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Abstract
A vector sublattice of the order bounded operators on a Dedekind complete vector lat-
tice can be suppliedwith the convergence structures of order convergence, strong order
convergence, unbounded order convergence, strong unbounded order convergence,
and, when applicable, convergence with respect to a Hausdorff uo-Lebesgue topology
and strong convergence with respect to such a topology. We determine the general
validity of the implications between these six convergences on the order bounded
operator and on the orthomorphisms. Furthermore, the continuity of left and right
multiplications with respect to these convergence structures on the order bounded
operators, on the order continuous operators, and on the orthomorphisms is investi-
gated, as is their simultaneous continuity. A number of results are included on the
equality of adherences of vector sublattices of the order bounded operators and of the
orthomorphisms with respect to these convergence structures. These are consequences
of more general results for vector sublattices of arbitrary Dedekind complete vector
lattices. The special attention that is paid to vector sublattices of the orthomorphisms
is motivated by explaining their relevance for representation theory on vector lattices.
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1 Introduction and overview

In an earlier paper [15] the authors studied aspects of locally solid linear topologies
on vector lattices of order bounded linear operators between vector lattices. Particular
attention was paid to the possibility of introducing a Hausdorff uo-Lebesgue topology
on such vector lattices.

Such vector lattices of operators carry two, and possibly three, natural convergence
structures (order convergence, unbounded order convergence, and, when applicable,
convergence with respect to the Hausdorff uo-Lebesgue topology), as they can be
defined for arbitrary vector lattices. For vector lattices of operators, however, besides
these ‘uniform’ convergence structures, there are also two, or possibly three, corre-
sponding ‘strong’ counterparts that can be defined in the obviousway. Several relations
between the resulting six convergence structures on vector lattices of operators were
also investigated in [15]. In view of their relevance for representation theory in vec-
tor lattices, special emphasis was put on the orthomorphisms on a Dedekind complete
vector lattice. In this case, implications between convergences hold that do not hold for
more general vector lattices of operators. Furthermore, it was shown that the orthomor-
phisms are not only order continuous, but also continuous with respect to unbounded
order convergence on the vector lattice and with respect to a possible Hausdorff uo-
Lebesgue topology on it.

Apart from their intrinsic interest, the results in [15] can be viewed as a part of the
groundwork that has to be done in order to facilitate further developments of aspects
of the theory of vector lattices of operators. The questions that are asked are natural
and basic, but even so the answers are often more easily formulated than proved.

In the present paper, we take this one step further and study these six convergence
structures in the context of vector lattice algebras of order bounded linear operators
on a Dedekind complete vector lattice. Also here there are many natural questions
of a basic nature that need to be answered before one can expect to get much further
with the theory of such vector lattice algebras and with representation theory on vector
lattices. For example, is the left multiplication by a fixed element continuous on the
order bounded linear operators with respect to unbounded order convergence? Is the
multiplication on the order continuous linear operators simultaneously continuous
with respect to a possible Hausdorff uo-Lebesgue topology on it? Given a vector
lattice subalgebra of the order continuous linear operators, is the closure (we shall
actually prefer to speak of the ‘adherence’) in the order bounded linear operators with
respect to strong unbounded order convergence again a vector lattice subalgebra? Is
there a condition, sufficiently lenient to be of practical relevance, under which the
order adherence of a vector lattice subalgebra of the orthomorphisms coincides with
its closure in a possible Hausdorff uo-Lebesgue topology? Building on [15], we shall
answer these questions in the present paper, together with many more similar ones.
As indicated, we hope and expect that, apart from their intrinsic interest, this may
serve as a stockpile of basic, but non-elementary, results that will facilitate a further
development of the theory of vector lattice algebras of operators and of representation
theory in vector lattices.

123



Convergence structures and Hausdorff uo-Lebesgue topologies… Page 3 of 33 61

This paper is organised as follows.
Section 2 contains the necessary notation, definitions, and conventions, as well

as a few preparatory results that are of interest in their own right. Proposition 2.6
shows that, in many cases of practical interest, a unital positive linear representation
of a unital f -algebra on a vector lattice is always an action by orthomorphisms. Its
consequence Corollary 2.7 specialises this to the case of left and right multiplications
of order bounded operators by orthomorphisms.

In Sect. 3, we study the validity of each of the 36 possible implications between
the 6 convergences that we consider on vector lattice algebras of order bounded linear
operators on a Dedekind complete vector lattice. We do this for the order bounded
linear operators as well as for the orthomorphisms. The results that are already in [15]
and a few additional ones are sufficient to complete the Tables 1 and 2.

Section 4 contains our results on the continuity of the left and right multiplications
by a fixed element with respect to each of the six convergence structures on the
order bounded linear operators. For this, we distinguish between the multiplication
by an arbitrary order bounded linear operator, by an order continuous one, and by an
orthomorphism. By giving (counter) examples, we show that our results are sharp in
the sense that, whenever we state that continuity holds for multiplication by, e.g., an
orthomorphism, it is no longer generally true for an arbitrary order continuous linear
operator, i.e., for an operator in the ‘next best class’. We also consider these questions
for the orthomorphisms. The results are contained in Tables 3, 4 and 5.

In Sect. 5, we investigate the simultaneous continuity of the multiplication with
respect to each of the six convergence structures. When there is simultaneous conti-
nuity, the adherence of a subalgebra is, of course, again a subalgebra. With only one
exception (see Corollary 5.6 and Example 5.7), we give (counter) examples to show
that our conditions for the adherence of an algebra to be a subalgebra again are ‘sharp’
in the sense as indicated above for Sect. 4.

Section 6 is dedicated to the equality of various adherences of vector sublattices
and vector lattice subalgebras. It is also indicated there how representation theory in
vector lattices leads quite naturally to the study of vector lattice subalgebras of the
orthomorphisms (see the Theorems 6.1 and 6.2), thus motivating in more detail the
special attention that is paid to the orthomorphisms in [15] and in the present paper.

2 Preliminaries

In this section, we give the notation, conventions, and definitions used in the sequel.
We also include a few preliminary results.

All vector spaces are over the real numbers and all vector lattices are supposed to
be Archimedean.We let E+ denote the positive cone of a vector lattice E . The identity
operator on a vector lattice E will be denoted by I , or by IE when the context requires
this. The characteristic function of a set S is denoted by χS .

Let E be a vector lattice, and let x ∈ E . We say that a net (xα)α∈A in E is order
convergent to x ∈ E (denoted by xα

o−→ x) when there exists a net (xβ)β∈B in E such
that yβ ↓ 0 and with the property that, for every β0 ∈ B, there exists an α0 ∈ A such

123



61 Page 4 of 33 Y. Deng, M. de Jeu

that |x − xα| ≤ yβ0 whenever α inA is such that α ≥ α0. Note that, in this definition,
the index sets A and B need not be equal.

A net (xα)α∈A in a vector lattice E is said to be unbounded order convergent to an
element x in E (denoted by xα

uo−→ x) when |xα − x | ∧ y
o−→ 0 in E for all y ∈ E+.

Order convergence implies unbounded order convergence to the same limit. For order
bounded nets, the two notions coincide.

Let E and F be vector lattices. The order bounded linear operators from E into
F will be denoted by Lob(E, F); this is a Dedekind complete vector lattice when F
is. We write E∼ for Lob(E,R). A linear operator T : E → F between two vector
lattices E and F is order continuous when, for every net (xα)α∈A in E , the fact that
xα

o−→ 0 in E implies that T xα
o−→ 0 in F . An order continuous linear operator between

two vector lattices is automatically order bounded; see [4, Lemma 1.54], for example.
The order continuous linear operators from E into F will be denoted by Loc(E, F).
We write E∼

oc forLoc(E,R).
Let F be a vector sublattice of a vector lattice E . Then F is a regular vector

sublattice of E when the inclusion map from F into E is order continuous. Ideals are
regular vector sublattices. For a net in a regular vector sublattice F of E , its unbounded
order convergence in F and in E are equivalent; see [18, Theorem 3.2].

An orthomorphism on a vector lattice E is a band preserving order bounded lin-
ear operator. We let Orth(E) denote the orthomorphisms on E . Orthomorphisms are
automatically order continuous; see [4, Theorem 2.44]. An overview of some basic
properties of the orthomorphisms that we shall use can be found in the first part of
[15, Section 6], with detailed references included.

A topology τ on a vector lattice E is a uo-Lebesgue topology when it is a (not
necessarily Hausdorff) locally solid linear topology on E such that, for a net (xα)α∈A
in E , the fact that xα

uo−→ 0 in E implies that xα
τ−→ 0. For the general theory of locally

solid linear topologies on vector lattices we refer to [3]. A vector lattice need not admit
a uo-Lebesgue topology, and it admits at most one Hausdorff uo-Lebesgue topology;
see [8, Propositions 3.2, 3.4, and 6.2] or [26, Theorems 5.5 and 5.9]). In this case, this
unique Hausdorff uo-Lebesgue topology is denoted by τ̂E .

The following fact will often be used in the present paper.

Theorem 2.1 Let E be a Dedekind complete vector lattice. The following are equiva-
lent:

(1) E admits a (necessarily unique) Hausdorff uo-Lebesgue topology;
(2) Orth(E) admits a (necessarily unique) Hausdorff uo-Lebesgue topology;
(3) Lob(E) admits a (necessarily unique) Hausdorff uo-Lebesgue topology.

Proof The equivalence of the parts 1 and 2 is a part of [15, Proposition 8.2]. Part 1
implies part 3 by [15, Theorem 4.3], and part 3 implies part 2 by [26, Proposition 5.12].

�	
Let X be a non-empty set. As in [15], we define a convergence structure on X to

be a non-empty collection C of pairs ((xα)α∈A, x), where (xα)α∈A is a net in X and
x ∈ X , such that:

(1) when ((xα)α∈A, x) ∈ C , then also ((xβ)β∈B, x) ∈ C for every subnet (xβ)β∈B
of (xα)α∈A.
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(2) when a net (xα)α∈A in X is constant with value x , then ((xα)α∈A, x) ∈ C .

Replacing nets by sequences and subnets by subsequences gives the usual sequential
convergence structure, as in [5, Definition 1.7.1].

Remark 2.2 Our definition of a convergence structures is actually a possible definition
of a so-called net convergence structure. The theory of their counterparts, the so-
called filter convergence structures, has been canonised in [5]. It is only recently that a
definition of a net convergence structure (more sophisticated than ours) has been given
that can be shown to yield a natural bijection between the net convergence structures
and the filter convergence structures on a set; see [24]. In this definition, not all index
sets for the nets in the structure are admitted, the admissible index are allowed to
be merely pre-ordered, and property (1) in the above definition is replaced with two
others. We refer to [24] for further details, and content ourselves with our definition
above that is sufficient for our merely descriptive purposes.

