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Abstract
In the context of partially ordered vector spaces one encounters different sorts of order
convergence and order topologies. This article investigates these notions and their
relations. In particular, we study and relate the order topology presented by Floyd,
Vulikh and Dobbertin, the order bound topology studied by Namioka and the concept
of order convergence given in theworks ofAbramovich, Sirotkin,Wolk andVulikh.We
prove that the considered topologies disagree for all infinite dimensional Archimedean
vector lattices that contain order units. For reflexive Banach spaces equipped with ice
cream cones we show that the order topology, the order bound topology and the norm
topology agree and that order convergence is equivalent to norm convergence.

Keywords Order topology · Order bound topology · Order convergence · Partially
ordered vector space · Riesz space · Vector lattice · Order neighbourhood ·
Minkowski norm · Ice cream cone · Net catching element

Mathematics Subject Classification 06A06 · 46B40 · 46B42

1 Introduction

In the study of partially ordered vector spaces one uses topological concepts like order
convergence and order continuity as can be seen for example in [1–5]. In particular
one encounters different types of order convergence, which lead to different types of
order continuity as well as different types of order topology. The different types of
order continuity are for example studied in [3] and [6] and we will focus in this paper
on properties and relationships of different sorts of topologies that can be defined
in partially ordered vector spaces. In particular we will investigate properties and
relationships of the order topology [2,7–9] and the order bound topology [5,10]. In
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2138 T. Hauser

order to define the order topology, recall that we write xα ↓ 0 whenever (xα)α∈A is a
decreasing net (i.e. α ≤ β implies xα ≥ xβ ) which satisfies infα∈A xα = 0.

Definition 1.1 A subset M ⊆ X is called an order neighbourhood of x ∈ X , if for all
nets (x̌α)α∈A with x̌α ↓ 0 there is α ∈ A such that [x − xα, x + xα] ⊆ M . A subset
O of X is called order open if O is an order neighbourhood of each of its points. The
order topology τo(X) (or simply τo) is defined as the set of all order open subsets.
Complements of order open sets are called order closed.

Following [5]wedefine theorder bound topology forArchimedeanpartially ordered
vector spaces that contain order units as follows.

Definition 1.2 An element u ∈ X+ is called an order unit, whenever for all x ∈ X
there is n ∈ N with x ≤ nu. For x ∈ X we define the Minkowski norm as ‖x‖u :=
inf{λ > 0; ±x ≤ λu}. Recall that whenever X is Archimedean and u is an order unit,
then ‖ · ‖u is indeed a norm on X . The corresponding topology τob(X) (or simply τob)
is independent from the choice of u and called the order bound topology.

It is natural to ask under which assumptions these topologies coincide. In Corol-
lary 4.8 and Theorem 4.11 we provide the following characterization.

Theorem A If X is an Archimedean partially ordered vector space (that contains order
units) the following statements are equivalent.

(i) τo = τob.

(ii) For all nets (xα)α∈A with xα ↓ x there holds xα
τob→ x.

(iii) X contains non-empty, order open and order bounded sets.
(iv) There exists x ∈ X+ such that for any net (xα)α∈A with xα ↓ 0 there exists α ∈ A

with xα ≤ x.

Wewill use this characterization to show that for all finite dimensionalArchimedean
and directed partially ordered vector spaces there holds τo = τob (Example 6.1). As τob
is a linear topology we obtain in particular that this topology is the standard topology
of X , i.e. the unique linear topology on X . In Example 6.2 we will furthermore show
the following.

Example For a reflexive Banach space equipped with an ice cream cone the order
topology, the order bound topology and thenorm topology agree andorder convergence
is equivalent to norm convergence.

However, for infinite dimensional Archimedean vector lattices X (with order units)
we obtain τob 	= τo from the following result, which follows from Corollary 4.8 and
Theorem 6.4.

Theorem B An Archimedean vector lattice contains non-empty, order open and order
bounded sets, if and only if it is finite dimensional.

Note that there exists a close relation between the order topology τo and various
concepts of order convergence [3,6]. It is thus natural to study the interplay of order
convergence and the order bound topology.The followingversion of order convergence
appears in [1–3,6,9].
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Topological concepts in partially ordered vector spaces 2139

Definition 1.3 Let x ∈ X and let (xα)α∈A be a net in X . We say that (xα)α∈A order

converges to x (and write xα
o−→ x) whenever there exists a net (x̌β)β∈B that satisfies

x̌β ↓ 0 and such that for any β ∈ B there exists αβ ∈ A with ±(xα − x) ≤ x̌β for all
α ≥ αβ . In this case we call x an order limit of (xα)α∈A.

We prove the following in Theorem 3.1.

Theorem C Let X be an Archimedean partially ordered vector space (that contains
order units). Every τob-convergent net is also order convergent (to the same limit).

The reader might have noticed that we stressed the existence of order units in our
statements. We did this as the order bound topology τob can also be defined in case X
does not contain order units (and is not Archimedean). In this case τob can be defined as
the linear topology generated by the zero neighbourhood base consisting of all convex
and circled sets that absorb all order intervals [5,10].Wewill see inTheorem3.1 that for
the implication discussed in Theorem C (τob-convergence implies order convergence)
the Archimedean property and the existence of order units are not only sufficient, but
also necessary.

We end our introduction presenting the following remarkable parallelism between
order units and elements x as considered in TheoremA(iv). In order to bemore precise,
we say that x ∈ X+ is net catching, whenever for any net (xα)α∈A with xα ↓ 0 there
exists α ∈ A that satisfies xα ≤ x . In Corollary 3.2, Theorem 4.6 and Proposition 4.7
we show the following.

Theorem D Let X be an Archimedean partially ordered vector space.

(i) The τob-interior of X+ is the set of all order units. Whenever there exist order units
in X there holds τo ⊆ τob.

(ii) The τo-interior of X+ is the set of all net catching elements. Whenever there exist
net catching elements in X there holds τob ⊆ τo.

In particular, whenever τo = τob an element x ∈ X is net catching, if and only if it is
an order unit.

Combining the Theorems B and D we obtain in particular that for any infinite
dimensionalArchimedeanvector lattice that contains order units the inclusion τo ⊆ τob
is strict. So far, we do not know, whether for all Archimedean partially ordered vector
spaces there holds τo ⊆ τob. However, in Theorem4.15we prove that forArchimedean
vector lattices all convex order open sets are τob-open.

