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Abstract
We study three types of order convergence and related concepts of order continuous
maps in partially ordered sets, partially ordered abelian groups, and partially ordered
vector spaces, respectively. An order topology is introduced such that in the latter two
settings under mild conditions order continuity is a topological property. We present a
generalisation of the Ogasawara theorem on the structure of the set of order continuous
operators.

Keywords Order convergence · Order topology · Order bounded operator · Order
continuous operator · Positive operator · Band

Mathematics Subject Classification 06A06 · 47B60 · 47B65 · 54A20

1 Introduction

In this paper we deal with three types of order convergence, introduce an appropriate
topology and relate these concepts. Moreover, we study the according four types of
order continuity of maps and obtain properties of the corresponding sets of order
continuous maps. We investigate these concepts in partially ordered sets, in partially
ordered abelian groups as well as in partially ordered vector spaces, where we intend
to give the results as general as possible .

The first concept of order convergence which we will deal with (o1-convergence) is
motivated by the usual order convergence in (vector) lattices, see, e.g., [17, Definition
2.1], [2, Chapter 1, Sect. 4] or [1, Definition 1.1] and the literature therein. For bounded
nets, a definition of o1-convergence can also be found in [18, Chapter 1; Definition
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5.1.]. In partially ordered vector spaces, o1-convergence is considered, e.g., in [6] and
[11, Definition 1.7].

The second and the third concept of order convergence (o2-convergence, o3-
convergence) seem to originate from [17] and the references therein, where these
concepts are studied in the context of lattices and lattice ordered groups. Somehow
unaware of [17], these concepts and some of the results where rediscovered in [1]
in the context of vector lattices. After introducing these concepts in partially ordered
sets, we will show that o3-convergence coincides with the convergence given in [27,
Definition 1] in partially ordered sets, and with the convergence introduced in [25,
Definition II.6.3.] in lattices. Our definition is inspired by [11, Definition 1.8.], where
the concept is considered in partially ordered vector spaces.

Operators in vector lattices that are continuous with respect to o1-convergence
are frequently studied, see e.g., [2, Definition 4.1], [14, Definition 1.3.8]. Operators
on vector lattices that preserve o2-convergence or o3-convergence are considered in
[1]. Our aim is to introduce a concept of topology in partially ordered sets such that
o1-, o2- and o3-continuity, respectively, coincide with the topological continuity under
mild conditions. Therefore, we introduce an order topology τo, which generalises the
concept of order topology in partially ordered vector spaces given in [11]. Note that
τo is a special case of a σ -compatible topology on partially ordered sets considered
in [5]. We will show that τo coincides with the topology defined in lattices in [25,
Definition II.7.1] as well as in [4].

Note that another concept of topology, the so-called order bound topology, is intro-
duced in partially ordered vector spaces in [15, p. 20], see also [3, Def. 2.66]. In [15,
Theorem 5.2] it is shown that each regular operator between partially ordered vec-
tor spaces is continuous with respect to the order bound topology. As there clearly
exist examples of regular operators that are not o1-continuous, the concept of order
bound topology is not suitable for our purpose. For connections between the order
bound topology and the order topology, see [10]. See [24] for a partial survey on order
convergence.

The results in this paper are organised as follows. In Sect. 2, we introduce and
characterise net catching sets and define τo in partially ordered sets. The three concepts
of order convergence are defined in Sect. 3 in partially ordered sets. We link the
concepts to the ones in the literature, show that the three concepts differ, investigate
their relations, and show that they imply τo-convergence. We prove that closedness
with respect to τo is characterised by means of order convergence. Further properties
of order convergence concepts such as monotonicity and a Sandwich theorem will be
established.

In Sect. 4, we investigate maps that are continuous with respect to the order con-
vergences and τo-convergence, respectively, and relate these concepts. We show that
o3-convergence in a lattice can be characterised by o2-convergence in a Dedekind
complete cover.

In Sect. 5, we characterise the concepts of order convergence and net catching sets
in partially ordered abelian groups. Section 6 contains the Riesz-Kantorivich theorem
in the setting of partially ordered abelian groups.

In Sect. 7, we give sufficient conditions on the domain and the codomain of an order
bounded map between partially ordered abelian groups that guarantee the equivalence
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of the four concepts of continuity. Under the same conditions, we show a generalisation
of Ogasawara’s theorem that can be found in [2, Theorem 4.4], i.e., we prove that the
set of all order bounded additive continuous maps is an order closed ideal in the
lattice-ordered abelian group of all order bounded additive maps.