Suppose that C is a convergence structure on a non-empty set X . For a non-empty
subset S ⊆ X , we define the C -adherence of S in X as

aC (S) := {x ∈ E : there exists a net (xα)α∈A in S such that ((xα)α∈A, x) ∈ C }

We set aC (∅) := ∅. A subset S of X is said to be C -closed when aC (S) = S. It is
evident how define the adherence of a subset in the case of a sequential convergence
structure. The following result, which was mentioned in [15, Section 1] without proof
(see also [16, Section 8] for special cases), was already established in a context of order
convergence on partially ordered vector spaces as [27, Theorem 3.1]. Its sequential
version is proved using a similar argument.

Lemma 2.3 Let X be a non-empty set, and let C be a convergence structure on X.
Then the C -closed subsets of X are the closed sets of a topology τC on X.

Proof It is trivial that ∅ and X are C -closed, and it is immediate that an arbitrary
intersection of C -closed subsets of X is C -closed. We claim that aC (S1 ∪ S2) =
aC (S1)∪aC (S2) for arbitrary S1, S2 ⊆ X , which implies that finite unions ofC -closed
subsets are again C -closed. Since it is obvious that aC (S1 ∪ S2) ⊇ aC (S1) ∪ aC (S2),
we need to show only the reverse inclusion. We may suppose that S1, S2 �= ∅. Take an
x ∈ aC (S1∪S2). Then there exists a net (xα)α∈A in S1∪S2 such that ((xα)α∈A, x) ∈ C .
If there is a tail (xα)α≥α0 that is contained in S1, then it follows from property (1) of
C that x ∈ aC (S1). If no tail of (xα)α∈A is contained in S1, then the set B := {β ∈
A : xβ ∈ S2} is a co-final subset ofA. Hence (xβ)β∈B can canonically be viewed as a
subnet of (xα)α∈A that is contained in S2, and property (1) implies that x ∈ aC (S2).
In both cases, x ∈ aC (S1) ∪ aC (S2). �	

It is not generally true that aC (S) is τC -closed. We have the following result, the
final statement of which was already mentioned without proof for special cases in [16,
Section 8]. Its sequential version is valid by essentially the same proof.
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Lemma 2.4 Let X be a non-empty set, let C be a convergence structure on X, and let
S ⊆ X. Then

S ⊆ aC (S)⊆ S
τC

.

Consequently, aC (S)
τC = S

τC . Furthermore, aC (S) is τC -closed if and only if
aC (S) = S

τC .

Proof Property (2) of C implies that S ⊆ aC (S), and the obvious monotony of the
adherence set map implies that S

τC = aC (S
τC

) ⊇ aC (S). The remaining two state-
ments follow easily from the chain of inclusions. �	

Onavector lattice E , the set of all pairs of order convergent nets and their order limits
forms a convergence structureCo on E . Likewise, there is a convergence structureCuo
on E and, when applicable, a topological convergence structure Cτ̂E . For a subset
S of E , we shall write ao(S) for aCo(S), auo(S) for aCuo(S), and, when applicable,

S
τ̂E for aCτ̂E

(S). The corresponding sequential convergence structures are denoted
by Cσo, Cσuo, and, when applicable, Cσ τ̂E , respectively. There are self-explanatory
notations aσo(S), aσuo(S), and, when applicable, aσ τ̂E (S). We shall also speak of the
order adherence (or o-adherence) of a subset, rather than of itsCo-adherence; etc. Note
that the order adherence ao(S) of S is what is called the ‘order closure’ of S in other
sources. Since this ‘order closure’ need not be closed in the τCo -topology on E , we
shall not use this terminology that is prone to mistakes.

Let E and F be vector lattices, where F is Dedekind complete. Suppose that E is a
vector sublattice ofLob(E, F). As for general vector lattices, we have the convergence
structures Co(E ), Cuo(E ) and, when applicable, a convergence structure Cτ̂E on E . In
addition to these ‘uniform’ convergence structures, there are in this case also ‘strong’
ones that we shall now define. Let (Tα)α∈A be a net in E , and let T ∈ E . Then

we shall say that (Tα)α∈A is strongly order convergent to T (denoted by Tα
SO−→ T )

when Tαx
o−→ T x for all x ∈ E . The set of all pairs of strongly order convergent

nets in E and their limits forms a convergence structure CSO on E . Likewise, the

net is strongly unbounded order convergent to T (denoted by Tα
SUO−−→ T ) when it is

pointwise unbounded order convergent to T , resulting in a convergence structureCSUO
on E . When E admits a Hausdorff uo-Lebesgue topology τ̂E , then a net is strongly

convergent with respect to τ̂E to T (denoted by Tα
Sτ̂E−−→ T ) when it is pointwise τ̂E

convergent to T , yielding to a convergence structure CSτ̂E on E . As for the three
convergence structures on general vector lattices, we shall simply write aSUO(S )

for the CSUO-adherence aCSUO(S ) of a subset S of E ; etc. We shall use a similar
simplified notation for adherences corresponding to the sequential strong convergence
structures that are defined in the obvious way.

The adherence of a set in a convergence structure obviously depends on the superset,
since this determines the available possible limits of nets. In an ordered context, there
can be additional complications because, for example, the notion of order convergence
of a net itself depends on the vector lattice that the net is considered to be a subset of.
It is for this reason that, although we have not included the superset in the notation for
adherences, we shall always indicate it in words.
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Let CX be a convergence structure on a non-empty set X , and let CY be a con-
vergence structure on a non-empty set Y . A map � : X → Y is said to be CX -CY

continuouswhen, for every pair ((xα)α∈A, x) inCX , the pair ((�(xα))α∈A,�(x)) is an
element of CY . We shall speak of Sτ̂E -o continuity rather than of CSτ̂E -Co continuity;
etc.

Let E be a vector lattice. For T ∈ Lob(E), we define ρT , λT : Lob(E) → Lob(E)

by setting ρT (S) := ST and λT (S) := T S for S ∈ Lob(E). We shall use the same
notations for the maps that result in other contexts when compositions with linear
operators map one set of linear operators into another.

For later use in this paper, we establish a few preparatory results that are of some
interest in their own right.

Lemma 2.5 Let A be an f -algebra with an identity element e, and let E be a vector
lattice with the principal projection property. Let a ∈ A +, and suppose that

π : Span{e, a, a2} → Lob(E)

is a positive linear map such that π(e) = I . Then π(a) ∈ Orth(E).

Proof It is obvious that π(a) ∈ Lob(E), so it remains to be shown that π(a) is band
preserving on E . We know from [4, Theorem 2.57] that

a ≤ a ∧ ne + 1

n
a2 ≤ ne + 1

n
a2

for n ≥ 1. Take x ∈ E+. Then we have

π(a)x ≤ π

[

ne + 1

n
a2

]

x = nx + 1

n
π(a2)x . (2.1)

for n ≥ 1. Let Bx be the band generated by x in E , and let Px ∈ Lob(E) be the order
projection onto Bx . Using that π(a)x ≥ 0 and equation 2.1, we have

0 ≤ (I − Px )[π(a)x]
≤ (I − Px )[nx + 1

n
π(a2)x]

= 1

n
(I − Px )[π(a2)x]

for all n ≥ 1. Hence (I − Px )[π(a)x] = 0, so that π(a)x ∈ Bx . Since x was arbitrary,
this shows that π(a) is band preserving. �	
Proposition 2.6 Let A be an f -algebra with an identity element e, and let E be a
vector lattice with the principal projection property. Suppose that π : A → Lob(E)

is a positive linear map such that π(e) = I . Then π(A ) ⊆ Orth(E). If, in addition, π
preserves the multiplication, then π is a unital vector lattice algebra homomorphism
from A into Orth(E).
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Proof It is clear from Lemma 2.5 that π maps A into Orth(E). Suppose that π also
preserves themultiplication. In this case, we note that Orth(E) is a unital Archimedean
f -algebra (see [4, Theorem 2.59]), so that it is semiprime by [11, Corollary 10.4].
Since A is likewise semiprime, it follows from [11, p. 96] (see also [11, part (i) of
Theorem 3.7]) that π is a vector lattice homomorphism. �	

The following is immediate from Proposition 2.6 and—for its first part—the com-
mutativity of Orth(E) (see [4, Theorem 2.56]).

Corollary 2.7 Let E and F be vector lattices, where F is Dedekind complete. Let E
be a vector sublattice of Lob(E, F) with the principal projection property.

(1) Suppose that ST ∈ E for all S ∈ E and T ∈ Orth(E), so that there is a naturally
defined map ρT : E → E for T ∈ Orth(E). Then ρT ∈ Orth(E ) for T ∈ Orth(E),
and the ensuing map ρ : Orth(E) → Orth(E ) is a unital vector lattice algebra
homomorphism.

(2) Suppose that T S ∈ E for all S ∈ E and T ∈ Orth(F), so that there is a naturally
defined map λT : E → E for T ∈ Orth(F). Then λT ∈ Orth(E ) for T ∈ Orth(F),
and the ensuing map λ : Orth(F) → Orth(E ) is a unital vector lattice algebra
homomorphism.

Remark 2.8 (1) For E = Lob(E, F), Corollary 2.7 is established in the beginning of
[21, Section 2].

(2) For E = Loc(E), where E is a Dedekind complete vector lattice, the facts that
left and right multiplications by orthomorphisms on E yield orthomorphisms on
Loc(E), were established in [12, Proof of Theorem 8.4].

(3) For E = Orth(E), [4, Theorems 2.59 and 2.62] show that the (then coinciding)
maps ρ and λ even provide a vector lattice algebra isomorphisms between the
Orth(E) and Orth(Orth(E). This is also true when E is not Dedekind complete.

3 Implications between convergences on vector lattices of operators

In this section, we investigate the implications between the six convergences on the
order bounded linear operators and on the orthomorphisms on a Dedekind complete
vector lattice. Without further ado, let us simply state the answers and explain how
they are obtained.

For a general net of order bounded linear operators (resp. orthomorphisms) on a
generalDedekind complete vector lattice, the implications between order convergence,
unbounded order convergence, convergence in a possible Hausdorff uo-Lebesgue
topology, strong order convergence, strong unbounded order convergence, and strong
convergence with respect to a possible Hausdorff uo-Lebesgue topology, are given in
Table 1 (resp. Table 2).