The paper is organized as follows. In Sect. 2 we fix some notation. In Sect. 3
we will consider the interplay of order convergence and the Minkowski norm and
present a proof of Theorem C. Sect. 4 is devoted to the interplay of order units, net
catching elements, the order topology and the order bound topology. In particular,
we will prove the Theorems A and D and present examples. This section ends with
a brief investigation of convex order open sets. In order to present more interesting
examples, such as the statement about ice cream cones of reflexive Banach spaces, we
will provide a sufficient condition for the existence of net catching elements in Sect. 5.
This technique is used in Sect. 6. In this section we furthermore prove Theorem B.
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2140 T. Hauser

2 Preliminaries

2.1 Nets and subnets

A mapping x : A → M is called a net, whenever A is a non-empty set equipped
with a reflexive and transitive relation ≤ that is directed, i.e. for α, α′ ∈ A there exists
α′′ ∈ Awith α ≤ α′′ and α′ ≤ α′′. In this case we denote (xα)α∈A with xα = x(α). We
say that another net (yβ)β∈B is a subnet of (xα)α∈A, whenever there exists a function
h : B → A, such that (i) for any β ≤ β ′ there holds α ≤ α′, (ii) for any α ∈ A exists
β ∈ B with α ≤ h(β), and (iii) for all β ∈ B we have yβ = xh(β). See [11] for further
details.

2.2 Partially ordered vector spaces

A partially ordered vector space is a real vector space X equipped with a reflexive,
transitive and antisymmetric binary relation ≤ such that for every λ ∈ R with 0 ≤ λ

and x, y, z ∈ X with x ≤ y one has that x + z ≤ y + z and λx ≤ λy. We denote
X+ := {x ∈ X; 0 ≤ x} for the cone and call the elements of X+ positive. For
x, y ∈ X we write x < y if x ≤ y and x 	= y. For U , V ⊆ X we write U ≤ V
if for every x ∈ U and y ∈ V we have x ≤ y. For x ∈ X , we abbreviate V ≤ {x}
by V ≤ x , and x ≤ V is defined similarly. For x, y ∈ X the order interval is given
by [x, y] := {z ∈ X; x ≤ z ≤ y}. For a subset of X , the notions bounded above,
bounded below, order bounded, upper (or lower) bound and infimum (or supremum)
are defined as usual.

Consider a partially ordered vector space X . X is called directed if for every x, y ∈
X there exists z ∈ X with x, y ≤ z. Note that X is directed, if and only if X+ is
generating, i.e. X = X+ − X+. We say that X is Archimedean if for every x, y ∈ X
with nx ≤ y for all n ∈ N one has that x ≤ 0. We call X a vector lattice if for every
non-empty finite subset of X the infimum and the supremum exist in X . X is called
Dedekind complete whenever every non-empty set that is bounded from above has a
supremum, and every non-empty set that is bounded from below has an infimum. Note
that every Dedekind complete vector lattice is Archimedean. An element u ∈ X+ is
called an order unit, if for all x ∈ X there is n ∈ N such that x ≤ nu. An element
x ∈ X+ is called net catching, if for all nets (xα)α∈A with xα ↓ 0 there exists
α ∈ A such that xα ≤ x . We call M ⊆ X order dense in X if for every y ∈ X one
has

sup{x ∈ M; x ≤ y} = y = inf{x ∈ M; y ≤ x}.

A non-empty convex subset B of X+ \ {0} is called a base (of X+), if for each
x ∈ X+ \ {0} there are unique b ∈ B and λ ∈ R+ such that x = λb. Consider subsets
M, N ⊆ X . We say that M is circled whenever for all λ ∈ [−1, 1] we have λM ⊆ M .
Furthermore, we say that M absorbs N , if there is μ > 0 with λN ⊆ M for all
λ ∈ [−μ,μ].
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Topological concepts in partially ordered vector spaces 2141

2.3 Embedding theorems

Let X and Y be partially ordered vector spaces. A linear mapping f : X → Y is
said to be positive whenever all x ∈ X+ satisfy f (x) ≥ 0. We call a linear map
f : X → Y order reflecting, whenever f (x) ≥ 0 implies x ≥ 0 for all x ∈ X . Note
that every order reflecting mapping is injective. A linear order embedding is a positive
and order reflecting map. A linear order dense embedding is a linear order embedding
f : X → Y for which the image f (X) is order dense in Y . A linear order isomorphism
is a surjective order embedding. For a reference of the following embedding theorem
see [2, Theorem IV.11.1] or [12, Chapter V.3].

Theorem 2.1 If X is an Archimedean and directed partially ordered vector space, then
there exists a Dedekind complete vector lattice X δ and a linear order dense embedding
ι : X → X δ . In this context ι : X → X δ is called a Dedekind completion of X.

Recall that a topological space is called extremely disconnected whenever the clo-
sure of any open set is open. For reference of the following see [13, Theorem 45.5] or
[2, Theorem V.2.2 and Theorem V.4.1].

Theorem 2.2 If X is a Dedekind complete vector lattice that contains order units, then
there exists an extremely disconnected compact Hausdorff space � and a linear order
isomorphism ι : X → C(�). Here C(�) is the vector lattice of all continuous function
f : � → R equipped with the pointwise order.

2.4 Order convergence and the order topology

We next summarize some well known results that can be found in varying degrees of
generality in [1–3,6,9] concerning the order topology and the order convergence as
defined in the introduction.

Theorem 2.3 Let X be a partially ordered vector space.

(i) A subset M ⊆ X is order closed, if and only if the order limits of nets in M are
contained in M.

(ii) Any net (xα)α∈A that satisfies xα ↓ x order converges to x.
(iii) Any net that order converges to x ∈ X also converges to x w.r.t. the order topology

τo.
(iv) X+ is order closed.
(vi) Whenever τo is a linear topology, then X is Archimedean and directed.
(v) τo(R) is the standard topology of R. Order convergence is equivalent to the stan-

dard notion of convergence of R.

Proof The statement (vi) follows from [6, Lemma 8.1] and (v) can easily be seen as
the standard topology of the Dedekind complete lattice R is generated by the set of
all order intervals. See [6, Theorem 3.14, Proposition 3.6, and Corollary 3.18 ] for the
rest of the statements. ��

If X and Y are partially ordered vector spaces we call a positive map f : X → Y
order continuous, whenever any net (xα)α∈A with xα ↓ 0 satisfies f (xα) ↓ 0. From
[6, Theorem 4.4 and Corollary 4.5] we quote the following results.
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2142 T. Hauser

Theorem 2.4 (i) Every linear order dense embedding between partially ordered vec-
tor spaces is order continuous.

