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Abstract
In 1991 Soardi introduced a sequence of positive linear operators βn associating to
each function f ∈ C [0, 1] a polynomial function which is closely related to the
Bernstein polynomials on [−1,+1]. One of the authors already studied the operators
βn in several papers. This paper is devoted to other properties of Soardi’s operators.
We introduce a version β̃n which can be expressed in terms of the classical Bernstein
operators and present the relations between βn and β̃n . We derive Voronovskaja-type
results for both βn and β̃n . Furthermore, rates of convergence for β̃n , respectively βn ,
are estimated. Finally, we study the first and second moments of βn .

Keywords Approximation by positive operators · Rate of convergence · Degree of
approximation

Mathematics Subject Classification 41A36 · 41A25

1 Introduction

In 1991 Soardi [8] introduced the sequence of positive linear operators βn associating
to each function f ∈ C [0, 1] the polynomial function

(βn f ) (x) =
�n/2�∑

k=0

f

(
n − 2k

n

)
w̃n,k (x) ,
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where

w̃n, k (x) = n + 1 − 2k

(n + 1) 2n+1x

(
n + 1

k

) [
(1 − x)k (1 + x)n+1−k − (1 − x)n+1−k (1 + x)k

]
.

Usually, the operators βn are given in the form

(βn f ) (x) =
m∑

k=0

f

(
n − 2m + 2k

n

)
wn,k (x) ,

where m = �n/2� and wn,k (x) = w̃n,m−k (x) are the fundamental polynomials.
The definition and the proofs in [8] are based on properties of random walks on
hypergroups. Soardi proved that, for each f ∈ C [0, 1], the sequence (βn f ) is uni-
formly convergent to f . Furthermore, by an intensive use of probabilistic tools, Soardi
[8, Theorem 2] estimated the rate of convergence of (βn f ) in terms of the usual mod-
ulus of continuity:

‖βn f − f ‖ ≤
(
55 + 32

n

)
ω

(
f ; 1√

n

)
, for f ∈ C [0, 1] .

Shape preserving properties of the operators βn were investigated in [5–7]. In particu-
lar, if f ∈ C [0, 1] is increasing, then βn f is increasing (see [6,Th. 2.1]; this fact will
be used in Sect. 3). Moreover, if f ∈ C [0, 1] is increasing and convex, then βn f ≥ f
(see [6,Th. 3.1]; this inequality will be instrumental in Sect. 5).

For x ∈ (0, 1) and bounded functions f on [0, 1], Raşa [6,Theorem 4.1] proved
the Voronovskaja-type formula

(βn f ) (x) = f (x) + 1

n

[(
1

x
− 1

)
f ′ (x) + 1 − x2

2
f ′′ (x)

]
+ o (1/n)

as n → ∞, provided that f ′′ (x) exists.
This paper is devoted to other properties of Soardi’s operators. In Sect. 2 we

introduce a version β̃n which can be expressed in terms of the classical Bernstein
operators. The relations between βn and β̃n are presented in Sect. 3. Section 4 contains
Voronovskaja-type results for bothβn and β̃n . Rates of convergence for β̃n , respectively
βn , are estimated in Sects. 5 and 2. The last two sections are devoted to the first and
second moments of βn .

2 The variant ˜̌ n and its relation to Bernstein polynomials

In this section we introduce a variant β̃n of Soardi’s operator which seems to be more

natural. Replacing f
( n−2k

n

)
with f

(
n+1−2k
n+1

)
leads to the definition
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(
β̃n f

)
(x) =

m∑

k=0

f

(
n + 1 − 2k

n + 1

)
w̃n,k (x) ,

where m = �n/2�. The index manipulation k → n + 1 − k yields

(
β̃n f

)
(x) =

n+1∑

k=n+1−m

f

(
−n + 1 − 2k

n + 1

)
w̃n,k (x) .

For even values of n we have

2
(
β̃n f

)
(x) =

n+1∑

k=0

f

(∣∣∣∣
n + 1 − 2k

n + 1

∣∣∣∣

)
w̃n,k (x) .

This representation is valid also in the case of odd integers n since the term
f (0) w̃n, n+1

2
(x) with k = n+1

2 is vanishing. Hence, for all n ≥ 0,

(
β̃n f

)
(x) = 1

2

n+1∑

k=0

f

(∣∣∣∣
n + 1 − 2k

n + 1

∣∣∣∣

)
w̃n,k (x) .