In these tables, the value in a cell indicates whether the convergence of a net in the
sense that labels the row of that cell does (value 1) or does not (value 0) in general
imply its convergence (to the same limit) in the sense that labels the column of that
cell. For example, the value 0 in the cell (uo,Sτ̂E ) in Table 1 indicates that there
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Table 1 Implications between convergences of nets in Lob(E)

o uo τ̂Orth(E) SO SUO Sτ̂E

o 1 1 1 1 1 1

uo 0 1 1 0 0 0

τ̂Lob(E) 0 0 1 0 0 0

SO 0 0 0 1 1 1

SUO 0 0 0 0 1 1

Sτ̂E 0 0 0 0 0 1

Table 2 Implications between convergences of nets in Orth(E)

o uo τ̂Orth (E) SO SUO Sτ̂E

o 1 1 1 1 1 1

uo 0 1 1 0 1 1

τ̂Orth(E) 0 0 1 0 0 1

SO 0 1 1 1 1 1

SUO 0 1 1 0 1 1

Sτ̂E 0 0 1 0 0 1

In Orth(E), uo and SUO convergence of nets coincide, as do a possible τ̂Orth(E) and Sτ̂E convergence

exists a net of order bounded linear operators on a Dedekind complete vector lattice
E that admits a Hausdorff uo-Lebesgue topology τ̂E , such that this net is unbounded
order convergent to zero in Lob(E), but not strongly convergent to zero with respect
to τ̂E . The value 1 in the cell (uo,Sτ̂E ) in Table 2, however, indicates that every net
of orthomorphisms on an arbitrary Dedekind complete vector lattice E that admits a
Hausdorff uo-Lebesgue topology τ̂E , such that this net is unbounded order convergent
to zero, is strongly convergent to zero with respect to τ̂E .

We shall now explain how these tables can be obtained.
Obviously, the order convergence of a net of operators implies its unbounded order

convergence, which implies its convergence in a possible Hausdorff uo-Lebesgue
topology. There are similar implications for the three associated strong convergences.
Furthermore, an implication that fails for orthomorphisms also fails in the general
case. Using these basic facts, it is a logical exercise to complete the tables from a few
‘starting values’ that we now validate.

For Table 1, we have the following ‘starting values’:

• the value 1 in the cell (o,SO) follows from [15, Lemma 4.1];
• the value 0 in the cell (uo, Sτ̂E ) follows from [15, Example 5.3], when using that,
for an atomic vector lattice as in that example, the unbounded order convergence
of a net and the convergence in the Hausdorff uo-Lebesgue topology coincide (this
follows from the combination of [9, Lemma 3.1] and [26, Lemma 7.4]);

• the value 0 in the cell (SO, τ̂Lob(E)) follows from the case where p = ∞ in
[15, Example 5.5]. The reason is—we resort to the notation and context of that

123



61 Page 10 of 33 Y. Deng, M. de Jeu

example—that, for p = ∞, it follows from [6, Example 10.1.2] that the sequence
En f is order bounded in L∞([0, 1]) for all f ∈ L∞([0, 1]). Since we already
know from the general case that it is almost everywhere convergent to f it is, in
fact, order convergent to f in L∞([0, 1]). The remainder of the arguments in the
example then validate the value 0 in the cell.

For Table 2, we have the following ‘starting values’:

• the values 0 in the cells (uo, o), (uo,SO), and (̂τOrth(E), uo), as well as in
(̂τOrth(E),SUO), follow from the examples preceding [15, Lemma 9.1], letting
the multiplication operators act on the constant function 1 for the second and
fourth of these cells;

• the value 0 in the cell (SO, o) follows from the example following the proof of
[15, Theorem 9.4];

• the values 1 in the cells (uo,SUO) and (SUO, uo) follow from [15, Theorem 9.7];
• the values 1 in the cells (̂τOrth(E),Sτ̂E ) and (Sτ̂E , τ̂Orth(E)) follow from [15, The-
orem 9.10].

It is easily checked that the above information suffices to complete both tables.

Remark 3.1 (1) Every order bounded net of orthomorphisms on an arbitraryDedekind
complete vector lattice E that is strongly order convergent to zero, is order con-
vergent to zero in Orth(E); see [15, Theorem 9.4];

(2) Every sequence of orthomorphisms on a Dedekind complete Banach lattice E that
is strongly order convergent to zero, is order convergent to zero in Orth(E); see
[15, Theorem 9.5];

(3) The validity of all zeroes in Table 1 (resp. Table 2) follows from the existence
of a net of order bounded linear operators (resp. orthomorphisms) on a Dedekind
complete Banach lattice for which the implication in question does not hold.
With the cell (SO, o) in Table 2 as the only exception, such a net of operators on a
Banach lattice can even be taken to be a sequence. This follows from an inspection
of the (counter) examples referred to above when validating the ‘starting’ zeroes
in the tables.

4 Continuity of left and right multiplications

In this section, we study continuity properties of left and rightmultiplication operators.
For example, take an arbitrary T ∈ Lob(E), where E is an arbitrary Dedekind com-
plete vector lattice that admits a Hausdorff uo-Lebesgue topology τ̂Lob(E). Is it then
true that λT : Lob(E) → Lob(E) maps unbounded order convergent nets inLob(E)

to τ̂Lob(E) convergent nets (with corresponding limits)? If not, is this then true when
we suppose that T ∈ Loc(E)? If not, is this true when we suppose that T ∈ Orth(E)?
One can ask a similar combination of questions, specifying to classes of increasingly
well-behaved operators, for each of the 6 · 6 = 36 combinations of convergences of
nets in Lob(E) under consideration in this paper. There are also 36 combinations to
be considered for right multiplication operators. This section provides the answers in
all 72 cases; the results are contained in the Tables 3 and 4. For the example that we
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gave, the answer is negative and remains so for arbitrary T ∈ Loc(E), but it becomes
positive for arbitrary T ∈ Orth(E).

For Orth(E), there are similar questions to be asked for its left and right regular
representation, but their number is smaller. Firstly, we see no obvious better-behaved
subclass of Orth(E) that we should also consider. Secondly, since Orth(E) is commu-
tative, there is only one type of multiplication involved. Thirdly, as in Table 2, there
are two pairs of coinciding convergences. All in all, there are only 4 × 4 = 16 pos-
sible combinations that actually have to be considered for the regular representation
of Orth(E). Also in this case, all answers can be given; the results are contained in
Table 5. As it turns out, Table 5 is identical to Table 2. There appears to be no a priori
reason for this fact; it is simply the outcome.

We shall now set out to validate the Tables 3, 4, and 5. Fortunately, we do not
need individual results for every cell. Upon considering the multiplications by the
orthomorphism that is the identity operator, the zeroes in the Tables 1 and 2 already
determine the values in many cells. For the remaining ones, the combination of the
‘standard’ implications that were already used for the Tables 1 and 2 and a limited
number of results and (counter) examples already suffices.We shall now start to collect
these.

We start with o-o and SO-SO continuity.

Proposition 4.1 Let E be a Dedekind complete vector lattice. Then:

(1) ρT : Lob(E) → Lob(E) is o-o continuous for all T ∈ Lob(E);
(2) λT : Lob(E) → Lob(E) is o-o continuous for all T ∈ Loc(E);
(3) ρT : Lob(E) → Lob(E) is SO-SO continuous for all T ∈ Lob(E);
(4) λT : Lob(E) → Lob(E) is SO-SO continuous for all T ∈ Loc(E).

Proof Weprove the parts (1) and (2) . TakeT ∈ Lob(E), and let (Sα)α∈A ⊆ Lob(E)be
a net such that Sα

o−→ 0 inLob(E). By passing to a tail, we may assume that (|Sα|)α∈A
is order bounded in Lob(E). Set Rα := ∨

β≥α|Sβ | for α ∈ A. Then |Sα| ≤ Rα

for α ∈ A and Rα ↓ 0 in Lob(E) (see [18, Remark 2.2]). It is immediate from [4,
Theorem 1.18] that also Rα|T | ↓ 0 in Lob(E). Since |ρT (Sα)| ≤ Rα|T | for α ∈ A,
we see that ρT (Sα)

o−→ 0 in Lob(E), as desired. Suppose that, in fact, T ∈ Loc(E).
Since Rαx ↓ 0 for x ∈ E+ by [4, Theorem 1.18], we then also have that |T |Rαx ↓ 0
for x ∈ E+. Hence |T |Rα ↓ 0 inLob(E). The fact that |λT (Sα)| ≤ |T |Rα for α ∈ A
then implies that λT (Sα)

o−→ 0 inLob(E).
The parts (3) and (4) are immediate consequences of the definitions. �	
We now show that the condition in the parts (2) and (4) of Proposition 4.1 that

T ∈ Loc(E) cannot be relaxed to T ∈ Lob(E).

Examples 4.2 Take E = �∞, let (en)∞n=1 be the sequence of standard unit vectors in
E , and let c denote the sublattice of E consisting of the convergent sequences. We
define a positive linear functional fc on c by setting

fc(x) := lim
n→∞ xn
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for x = ∨∞
i=1 xi ei ∈ c. Since c is amajorising vector subspace of E , [4, Theorem1.32]

shows that there exists a positive functional f on E that extends fc. We define T :
E → E by setting T x = f (x)e1 for x ∈ E . Clearly, T ∈ Lob(E); a consideration of
T (

∨∞
i=n ei ) for n ≥ 1 shows that T /∈ Loc(E).

We define Sn ∈ Loc(E) for n ≥ 1 by setting

Snx := x1

n
∨

i=1

ei ,

and S ∈ Loc(E) by setting

Sx := x1

∞
∨

i=1

ei

for x = ∨∞
i=1 xi ei ∈ E . Clearly, Sn ↑ S in Lob(E). On the other hand, λT (Sn) = 0

for all n ≥ 1, while λT (S) = P1, where P1 ∈ Lob(E) is the order projection onto the
span of e1. This shows that λT : Lob(E) → Lob(E) is not o-o continuous.

The sequence (Sn)∞n=1, being order convergent to S, is also strongly unbounded
order convergent to S in Lob(E). Hence λT : Lob(E) → Lob(E) is not SO-SO
continuous.

Remark 4.3 Examples 4.2 also shows that, already for a Banach lattice E , λT need not
even be sequentially o-̂τLob(E) continuous, sequentially o-Sτ̂E continuous, sequen-
tially SO-̂τLob(E) continuous, or sequentially SO-Sτ̂E continuous for arbitrary T ∈
Lob(E).

Remark 4.4 The o-o continuity (appropriately defined) of left and right multiplications
on ordered algebras is studied in [2]. It is established on [2, p. 542–543] that, for a
Dedekind complete vector lattice E , the right and left multiplication by an element T
of the ordered algebra L(E) of all (!) linear operators on E are both order continuous on
L(E) in the sense of [2] if and only if the left multiplication is, which is the case if and
only if T ∈ Loc(E). The proof refers to [1, Example 2.9 (a)], which is concerned with
multiplications by a positive operator T on the ordered Banach algebra L(E) of all (!)
bounded linear operators on a Dedekind complete Banach lattice E . It is established in
that example that the simultaneous order continuity of the right and left multiplication
by T on L(E) in the sense of [1] is equivalent to T being order continuous. On [1,
p. 151] it is mentioned that this criterion for the order continuity of an operator can
also be presented for an arbitrary Dedekind complete vector lattice. Although it is not
stated as such, and although a proof as such is not given, the author may have meant
to state, and have known to be true, that, for a Dedekind complete vector lattice E
and T ∈ Lob(E), λT and ρT are both o-o continuous on Lob(E) in the sense of the
present paper if and only if λT is, which is the case if and only if T ∈ Loc(E). Using
arguments as on [1, p. 151] and [2, p. 542–543], the authors of the present paper have
verified that—this is the hard part—for T ∈ Lob(E), the o-o continuity of λT on
Lob(E) in the sense of the present paper does imply that T ∈ Loc(E). Hence the
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three properties of T ∈ Lob(E) mentioned above are, indeed, equivalent; a result that
is to be attributed to the late Egor Alekhno.