(ii) For any positive map f : X → Y between partially ordered vector spaces the
following statements are equivalent.

(a) f is order continuous.
(b) f is continuous with respect to τo(X) and τo(Y ).
(c) For any order convergent net (xα)α∈A in X with order limit x ∈ X the net

( f (xα))α∈A is order convergent with order limit f (x).

2.5 The order bound topology

The following definition generalizes the definition of the order bound topology pre-
sented in the introduction. See [5, Sect. 2.8] for details.

Definition 2.5 Let Bob(X) (or simply Bob) be the set of all subsets V ⊆ X such that
V is convex, circled and absorbs all order intervals. Note that Bob is a base at zero
for a linear topology τob(X) (or simply τob). This topology is called the order bound
topology.

The order bound topology τob is introduced and studied in [10]. For further details
we recommend [5], where τob is called ’order topology’. The following statements
can be found in [5, Sect. 2.8].

Theorem 2.6 Let X be an Archimedean partially ordered vector space and let u be an
order unit in X.

(i) The norm ‖ · ‖u generates τob.

(ii) The respective closed unit ball satisfies B
‖·‖u
1 (0) = [−u, u].

3 Order convergence and the order bound topology

As presented above the link between the order convergence and the order topology
was investigated in various works like for example [6,9]. We thus focus next on the
link between the order bound topology and the order convergence.

Theorem 3.1 Let X be a partially ordered vector space. The following statements are
equivalent.

(i) Any τob-convergent net is order convergent (to the same limit).
(ii) X is Archimedean and contains order units.

From Theorem 2.3 we recall that order convergence implies convergence with
respect to the order topology τo. We thus obtain the following.

Corollary 3.2 If X is an Archimedean partially ordered vector space that contains
order units, then the order bound topology is finer than the order topology, i.e. τo ⊆ τob.

In order to show Theorem 3.1 we will need the following lemma.
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Topological concepts in partially ordered vector spaces 2143

Lemma 3.3 Let X be an Archimedean partially ordered vector space that contains
order units. Then the set of order units U equipped with the reversed order from X is
directed and satisfies inf U = 0 with respect to the order of X.

Proof Let u, v ∈ U . There is n ∈ N such that v ≤ nu. As (1/n)v is also an order
unit which satisfies (1/n)v ≤ {u, v} we obtain U to be directed with respect to the
reversed order.

Clearly 0 ≤ U and we consider z ∈ X with z ≤ U . For u ∈ U and n ∈ N we know
that also (1/n)u is an order unit. Thus there holds nz ≤ u for all n ∈ N and we obtain
z ≤ 0 as u is an order unit. This shows inf U = 0. ��
Proof of Theorem 3.1 To show that (i) implies (ii) we show first that X is Archimedean
and consider x, y ∈ X with nx ≤ y for all n ∈ N. Any V ∈ Bob absorbs [y, y] there
exists μ > 0 with λ[y, y] ⊆ V for all λ ∈ [−μ,μ]. For n ∈ N with n ≥ 1/μ we
observe (1/n)y ∈ (1/n)[y, y] ⊆ V . Hence ((1/n)y)n∈N converges to 0 w.r.t. τob and
(i) implies that this net order converges to 0. Thus there exists a net (y̌β)β∈B with
y̌β ↓ 0 and such that for β ∈ B there exists n ∈ N with x ≤ (1/n)y ≤ y̌β . Hence
x ≤ 0 and we obtain X to be Archimedean.

To show that X contains order units let A := {(x, V ); V ∈ Bob, x ∈ V } be ordered
by (x, V ) ≤ (y,U ) whenever V ⊇ U . Then A is easily seen to be directed and we
define x(x,V ) := x for (x, V ) ∈ A in order to obtain a net (xα)α∈A. As Bob is a base at

zero for τob we obtain xα
τob→ 0 and (i) implies xα

o→ 0. Thus there exists a net (x̌β)β∈B
with x̌β ↓ 0 and such that for any β ∈ B there exists αβ ∈ A such that ±xα ≤ x̌β for
all α ≥ αβ . We will now show that x̌β is an order unit for any β ∈ B.

Let β ∈ B and consider (y, V ) = αβ ∈ A as above. For v ∈ V we have (v, V ) ≥
(x, V ) and hence ±v = ±x(v,V ) ≤ x̌β . We observe V ≤ x̌β . For x ∈ X we consider
the order interval [x, x] and obtain from the definition of Bob that V absorbs [x, x].
Thus there exists μ > 0 with λx ≤ V for all λ ∈ [−μ,μ]. For n ∈ N with n ≥ 1/μ
we obtain x ≤ nV ≤ nx̌β .

To show that (ii) implies (i) we consider a net (xα)α∈A with xα
τob→ x ∈ X but assume

w.l.o.g. that x = 0. Let B be the set of all order units, equipped with the reversed order
from X . Define x̌β := β for β ∈ B. By Lemma 3.3 the net (x̌β)β∈B satisfies x̌β ↓ 0.
For β ∈ B we know that the norm ‖ · ‖β generates the order bound topology and thus
‖xα‖β → 0. Thus there is αβ ∈ A such that inf{λ > 0; ±xα ≤ λβ} = ‖xα‖β ≤ 1

2

for α ≥ αβ . We obtain ±xα ≤ β = x̌β for every α ≥ αβ . This shows xα
o−→ 0. ��

Remark 3.4 Note that the net (x̌β)β∈B constructed in the second part of the proof is
independent from (xα)α∈A.

4 The interplay of the order topology and the order bound topology

4.1 About order units and net catching elements

We start the investigation of the interplay of the order topology and the order bound
topology by relating net catching elements with order units.
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2144 T. Hauser

Lemma 4.1 Let X be a partially ordered vector space.

(i) If X contains net catching elements, then every order unit in X is net catching.
(ii) If X is Archimedean and directed, then every net catching element of X is an order

unit.

Proof To show (i) let u be an order unit of X and consider a net catching element
x ∈ X . There is n ∈ N such that x ≤ nu. it is straight forward to show that nu and
hence u is net catching.