In Sect. 8, we show that the scalar multiplication in partially ordered vector spaces
is linked appropriately to the oi -convergences if and only if the space is Archimedean
and directed. Examples are given which show that the order convergences differ in this
setting. In Sect. 9, we show that the results of Sect. 7 are also valid for linear operators
on partially ordered vector spaces.

Next we fix our notation. As usual, on a non-empty set P , a binary relation ≤ is
called a partial order if it is reflexive, transitive and anti-symmetric. The set P is then
called a partially ordered set. For x, y ∈ P we write x < y if x ≤ y and x �= y.
For U , V ⊆ P we denote U ≤ V if for every u ∈ U and v ∈ V we have u ≤ v. If
V = {v} for v ∈ P , we abbreviate U ≤ {v} by U ≤ v (and similarly v ≤ U ). For
x ∈ P and M ⊆ P define M≥x := {m ∈ M; m ≥ x} and M≤x := {m ∈ M; m ≤ x}.
A set M ⊆ P is called majorising in P if for every x ∈ P the set M≥x is non-empty.

For x, y ∈ P the order interval is given by [x, y] := {z ∈ P; x ≤ z ≤ y}. P
is called directed (upward) if for every x, y ∈ P the set P≥x ∩ P≥y is non-empty.
Directed downward is defined analogously. A set M ⊆ P is called full if for every
x, y ∈ M one has [x, y] ⊆ M . For a subset of P , the notions bounded above, bounded
below, order bounded, upper (or lower) bound and infimum (or supremum) are defined
as usual. For a net (xα)α∈A in P we denote xα ↓ if xα ≤ xβ whenever α ≥ β. For
x ∈ P we write xα ↓ x if xα ↓ and inf{xα; α ∈ A} = x . Similarly, we define xα ↑
and xα ↑ x .

P is said to have the Riesz interpolation property if for every non-empty finite sets
U , V ⊆ P with U ≤ V there is x ∈ P such that U ≤ x ≤ V . We call P a lattice if
for every non-empty finite subset of P the infimum and the supremum exist in P . A
lattice P is called Dedekind complete if every non-empty set which is bounded above
has a supremum, and every non-empty set which is bounded below has an infimum.
We say that a lattice P satisfies the infinite distributive laws if for every x ∈ P and
M ⊆ P the following equations hold

x ∧
(∨

M
)

=
∨

(x ∧ M),

x ∨
(∧

M
)

=
∧

(x ∨ M)

(where in the first equation it is meant that if the supremum of the left-hand side of the
equation exists, then also the one on the right-hand side, and both are equal). If P is a
lattice which satisfies the infinite distributive laws, then for M, N ⊆ P the formulas

(∨
M

)
∧

(∨
N

)
=

∨
(M ∧ N )

(∧
M

)
∨

(∧
N

)
=

∧
(M ∨ N ) (1)

are satisfied, see [25, Chapter II.4].
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The following statement is straightforward.

Lemma 1.1 Let P be a partially ordered set and A ⊆ B ⊆ P such that A is majorising
in B. If the supremum of B exists, then the supremum of A exists and satisfies sup A =
sup B.

We call M ⊆ P order dense in P if for every x ∈ P one has

supM≤x = x = inf M≥x .

Clearly, every order dense subset of P is majorising. The next statement is shown for
partially ordered vector spaces in [26, Stelling 1.2.7], for sake of completeness we
give a shorter proof here.

Proposition 1.2 Let M ⊆ N ⊆ P. If M is order dense in N and N is order dense in
P, then M is order dense in P.

Proof Let p ∈ P . Clearly, p is a lower bound of M≥p. To show that p is the greatest
lower bound of M≥p, let z ∈ P be another lower bound of M≥p. To obtain p ≥ z, it
is sufficient to show that N≥p ⊆ N≥z , since then the order density of N in P implies
p = inf N≥p ≥ inf N≥z = z. Let n ∈ N≥p. Then M≥n ⊆ M≥p, hence z is a lower
bound of M≥n . As M is order dense in N , we obtain n = inf M≥n ≥ z. Therefore
N≥p ⊆ N≥z . We have shown p = inf M≥p. A similar argument gives p = supM≤p.
�

Let P and Q be partially ordered sets and f : P → Q a map. f is calledmonotone
if for every x, y ∈ P with x ≤ y one has that f (x) ≤ f (y), and order reflecting if for
every x, y ∈ P with f (x) ≤ f (y) one has that x ≤ y. Note that every order reflecting
map is injective. We call f an order embedding if f is monotone and order reflecting.
f is called order bounded if every order bounded set is mapped into an order bounded
set.