We use the opportunity to establish the following side result, which follows easily
from combining each of [25, Satz 3.1] and [7, Proposition 2.2] with the parts (1) and
(2) of Proposition 4.1.

Proposition 4.5 Let E be a Dedekind complete vector lattice. Then:

(1) the map T �→ ρT defines an order continuous lattice homomorphism ρ :
Lob(E) → Loc(Loc(E),Lob(E)).

(2) the map T �→ λT defines an order continuous lattice homomorphism λ :
Lob(E) → Lob(Lob(E)) that maps Loc(E) into Loc(Lob(E)).

Remark 4.6 In [28, Problem 1], it was asked, among others, whether, for a Dedekind
complete vector lattice E , the left regular representation ofLob(E) is a lattice homo-
morphism fromLob(E) intoLob(Lob(E)). In [10, Theorem 11.19], it was observed
that the affirmative answer is, in fact, provided by [25, Satz 3.1]. Part (2) of Proposi-
tion 4.5 gives still more precise information.

Part (1), which relies on [7, Proposition 2.2], implies that the right regular repre-
sentation ofLoc(E) is an order continuous lattice homomorphism fromLoc(E) into
Lob(Loc(E)), with an image that is, in fact, contained inLoc(Loc(E)).

After this brief digression, we continue with the main line of this section, and
consider uo-uo and SUO-SUO continuity of left and right multiplication operators.

Proposition 4.7 Let E be a Dedekind complete vector lattice. Then:

(1) ρT is uo-uo continuous on Lob(E) for all T ∈ Orth(E);
(2) λT is uo-uo continuous on Lob(E) for all T ∈ Orth(E);
(3) ρT is SUO-SUO continuous on Lob(E) for all T ∈ Lob(E);
(4) λT is SUO-SUO continuous on Lob(E) for all T ∈ Orth(E).

Proof For the parts (1) and (2) , we note that Corollary 2.7 shows that ρT , λT ∈
Orth(Lob(E)). Their uo-uo continuity then follows from [15, Proposition 7.1]

Part (3) is trivial.

We prove part (4). Let (Sα)α∈A be a net in Lob(E) such that Sα
SUO−−→ 0. Take an

x ∈ E . Then Sαx
uo−→ 0 in E . It follows from [15, Proposition 7.1] that λT (Sα)x =

T Sαx
uo−→ 0 in E , as desired. �	

Remark 4.8 For the proof of the parts (1) and (2) of Proposition 4.7, an appeal to the
beginning of [21, Section 2] can replace the use of Corollary 2.7. It is, however, only
Corollary 2.7 that permits the obvious extensions of the parts (1) and (2) of Propo-
sition 4.7 to (not necessarily regular) vector sublattices of Lob(E) that are invariant
under left or right composition with orthomorphisms, provided that they have the
principal projection property.

We now show that the condition in the parts (1), (2), and (4) of Proposition 4.7 that
T ∈ Orth(E) cannot be relaxed to T ∈ Loc(E).
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Examples 4.9 (1) We first give an example showing that λT and ρT need not be uo-uo
continuous on Lob(E) for T ∈ Loc(E). Let E = Lp([0, 1]) with 1 ≤ p < ∞.
We define T ∈ Lob(E) = Loc(E) by setting

T f :=
∫

f dμ · χ[0,1] (4.1)

for f ∈ E . For n ≥ 1, we define the positive operator Sn on E by setting

Sn f (t) :=
{

f (t + 1/n) for t ∈ [0, (n − 1)/n);
f (t − (n − 1)/n) for t ∈ [(n − 1)/n, 1].

We claim that (Sn)∞n=1 is a disjoint sequence inLob(E). Letm, n ≥ 1withm > n.
Take a k ≥ 1 such that 1/k < 1/n − 1/m. For every f ∈ E+, [4, Theorem 1.51]
then implies that

0 ≤ Sm ∧ Sn( f ) ≤
k

∑

i=1

Sm( f · χ[(i−1)/k,i/k]) ∧ Sn( f · χ[(i−1)/k,i/k]) = 0

because the supports of Sm( f ·χ[(i−1)/k,i/k]) and Sn( f ·χ[(i−1)/k,i/k]) are disjoint
for i = 1, . . . , k. Hence Sm ∧ Sn = 0, as claimed.
By [18, Corollary 3.6], the disjoint sequence (Sn)∞n=1 is unbounded order con-
vergent to zero in Lob(E). On the other hand, it is easy to see that ρT (Sn) =
λT (Sn) = T �= 0 for all n ≥ 1. Hence neither of (ρT (Sn))∞n=1 and (λT (Sn))∞n=1
is unbounded order convergent to zero inLob(E). This shows that neither ρT nor
λT is uo-uo continuous on Lob(E).

(2) We now give an example showing that λT need not be SUO-SUO continuous
on Lob(E) for T ∈ Loc(E). Let E = Lp([0, 1]) with 1 ≤ p < ∞. For n ≥ 1,
define the positive operator Sn on E by setting Sn f := 2nχ[1−1/2n−1,1−1/2n ] · f for
f ∈ E . Let T ∈ Loc(E) be defined as in Eq. 4.1. For every f ∈ E , it is clear that
Sn f and Sm f are disjoint whenever m �= n, and then [18, Corollary 3.6] shows
that Sn f

uo−→ 0 in E . That is, (Sn)∞n=1 is strongly unbounded order convergent
to zero. On the other hand, it is easily seen that λT (Sn)χ[0,1] = χ[0,1] �= 0 for
n ≥ 1. This implies that (λT (Sn))∞n=1 is not strongly unbounded order convergent
to zero, so that λT is not SUO-SUO continuous on Lob(E).

Remark 4.10 Examples 4.9 also shows that ρT and λT need not be uo-̂τLob(E) con-
tinuous and that λT need not be SUO-Sτ̂E continuous on Lob(E) for arbitrary
T ∈ Loc(E) = Lob(E). In fact, the sequential versions of these continuity prop-
erties can already fail to hold, even in cases where E is a Banach lattice with an order
continuous norm.

We now turn to the Hausdorff uo-Lebesgue topologies, where we shall make use
of Theorem 2.1.
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Proposition 4.11 Let E be a Dedekind complete vector lattice that admits a (nec-
essarily unique) Hausdorff uo-Lebesgue topology τ̂E , so that Lob(E) also admits a
(necessarily unique) Hausdorff uo-Lebesgue topology τ̂Lob(E). Then:

(1) ρT is τ̂Lob(E)-̂τLob(E) continuous on Lob(E) for all T ∈ Orth(E);
(2) λT is τ̂Lob(E)-̂τLob(E) continuous on Lob(E) for all T ∈ Orth(E);
(3) ρT is Sτ̂E-Sτ̂E continuous on Lob(E) for all T ∈ Lob(E);
(4) λT is Sτ̂E-Sτ̂E continuous on Lob(E) for all T ∈ Orth(E).

Proof We know from Corollary 2.7 that ρT , λT ∈ Orth(Lob(E)) when T ∈ Orth(E),
and then the parts (1) and (2) follow from [15, Corollary 7.3].

Part (3) is trivial.
Part (4) follows from [15, Corollary 7.3]. �	
We now show that the condition in the parts (1), (2), and (4) of Proposition 4.11

that T ∈ Orth(E) cannot be relaxed to T ∈ Loc(E).

Examples 4.12 (1) We first give an example showing that λT and ρT need not be
τ̂Lob(E)-̂τLob(E) continuous onLob(E) for T ∈ Loc(E). For this, we resort to the
context and notation of part (1) of Examples 4.9. In that example, we know that

Sn
uo−→ 0 inLob(E), and then certainly Sn

τ̂L ob(E)−−−−→ 0. Since ρT (Sn) = λT (Sn) =
T �= 0 for all n ≥ 1, we see that neither ρS nor λS is τ̂Lob(E)-̂τLob(E) continuous
on Lob(E).

(2) We give an example showing that λT need not be Sτ̂E -Sτ̂E continuous onLob(E)

for T ∈ Loc(E). For this, we resort to the context and notation of part (2) of
Examples 4.9. In that example, we know that Sn f

uo−→ 0 in E for f ∈ E . Then

certainly Sn f
τ̂E−→ 0 for f ∈ E . Since λT (Sn)χ[0,1] = χ[0,1] �= 0 for all n ≥ 1,

we see that λT is not Sτ̂E -Sτ̂E continuous.

Remark 4.13 Examples 4.12 also shows that ρT and λT need not even be τ̂Lob(E)-
τ̂Lob(E) continuous and that λT need not even be Sτ̂Lob(E)-Sτ̂Lob(E) continuous on
Lob(E) for arbitrary T ∈ Loc(E) = Lob(E). In fact, the sequential versions of these
continuity properties can already fail to hold, even in cases where E is a Banach lattice
with an order continuous norm.

We now have sufficient material at our disposal to determine the tables mentioned
at the beginning of this section.

For right multiplications on Lob(E), the results are in Table 3. The value in a cell
with a row label indicating a convergence structure C1 and a column label indicating
a convergence structure C2 is to be interpreted as follows:

(1) A value {0} (resp. Orth(E), resp.Loc(E)) means that ρT is C1-C2 continuous on
Lob(E) for every Dedekind complete vector lattice E and for every T ∈ {0} (resp.
T ∈ Orth(E), resp. T ∈ Loc(E)), but there exist a Dedekind complete vector
lattice E and a T ∈ Orth(E) (resp. T ∈ Loc(E), resp. T ∈ Lob(E)) for which
this is not the case;

(2) AvalueLob(E)means thatρT isC1-C2 continuous onLob(E) for everyDedekind
complete vector lattice E and for every T ∈ Lob(E).
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Table 3 Continuity of right multiplications on Lob(E)

o uo τ̂Lob(E) SO SUO Sτ̂E

o Lob(E) Lob(E) Lob(E) Lob(E) Lob(E) Lob(E)

uo {0} Orth(E) Orth(E) {0} {0} {0}
τ̂Lob(E) {0} {0} Orth(E) {0} {0} {0}
SO {0} {0} {0} Lob(E) Lob(E) Lob(E)

SUO {0} {0} {0} {0} Lob(E) Lob(E)

Sτ̂E {0} {0} {0} {0} {0} Lob(E)

Table 4 Continuity of left multiplications onLob(E)

o uo τ̂Lob(E) SO SUO Sτ̂E

o Loc(E) Loc(E) Loc(E) Loc(E) Loc(E) Loc(E)

uo {0} Orth(E) Orth(E) {0} {0} {0}
τ̂Lob(E) {0} {0} Orth(E) {0} {0} {0}
SO {0} {0} {0} Loc(E) Loc(E) Loc(E)

SUO {0} {0} {0} {0} Orth(E) Orth(E)

Sτ̂E {0} {0} {0} {0} {0} Orth(E)

Asmentioned in the beginning of this section, a zero in Table 1 gives {0} in Table 3.
It is easily verified that the remaining values can be determined using that order
convergence implies unbounded order convergence, which implies τ̂E convergence
when applicable; that analogous implications hold for their strong versions; that order
convergence implies strong order convergence; combinedwith Proposition 4.1, Propo-
sition 4.7, Remark 4.10, Proposition 4.11, and Remark 4.13.