To show (ii) assume x ∈ X to be net catching and consider y ∈ X . As X is
directed there exists z ∈ X+ such that z ≥ y. The Archimedean property of X implies
(1/n)z ↓ 0. Thus since x is net catching there is n ∈ N such that (1/n)z ≤ x , i.e.
y ≤ z ≤ nx .

Remark 4.2 Note that an element x ∈ X is net catching, if and only if it is net catching
with respect to the order restricted to the directed part X+ − X+. As non-directed
partially ordered vector spaces do not contain order units it is natural to assume direct-
edness in (ii).

Example 4.3 Let l∞ be the Dedekind complete vector lattice of all bounded and real
sequences, equipped with the pointwise order. Then e := (1)k∈N is an order unit of
l∞ that is not net catching. Thus Lemma 4.1(i) implies that l∞ has no net catching
elements.

Proof For n, k ∈ N let e(n)
k := 0, if k < n and e(n)

k := 2 otherwise. This defines a
sequence (e(n))n∈N in l∞ such that e(n) ↓ 0. Since for no n ∈ N we have e(n) ≤ e we
obtain e to be not net catching. ��

There also exist net catching elements, which are not order units.

Example 4.4 Equip l∞ with the lexicographic order, i.e. with (xn)n∈N ≤ (yn)n∈N
whenever (xn)n∈N = (yn)n∈N or whenever there exists n ∈ N such that xn < yn and
xm = ym for all m < n. l∞ equipped with ≤ is a (non-Archimedean) vector lattice
that contains order units and furthermore net catching elements which are not order
units.

Proof Note that the lexicographic order is total, i.e. that there holds x ≤ y or y ≤ x
for all x, y ∈ l∞. One easily obtains that (un)n∈N ∈ l∞ is an order unit with respect
to this ordering, if and only if u1 > 0. Consider x = (xn)n∈N ∈ l∞ with x1 = 0 and
xn := 1 for n ≥ 2, which is obviously no order unit. To show that x is net catching let
(xα)α∈A be a net in l∞ with xα ↓ 0. As 0 < x and as ≤ is total we observe that there
exists α ∈ A such that xα ≤ x . ��

4.2 A parallelism between order units and net catching elements

We next investigate the interplay of order units with the order bound topology, and of
net catching elements with the order topology respectively.

Lemma 4.5 Let X be a partially ordered vector space and x ∈ X.
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Topological concepts in partially ordered vector spaces 2145

(i) x is an order unit, if and only if [−x, x] ∈ Bob.
(ii) x is net catching, if and only if [−x, x] is an order neighbourhood of 0.

Proof ’(i)’ Let us assume that x is an order unit. Since [−x, x] is clearly convex and
circled it remains to show that [−x, x] absorbs order intervals. Consider an order
interval [y, z] ⊆ X . As x is an order unit there is n ∈ N with −y, z ≤ nx and we
obtain (1/n)[y, z] ⊆ [−x, x]. As [−x, x] is circled this shows that [−x, x] absorbs
[y, z].

To show the converse assume [−x, x] ∈ Bob and let y ∈ X . As [−x, x] absorbs
[y, y] there is μ > 0 with λ[y, y] ⊆ [−x, x] for all λ ∈ [−μ,μ]. For n ∈ N with
n ≥ 1/λ we obtain y ≤ nx , which proves x to be an order unit.

’(ii)’ Assume that x is net catching. For a net (xα)α∈A with xα ↓ 0 there exists
α ∈ A with xα ≤ x . Thus [−xα, xα] ⊆ [−x, x] and we obtain [−x, x] to be an order
neighbourhood. Similarly one shows thatwhenever [−x, x] is an order neighbourhood,
then x is net catching. ��

In analogy with Corollary 3.2 we next show the following.

Theorem 4.6 If there are net catching elements in X, then the order topology is finer
than the order bound topology, i.e. τob ⊆ τo.

Proof We show that every V ∈ Bob is an order neighbourhood of 0. Let x be a
net catching element. Since V absorbs all order intervals there is λ > 0 such that
[−λx, λx] ⊆ V . Note that λx is net catching. Thus Lemma 4.5 shows [−λx, λx] ⊆ V
to be an order neighbourhood of 0. ��
Proposition 4.7 Let X be a partially ordered vector space.

(i) The τob-interior of X+ is the set of all order units of X.
(ii) The τo-interior of X+ is the set of all net catching elements of X.

Proof ’(i)’ Let u be contained in the τob-interior of X+ and let x ∈ X . There exists
V ∈ Bob such that V + u ⊆ X+. As V absorbs all order intervals we argue as above
to find n ∈ N with [−x,−x] ⊆ nV and observe nu − x ≤ nV + nu ⊆ nX+ = X+,
i.e. x ≤ nu.

To show the converse we will show that the set U of all order units is order
open. Indeed, whenever u ∈ U , then (1/2)u ∈ U . Thus by Lemma 4.5 we obtain
[(−1/2)u, (1/2)u] ∈ Bob. As u + [(−1/2)u, (1/2)u] = [(1/2)u, (3/2)u] consists
only of order units we obtain that U is a τob-neighbourhood of u.

’(ii)’ Let x be contained in the τo-interior X
oτo+ of X+. To show that x is net

catching let (xα)α∈A be a net in X+ with xα ↓ 0. Since X
oτo+ is order open it is an order

neighbourhood of x . Thus there is α ∈ A such that [x− xα, x+ xα] ⊆ X
oτo+ ⊆ X+ and

hence xα ≤ x . The converse can be shown similarly to the corresponding implication
of (i).

Corollary 4.8 Let X be a partially ordered vector space.

(i) X contains order units, if and only if there exist non-empty τob-open subsets of X
that are order bounded.
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2146 T. Hauser

(ii) X contains net catching elements, if and only if there exist non-empty order open
subsets of X that are order bounded.

Proof If the τob-interior X
o(τob)+ is non-empty, then ((2x) − X

o(τob)+ ) ∩ X
o(τob)+ is a

non-empty, τob-open and order bounded set for any x ∈ X
o(τob)+ . Conversely, if O

is a non-empty, τob-open and order bounded set, then there exist x, y ∈ X with
−x ≤ O � y and x + y ∈ O + x ⊆ X+ is an interior point of X+ with respect to τob.
This shows (i) and (ii) can be obtained by considering τo instead of τob. ��

4.3 Examples

Example 4.9 Recall from Example 4.3 that l∞ equipped with the pointwise order is
an Archimedean vector lattice that contains order units but no net catching elements.
From Corollary 3.2 we know that τo ⊆ τob. This inclusion is strict, as we know from
Proposition 4.7 that the interior of X+ with respect to τo is empty while the interior
of X+ with respect to τob contains elements.