In the next statement, for sets U ⊆ P and V ⊆ Q, we use the notation f [U ] for
the image of U under f , and [V ] f for the preimage of V .

Proposition 1.3 Let f : P → Q be an order embedding and M ⊆ P.

(i) If the infimum of f [M] exists in Q and is an element of f [P], then the infimum of
M exists in P and equals the unique preimage of inf f [M], i.e. [{inf f [M]}] f =
{inf M}.

(ii) Assume that f [P] is order dense in Q. Then the infimum of M exists in P if and
only if the infimum of f [M] exists in Q and is an element of f [P].

Analogous statements are valid for the supremum.

Proof For (i), assume that the infimum of f [M] exists in Q and is an element of f [P].
Since f is injective, there is a unique p ∈ P with f (p) = inf f [M]. It is sufficient
to show that p = inf M . As f is order reflecting, p is a lower bound of M . For any
other lower bound l ∈ P of M the monotony of f implies f (l) to be a lower bound
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of f [M]. Thus f (l) ≤ inf f [M] = f (p). Since f is order reflecting, we conclude
l ≤ p. This proves p to be the greatest lower bound of M , i.e. p = inf M .

In order to prove (ii), assume that the infimum of M exists in P . We show that
f (inf M) is the infimum of f [M]. The monotony of f implies f (inf M) to be a lower
bound of f [M]. Let l ∈ Q be a lower bound of f [M]. Since f [P] is order dense
in Q, we know that l = sup{q ∈ f [P]; q ≤ l}. In order to prove l ≤ f (inf M)

it is sufficient to show that f (inf M) is an upper bound of {q ∈ f [P]; q ≤ l}. For
q ∈ f [P] there is p ∈ P such that f (p) = q. If furthermore q ≤ l, we conclude
f (p) = q ≤ l ≤ f [M]. Since f is order reflecting, p is a lower bound of M . This
implies p ≤ inf M , and the monotony of f shows q = f (p) ≤ f (inf M). We have
therefore proven f (inf M) to be an upper bound of {q ∈ f [P]; q ≤ l}. This implies
f (inf M) to be the infimum of f [M].
The statements about the supremum are shown analogously. �
Let G be a partially ordered abelian group, i.e. (G,+, 0) is an abelian group with

a partial order such that for every x, y, z ∈ G with x ≤ y it follows x + z ≤ y + z.
Note that G+ := G≥0 is a monoid (with the induced operation from G). We call the
elements of G+ positive. G+ is called generating1 if G = G+ − G+. Note that G is
directed if and only if G+ is generating. We say that G is Archimedean if for every
x, y ∈ G with nx ≤ y for all n ∈ N one has that x ≤ 0. A directed full subgroup I of
G is called an ideal. A subgroup H of G is full if and only if H ∩ G+ is full.

G has the Riesz decomposition property if for every x, y ∈ G+ and w ∈ [0, x + y]
there are u ∈ [0, x] and v ∈ [0, y] such that w = u + v. Observe that G has the Riesz
decomposition property if and only if G has the Riesz interpolation property, see e.g.
[9, Proposition 2.1]. If G is a lattice, then G is called a lattice-ordered abelian group.
Note that every lattice-ordered abelian group satisfies the infinite distributive laws, see
[9, Proposition 1.7], and hence the Eq. (1). For further standard notions in partially
ordered abelian groups, see [9].

Let G, H be partially ordered abelian groups. We call a group homomorphism
f : G → H additive and denote the set of all additive maps fromG to H by A(G, H).
As usual, on A(G, H) a group structure is introduced by means of f + g : G → H ,
x �→ f (x) + g(x), where the neutral element is 0 : x �→ 0. A translation invariant
pre-order on A(G, H) is defined by f ≤ g whenever for every x ∈ G+ we have
f (x) ≤ g(x). If G is directed, then ≤ is a partial order on A(G, H). Note that an
element in A(G, H) is positive if and only if it is monotone. We denote the set of
all monotone maps in A(G, H) by A+(G, H). An element of the set Ar(G, H) :=
A+(G, H) − A+(G, H) is called a regular map. Finally, we denote the set of all
order bounded maps in A(G, H) by Ab(G, H). Clearly, Ar(G, H) ⊆ Ab(G, H). If
G is directed, then A(G, H), Ab(G, H) and Ar(G, H) are partially ordered abelian
groups.