Writing

(
β̃n f

)
(x) = 1

2x

n+1∑

k=0

n + 1 − 2k

n + 1
f

(∣∣∣∣1 − 2
k

n + 1

∣∣∣∣

)

×
(
n + 1

k

) [(
1 − x

2

)k (
1 + x

2

)n+1−k

−
(
1 − x

2

)n+1−k (
1 + x

2

)k
]

we obtain the following relation to the classical Bernstein polynomials.

Lemma 1 For a function f on [0, 1], we have the relation

(
β̃n f

)
(x) = 1

2x

[
(Bn+1g)

(
1 − x

2

)
− (Bn+1g)

(
1 + x

2

)]
,

where

g (t) = (1 − 2t) f (|1 − 2t |)

and Bng denotes the classical Bernstein polynomial on [0, 1].
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3 Relations among the operatorsˇn and ˜̌ n

Consider the operators βn : C [0, 1] → C [0, 1] and β̃n : C
[

1
n+1 , 1

]
→ C [0, 1]. Let

un :
[

1

n + 1
, 1

]
→ [0, 1] , un (t) = (n + 1) t − 1

n

vn : [0, 1] →
[

1

n + 1
, 1

]
, vn (t) = nt + 1

n + 1
.

Then, for n = 1, 2, 3, . . ., vn = u−1
n . We have βn f = β̃n ( f ◦ un), for f ∈ C [0, 1]

and β̃ng = βn (g ◦ vn), for g ∈ C
[

1
n+1 , 1

]
. The shape preserving properties of βn

can be translated to β̃n . In particular, let h ∈ C1 [0, 1]. Then, the functions
∥∥h′∥∥ e1 ±h

are monotonically increasing, hence
∥∥h′∥∥βne1 ± βnh are monotonically increasing.

This implies
∥∥h′∥∥ (βne1)′ ± (βnh)′ ≥ 0, i.e.,

− ∥∥h′∥∥ (βne1)
′ ≤ (βnh)′ ≤ ∥∥h′∥∥ (βne1)

′ .

Since 0 ≤ (βne1)′ ≤ n−1
n (see [6,Theorem 2.1(i) and Rem. 2.3]) we obtain

∥∥(βnh)′
∥∥ ≤ n − 1

n

∥∥h′∥∥ , for allh ∈ C1 [0, 1] (1)

(see also [4,Ex. 4.1]).

Now let g ∈ C1
[

1
n+1 , 1

]
. Then

∥∥∥∥
(
β̃ng

)′∥∥∥∥ = ∥∥βn (g ◦ vn)
′∥∥ ≤ n − 1

n

∥∥(g ◦ vn)
′∥∥

= n − 1

n

∥∥g′ (vn) v′
n

∥∥ ≤ n − 1

n

∥∥g′∥∥ · n

n + 1
,

i.e., ∥∥∥∥
(
β̃ng

)′∥∥∥∥ ≤ n − 1

n + 1

∥∥g′∥∥ , for allg ∈ C1
[

1

n + 1
, 1

]
. (2)

The inequalities (1) and (2) are instrumental in investigating the asymptotic behaviour
of the iterates of βn and β̃n ; see [4].

Let f ∈ C [0, 1]. Then, with δ =
√

3n+1
(n+1)2

(
1 − x2

)
, we obtain from Theorem 2

below

|(βn f ) (x) − f (x)| =
∣∣∣
(
β̃n ( f ◦ un)

)
(x) − f (x)

∣∣∣

≤
∣∣∣
(
β̃n ( f ◦ un)

)
(x) − ( f ◦ un) (x)

∣∣∣ + |( f ◦ un) (x) − f (x)|
≤ 2ω ( f ◦ un; δ) + | f (un (x)) − f (x)| ,
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where

ω ( f ◦ un; δ) = sup

{
|( f ◦ un) (t1) − ( f ◦ un) (t2)| : 1

n + 1
≤ t1, t2 ≤ 1, |t1 − t2| ≤ δ

}

= sup

{
| f (un (t1)) − f (un (t2))| : 1

n + 1
≤ t1, t2 ≤ 1, |t1 − t2| ≤ δ

}

= sup

{
| f (s1) − f (s2)| : 0 ≤ s1, s2 ≤ 1, |s1 − s2| ≤ n + 1

n
δ

}

= ω

(
f ; n + 1

n
δ

)
.