Example 4.10 Recall from Example 4.4 that l∞ equipped with the lexicographic order
is a vector lattice that contains net catching elements that are not order units. From
Theorem 4.6 we obtain τob ⊆ τo. This inclusion is strict as the interior of X+ with
respect to τo is not the same as the interior of X+ with respect to τob.

4.4 Characterizations of �o = �ob

From our investigations we conclude the following characterization.

Theorem 4.11 Let X be an Archimedean partially ordered vector space that contains
order units. Then the following statements are equivalent.

(i) τo = τob.

(ii) For all nets (xα)α∈A with xα ↓ x there holds xα
τob→ x.

(iii) X contains net catching elements.

Proof Recall from Theorem 2.3 that xα ↓ x implies xα
τo→ x . Thus (i) implies (ii).

To show that (ii) implies (iii) consider an order unit u ∈ X+. Let (xα)α∈A be a
net in X with xα ↓ 0. From (ii) we know xα → 0 with respect to τob. Now recall
from Lemma 4.5 that [−u, u] ∈ Bob. Thus there is α ∈ A with xα ∈ [−u, u] and we
observe xα ≤ u.

To show that (iii) implies (i) recall from Corollary 4.8 that the existence of order
units implies τo ⊆ τob. If X contains net catching elements we furthermore know from
Theorem 4.6 τo ⊇ τob and obtain (i). ��

Having the parallelism between order units and net catching elements in mind it
is natural to ask, how τo = τob can be characterized under the assumption of the
existence of net catching elements.

Theorem 4.12 Let X be a partially ordered vector space that contains net catching
elements. Then the following statements are equivalent.
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(i) τo = τob.
(ii) τo is a linear topology.
(iii) X is Archimedean and directed.
(iv) X is Archimedean and contains order units.

In particular, if one of these statements is valid, then each net catching element x ∈ X
is an order unit of X and ‖ · ‖x is a norm that generates the order topology τo.

Proof As the order bound topology is a linear topology we obtain that (i) implies (ii).
From Theorem 2.3 we furthermore obtain that (ii) implies (iii). If X is Archimedean
and directed, then any net catching element is an order unit by Lemma 4.1. Thus (iii)
implies (iv). From Theorem 4.11 we furthermore obtain that (iv) implies (i). ��

Recall that order convergence implies convergence with respect to τo. From Theo-
rem 4.12 and Theorem 3.1 we thus obtain the following corollary.

Corollary 4.13 If X is Archimedean and directed and contains net catching elements,
then the following statements are equivalent for any net (xα)α∈A in X.

(i)xα
o→ 0. (ii)xα

τo→ 0. (iii)xα
τob→ 0.

Remark 4.14 In [9, Corollary 4.11] a different proof for the equivalence of (i) and
(ii) in Corollary 4.13 is given. Note that the existence of net catching elements is not
stated explicitly in [9] but used in the proof. Indeed, it is used that the set of all non-
empty, order bounded and order open sets is not-empty, a property equivalent to the
existence of net catching elements as shown in Corollary 4.8. See [6, Example 8.3]
for an example of an Archimedean vector lattice for which τo-convergence does not
imply order convergence.

4.5 About convex order open sets

So far we do not now, whether for Archimedean and directed partially ordered vector
spaces (without order units) any order open set is τob-open. For the following partial
result in this direction recall that a partially ordered vector space X is said to satisfy
the (Riesz) decomposition property whenever for x, u, v ∈ X+ with x ≤ u + v there
exist u′, v′ ∈ X+ with x = u′ + v′, u′ ≤ u and v′ ≤ v. Any vector lattice satisfies the
decomposition property. See [5] for further details on this notion.

Theorem 4.15 If X is an Archimedean and directed partially ordered vector space
that satisfies the decomposition property, then any convex order open set is τob-open.

The proof of Theorem 4.15 is split into several lemmas about the local structure
of order neighbourhoods. For the rest of this section we assume that X is a partially
ordered vector space.

Lemma 4.16 Any order neighbourhood of 0 contains a circled order neighbourhood
of 0.
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Proof Let U ⊆ X be an order neighbourhood of 0. Define I (U ) := {x ∈
X+; [−x, x] ⊆ U }. The set V := ⋃

x∈I (U )[−x, x] is easily seen to be circled and
to be contained in U . To show that V is an order neighbourhood of 0 let (xα)α∈A be
a net in X with xα ↓ 0. As U is an order neighbourhood of 0 there is α ∈ A with
[−xα, xα] ⊆ U . Thus xα ∈ I (U ) and we obtain [−xα, xα] ⊆ V . ��
Remark 4.17 The construction of the set V is given in [9] and it is shown there that V
is an order neighbourhood of 0.

Lemma 4.18 If X satisfies the decomposition property, then any convex order neigh-
bourhood of 0 contains a convex and circled order neighbourhood of 0.

Proof Let U be a convex order neighbourhood of 0 and define V as in the proof of
Lemma 4.16. It remains to show that V is convex and we consider x, y ∈ V and
λ ∈ (0, 1). There are x ′, y′ ∈ X+ with x ∈ [−x ′, x ′] ⊆ U and y ∈ [−y′, y′] ⊆ U .
Denoting z′ := λx ′ + (1 − λ)y′ we observe λx + (1 − λ)y ∈ [−z′, z′].

To show z′ ∈ I (U ) we consider z̃ ∈ [−z′, z′]. There holds 0 ≤ z̃ + z′ ≤ 2z′ =
2λx ′ + 2(1 − λ)y′ and from the decomposition property we observe that there exist
u, v ∈ X+ with z̃ + z′ = u + v, u ≤ 2λx ′ and v ≤ 2(1 − λ)y′. We compute

x̃ := 1

λ
(u − λx ′) ∈ 1

λ
[−λx ′, λx ′] = [−x ′, x ′] ⊆ U

and similarly ỹ := (1/(1 − λ))(v − (1 − λ)y′) ∈ U . As U is convex we observe

z̃ = u + v − z′ = u + v − (λx ′ + (1 − λ)y′) = λx̃ + (1 − λ)ỹ ∈ U .