On a real vector space X , we consider a partial order ≤ on X such that X is a
partially ordered abelian group under addition, and for every λ ∈ R+ and x ∈ X+
one has that λx ∈ X+. Then X is called a partially ordered vector space. Note that X
is Archimedean if and only if 1

n x ↓ 0 for every x ∈ X+. If a partially ordered vector

1 As usual, for M, N ⊆ G we define M − N := {m − n; (m, n) ∈ M × N }.
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space X is a lattice, we call X a vector lattice. For standard notations in the case that
X is a vector lattice, see [2].

If X is an Archimedean directed partially ordered vector space, then there is an
essentially unique Dedekind complete vector lattice X δ and a linear order embedding
J : X → X δ such that J [X ] is order dense in X δ . As usual, X δ is called the Dedekind
completion of X .

For partially ordered vector spaces X and Y , L(X ,Y ) denotes the space of all
linear operators. We set L+(X ,Y ) = A+(X ,Y ) ∩ L(X ,Y ), Lr(X ,Y ) = Ar(X ,Y ) ∩
L(X ,Y ) and Lb(X ,Y ) = Ab(X ,Y ) ∩ L(X ,Y ). If X is directed, L(X ,Y ), Lb(X ,Y )

and Lr(X ,Y ) are partially ordered vector spaces.

2 Order topology in partially ordered sets

In this section, let P be a partially ordered set. We will introduce the order topology
τo on P using net catching sets, which we define next.

Definition 2.1 A subset U ⊆ P is called a net catching set for x ∈ P if for all
nets (x̂α)α∈A and (x̌α)α∈A in P with x̂α ↑ x and x̌α ↓ x there is α ∈ A such that
[x̂α, x̌α] ⊆ U .

Proposition 2.2 Let U ⊆ P and x ∈ P. The following statements are equivalent.

(i) U is a net catching set for x.
(ii) For all nets (x̂α)α∈A and (x̌β)β∈B in P with x̂α ↑ x and x̌β ↓ x there are α ∈ A

and β ∈ B such that [x̂α, x̌β ] ⊆ U.
(iii) For all subsets M̂ ⊆ P being directed upward and M̌ ⊆ P being directed

downward with sup M̂ = x = inf M̌ there are m̂ ∈ M̂ and m̌ ∈ M̌ such that
[m̂, m̌] ⊆ U.

Proof It is clear that (ii)⇒(i). In order to show (i)⇒(iii), let M̂ and M̌ be as in (iii).
We endow M̌ with the reversed order and define A := M̂ × M̌ with the component-
wise order on A. For α = (m̂, m̌) ∈ A let x̂α := m̂ and x̌α := m̌. This defines
nets (x̂α)α∈A and (x̌α)α∈A with x̂α ↑ x and x̌α ↓ x . Thus (i) shows the existence of
(m̂, m̌) = α ∈ A such that [m̂, m̌] = [x̂α, x̌α] ⊆ U . It remains to show (iii)⇒(ii). Let
(x̂α)α∈A and (x̌β)β∈B be as in (ii). Define M̂ := {x̂α;α ∈ A} and M̌ := {x̌β;β ∈ B}
and observe that M̂ is directed upward and M̌ is directed downward with sup M̂ =
x = inf M̌ . From (iii) we conclude the existence of m̂ ∈ M̂ and m̌ ∈ M̌ such that
[m̂, m̌] ⊆ U . There are α ∈ A and β ∈ B such that m̂ = x̂α and m̌ = x̌β , which
implies [x̂α, x̌β ] = [m̂, m̌] ⊆ U . �
Definition 2.3 A subset O of P is called order open if O is a net catching set for every
x ∈ O . A subset C of P is called order closed if P \ C is order open. Define

τo(P) := {O ⊆ P; O is order open}.

The following is straightforward.
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Proposition 2.4 τo(P) is a topology on P.

The topology τo(P) (or, shortly, τo) is referred to as the order topology on P . As
usual, for a net (xα) in P converging to x ∈ P with respect to the topology τo we

write xα
τo−→ x .