Thus

|(βn f ) (x) − f (x)| ≤ 2ω

(
f ; n + 1

n
δ

)
+ ω

(
f ; |1 − x |

n

)
.

Consequently,

|(βn f ) (x) − f (x)| ≤ 2ω

(
f ; 1

n

√
(3n + 1)

(
1 − x2

))

+ω

(
f ; 1 − x

n

)
, for f ∈ C [0, 1] . (3)

In particular,

|(βn f ) (x) − f (x)| ≤ 2ω

(
f ; 1

n

√
3n + 1

)
+ ω

(
f ; 1

n

)
, for f ∈ C [0, 1] .

See also Soardi’s estimate [8,Theorem 2]

‖βn f − f ‖ ≤
(
55 + 32

n

)
ω

(
f ; 1√

n

)
, for f ∈ C [0, 1] .

4 Voronovskaja-type results for the operatorsˇn and ˜̌ n
In 2000, Raşa [6,Theorem 4.1] proved the following Voronovskaja-type formula for
the operators βn .

Theorem 1 Let x ∈ (0, 1) and f be a bounded function on [0, 1]. If f ′′ (x) exists,
then

(βn f ) (x) = f (x) + 1

n

[(
1

x
− 1

)
f ′ (x) + 1 − x2

2
f ′′ (x)

]
+ o (1/n)

as n → ∞.
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If x = 0, i.e., t = 1/2, you can insert the well-known asymptotic formulas for Bn .
One obtains

(
β̃n f

)
(x) = f (x) + 1 − x2

n

[
1

x
f ′ (x) + 1

2
f ′′ (x)

]
+ o (1/n)

as n → ∞. In the special case x = 0, we can use

lim
x→0

(1 − x)k (1 + x)n+1−k − (1 − x)n+1−k (1 + x)k

x
= 2 (n + 1 − 2k)

in order to obtain

(
β̃n f

)
(0) = (n + 1)

(
Bn+1ĝ

) (
1

2

)
,

where

ĝ (t) = (1 − 2t) g (t) = (1 − 2t)2 f (|1 − 2t |) .

The asymptotic behaviour can easily bederived if f is an even functionwhich is smooth
in x = 0. If f is not an even function,

(
Bn+1ĝ

) ( 1
2

)
is an unpleasant expression.

The link to Soardi’s original operator is given by

βn f = β̃n ( f ◦ un) (4)

with un (x) = ((n + 1) t − 1) /n. Therefore,

(βn f ) (x) =
(
β̃n fn

)
(x) =

(
β̃n f

)
(x) + x − 1

n

(
β̃n f

′) (x) + o (1/n)

as n → ∞. A look into the proof of asymptotic formulas for Bernstein polynomials
reveals that the latter formula is valid if f is only locally smooth.

We have

(Bn f ) (x) ∼ f (x) +
∞∑

k=1

ck ( f , x)

nk
(n → ∞)

with

ck ( f , x) =
2k∑

j=k

ak, j (x) f ( j) (x) ,

123
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where ak, j (x) are certain polynomials involving Stirling numbers of the first and the
second kind. More precisely, we have

(Bn f ) (x) = f (x) +
q∑

k=1

n−k
2k∑

s=k

1

s! f
(s) (x)

s∑

ν=0

a (k, s, ν) xs−ν + o
(
n−q)

as n → ∞, where

a (k, s, ν) =
s∑

r=max{ν,k}
(−1)s−r

(
s

r

)
S (r − ν, r − k) σ (r , r − ν) ,

provided that f is bounded on [0, 1] and admits a derivative of order 2q at x ∈ [0, 1]
(see [1,Remark 2]).