This shows [−z′, z′] ⊆ U , i.e. z′ ∈ I (U ).We conclude λx+(1−λ)y ∈ [−z′, z′] ⊆ V .
��

Lemma 4.19 If X is Archimedean and directed, then any order neighbourhood of 0
absorbs all order intervals.

Proof Let U be an order neighbourhood of 0. By Lemma 4.16 U contains a circled
order neighbourhood V of 0. Let [x, y] be a non-empty order interval in X . Since X
is directed there is w ∈ X with w ≥ −x and w ≥ y. From the Archimedean property
we observe (1/n)w ↓ 0. Now recall that V is an order neighbourhood of 0. We thus
obtain the existence of n ∈ N with (1/n)[x, y] ⊆ [−(1/n)w, (1/n)w] ⊆ V . For
λ ∈ [−1/n, 1/n] we use that V is circled to see λ[x, y] ⊆ V ⊆ U , which proves U
to absorb [x, y]. ��
Proof of Theorem 4.15 Let O be a convex and order open set and consider x ∈ O .
Then O − x is a convex order neighbourhood of 0. From Lemma 4.18 we know that
O − x contains a convex and circled order neighbourhood V of 0. By Lemma 4.19
we know that V absorbs all order intervals and hence V ∈ Bob. This proves O to be
τob-open. ��

We finish this section with an Example of an Archimedean vector lattice that con-
tains a circled order neighbourhood that does not contain convex sets that absorb order
intervals.
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Example 4.20 Let l0 be the space of all sequences x = (xn)n∈N inRwith finite support
supp(x) = {n ∈ N; xn 	= 0}. l0 is an Archimedean vector lattice equipped with the
pointwise order. Let M be the set of all x , for which there exists F ⊆ N finite with
supp(x) ⊆ F and |xn| ≤ 1/|F | for n ∈ F . Then M is a circled order neighbourhood
of 0 that does not contain a convex set which absorbs all order intervals. In particular,
we obtain from Lemma 4.19 that M does not contain a convex order neighbourhood.

Proof Clearly M is circled. To show that M is an order neighbourhood let (x (α))α∈A

be a net in l0 with x (α) ↓ 0. Considering α0 ∈ A we obtain the existence of N ∈ N

with supp(x (α)) ⊆ supp(x (α0)) ⊆ {1, . . . , N } for all α ≥ α0. Let α ≥ α0 such that
x (α)
k ≤ 1/N for k = 1, · · · , N to obtain [−x (α), x (α)] ⊆ M .
Assume now that there exists a convex subsetC ⊆ M that absorbs all order intervals

and let x ∈ C and N ∈ N. Choose F ⊆ N disjoint from supp(x) with |F | = N . Let
y ∈ l0 be defined by yn := 1 for n ∈ F and yn = 0 for n /∈ F . As C absorbs
order intervals there exists λ > 0 such that λy ∈ C . Since C is convex we obtain
z := 1/2x + 1/2y ∈ C ⊆ M . Thus for n ∈ supp(x) we compute 0 ≤ (1/2)|xn| =
|(1/2)xn + (1/2)yn| ≤ 1/| supp(z)| ≤ 1/N . As N ∈ N was arbitrary this shows
x = 0 and we have shown C = {0}, a contradiction as C is supposed to absorb order
intervals. ��

5 A sufficient condition for net catching elements

In order to be able to present more examples of partially ordered vector spaces that
contain net catching elements we will prove the following in this section.

Theorem 5.1 Let X be a partially ordered vector space and B be a base of X+. If
there exists a linear topology τ on X such that B is τ -compact and such that X+ is
τ -closed, then all upper bounds of B are net catching.

Toprove this theorem itwill be convenient to consider the following correspondence
between strictly positive linear functionals and bases. Recall that a linear functional
f : X → R is called strictly positive, whenever we have 0 < f (x) for all non-zero
x ∈ X+. For a strictly positive linear functional f the set B f := {x ∈ X+; f (x) = 1}
is a base of X+. Furthermore, for any base B of X+ there exists a unique strictly
positive linear functional f : X → R such that B = B f . Thus there is a one-to-
one correspondence between strictly positive linear functionals and bases of X+. For
reference see [5].We show next that order continuity translates into being order closed
in this correspondence.

Proposition 5.2 Let f : X → R be a strictly positive linear functional. Then B f is
order closed if and only if f is order continuous.

Proof Assume that f is order continuous and note that f is positive. From Sect. 2.4
we thus know that f is continuous with respect to τo(X) and the standard topology of
R. As X+ is always order closed we observe that B = X+ ∩ f −1({1}) is order closed.

To show the converse assume B f to be order closed and let (xα)α∈A be a net in
X with xα ↓ 0. Clearly ( f (xα))α∈A is a net in R+ such that f (xα) ↓. To get a
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contradiction assume that there does not hold f (xα) ↓ 0. Then there exists λ > 0 with
f (xα) ≥ λ for all α ∈ A. We define yα := (1/ f (xα))xα for all α ∈ A to obtain a net
(yα)α∈A in B f . For α ∈ A we observe

±yα ≤ (1/λ)xα , which proves yα
o−→ 0. Since B f is order closed we obtain that

0 ∈ B f , i.e. f (0) = 1, a contradiction. ��
The following proposition gives a sufficient condition on X to have an order closed

base.

Lemma 5.3 Let B be a base of X+. If there exists a linear topology τ on X such that
B is τ -compact and such that X+ is τ -closed, then B is order closed.

Proof Let f : X → R be the unique strictly positive linear functional on X such
that B = {x ∈ X+; f (x) = 1}. By Proposition 5.2 it suffices to show that f is
order continuous. Let (xα)α∈A be a net in X such that xα ↓ 0. Since f is positive we
obtain ( f (xα))α∈A to be a net inR+ that satisfies f (xα) ↓. To obtain a contradictionwe
assume that f (xα) ↓ 0 is not satisfied. As abovewe obtain that 0 < λ := infα∈A f (xα)

and define yα := (1/ f (xα))xα in order to obtain a net (yα)α∈A in the τ -compact set
B. Thus there exists a subnet (zγ )γ∈C of (yα)α∈A that converges with respect to τ to
some z ∈ B. Let us fix a map h : C → A as in the definition of a subnet.