For left multiplications on Lob(E), the results are in Table 4, with a similar inter-
pretation of the values in the cells as for Table 3.

For Table 4, the values of the cells can be determined using the zeroes in Table 1,
the ‘standard implications’ as listed for Table 3, combined with Proposition 4.1,
Remark 4.3, Proposition 4.7, Remark 4.10, Proposition 4.11, and Remark 4.13.

For multiplications on Orth(E), the continuity properties are given by Table 5.
In that table, a value 1 in a cell with a row label indicating a convergence structure
C1 and a column label indicating a convergence structure C2 means that the maps
ρT = λT : Orth(E) → Orth(E) is C1-C2 continuous for all T ∈ Orth(E). A value 0
means that there exists a Dedekind complete vector lattice E and a T ∈ Orth(E) for
which this is not the case.

The values in the cells of Table 5 can be determined using the zeroes in Table 2,
the ‘standard implications’ as listed for Table 3; the fact that Orth(E) is a regular
vector sublattice of Lob(E); the facts that unbounded order convergence and strong
unbounded order convergence coincide on Orth(E), as do a possible τ̂Orth(E) and Sτ̂E
convergence; combined with Propositions 4.1, 4.7, and 4.11.
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Table 5 Continuity of multiplications on Orth(E)

o uo τ̂Orth(E) SO SUO Sτ̂E

o 1 1 1 1 1 1

uo 0 1 1 0 1 1

τ̂Orth(E) 0 0 1 0 0 1

SO 0 1 1 1 1 1

SUO 0 1 1 0 1 1

Sτ̂E 0 0 1 0 0 1

In Orth(E), uo and SUO convergence of nets coincide, as do a possible τ̂Orth(E) and Sτ̂E convergence

5 Simultaneous continuity of multiplications and adherences of
subalgebras ofLLob(E)

In this section, we study the simultaneous continuity of the multiplications in subal-
gebras of Lob(E) (where E is a Dedekind complete vector lattice) with respect to
the six convergence structures under consideration in this paper. This is motivated
by questions of the following type. Suppose that E admits a Hausdorff uo-Lebesgue
topology. Take a subalgebra (not necessarily a vector lattice subalgebra)A ofLob(E).
Is its adherence aSτ̂ E (A ) in Lob(E) with respect to strong τ̂E convergence again a
subalgebra of Lob(E)? This is not always the case, not even when A ⊆ Loc(E);
see Examples 5.13. When A ⊆ Orth(E), however, the answer is affirmative; see
Corollary 5.12.

As is easily verified, it follows already from the continuity of the left and right
multiplications with respect to strong τ̂E convergence (see Proposition 4.11) that
aSτ̂ E (A ) · aSτ̂ E (A ) ⊆ aSτ̂ E (aSτ̂ E (A )) when A ⊆ Orth(E), but that is not suf-
ficient to show that aSτ̂ E (A ) is a subalgebra. The simultaneous continuity of the
multiplication in Orth(E) with respect to strong τ̂E convergence in Orth(E) would be
sufficient to conclude this, and this can indeed be established; see Proposition 5.11.

For each of the remaining five convergence structures, we follow the same pattern.
We establish (this also relies on the single variable results in Sect. 4) the simul-
taneous continuity of the multiplication with respect to the convergence structure
under consideration, and then conclude that the pertinent adherence of a subalgebra is
again a subalgebra. For the latter result it is—as the above example already indicates
—essential to impose an extra condition on the subalgebraA . This condition depends
on the convergence structure under consideration. Natural extra conditions are thatA
be a subalgebra of Orth(E) or of Loc(E), and we do indeed obtain positive results
under such conditions. We also have fairly complete results showing that the relax-
ation of the pertinent condition to the ‘natural’ next lenient one does, in fact, render
the statement that the adherence is a subalgebra again invalid. This also implies that
multiplication is then not simultaneously continuous.

In the cases where the lattice operations are known to be simultaneously continuous
with respect to the convergence structure under consideration, it obviously also follows
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that the pertinent adherence of a vector lattice subalgebra is a vector lattice subalgebra
again.

We shall now embark on this programme.We start with order convergence, which is
the easiest case. For this, we have the following result on the simultaneous continuity
of multiplication.

Proposition 5.1 Let E be a Dedekind complete vector lattice. Suppose that (Sα)α∈A
is a net in Loc(E) such that Sα

o−→ S in Lob(E) for some S ∈ Lob(E) and that
(Tβ)β∈B ⊆ Lob(E) is a net such that Tβ

o−→ T in Lob(E) for some T ∈ Lob(E).

Then S ∈ Loc(E) and SαTβ
o−→ ST inLob(E).

Proof It is clear that S ∈ Loc(E). By passing to a tail, we may suppose that (|Tβ |)β∈B
is bounded above by some R ∈ Lob(E)+. Using the parts (1) and (2) of Proposition 4.1
for the final order convergence, we have that

|SαTβ − ST | ≤ |SαTβ − STβ | + |STβ − ST |
≤ |Sα − S|R + |S||Tβ − T | o−→ 0

inLob(E). Hence SαTβ
o−→ ST inLob(E). �	

The following is now clear from Proposition 5.1 and the simultaneous order conti-
nuity of the lattice operations.

Corollary 5.2 Let E be a Dedekind complete vector lattice. Suppose that A is a sub-
algebra of Loc(E). Then the adherence ao(A ) in Lob(E) is also a subalgebra of
Loc(E). When A is a vector lattice subalgebra of Loc(E), then so is ao(A ).

We now show that the condition in Corollary 5.2 that A ⊆ Loc(E) cannot be
relaxed to A ⊆ Lob(E).

Example 5.3 Take E = �∞ and let (en)∞n=1 be the standard sequence of unit vectors in
E .We define T ∈ Lob(E) as in Examples 4.2. For n ≥ 1, we now define S′

n ∈ Loc(E)

by setting

S′
nx := x2

n+2
∨

i=3

ei ,

and S′ ∈ Loc(E) by setting

S′x := x2

∞
∨

i=3

ei

for x = ∨∞
i=1 xi ei ∈ E . It is easily verified that T 2 = 0, that S′

n S
′
m = 0 for m, n ≥ 1,

and that S′
nT = T S′

n = 0 for n ≥ 1. HenceA := Span{T , S′
n : n ≥ 1} is a subalgebra

of Lob(E). As S′
n ↑ S′ inLob(E), both S′ and T are elements of ao(A ).
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However, T S′ /∈ ao(A ). In fact, T S′ is not even an element of aSO(A ) ⊇ ao(A ).
To see this, we observe that T S′e2 = e1 �= 0, and that, as is easily verified, T S′e2 ⊥
Re2 for all R ∈ A . Hence there cannot exist a net (Rα)α∈A ⊆ A such that Rαe2

o−→
T S′e2 in E , let alone such that Rα

SO−→ T S′ inLob(E).

Now we turn to the strong order adherences of subalgebras ofLob(E). We start by
showing that Orth(E) is closed inLob(E) under the convergences under consideration
in this paper. We recall from Theorem 2.1 that either all of E , Orth(E), and Lob(E)

admit a Hausdorff uo-Lebesgue topology, or none does.

Lemma 5.4 Let E be a Dedekind complete vector lattice. Then Orth(E) is closed
in Lob(E) under order convergence, unbounded order convergence, strong order
convergence, and strong unbounded order convergence. Suppose that E admits a (nec-
essarily unique) Hausdorff uo-Lebesgue topology. Then Orth(E) is closed inLob(E)

under τ̂Lob(E) convergence and strong τ̂E convergence.

Proof A band in a (not necessarily Dedekind complete) vector lattice is not only
closed under order convergence, but also closed under unbounded order convergence
(see [18, Proposition 3.15]) and under convergence in a Hausdorff locally solid linear
topology on the lattice (see [3, Theorem 2.21(d)]. This implies that Orth(E) is closed
inLob(E) under order convergence, unbounded order convergence, and convergence
in a possible Hausdorff uo-Lebesgue topology onLob(E). It also implies that, for each
of the three strong convergences inLob(E) under consideration, a limit inLob(E) of
a net of orthomorphisms, i.e., of order bounded band preserving operators, is again an
order bounded band preserving operator, i.e., an orthomorphism. �	
Proposition 5.5 Let E be a Dedekind complete vector lattice. Suppose that (Sα)α∈A
is a net in Orth(E) such that Sα

SO−→ S in Lob(E) for some S ∈ Lob(E) and that

(Tβ)β∈B ⊆ Lob(E) is a net such that Tβ
SO−→ T in Lob(E) for some T ∈ Lob(E).

Then S ∈ Orth(E), and SαTβ
SO−→ ST inLob(E).

Proof Lemma 5.4 shows that S ∈ Orth(E). Take x ∈ E . By passing to a tail, we
may suppose that (|Tβx |)β∈B is bounded above by some y ∈ E+. By applying [4,
Theorem 2.43] and the order continuity of |S| for the final convergence, we see that

|SαTβx − ST x | ≤ |(Sα − S)Tβx | + |S(Tβ − T )x |
≤ |Sα − S||Tβx | + |S||(Tβ − T )x |
≤ |Sα − S|y + |S||Tβx − T x |
= |(Sα − S)y| + |S||Tβx − T x | o−→ 0

in E . Hence SαTβ
SO−→ ST inLob(E). �	

The following is now clear from Proposition 5.5.

Corollary 5.6 Let E be a Dedekind complete vector lattice. Suppose that A is a sub-
algebra of Orth(E). Then the adherence aSO(A ) in Lob(E) is also a subalgebra of
Orth(E).
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We now show that the condition in Corollary 5.6 that A ⊆ Orth(E) cannot be
relaxed to A ⊆ Lob(E). At the time of writing, the authors do not know whether it
might be relaxed to A ⊆ Loc(E).

Example 5.7 We resort to the context and notation of Examples 5.3. In that example,
we had operators T , S′ ∈ ao(A ) such that T S′ /∈ aSO(A ). Since ao(A ) ⊆ aSO(A ),
this example also provides an example as currently needed.

We turn to unbounded order adherences and strong unbounded order adherences.

Proposition 5.8 Let E be a Dedekind complete vector lattice. Suppose that (Sα)α∈A
is a net in Orth(E) such that Sα

uo−→ S in Lob(E) for some S ∈ Lob(E) and that
(Tβ)β∈B ⊆ Orth(E) is a net such that Tβ

uo−→ T in Lob(E) for some T ∈ Lob(E).