Remark 2.5 Our definition of the order topology is a straightforward generalisation of
the topology given in [4] on complete lattices. For this, compare [4, Proposition 1]
with 2.2 (iii).

On the other hand, note that a net catching set is a generalisation of a concept in
partially ordered vector spaces introduced in [11, Definition 3.3]. By [11, Theorem
4.2], the order topology coincides with the topology studied in [11].

3 Order convergence in partially ordered sets

In this section, let P be a partially ordered set. We will introduce three types of order
convergence and relate them to τo-convergence.

Definition 3.1 Let x ∈ P and let (xα)α∈A be a net in P . We define

(i) xα
o1−→ x , if there are nets (x̂α)α∈A and (x̌α)α∈A in P such that x̌α ↓ x , x̂α ↑ x and

x̂α ≤ xα ≤ x̌α for every α ∈ A.

(ii) xα
o2−→ x , if there are nets (x̂α)α∈A and (x̌α)α∈A in P and α0 ∈ A such that x̌α ↓ x ,

x̂α ↑ x and x̂α ≤ xα ≤ x̌α for every α ∈ A≥α0 .

(iii) xα
o3−→ x , if there are nets (x̂β)β∈B and (x̌γ )γ∈C in P and a map η : B × C → A

such that x̂β ↑ x , x̌γ ↓ x and x̂β ≤ xα ≤ x̌γ for every β ∈ B, γ ∈ C and
α ∈ A≥η(β,γ ).

Remark 3.2 Note that theo1-convergence is inspired by the classical order convergence
in vector lattices, see e.g. [2]. The concepts of o2-convergence and o3-convergence
are adopted from [1], where these convergences are considered in vector lattices. In
Proposition 5.6 below the precise link will be given. The o3-convergence in partially
ordered vector spaces is defined in [28, Section 1.4]. Note furthermore that the order
convergence concepts studied in [25, II.6.3] for lattices and in [27, Definition 1] for
partially ordered sets are equivalent to the o3-convergence. This will be established in
Proposition 3.5 below.

To establish the link to the order convergence concepts given in [28] and [27], we
need the following notion.

Definition 3.3 Let M be a set. A net (xα)α∈A is called a direction if for arbitrary α ∈ A
there is β ∈ A such that α < β.

The next lemma gives a link between directions and nets.

Lemma 3.4 Let M be a set and let (xα)α∈A be a net in M. If A × N is ordered
componentwise, (xα)(α,n)∈A×N is a direction and a subnet of (xα)α∈A.
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Proof Clearly (xα)(α,n)∈A×N is a direction. The map ϕ : A × N → A, (α, n) �→ α is
monotone andϕ[A×N] ismajorising in A. Since xα = xϕ(α,n) for every (α, n) ∈ A×N,
the net (xα)(α,n)∈A×N is a subnet of (xα)α∈A. �

In the subsequent proposition, the statement in (iii) is the convergence given in
[25, Definition II.6.3], and the concept in (iv) is the convergence considered in [27,
Definition 1]. For a version of the subsequent statement in the context of lattices, see
[17, Proposition 2.4].

Proposition 3.5 Let x ∈ P and let (xα)α∈A be a net in P. Then the following statements
are equivalent.

(i) xα
o3−→ x,

(ii) there are nets (x̂β)β∈B and (x̌β)β∈B in P and a map η : B → A such that x̂β ↑ x,
x̌β ↓ x and x̂β ≤ xα ≤ x̌β for every β ∈ B and α ∈ A≥η(β),

(iii) there are directions (x̂β)β∈B and (x̌γ )γ∈C in P and a map η : B × C → A such
that x̂β ↑ x, x̌γ ↓ x and x̂β ≤ xα ≤ x̌γ for every β ∈ B, γ ∈ C and α ∈ A≥η(β,γ ).

(iv) there are sets M̂, M̌ ⊆ P and κ : M̂ × M̌ → A such that M̂ is directed upward,
M̌ is directed downward, sup M̂ = x = inf M̌ and for every m̂ ∈ M̂, m̌ ∈ M̌ and
α ∈ A≥κ(m̂,m̌) we have m̂ ≤ xα ≤ m̌.