Let f ∈ C [0, 1]. We define f on [−1,+1] such that f becomes an even function,
i.e., f (−x) = f (x). Put ϕ (t) = 1 − 2t . If x = 0, i.e., t = 1/2, we have

g (t) = ϕ (t) f (ϕ (t))

and

g( j) (t) = (−2) j
[
(1 − 2t) f ( j) (ϕ (t)) + j f ( j−1) (ϕ (t))

]
,

g( j)
(
1 − x

2

)
= (−2) j

[
x f ( j) (x) + j f ( j−1) (x)

]
,

g( j)
(
1 + x

2

)
= (−2) j

[
−x f ( j) (−x) + j f ( j−1) (−x)

]

= −2 j
[
x f ( j) (x) + j f ( j−1) (x)

]
.

Then

(
β̃n−1 f

)
(x) = 1

x
(Bng)

(
1 − x

2

)
∼ f (x) +

∞∑

k=1

x−1ck
(
g, 1−x

2

)

nk
(n → ∞) .

5 An estimate of the rate of convergence for the operators ˜̌ n
In this section we derive an estimate for the rate of convergence for the operators β̃n

in terms of the ordinary modulus of continuity ω ( f , δ).
Put g̃ (x) = g (1 − x). Then (Bng)

( 1+x
2

) = (Bng)
( 1−x

2

)
and

(
β̃n−1 f

)
(x) = 1

2x
(Bn (g − g̃))

(
1 − x

2

)
.
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For functions of the form

g (t) = (1 − 2t) f (|1 − 2t |) ,

we have g̃ = −g. Hence,

(
β̃n−1 f

)
(x) = 1

x
(Bng)

(
1 − x

2

)
. (5)

Lemma 2 For all n ∈ N,

(
β̃ne1

)
(x) ≥ x (x ∈ [0, 1]) .

Proof With the notations of Sect. 3 we have

β̃ne1 = βn (e1 ◦ vn) = βnvn = βn

(
n

n + 1
e1 + 1

n + 1
e0

)

= n

n + 1
βne1 + 1

n + 1
βne0.

Since βn preserves constant functions and βn f ≥ f , for all increasing and convex
functions f ∈ C [0, 1], we obtain

β̃ne1 ≥ n

n + 1
e1 + 1

n + 1
e0 = e1 + e0 − e1

n + 1
≥ e1.

��
For reals t, x , put ψx (t) = t − x .

Lemma 3 For all n ∈ N, the second central moment of β̃n satisfies the estimate

(
β̃nψ

2
x

)
(x) ≤ 3n + 1

(n + 1)2

(
1 − x2

)
(x ∈ [0, 1]) .

Remark 1 The constant on the right-hand side is best possible on [0, 1] because, for

x = 0, we have
(
β̃nψ

2
0

)
(0) =

(
β̃ne2

)
(0) = (3n + 1) / (n + 1)2.

Proof We have
(
β̃nψ

2
x

)
(x) =

(
β̃ne2

)
(x) − 2x

(
β̃ne1

)
(x) + x2

(
β̃ne0

)
(x) ≤

(
β̃ne2

)
(x) − x2

on [0, 1], where we used the inequality of Lemma 2. The desired estimate now follows
from

(
β̃n−1e2

)
(x) = x2 +

(
1 − x2

)
(3n − 2) /n2.

��
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Theorem 2 Let f : C [0, 1]. For all n ∈ N, and δ > 0,

∣∣∣
(
β̃n f

)
(x) − f (x)

∣∣∣ ≤
(
1 + 1

δ

√
3n + 1

(n + 1)2
(
1 − x2

)
)

ω ( f , δ) (x ∈ [0, 1]) .

Proof of Theorem 2 The estimate follows from Lemma 3 by standard arguments (see,
e.g., [2,Theorem5.1.2]). ��

Putting δ = √
3/ (n + 1) immediately yields the following consequence.

Corollary 1 For all n ∈ N,

∣∣∣
(
β̃n f

)
(x) − f (x)

∣∣∣ ≤
(
1 +

√
1 − x2

)
ω

(
f ,

√
3

n + 1

)
(x ∈ [0, 1]) .

6 An estimate of rate of convergence for the Soardi operator

As already mentioned in the introduction Soardi [8,Theorem 2] estimated the rate of
convergence of the operators βn in terms of the ordinary modulus of continuity:

‖βn f − f ‖ ≤
(
55 + 32

n

)
ω

(
f ; 1√

n

)
, for f ∈ C [0, 1] .

In this section we improve this estimate considerably by diminishing the absolute
constant.