Then S, T ∈ Orth(E), and SαTβ
uo−→ ST inLob(E). Seven similar statements hold that

are obtained by, for each of the three occurrences of unbounded order convergence,
either keeping it or replacing it with strong unbounded order convergence.

Proof We start with the statement for three occurrences of unbounded order conver-
gence. For this, we first suppose that S = T = 0.

For α ∈ A, let Pα be the order projection in Orth(E) onto the band Bα in Orth(E)

that is generated by (|Sα|− I )+. Then 0 ≤ Pα I ≤ Pα|Sα| ≤ |Sα| by [15, Lemma 6.9].
Hence Pα I

uo−→ 0 in Lob(E), so that also Pα I
uo−→ 0 in the regular vector sublattice

Orth(E) of Lob(E) by [18, Theorem 3.2]. Since the net (Pα I )α∈A is order bounded
in Orth(E), we see that

Pα I
o−→ 0 (5.1)

in Orth(E). Furthermore, since (Pα|Sα|)Tβ ∈ Bα for α ∈ A, β ∈ B, (see [4, Theo-
rem2.62] orCorollary 2.7),we also have that [(Pα|Sα|)Tβ ]∧I ∈ Bα forα ∈ A, β ∈ B.
Hence

[(Pα|Sα|)Tβ ] ∧ I = Pα

([(Pα|Sα|)Tβ ] ∧ I
) ≤ Pα I (5.2)

for α ∈ A, β ∈ B.
Combining the fact that |Sα| ≤ I + Pα|Sα| by [15, Proposition 6.10(2)] with

equation 5.2, we have, for α ∈ A, β ∈ B,

|SαTβ | ∧ I ≤ (|Sα||Tβ |) ∧ I

≤ [(I + Pα|Sα|)|Tβ |] ∧ I

≤ |Tβ | ∧ I + [(Pα|Sα|)|Tβ |] ∧ I

≤ |Tβ | ∧ I + Pα I .

The fact that Tβ
uo−→ 0 inLob(E) and then also in Orth(E), together with Eq. 5.1, now

shows that |SαTβ | ∧ I
o−→ 0 in Orth(E). Since I is a weak order unit of Orth(E), [18,
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Corollary 3.5] (or the more general [16, Proposition 7.4]) implies that SαTβ
uo−→ 0 in

Orth(E) and then also inLob(E).
For the case of general S and T , we first note that S, T ∈ Orth(E) as a consequence

of Proposition 5.4. On writing

SαTβ − T S = (Sα − S)(Tβ − T ) + SαT + STβ − 2T S,

the special case considered above, together with Proposition 4.7, then implies that
SαTβ

uo−→ ST inLob(E), as desired.
The remaining seven statements follow from the case just established on invoking

Lemma 5.4, [15, Theorem 9.7], and [18, Theorem 3.2]. �	
The following is now clear from Proposition 5.8, [15, Theorem 9.7], and the simul-

taneous unbounded order continuity of the lattice operations.

Corollary 5.9 Let E be a Dedekind complete vector lattice, and letA be a subalgebra
ofOrth(E). Then the adherences auo(A ) and aSUO(A ) inLob(E) are equal, and are
subalgebras of Orth(E). When A is a vector lattice subalgebra of Orth(E), then so
is auo(A ) = aSUO(A ).

We now show that, neither for auo(A ) to be a subalgebra of Lob(E), nor for
aSUO(A ) to be a subalgebra of Lob(E), the condition in Corollary 5.9 that A ⊆
Orth(E) can be relaxed to A ⊆ Loc(E).

Example 5.10 Let E = �1, and let (en)∞n=1 be the standard sequence of unit vectors in
E . For i, j ≥ 1, we define Si, j ∈ Loc(E) = Lob(E) by setting

Si, j en :=
{

e j if n = i;
0 if n �= i

for n ≥ 1, and we define T ∈ Loc(E) by setting

T x :=
( ∞

∑

i=2

xi

)

e3

for x = ∨∞
i=1 xi ei ∈ E . Set Sn := S1,2 − S1,n+3 for n ≥ 1. It is not hard to check that

T 2 = T , that SnT = T Sn = 0 for n ≥ 1, and that SmSn = 0 for m, n ≥ 1. Hence
A := Span{T , Sn : n ≥ 1} is a subalgebra of Loc(E).

Using [4, Theorem 1.51], it is easy to see that (S1,n+3)
∞
n=1 is a disjoint sequence

inLob(E), so that S1,n+3
uo−→ 0 inLob(E) by [18, Corollary 3.6]. Hence Sn

uo−→ S1,2
in Lob(E), showing that S1,2 ∈ auo(A ). Obviously, T ∈ auo(A ). We claim that,

however, T S1,2 is not even an element ofA
τ̂L ob(E) ⊇ auo(A ). In order to see this, we

observe that T S1,2 = S1,3 and, using [4, Theorem 1.51], that S1,3 ⊥ T and S1,3 ⊥ Sn
for n ≥ 1. Hence T S1,2 ⊥ A , which implies that T S1,2 /∈ A

τ̂Orth(E) .
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For x = ∨∞
i=1 xi ei ∈ �1, we have S1,n+3x = x1en+3 for n ≥ 1. This implies

that S1,n+3
SUO−−→ 0 in Lob(E), showing that Sn

SUO−−→ S1,2 in Lob(E). Hence S1,2 ∈
aSUO(A ). Obviously, T ∈ aSUO(A ). We claim that, however, T S1,2 is not even an
element of aSτ̂ E (A ) ⊇ aSUO(A ). In order to see this, it is sufficient to observe that
T S1,2e1 = e3 �= 0 and that T S1,2e1 ⊥ Re1 for all R ∈ A . This implies that there

cannot exist a net (Rα)α∈A ⊆ A such that Rαe1
τ̂E−→ T S1,2e1 in E , let alone such that

Rα
Sτ̂ E−−→ T S1,2 inLob(E).

We turn to closures in a Hausdorff uo-Lebesgue topology and strong closures with
respect to a Hausdorff uo-Lebesgue topology. We recall once more from Proposi-
tion 2.1 that either all of E , Orth(E), and Lob(E) admit a Hausdorff uo-Lebesgue
topology, or none does. If they do, then, by general principles (see [26, Proposi-
tion 5.12]), τ̂Orth(E) is the restriction of τ̂Lob(E) to Orth(E).

Proposition 5.11 Let E be a Dedekind complete vector lattice that admits a (neces-
sarily unique) Hausdorff uo-Lebesgue topology τ̂E . Suppose that (Sα)α∈A ⊆ Orth(E)

is a net such that Sα

τ̂L ob(E)−−−−→ S inLob(E) for some S ∈ Lob(E) and that (Tβ)β∈B ⊆
Orth(E) is a net such that Tβ

τ̂L ob(E)−−−−→ T in Lob(E) for some T ∈ Lob(E). Then

S, T ∈ Orth(E), and SαTβ

τ̂L ob(E)−−−−→ ST in Lob(E). Seven similar statements hold
that are obtained by, for each of the three occurrences of τ̂Lob(E) convergence, either
keeping it or replacing it with strong τ̂E convergence.

Proof We start with the statement for three occurrences of τ̂Lob(E) convergence. For
this, we first suppose that S = T = 0.

We can use parts of the proof of Proposition 5.8 here. In that proof, it was established
that, for α ∈ A, there exists a band projection Pα in Orth(E) such that

0 ≤ Pα I ≤ |Sα| (5.3)

and such that

|SαTβ | ∧ I ≤ |Tβ | ∧ I + Pα I (5.4)

for β ∈ B. It follows from equation 5.3 that also

Pα I
τ̂L ob(E)−−−−→ 0

inLob(E), and then equation 5.4 shows that |SαTβ | ∧ I
τ̂L ob(E)−−−−→ 0 inLob(E), so that

also

|SαTβ | ∧ I
τ̂Orth(E)−−−−→ 0 (5.5)

in Orth(E). It follows from [4, Theorems 1.38 and 2.45] that, in the vector lattice
Orth(E), the order adherence of the ideal that is generated by I is the entire space
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Orth(E). Hence this ideal is certainly τ̂Orth(E)- dense in Orth(E). Since τ̂Orth(E) is an
unbounded topology on Orth(E), it now follows from Eq. 5.5 and [20, Corollary 3.5]

that SαTβ

τ̂Orth(E)−−−−→ 0 in Orth(E), and then also SαTβ

τ̂L ob(E)−−−−→ 0 inLob(E).
For the case of general S and T , we first note that S, T ∈ Orth(E) as a consequence

of Lemma 5.4. On writing

SαTβ − T S = (Sα − S)(Tβ − T ) + SαT + STβ − 2T S,

the special case considered above, together with Lemma 4.11, then implies that

SαTβ

τ̂L ob(E)−−−−→ ST inLob(E), as desired.
The remaining seven statements follow from the case just established on invoking

Lemma 5.4 and [15, Theorem 9.10]. �	
The following is now clear from Proposition 5.11 and the simultaneous continuity

of the lattice operations with respect to the τ̂Lob(E) topology.

Corollary 5.12 Let E be a Dedekind complete vector lattice that admits a (necessar-
ily unique) Hausdorff uo-Lebesgue topology τ̂E . Suppose that A is a subalgebra of

Orth(E). Then the closureA
τ̂L ob(E) inLob(E) and the adherence aSτ̂ E (A ) inLob(E)

are equal, and are subalgebras of Orth(E). WhenA is a vector lattice subalgebra of

Orth(E), then so is A
τ̂L ob(E) = aSτ̂ E (A ).

We now show that, neither for A
τ̂L ob(E) to be a subalgebra of Lob(E), nor for

aSτ̂ E (A ) to be a subalgebra of Lob(E), the condition in Corollary 5.12 that A ⊆
Orth(E) can be relaxed to A ⊆ Loc(E).

Example 5.13 We return to the context and notation of Examples 5.10. In that example,

we saw that Sn
uo−→ S1,2 in Lob(E). Then certainly Sn

τ̂L ob−−−→ S1,2 in Lob(E), so that

both T and S1,2 are elements of A
τ̂L ob(E) . We saw in Examples 5.10, however, that

T S1,2 /∈ A
τ̂L ob(E) .

It was also observed that Sn
SUO−−→ S1,2 inLob(E). Since E is atomic, the unbounded

order convergence of a net in E and its convergence in the Hausdorff uo-Lebesgue
topology on E are known to coincide (see [9, Lemma 3.1] and [26, Lemma 7.4]).

Thus also Sn
Sτ̂ E−−→ S1,2, so that both T and S1,2 are elements of aSτ̂ E (A ). We saw in

Examples 5.10, however, that T S1,2 /∈ aSτ̂ E (A ).