Then ( f (xh(γ )))γ∈C is a subnet of ( f (xα))α∈A we observe f (xh(γ )) ↓ λ. Thus
( f (xh(γ )))γ∈C converges to λ with respect to the standard topology of R. As τ is a
linear topology we obtain

xh(γ ) = f (xh(γ ))yh(γ ) = f (xh(γ ))zγ
τ−→ λz.

Furthermore, we have xh(γ ) ↓ and that X+ is τ -closed. A standard argument [5,
Lemma 2.3] therefore yields xh(γ ) ↓ λz. Thus xh(γ ) ↓ 0 allows to observe λz = 0.
Since z ∈ B this implies λ = 0, a contradiction. ��

Weobtain Theorem5.1 by combining the followingLemmawith Lemma 5.3 above.

Lemma 5.4 If B is an order closed base of X+, then all upper bounds of B are net
catching.

Proof Let x ∈ X be such that B ≤ x . To show that x is net catching consider a net
(xα)α∈A with xα ↓ 0. Furthermore, consider a strictly positive functional f : X → R

such that B = {x ∈ X+; f (x) = 1}. From Proposition 5.2 we know that f is order
continuous and thus satisfies f (xα) ↓ 0. in particular, there is α ∈ A with f (xα) ≤ 1.
Whenever f (xα) = 0, then the strict positivity of f implies xα = 0 ≤ x . Whenever
f (xα) > 0, then (1/ f (xα))xα ∈ B and we obtain xα ≤ (1/ f (xα))xα ≤ x . ��

6 Examples

6.1 Finite dimensional spaces

Example 6.1 For a finite dimensional, Archimedean and directed partially ordered
vector space X the topology τo = τob is the standard topology of X , i.e. the unique
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linear topology on X . A net is order convergent, if and only if it is convergent with
respect to the standard topology. The interior of X+ with respect to the discussed
topologies is non-empty and consists of the net catching elements which are precisely
the order units.

Proof Let us denote τ for the standard topology of X . As X is Archimedean we know
that X+ is τ -closed and that X+ has a τ -closed base. See [5, Chapter 3] for reference.

From X being directedwe furthermore obtain that X contains order units [5, Lemma
2.5 and Lemma 3.2]. By Theorem 4.11 it thus suffices to show that X contains net
catching elements in order to obtain τo = τob. Note that τob is a linear topology and
thus the standard topology of X . The statements about the order convergence and the
interior of the cone follow from Proposition 4.7 and Corollary 4.13.

It remains to show that X contains net catching elements. Let u be an order unit of
X and consider a norm ‖·‖ on X such that the closed unit ball B1(0) is the convex hull
of a finite set F ⊆ X . Since B is compact with respect to ‖ · ‖ there is κ > 0 such that
B ⊆ Bκ(0). Since u is an order unit there is n ∈ N such that {κx; x ∈ F} ≤ nu and
we observe B ⊆ Bκ(0) ≤ nu. From Theorem 5.1 we obtain that nu is net catching. ��

6.2 Reflexive Banach spaces with ice cream cones

Example 6.2 Let (X , ‖ · ‖) be a reflexive Banach space. Let f be a linear functional
on X such that sup{| f (x)|/‖x‖; x ∈ X} = 1 and ε ∈ (0, 1). The ice cream cone with
parameters f and ε is the cone

K f ,ε := {x ∈ X; f (x) ≥ ε‖x‖}.

A reflexive Banach space X equipped with an ice cream cone becomes an
Archimedean and directed partially ordered vector space and K f ,ε contains ‖ · ‖-
interior points [5, Theorem 2.52 and Lemma 2.3]. We prove next that in this case
τo = τob is the norm topology of X . A net is order convergent, if and only if it is
‖ · ‖-convergent. A point in X is a ‖ · ‖-interior point of the cone, iff it is an order unit,
iff it is net catching.

Proof Note that the statements about order convergence and the interior of the cone
follow from the first statement, Proposition 4.7 and Corollary 4.13. We show first
that X (equipped with K f ,ε) contains net catching elements. Recall from [5, Theorem
2.52] that f is strictly positive and that K f ,ε is ‖ · ‖-closed.

In order to apply Theorem 5.1 we consider the cone base B := {x ∈ K f ,ε; f (x) =
1} and the weak topology

τ of X . As X is a reflexiveBanach spaceweknow from theBanach-Alaoglu theorem

that the closed ball B
‖·‖
ε (0) is τ -compact. From sup{| f (x)|/‖x‖; x ∈ X} = 1 we

obtain that f is continuous with respect to ‖ · ‖. Thus f is continuous with respect to

τ and B = B
‖·‖
ε (0) ∩ f −1({1}) is τ -compact. Note furthermore that K f ,ε is τ -closed

as a ‖ · ‖-closed and convex set. To show that B has upper bounds we consider a

‖ · ‖-interior point x of K f ,ε. There exists κ > 0 such that B
‖·‖
κ (x) ⊆ K f ,ε. We define
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y := (1/κ)x . For b ∈ B = B
‖·‖
ε (0) ∩ f −1({1}) we compute

‖x − κ(y − b)‖ = ‖κb‖ = κ‖b‖ ≤ κ

and obtain κ(y − b) ∈ K f ,ε. Since K f ,ε is a cone we obtain y − b ∈ K f ,ε, i.e. b ≤ y.
Thus y is an upper bound of B and Theorem 5.1 yields that y is a net catching element.
In particular, we observe that x = κ y is net catching.

Recall that X is Archimedean and directed. Thus by Theorem 4.12 there holds
τo = τob and x is an order unit in X . It remains to show that ‖ · ‖ and ‖ · ‖x are
equivalent norms, which we will do by showing

B
‖·‖
κ (0) ⊆ B

‖·‖x
1 (0) ⊆ B

‖·‖
λ (0),

where we denote λ := (2/ε) f (x)+‖x‖. For z ∈ B
‖·‖
κ (0)we obtain x+z ∈ B

‖·‖
κ (x) ⊆

K f ,ε, i.e. −x ≤ z and similarly z ≤ x . This shows B
‖·‖
κ (0) ⊆ [−x, x] = B

‖·‖x
1 (0). To

show the second inclusion we consider z ∈ B
‖·‖x
1 (0) = [−x, x]. As f is positive we

know f (z) ≤ f (x). From z + x ∈ K f ,ε we thus observe

ε‖z + x‖ ≤ f (z + x) = f (z) + f (x) ≤ 2 f (x).