Theorem 3 Let f : C [0, 1]. For all n ∈ N, Soardi’s operator βn satisfies the estimate

‖βn f − f ‖ ≤
(
1 +

√
3 + 2

n

)
ω

(
f ; 1√

n

)
(n ∈ N) .

Remark 2 In particular, we have

‖βn f − f ‖ ≤ c · ω

(
f ; 1√

n

)
(n ∈ N) ,

where c =
(
1 + √

5
)

≈ 3.236.

The essential ingredient of the proof is the following estimate of the second central
moment of the operators βn .

Lemma 4 For all n ∈ N, the second central moment of βn satisfies the estimate

(
βnψ

2
x

)
(x) ≤ 3

n

(
1 − x2

)
+ 2

n2
(1 − x) (x ∈ [0, 1]) .

123
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Remark 3 Since 1 − x ≤ 1 − x2 on [0, 1], we have

(
βnψ

2
x

)
(x) ≤ 5

n

(
1 − x2

)
(x ∈ [0, 1]) .

Furthermore, for each ε > 0, there is an index n0 such that for each n > n0,

(
βnψ

2
x

)
(x) ≤ 3 + ε

n

(
1 − x2

)
(x ∈ [0, 1]) .

Proof of Lemma 4 Using the relation βn f = β̃n ( f ◦ un) from Sect. 3 with un (x) =
((n + 1) t − 1) /n we obtain

βnψ
2
x =

(
n + 1

n

)2

β̃n

(
e1 − nx + 1

n + 1
e0

)2

=
(
n + 1

n

)2
[
β̃ne2 − 2

nx + 1

n + 1
β̃ne1 +

(
nx + 1

n + 1

)2

e0

]
.

By Lemma 2,

(
βnψ

2
x

)
(x) ≤

(
n + 1

n

)2
[
x2 +

(
1 − x2

) 3n + 1

(n + 1)2
− 2

nx + 1

n + 1
x +

(
nx + 1

n + 1

)2
]

= 3n + 1

n2

(
1 − x2

)
+

(
n + 1

n

)2 (
x − nx + 1

n + 1

)2

= 3n + 1

n2

(
1 − x2

)
+

(
x − 1

n

)2

= 3

n

(
1 − x2

)
+ 1 − x2 + (x − 1)2

n2

= 3

n

(
1 − x2

)
+ 2

n2
(1 − x) ,

which is the desired estimate. ��
Proof of Theorem 3 By Lemma 4, it holds

(
βnψ

2
x

)
(x) ≤ 3

n
+ 2

n2
(x ∈ [0, 1]) .

Using [2,(5.1.5)], we obtain

|(βn f ) (x) − f (x)| ≤
(
1 +

√
n

(
βnψ2

x

)
(x)

)
ω

(
f ; 1√

n

)

≤
(
1 +

√
3 + 2

n

)
ω

(
f ; 1√

n

)
.
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This completes the proof. ��

7 The secondmoment ofˇn

We have

(βne2) (x) =
(
β̃nu

2
n

)
(x) =

(
β̃n

(
n + 1

n
e1 − 1

n
e0

)2
)

(x)

=
(
n + 1

n

)2 (
β̃e2

)
(x) + 1

n2
− 2

n + 1

n2

(
β̃ne1

)
(x) .

Since

(
β̃e2

)
(x) = x2 + 3n + 1

(n + 1)2

(
1 − x2

)
and

(
β̃ne1

)
(x) ≥ x

we obtain

(βne2) (x) ≤
(
n + 1

n

)2 (
x2 + 3n + 1

(n + 1)2

(
1 − x2

))
+ 1

n2
− 2

n + 1

n2
x

≤
(
n + 1

n

)2

x2 + 3n + 1

n2
− 3n + 1

n2
x2 + 1

n2
− 2n + 2

n2
x

= x2 + 1

n2

(
−nx2 − (2n + 2) x + 3n + 2

)

= x2 + 1 − x

n2
(nx + 3n + 2) .

It follows

0 ≤ (βne2) (x) − x2 ≤ nx + 3n + 2

n2
(1 − x) .

8 The value (ˇne1) (0) of the first moment

The operator βn does not reproduce the function e1 (x) = x , x ∈ [0, 1]. But βne1
is increasing and convex ([6,Th. 2.1]), βne1 ≥ e1 ([6,Th. 3.1]), and βne1 (1) = 1.
Consequently,

0 ≤ βne1 (x) − x ≤ βne1 (0) (1 − x) , forx ∈ [0, 1] .