6 Equality of adherences of vector sublattices

In this section, we establish the equality of various adherences of vector sublattices
with respect to convergence structures under consideration in this paper.Wepay special
attention to vector sublattices of the orthomorphisms on a Dedekind complete vector
lattice. Apart from the intrinsic interest of the results, our research in this direction is
also motivated by representation theory. We shall now explain this.
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Suppose that E is a vector lattice, and thatS is a non-empty set of order bounded
linear operators on E . Typical examples to keep in mind are those where S is a
group of order automorphisms of E (this arises naturally when considering positive
representations of groups on vector lattices), or where S is a (vector lattice) algebra
of order bounded linear operators (this arises naturally when considering positive
representations of (vector lattice) algebras on vector lattices). One of the main issues
in general representation theory is to investigate the possible decompositions of a
module into submodules. In our case, this is asking for decompositions E = F1 ⊕ F2
as an order direct sum of vector sublattices F1 and F2 that are both invariant underS .
It is well known (see [29, Theorem 11.3] for an even stronger result) that F1 and F2
are then projection bands that are each other’s disjoint complements. Their respective
order projections then commute with all elements of S . Conversely, when an order
projection has this property, then E is the order direct sum of its range and its kernel,
and both are invariant under S . All in all, the decomposition question for the action
of S on E is the same as asking for the order projections on E that commute with
S . This makes it natural to ask for the commutant of S in Orth(E), where these
order projections reside. This commutant is obviously an associative subalgebra of
Orth(E). Somewhat surprisingly, it is quite often also a vector sublattice of Orth(E).
For example, this is always true for Banach lattices, in which case the operators in
S need not even be regular. Being bounded is enough, as is shown by the following
result, for which the Banach lattice need not even be Dedekind complete.

Theorem 6.1 Let E be a Banach lattice, and let S be a non-empty set of bounded
linear operators on E. Then the commutant

S ′
Orth := {T ∈ Orth(E) : T S = ST for all S ∈ S }

of S in Orth(E) is a Banach f -subalgebra of Orth(E) that contains the identity
operator I as a strongorder unit; hereOrth(E) is suppliedwith the coinciding operator
norm and order unit norm ‖ · ‖I .
Proof It is obvious thatS ′

Orth is an associative subalgebra of Orth(E) that contains I
and that is closed with respect to the coinciding operator norm and order unit norm
‖ · ‖I . An appeal to [15, Theorem 6.1] then finishes the proof. �	

For Dedekind complete vector lattices, we have the following.

Theorem 6.2 Let E be a Dedekind complete vector lattice, let S be a non-empty
subset of Lob(E), and let BS be the band in Lob(E) that is generated by S . Then
the commutant

S ′
Orth := {T ∈ Orth(E) : T S = ST for all S ∈ S }

of S in Orth(E) and the commutant

(BS )′Orth := {T ∈ Orth(E) : T S = ST for all S ∈ BS }
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of BS in Orth(E) are equal. This common commutant in Orth(E) is a vector lattice
subalgebra of Orth(E) that contains the identity operator I as a weak order unit.

Suppose that S ⊆ Loc(E). Then:

(1) S ′
Orth is an order closed vector sublattice of every regular vector sublattice of

Lob(E) containing S ′
Orth;

(2) S ′
Orth is a regular vector sublattice of every Dedekind complete regular vector

sublattice of Lob(E) containing S ′
Orth;

(3) S ′
Orth is a Dedekind complete vector lattice.

Proof For T ∈ Orth(E), we let λT (resp. ρT ) denote the corresponding left (resp.
right) multiplication operator onLob(E). Since Corollary 2.7 implies that λT −ρT is
an orthomorphism on Lob(E), its kernel is a band in Lob(E) by [4, Theorem 2.48].
It follows from this that the commutants of S and BS in Orth(E) are equal.

We shall now show that this common commutant in Orth(E) is a vector sublattice of
Orth(E). In viewofwhatwe have already established,wemay suppose thatS consists
of one positive operator S on E . We shall show that for T1, T2 ∈ Orth(E), T1 ∨ T2
commutes with S whenever T1 and T2 do. Obviously, (T1 ∨ T2)S = λT1∨T2(S) which,
by part (2) of Corollary 2.7, equals (λT1 ∨ λT2)(S). Using once more from part (2)
of Corollary 2.7 that left multiplications by elements of Orth(E) are orthomorphisms
on Lob(E), [4, Theorem 2.43] implies that (λT1 ∨ λT2)(S) = λT1(S) ∨ λT2(S) =
(T1S) ∨ (T2S). As a consequence of the assumption, this equals (ST1) ∨ (ST2). By a
reasoning similar to the one just given, but now using part (1) of Corollary 2.7, this
equals S(T1 ∨ T2). Hence S ′

Orth is a vector sublattice of Orth(E).
It is clear thatS ′

Orth is an associative subalgebra of Orth(E) containing I and that
I , which is a weak order unit of Orth(E), is also one ofS ′

Orth.
We turn to the remaining statements when S ⊆ Loc(E). Suppose that (Tα)α∈A

is a net in S ′
Orth, that T ∈ Lob(E), and that Tα

o−→ T in Lob(E). Then certainly
T ∈ Orth(E). Using that S ⊆ Loc(E), it follows from Proposition 4.1 that T
commutes with all elements of S . Hence T ∈ S ′

Orth, and we conclude that S ′
Orth is

an order closed vector sublattice of Lob(E). Obviously, it is then also order closed
in every regular vector sublattice of Lob(E) containing it. We have thus established
part (1).

Take a Dedekind complete regular vector sublattice F of Lob(E) that contains
S ′

Orth. Since we know that S ′
Orth is order closed in F , [22, p. 303] shows that S ′

Orth
is a complete vector sublattice of F as this notion is defined on [22, p. 295–296]. It
then follows from [22, p. 296] that S ′

Orth is a regular vector sublattice of F and, on
taking F = Lob(E), also that S ′

Orth is Dedekind complete. �	
Remark 6.3 As a special case of Theorem 6.2, it was already established in [12,
Lemma 8.9] that, for a Dedekind complete vector lattice E , S ′

Orth is an order closed
vector lattice subalgebra of Orth(E) for every vector sublattice S of Loc(E).

In Theorem 6.2, when S ⊆ Loc(E), then the vector lattice S ′
Orth is a Dedekind

complete vector latticewith the identity operator I as aweakorder unit. The unbounded
version of Freudenthal’s spectral theorem (see [23, Theorem 40.3], for example) then
shows that an arbitrary element T ∈ S ′

Orth is an order limit of a sequence of linear
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combinations of the components of I inS ′
Orth. Since the latter are precisely the order

projections that commute withS we see that, in this case,S ′
Orth does not only contain

all information about the collection of bands in E that reduce S , but that it is also
completely determined by this collection.

On a later occasion, we shall report more elaborately on the procedures of taking
commutants and also of taking bicommutants in the context of operators on vector
lattices andBanach lattices, as well as on their relationswith reducing projection bands
for sets of operators; see [13, 14]. For the moment, we content ourselves with the
general observation that the study of vector lattice subalgebras of the orthomorphisms
is relevant for representation theory on vector lattices.

We shall now set out to study one particular aspect of this, namely, the equality
of the adherences of vector sublattices of the orthomorphisms with respect to several
of the convergence structures under consideration in this paper. Although from a
representation theoretical point of view it would be natural to require that they also
be associative subalgebras, this does, so far, not appear to be relevant for these issues.
Such results on equal adherences can then also be obtained for associative subalgebras
of the orthomorphisms on a Banach lattice, as a consequence of the fact that their norm
closures in the orthomorphisms are. in fact, vector sublattices to which the previous
results can be applied.

Regarding the results below that are given for vector sublattices of the orthomor-
phisms, we recall that, for a Dedekind complete vector lattice, several adherences
coincide for subsets of the orthomorphisms. Indeed, since, for nets of orthomorphisms,
unbounded order convergence coincides with strong unbounded order convergence,
and since the convergence in a possible Hausdorff uo-Lebesgue topology coincides
with the corresponding strong convergence, the corresponding adherences of subsets
of the orthomorphisms are also equal. The same holds for sequential adherences.
For reasons of brevity, we have refrained from including these ‘obviously also equal’
adherences in the statements.

Although our motivation leads us to study vector sublattice of the orthomorphisms,
the results as we shall derive them for these are actually consequences of more general
statements for vector lattices that need not even consist of operators. These are of
interest in their own right.Other such results are [16,Theorem8.8], [17,Theorem2.13],
and [26, Proposition 2.12].

We start by establishing results showing that the closures of vector sublattices (or
associative subalgebras) in a possible Hausdorff uo-Lebesgue topology coincide with
their closures in other linear topologies on the vector lattices (or associative algebras)
under consideration. These are based on the following result, which is established in
the first paragraph of the proof of [16, Theorem 8.8]. For the definition of the absolute
weak topology |σ |(E, I ) on E that occurs in it we refer to [3, p. 63].

Proposition 6.4 Let E be a vector lattice such that E∼

oc separates the points of E. Then
E admits a (necessarily unique) Hausdorff uo-Lebesgue topology τ̂E . Take an ideal I
of E∼

oc that separates the points of E, and take a vector sublattice F of E. Then

F
τ̂E = F

σ(E,I ) = F
|σ |(E,I )
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in E.

In the following consequence of Proposition 6.4, the latticeF of operators can be
taken to be Orth(E).

Corollary 6.5 Let E be a Dedekind complete vector lattice such that E∼

oc separates the
points of E, and let E be a regular vector sublattice of Lob(E). Then E ∼

oc separates
the points of E , and E admits a (necessarily unique) Hausdorff uo-Lebesgue topology
τ̂E . Take an ideal I of E

∼

oc that separates the points of E , and take a vector sublattice
F of E . Then

F
τ̂E = F

σ(E ,I ) = F
|σ |(E ,I )

in E .

Proof For ϕ ∈ E∼

oc and x ∈ E , define the order bounded linear functional on E
by setting �ϕ,x (T ) := ϕ(T x) for T ∈ E . Since E is a regular vector sublattice of
Lob(E), an appeal to [15, Lemma 4.1] shows that �ϕ,x ∈ E ∼

oc . Is then clear that E ∼

oc
separates the points of E . Now Proposition 6.4 can be applied with E replaced by E
and F by F . �	

Proposition 6.4 is also used in the proof of the following.

Theorem 6.6 Let A be a unital f -algebra such that its identity element e is also a
strong order unit of A , and such that it is complete in the submultiplicative order
unit norm ‖ · ‖e onA . Suppose thatA ∼

oc separates the points ofA . ThenA admits a
(necessarily unique) Hausdorff uo-Lebesgue topology τ̂A . Take an ideal I ofA ∼

oc that
separates the points of A , and take a (not necessarily unital) associative subalgebra
B of E. Then

B
τ̂A = B

σ(A ,I ) = B
|σ |(A ,I ) =

B
‖ · ‖e τ̂A = B

‖ · ‖eσ(A ,I )

= B
‖ · ‖e |σ |(A ,I ) (6.1)

in A .