Proof It is clear that (ii) implies (i) and that (iii) implies (i). To show that (i) implies (ii),
we assume that there are nets (x̂β)β∈B and (x̌γ )γ∈C in P and a map η : B × C → A
such that x̂β ↑ x , x̌γ ↓ x and x̂β ≤ xα ≤ x̌γ for every β ∈ B, γ ∈ C and
α ∈ A≥η(β,γ ). For (β, γ ) ∈ B ×C we define ŷ(β,γ ) := x̂β and y̌(β,γ ) := x̌γ . Observe
that (ŷδ)δ∈B×C is a subnet of (x̂β)β∈B and, similarly, (y̌δ)δ∈B×C is a subnet of (x̌γ )γ∈C .
Thus ŷδ ↑ x and y̌δ ↓ x . Furthermore, for (β, γ ) ∈ B ×C and α ∈ A≥η(β,γ ) we have
ŷ(β,γ ) = x̂β ≤ xα ≤ x̌γ = y̌(β,γ ).

We next show that (i) implies (iii). Let (x̂β)β∈B , (x̌γ )γ∈C and η : B×C → A be as
in Definition 3.1. According to Lemma 3.4 we consider the directions (x̂β)(β,n)∈B×N,
(x̌γ )(γ,m)∈C×N and define η̃ : (B × N) × (C × N), ((β, n), (γ,m)) �→ η(β, γ ) to
obtain (iii).

To show that (i) implies (iv), set M̂ := {x̂β;β ∈ B} and M̌ := {x̌γ ; γ ∈ C} and
observe that M̂ is directed upward, M̌ is directed downward and sup M̂ = x = inf M̌
is satisfied. To construct κ , note that for (m̂, m̌) ∈ M̂ × M̌ there is (β, γ ) ∈ B × C
such that m̂ = x̂β and m̌ = x̌γ . Hence we can define κ(m̂, m̌) := η(β, γ ) and obtain
for α ∈ A≥κ(m̂,m̌) = A≥η(β,γ ) that m̂ = x̂β ≤ xα ≤ x̌γ = m̌.

Finally we establish that (iv) implies (i). Define B := M̂ , C := M̌ , where C is
endowed with the reversed order of P . For β ∈ B and γ ∈ C set x̂β := β and x̌γ := γ ,
moreover define η := κ , which yield the desired properties. �

The following proposition gives the general relationships between the different
concepts of order convergence. The further discussion below will show that all the
concepts differ.

Proposition 3.6 Let x ∈ P and let (xα)α∈A be a net in P. Then

(i) xα
o1−→ x implies xα

o2−→ x,
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Order continuity from a topological perspective 1829

(ii) xα
o2−→ x implies xα

o3−→ x, and

(iii) xα
o3−→ x implies xα

τo−→ x.

Proof As (i) and (ii) are straightforward, it remains to show (iii). For this, let O ∈ τo be

a neighbourhod of x . The convergence xα
o3−→ x means that there are nets (x̂β)β∈B and

(x̌γ )γ∈C in P and a map η : B ×C → A such that x̂β ↑ x , x̌γ ↓ x and x̂β ≤ xα ≤ x̌γ

for every β ∈ B, γ ∈ C and α ∈ A≥η(β,γ ). Since O is a net catching set for x ,
Proposition 2.2 shows the existence of β ∈ B and γ ∈ C such that [x̂β, x̌γ ] ⊆ O .
Hence for α ∈ A≥η(β,γ ) we have xα ∈ [x̂β, x̌γ ] ⊆ O . �

Remark 3.7 (a) Observe that every net (xα)α∈A with xα ↓ x ∈ P satisfies xα
o1−→ x ,

and due to Proposition 3.6 also xα
τo−→ x .

(b) Let M ⊆ P , let (xα)α∈A be a net in M and let i ∈ {1, 2, 3}. Note that if xα
oi−→ x ∈

M in M , then also xα
oi−→ x in P . An analogue is valid for τo-convergence. Note

furthermore that the converse statements are not true, in general. This is shown in
Example 8.4 below, where M is even an order dense subspace of a vector lattice
P .

Remark 3.8 Let (xα)α∈A be a net in P and x ∈ P . We have xα
o2−→ x if and only if

there is α ∈ A such that the net (xβ)β∈A≥α satisfies xβ
o1−→ x .

In general, o2-convergence does not imply o1-convergence.

Proposition 3.9 Let x ∈ P have the property that for every p ∈ P≥x there is a q ∈ P

such that p < q. Then there is a net (xα)α∈A in P and such that xα
o2−→ x, but not

xα
o1−→ x.