So, we need a good control on βne1(0). This is our aim in what follows.
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By Eq. ( 3) , we infer that

x ≤ (βne1) (x) ≤ x + 2

n

√
(3n + 1)

(
1 − x2

) + 1 − x

n
, for x ∈ [0, 1] .

In particular, it follows that

0 ≤ (βne1) (0) ≤ 1 + 2
√
3n + 1

n
∼ 2

√
3

n
(n → ∞) .

In the next sectionwe derive closed expressions for (βne1) (0) and study its asymptotic
behaviour as n tends to infinity.We prove that the exact asymptotic rate of convergence
is

(βne1) (0) ∼ 2
√
2√

πn
(n → ∞) .

Note that 2
√
3 ≈ 3.4641 and 2

√
2/π ≈ 1.59577.

Theorem 4 At x = 0, the first moment of Soardi’s operator has the explicit represen-
tation

(β2ne1) (0) = 1

22n

(
2 + 1

2n

) (
2n

n

)
− 1

2n
,

(β2n−1e1) (0) = 1

22n−1

(
1 + 1

2n − 1

) (
2n

n

)
− 1

2n − 1

and satisfies the asymptotic relation

(βne1) (0) = 2
√
2√

πn
− 1

n
+ O

(
n−3/2

)
(n → ∞) .

Proof Since

lim
x→0

1

x

[
(1 − x)k (1 + x)n+1−k − (1 − x)n+1−k (1 + x)k

]
= 2 (n + 1 − 2k) ,

we have

w̃n,k (0) =
(
n + 1

k

)
2 (n + 1 − 2k)2

(n + 1) 2n+1

and

(βner ) (0) = 1

2n (n + 1) nr

m∑

k=0

(
n + 1

k

)
(n + 1 − 2k)2 (n − 2k)r .
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Although one can calculate it for arbitrary r ∈ N, we restrict ourselves to r = 1. Let
us first consider the case of even parameters 2n:

(β2ne1) (0) = 1

22n (2n + 1) n

n∑

k=0

(
2n + 1

k

)
(2n + 1 − 2k)2 (n − k) .

Writing

(2n + 1 − 2k)2 (n − k) = −4k3 + 4 (3n − 2) k2

+
(
−12n2 + 4n − 1

)
k + n (2n + 1)2

we obtain

n∑

k=0

(
2n + 1

k

)
(2n + 1 − 2k)2 (n − k)

= −4 (2n + 1)3
n∑

k=3

(
2n − 2

k − 3

)
+ 4 (3n − 2) (2n + 1)2

n∑

k=2

(
2n − 1

k − 2

)

+
(
−12n2 + 4n − 1

)
(2n + 1)

n∑

k=1

(
2n

k − 1

)
+ n (2n + 1)2

n∑

k=0

(
2n + 1

k

)

= −4 (2n + 1)3
n−3∑

k=0

(
2n − 2

k

)
+ 4 (3n − 2) (2n + 1)2

n−2∑

k=0

(
2n − 1

k

)

+
(
−12n2 + 4n − 1

)
(2n + 1)

n−1∑

k=0

(
2n

k

)
+ n (2n + 1)2

n∑

k=0

(
2n + 1

k

)

=: A + B + C + D.

Now

A = −4 (2n + 1)3
22n−2 − (2n−2

n−2

) − (2n−2
n−1

) − (2n−2
n

)

2

= −22n−1 (2n + 1)3 + 4 (2n + 1)

[
n (n − 1)

(
2n

n

)
+ n2

2

(
2n

n

)]

= −22n−1 (2n + 1)3 + 2n (2n + 1) (3n − 2)

(
2n

n

)
,

B = 4 (3n − 2) (2n + 1)2
22n−1 − (2n−1

n−1

) − (2n−1
n

)

2

= 22n (3n − 2) (2n + 1)2 − 2 (3n − 2) (2n + 1)2
(
2n

n

)
,

C =
(
−12n2 + 4n − 1

)
(2n + 1)

22n − (2n
n

)

2
,
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D = 22nn (2n + 1)2 .