Before giving the proof, we mention the following fact that is easily verified. Sup-
pose that X is a topological space that is supplied with two topologies τ1 and τ2, where

τ2 is weaker than τ1. Then S
τ1

τ2 = S
τ2 for every subset S of X .

Proof It follows from [15, Theorem 6.1] that B
‖ · ‖e is a Banach f -subalgebra of A .

Being a vector sublattice of A , Proposition 6.4 shows that the sets in the second line
of equation 6.1 are equal. Since the convergence of a net in the order unit norm ‖ · ‖e
implies its order convergence to the same limit (and then also its convergence in τ̂A
to the same limit), we are done by an appeal to the remark preceding the proof. �	

The following is now clear from Theorem 6.6 and the argument in the proof of
Corollary 6.5.
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Corollary 6.7 Let E be a Dedekind complete Banach lattice. Suppose that E∼

oc sepa-
rates the points of E. Then Orth(E)∼

oc separates the points of Orth(E), and Orth(E)

admits a (necessarily unique) Hausdorff uo-Lebesgue topology τ̂Orth(E). Take an ideal
I ofOrth(E)∼

oc that separates the points ofOrth(E), and take a (not necessarily unital)
associative subalgebra A of Orth(E). Then

A
τ̂Orth(E) = A

σ(Orth(E),I ) = A
|σ |(Orth(E),I ) =

A
‖ · ‖ τ̂Orth(E)

= A
‖ · ‖σ(Orth(E),I )

= A
‖ · ‖|σ |(Orth(E),I )

in Orth(E); here ‖ · ‖ denotes the coinciding operator norm, order unit norm with
respect to the identity operator, and regular norm on Orth(E).

We shall now continue by establishing results showing that the closures of vector
sublattices (or associative subalgebras) in a possible Hausdorff uo-Lebesgue topology
coincide with their adherences with respect to various convergence structures on the
enveloping vector lattices (or vector lattice algebras) under consideration in this paper.

Needless to say, under appropriate conditions, ‘topological’ results as obtained
above may apply at the same time as ‘adherence’ results to be obtained below. For
reasons of brevity, we have refrained from formulating such ‘combined’ results.

Let us also notice at this point that the results below imply that the adherences of
vector sublattices that occur in the statements are closed with respect to the pertinent
convergence structures. Indeed, these adherences are set maps that map vector sublat-
tices to vector sublattices. When they agree on vector sublattices with the topological
closure operator that is supplied by the Hausdorff uo-Lebesgue topology, then they,
too, are idempotent. For example, the unbounded order adherence of the vector sublat-
tice F in Proposition 6.8, is unbounded order closed. For reasons of brevity, we have
refrained from including such consequences in the results.

We start by considering two cases where the enveloping vector lattices have weak
order units.

Proposition 6.8 Let E be a Dedekind complete vector lattice with the countable sup
property and a weak order unit. Suppose that E admits a (necessarily unique) Haus-
dorff uo-Lebesgue topology τ̂E . Let F be a vector sublattice of E. Then

F
τ̂E = aσuo(F) = auo(F)

in E.

Proof Clearly, we have aσuo(F) ⊆ auo(F) ⊆ F
τ̂E . Let e be a positive weak order

unit of E . Take x ∈ F
τ̂E . There exists a net (xα)α∈A in F with xα

τ̂E−→ x . Then

|xα − x | ∧ e
τ̂E−→ 0, and we conclude from [3, Theorem 4.19] that there exists an

increasing sequence (αn)
∞
n=1 of indices in A such that |xαn − x | ∧ e

o−→ 0 in E . An

appeal to [19, Lemma 3.2] shows that xαn

uo−→ x in E . Hence x ∈ aσuo(F). We

conclude that F
τ̂E ⊆ aσuo(F). �	
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On combining Theorem 2.1, Proposition 6.8, and [15, Proposition 6.5], the follow-
ing is easily obtained. We recall that a subset of a vector lattice is said to be an order
basis when the band that it generates is the whole vector lattice.

Corollary 6.9 Let E be a Dedekind complete vector lattice with the countable sup
property and an at most countably infinite order basis. Suppose that E admits a
(necessarily unique) Hausdorff uo-Lebesgue topology. Then Orth(E) admits a (nec-
essarily unique) Hausdorff uo-Lebesgue topology τ̂Orth(E). Let E be a vector sublattice
of Orth(E). Then

E
τ̂Orth(E) = aσuo(E ) = auo(E )

in Orth(E).

We continue by considering cases where the enveloping vector lattice (or vector
lattice algebra) has a strong order unit.

It is known that the o-adherence of a vector sublattice of a Dedekind complete
Banach lattice E with a strong order unit can be a proper sublattice of its uo-adher-
ence; see [17, Lemma 2.6] for details. When the vector sublattice contains a strong
order unit of E , however, then this cannot occur, not even in general vector lattices.
This is shown by the following preparatory result.

Lemma 6.10 Let E be a vector lattice with a strong order unit. Suppose that F is a
vector sublattice of E that contains a strong order unit of E. Then ao(F) = auo(F)

and aσo(F) = aσuo(F) in E.

Proof We prove that ao(F) = auo(F). It is clear that ao(F) ⊆ auo(F). For the
reverse inclusion, we choose a positive strong order unit e of E such that e ∈ F . Take
x ∈ auo(F), and let (xα)α∈A be a net in F such that xα

uo−→ x in E . There exists a
λ ∈ R≥0 such that |x | ≤ λe. Forα ∈ A, set yα := (−λe∨xα)∧λe. Clearly, (yα)α ⊆ F

and yα
uo−→ (−λe ∨ x) ∧ λe = x . Since the net (yα)α∈A is order bounded in E , we

have that yα
o−→ x in E . Hence x ∈ ao(F). We conclude that auo(F) ⊆ ao(F).

The proof for the sequential adherences is a special case of the above one. �	
Remark 6.11 For comparison, we recall that, for a regular vector sublattice F of a
vector lattice E , it is always the case that ao(F) = auo(F) in E , and that these
coinciding subsets are order closed subsets of E ; see [17, Theorem 2.13]. For this to
hold, no assumptions on E are necessary.

The following is immediate from Proposition 6.8 and Lemma 6.10.

Theorem 6.12 Let E be a Dedekind complete vector lattice with the countable sup
property and a strong order unit. Suppose that E admits a (necessarily unique) Haus-
dorff uo-Lebesgue topology τ̂E . Let F be a vector sublattice of E that contains a strong
order unit of E. Then

F
τ̂E = aσo(F) = ao(F) = aσuo(F) = auo(F)

in E.
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The following result follows from the combination of Theorem 2.1, Theorem 6.12,
and [15, Proposition 6.5]. In view of [15, Proposition 6.5], the natural condition to
include is that E have an at most countably infinite order basis, but it is easily verified
fact that, for a Banach lattice, this property is equivalent to having a weak order unit.

Corollary 6.13 Let E be a Dedekind complete Banach lattice with the countable sup
property and a weak order unit. Suppose that E admits a (necessarily unique) Haus-
dorff uo-Lebesgue topology. Then Orth(E) admits a (necessarily unique) Hausdorff
uo-Lebesgue topology τ̂Orth(E). Let E be a vector sublattice of Orth(E) that contains
a strong order unit of Orth(E). Then

E
τ̂Orth(E) = aσo(E ) = ao(E ) = aσuo(E ) = auo(E )

in Orth(E).

We now turn to closures and adherences of associative subalgebras of a class of
f -algebras with strong order units. For this, we need the following preparatory result.

Lemma 6.14 Let E be a Banach lattice, and let A be a subset of E. Then aσo(A) =
aσo(A) in E, where A denotes the norm closure of A.

Proof We need to prove only that aσo(A) ⊆ aσo(A). For this, we may suppose that
A �= ∅. Take x ∈ aσo(A) and a sequence (xn)∞n=1 in A such that xn

σo−→ x in E .
For n ≥ 1, take an yn ∈ A such that ‖yn − xn‖ ≤ 2−n . For n ≥ 1, define zn by
setting zn := ∑∞

m=n|ym − xm |, which is meaningful since the series is absolutely
convergent. It is clear that zn ↓. Since ‖zn‖ ≤ 2−n+1, we have zn ↓ 0 in E . The fact
that |yn − xn| ≤ zn for n ≥ 1 then shows that |yn − xn| σo−→ 0 in E . From

0 ≤ |yn − x | ≤ |yn − xn| + |xn − x | σo−→ 0,

we then see that yn
σo−→ x in E . Hence x ∈ aσo(A), as desired. �	

Theorem 6.15 Let A be a Dedekind complete unital f -algebra with the countable
sup property, such that its identity element e is also a strong order unit ofA , and such
that it is complete in the submultiplicative order unit norm ‖ · ‖e on A . Suppose that
A admits a (necessarily unique) Hausdorff uo-Lebesgue topology τ̂A . Let B be an

associative subalgebra ofA such thatB
‖ · ‖e contains a strong order unit ofA . Then

B
τ̂A = aσo(B) = ao(B) = aσuo(B) = auo(B) =

B
‖ · ‖e τ̂A = aσo(B

‖ · ‖e
) = ao(B

‖ · ‖e
) = aσuo(B

‖ · ‖e
) = auo(B

‖ · ‖e
)

(6.2)

in A .
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Proof We know from [15, Theorem 6.1] that B
‖ · ‖e is a Banach f -subalgebra of

A . Then Theorem 6.12 shows that all equalities in the second line of Eq. 6.2 hold.
Furthermore, it is obvious that

aσo(B) ⊆ ao(B) ⊆ auo(B) ⊆ B
τ̂A

and that

aσo(B) ⊆ aσuo(B) ⊆ B
τ̂A

.

Using that aσo(B) = aσo(B
‖ · ‖e

) by Theorem 6.14 and that—see the proof of Theo-

rem 6.6—we also know thatB
τ̂A = B

‖ · ‖e τ̂A , it then follows that all sets in Eq. 6.2
are equal. �	

The following is now clear from Theorem 2.1, Theorem 6.15, and [15, Corol-
lary 6.5].

Corollary 6.16 Let E be a Dedekind complete Banach lattice with the countable sup
property and a weak order unit. Suppose that E admits a (necessarily unique) Haus-
dorff uo-Lebesgue topology. Then Orth(E) admits a (necessarily unique) Hausdorff
uo-Lebesgue topology τ̂Orth(E). Let A be an associative subalgebra of Orth(E) such

that A
‖ · ‖

contains a strong order unit of Orth(E). Then

A
τ̂A = aσo(A ) = ao(A ) = aσuo(A ) = auo(A ) =

A
‖ · ‖ τ̂A

= aσo(A
‖ · ‖

) = ao(A
‖ · ‖

) = aσuo(A
‖ · ‖

) = auo(A
‖ · ‖

)

(6.3)

in Orth(E); here ‖ · ‖ denotes the coinciding operator norm, order unit norm with
respect to the identity operator, and regular norm on Orth(E).
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