of V. This
can be seen by considering the constant function 2(x) = 1 for all x € [0, 1]. First we
note that the ideal generated by / is V. Indeed, since every f € V is bounded, then for
any f € V there exists some n € N such that s(f) < nh = ns(h). Hence I(h) =V,
by the preceding lemma.
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Now if V = A @ B is a mixed order direct sum then % has the components f € A
and g € B such that f(x) 4+ g(x) = 1 forall x € [0, 1] and f A\ g = 0. This implies
that f and g are positive, s0 0 < f(x) < land 0 < g(x) < 1 forall x € [0, 1]. Then
the above expression for f A g gives

(f AN @) = f) —sup{(f(x) — gx)T : x € [0, ul}.

If f A g = 0then we have f(u) = sup{(f(x) — g(x))™ : x € [0, u]}. In particular,
f0) = (f(0) — gO)* = 2f(0) — DT. Now, if 0 < f(0) < 5 then £(0) = 0.If
% < f(0) < 1then f(0) = 2f(0) — 1, or £(0) = 1. Hence, we must have either
f(0)=0and g(0) = 1,0r f(0) =1and g(0) =0.Sinceh =>0andV = AP B
is a mixed order direct sum then also the components of % satisfy f = 0 and g = 0.
In other words, f and g are non-decreasing. But this and f(x) 4+ g(x) = 1 imply
that either f(x) = 0 and g(x) = 1, or f(x) = 1 and g(x) = O for all x € [0, 1].
This shows that either A or B contains the constant function 4(x) = 1. Since the
ideal generated by & equals V, we must therefore have either A = V and B = {0}, or
B =V and A = {0}.

A few concluding remarks are in order to further explain and justify our choice
of certain definitions. Since we have defined A' to be the ideal generated by the
cone (AL)XP, one might be inclined to ask why did we define LA as the specific ideal
generated by the cone (T A); p» and not the ideal generated by (tA) p- The main reason
for this stems from the fact that if B is the ideal generated by (J-A)sp then, in general,
By, is a larger set than (J-A)Sp. As a consequence, properties such as A N +A = {0}
would no longer hold. Moreover (and perhaps most importantly), there is a rather
well developed theory of direct sum decompositions in mixed lattice semigroups, as
presented in [2]. Indeed, our Theorems 6.1 and 6.5 have their counterparts in the
theory of mixed lattice semigroups ([2, Theorems 7.1 and 7.2]). (Note however, that
the authors in [2] use different terminology, as they use the potential-theoretic notions
of pre-harmonic band and potential band. The corresponding objects in this paper are
called specific bands and weak bands, respectively.) Our present definitions of A and
L A are in agreement with the existing theory of mixed lattice semigroups. In fact, if
A is an ideal such that V = +A @ A, then the set Vip is a mixed lattice semigroup
in its own right (with the orderings inherited from V'), and V;, = (J-A)S,, @ Agp
is the corresponding mixed lattice semigroup decomposition of Vj,, by Theorem
6.1.

With all these considerations, our definitions of the disjoint complements indeed
seem to be the most natural, and also compatible with the theory of mixed lattice
semigroups, at least if we restrict ourselves to mixed lattice subspaces, as we have
done in this paper. However, the corresponding definitions for more general sets would
be more problematic, as pointed out in Remark 5.4.
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