Finally,

(β2ne1) (0) = 1

22n (2n + 1) n
(A + B + C + D)

= − (2n − 1) + (6n − 4) +
(

−6n + 2 − 1

2n

)
+ (2n + 1)

+ 1

22n

(
2n

n

) [
2 (3n − 2) − 4 (3n − 2) +

(
6n − 2 + 1

2n

)]

= − 1

2n
+ 1

22n

(
2n

n

)(
2 + 1

2n

)
.

The well-known asymptotic behaviour of the central binomial coefficient (cf. Catalan
constant 1

n+1

(2n
n

)
)

(
2n

n

)
= 4n√

πn

(
1 + O

(
n−1

))
(n → ∞)

leads to the asymptotic formula

(β2ne1) (0) = 2√
πn

− 1

2n
+ O

(
n−3/2

)
(n → ∞) .

Now we consider the case of odd parameters 2n − 1:

(β2n−1e1) (0) = 1

22n−2n (2n − 1)

n−1∑

k=0

(
2n

k

)
(n − k)2 (2n − 1 − 2k) .

Writing

(n − k)2 (2n − 1 − 2k) = −2k3 + (6n − 7) k2 +
(
−6n2 + 8n − 3

)
k + n2 (2n − 1)

we obtain

n−1∑

k=0

(
2n

k

)
(n − k)2 (2n − 1 − 2k)

= −2 (2n)3
n−1∑

k=3

(
2n − 3

k − 3

)
+ (6n − 7) (2n)2

n−1∑

k=2

(
2n − 2

k − 2

)

+
(
−6n2 + 8n − 3

)
(2n)

n−1∑

k=1

(
2n − 1

k − 1

)
+ n2 (2n − 1)

n−1∑

k=0

(
2n

k

)

=: A + B + C + D.
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Now

A = −2 (2n)3
n−4∑

k=0

(
2n − 3

k

)
= −2 (2n)3

22n−3 − 2
(2n−3
n−3

) − 2
(2n−3
n−2

)

2

= − (2n)3 22n−3 + 2

(
2n

n

)
n (n − 1) (n − 2) + 2

(
2n

n

)
n2 (n − 1)

= − (2n)3 22n−3 + 4n (n − 1)2
(
2n

n

)
,

B = (6n − 7) (2n)2
n−3∑

k=0

(
2n − 2

k

)
= (6n − 7) (2n)2

22n−2 − 2
(2n−2
n−2

) − (2n−2
n−1

)

2

= (6n − 7)

[
(2n)2 22n−3 −

(
2n

n

)
n (n − 1) − 1

2

(
2n

n

)
n2

]

= (6n − 7) (2n)2 22n−3 − 1

2
(6n − 7) n (3n − 2)

(
2n

n

)
,

C =
(
−6n2 + 8n − 3

)
(2n)

n−2∑

k=0

(
2n − 1

k

)

=
(
−6n2 + 8n − 3

)
(2n)

22n−1 − 2
(2n−1
n−1

)

2

=
(
−6n2 + 8n − 3

)
n

(
22n−1 −

(
2n

n

))
,

D = n2 (2n − 1)
1

2

(
22n −

(
2n

n

))
.

Finally,

(β2n−1e1) (0)

= 1

22n−2n (2n − 1)
(A + B + C + D)

= − (2n − 2) + (6n − 7) + 2
(−6n2 + 8n − 3

)

2n − 1
+ 2n (2n − 1)

2n − 1

+ 1

22n−2 (2n − 1)

(
2n

n

)

[
4 (n − 1)2 − 1

2
(6n − 7) (3n − 2) +

(
6n2 − 8n + 3

)
− 1

2
n (2n − 1)

]

= 4n − 5 + −8n2 + 14n − 6

2n − 1
+ n

22n−2 (2n − 1)

(
2n

n

)

= −1

2n − 1
+ 2 (2n − 1) + 2

22n (2n − 1)

(
2n

n

)
= −1

2n − 1
+ 1

22n

(
2n

n

)(
2 + 2

2n − 1

)
.
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This proves the explicit representation for odd values of the parameter. As above we
obtain the asymptotic formula

(β2n−1e1) (0) = 2√
πn

− 1

2n − 1
+ O

(
n−3/2

)
(n → ∞) .

This completes the proof. ��
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