Computing ‖z‖ ≤ ‖z + x‖ + ‖x‖ ≤ λ we obtain z ∈ B
‖·‖
λ (0). ��

6.3 Spaces of continuous functions on extremely disconnected compact
hausdorff spaces

Example 6.3 Let � be an extremely disconnected, compact and infinite Hausdorff
space. Consider the Dedekind complete vector lattice C(�) of all continuous maps
f : � → R equipped with the pointwise order. Any element of C(�) with values in
(0,∞) is an order unit as any f ∈ C(�) is bounded. Nevertheless, C(�) contains
no net catching elements. Thus by Corollary 3.2 and Theorem 4.11 the inclusion
τo(C(�)) ⊆ τob(C(�)) is valid but strict.

Proof The statement about the order units is standard and it remains to show that
C(�) does not contain net catching elements. By Lemma 4.1 this can be achieved by
showing that the order unit u ∈ C(�) defined by u(ω) := 1/2 for all ω ∈ � is not net
catching.

As � is infinite and compact there exists δ ∈ � such that {δ} is not open. Let A be
the set of all open and closed subsets M ⊆ � that contain δ. We order A by reversed
inclusion and obtain a directed set. For M ∈ A we denote the charachteristic function
of M by χM and obtain (χM )M∈A to be a decreasing net in C(�)+. As for no M ∈ A
we have χM ≤ u it remains to show that there holds χM ↓ 0.

For this it suffices to show that any lower bound x of {χM ; M ∈ A} satisfies x ≤ 0.
Considerω ∈ �\{δ}. Since� is Hausdorff there are disjoint and open setsU , O ⊆ �

with δ ∈ U and ω ∈ O . Let M be the closure of U and note that M is open by the
extreme disconnectedness of �. From δ ∈ M we observe that we have M ∈ A. As
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ω /∈ M we compute x(ω) ≤ χM (ω) = 0. If x(δ) > 0, then the continuity of x implies
{δ} = x−1((0,∞)) to be open, a contradiction. We observe x ≤ 0, which proves
χM ↓ 0. ��

6.4 Archimedean vector lattices

In Example 6.3 we have seen that an infinite dimensional Archimedean vector lattice
might not contain net catching elements. We show next that no infinite dimensional
Archimedean vector lattice contains net catching elements.

Theorem 6.4 An Archimedean vector lattice contains net catching elements, if and
only if it is finite dimensional.

Recall from Corollary 3.2 that whenever an Archimedean vector lattice contains
order units, then τo ⊆ τob. As a direct consequence of Proposition 4.7 and Theorem 6.4
we thus observe the following.

Corollary 6.5 For anArchimedean vector lattice that contains order units the inclusion
τo ⊆ τob is valid but strict.

Remark 6.6 Note that Example 4.10 provides an infinite dimensional vector lattice
that contains net catching elements and for which the inclusion τob ⊆ τo is strict.
Clearly this vector lattice is not Archimedean. In Example 6.2 we have seen that there
are infinite dimensional Archimedean partially ordered vector spaces that contain net
catching elements and satisfy τo = τob. Clearly such partially ordered vector spaces
are no vector lattices.

We will prove Theorem 6.4 by embedding X into a space of the form discussed
in Example 6.3. We thus investigate next how net catching elements behave under
embedding.

Lemma 6.7 Let X be an Archimedean vector lattice and Y be a partially ordered
vector space. Let ι : X → Y be a linear order dense embedding. An element x ∈ X is
net catching in X, if and only if ι(x) is net catching in Y .

Proof Assume that x is net catching w.r.t. X and consider a net (yα)α∈A with yα ↓ 0.
Let B be the set of all β ∈ X+ for which there exists α ∈ Awith ι(β) ≥ yα . Using that
ι preserves infima it is straight forward to show that for β, β ′ ∈ B also the infimum
β ∧ β ′ is contained in B. Thus B equipped with the reversed order of X is directed.
We define xβ := β for β ∈ B to obtain a net (xβ)β∈B in X that satisfies xβ ↓.

We next show that this net satisfies xβ ↓ 0. Obviously, we have 0 ≤ xβ for all
β ∈ B. Let z ∈ X with z ≤ xβ for all β ∈ B and consider α ∈ A. For y ∈ ι(X)

with y ≥ yα there exists β ∈ X with ι(β) = y and we observe β ∈ B. Thus
ι(z) ≤ ι(yβ) = ι(β) = y. As ι(X) is order dense in Y we obtain

ι(z) ≤ inf{y ∈ ι(X); y ≥ yα} = yα.

From the arbitrary choice of α ∈ A and yα ↓ 0 we get ι(z) ≤ 0. As ι is order reflecting
we observe z ≤ 0, which proves xβ ↓ 0.
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Now recall that x is net catching. We therefore obtain the existence of β ∈ B with
β = xβ ≤ x . From the definition of B we thus get the existence of α ∈ A with
xα ≤ ι(β) ≤ ι(x) and observe ι(x) to be net catching in Y .

To show the converse assume that ι(x) is net catching and consider a net (xα)α∈A

in X with xα ↓ 0. As any linear order dense embedding is order continuous we obtain
ι(xα) ↓ 0. Thus there exists α ∈ A with ι(xα) ≤ ι(x). Since ι is order reflecting we
obtain x to be net catching. ��
Remark 6.8 Note that there exist infinite dimensional Archimedean partially ordered
vector spaces X with net catching elements (Example 6.2). Considering the Dedekind
completion X δ and a linear order dense embedding ι : X → X δ we obtain from
Theorem 6.4 that ι(x) is not net catching for all net catching elements x ∈ X .

Proof of Theorem 6.4 Let us assume that X is finite dimensional. Then X contains net
catching elements as presented in Example 6.1.

To show the converse assume that X is an Archimedean vector lattice that con-
tains net catching elements. As X is Archimedean and directed we obtain from
Lemma 4.1(ii) that X contains an order unit u. Let ι : X → X δ be a Dedekind com-
pletion of X . Then X δ contains the order unit ι(u) and by Theorem 2.2 we assume
w.l.o.g. that X δ is of the form C(�) for a compact and extremely disconnected Haus-
dorff space �. As ι is a linear order dense embedding we obtain from Lemma 6.7 that
C(�) contains net catching elements and our considerations in Example 6.3 imply
� to be finite. Thus C(�) is finite dimensional. As any linear order embedding is
injective we obtain that X is finite dimensional as well. ��
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