Proof Let x ∈ P have the above property. Consider A := P≥x and define a partial
order � on A, where on A \ {x} the induced order from P is taken. Moreover, define
for every y ∈ A that y � x . Observe that A is directed upward. Set xα := α for every

α ∈ A. First we show xα
o2−→ x . We define α0 := x and x̂α := x̌α := x for every

α ∈ A and obtain x̂α ≤ xα ≤ x̌α for every α ∈ A�α0 = {x}.
It remains to show that xα

o1−→ x does not hold. Assuming the contrary, there
is a net (x̌α)α∈A with x̌α ↓ x and xα ≤ x̌α for every α ∈ A. By the assumption,
there is α ∈ A such that α > x and β ∈ A such that β > x̌α ∈ A. Observe that
β ≥ x̌α ≥ xα = α > x , hence β � α and thus β > x̌α ≥ x̌β ≥ xβ = β, which is a
contradiction. �
Remark 3.10 (a) Assume P to be directed upward and downward, (xα)α∈A to be a net

in P such that {xα; α ∈ A} is bounded, and p ∈ P . Then xα
o1−→ p if and only if

xα
o2−→ p.

One implication follows from Proposition 3.6. To show the other one, let xα
o2−→ p.

Thus there are nets (x̂α)α∈A and (x̌α)α∈A and α0 ∈ A such that x̂α ↑ p, x̌α ↓ p
and x̂α ≤ xα ≤ x̌α for all α ∈ A≥α0 . Since P is directed upward and {xα; α ∈ A}
is bounded, there is an upper bound p̌ of {xα; α ∈ A} ∪ {x̌α0}. For α ∈ A define
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y̌α := x̌α if α ≥ α0 and y̌α := p̌ otherwise. This defines a net (y̌α)α∈A with
y̌α ↓ p and xα ≤ y̌α for every α ∈ A. Similarly we can define a net (ŷα)α∈A to

obtain xα
o1−→ p.

(b) The statement in (a) shows that the definition of order convergence given in [18,
Chapter 1, Sect. 5] for nets with bounded domain coincides with the concepts of
o1-convergence and o2-convergence.

(c) If x ∈ P is such that P≥x is directed upward and P≤x is directed downward, then
the following are equivalent:

(i) For every net (xα)α∈A in P with xα
o2−→ x we have that xα

o1−→ x .
(ii) P≥x is bounded above and P≤x is bounded below.

Indeed, to show (i)⇒(ii), we assume, to the contrary, that (ii) is not valid. Suppose
w.l.o.g. that P≥x is not bounded from above, thus for every p ∈ P≥x there is r ∈ P≥x

such that r � p. Since P≥x is directed upward, there is q ∈ P≥x such that p, r ≤ q.
As p < q, the assumption of Proposition 3.9 is satisfied, i.e. (i) is not true.

We establish (ii)⇒(i). Let (xα)α∈A be a net in P such that xα
o2−→ x , i.e. there are

nets (x̂α)α∈A and (x̌α)α∈A in P andα0 ∈ A such that x̌α ↓ x , x̂α ↑ x and x̂α ≤ xα ≤ x̌α

for every α ∈ A≥α0 . By (ii) there is an upper bound u ∈ P for P≥x and a lower bound
l ∈ P for P≤x . For α ∈ A, set y̌α := x̌α whenever α ≥ α0, and y̌α := u otherwise.
Similarly, set ŷα := x̂α whenever α ≥ α0, and ŷα := l otherwise. Observe that y̌α ↓ x ,

ŷα ↑ x and ŷα ≤ xα ≤ y̌α for every α ∈ A. Thus xα
o1−→ x .

Remark 3.11 Due to Remark 3.10(c), in every partially ordered vector space the
concepts of o1-convergence and o2-convergence differ. Furthermore, an example
of Fremlin in [1, Example 1.4] shows that o3-convergence does not imply o2-
convergence. For this, use Proposition 5.6 below. A sequence which is τo-convergent,
but not o3-convergent, can be found in Example 8.3 below. The last two examples
are given in the setting of vector lattices. Note that there are examples where o2-
convergence, o3-convergence and τo-convergence coincide, see Example 3.13 below.

In the spirit of the following statement, results in lattices or vector lattices are given
in [17, Theorem 2.5] or [1, Proposition 1.5], respectively.

Proposition 3.12 Let P be a Dedekind complete lattice, let (xα)α∈A be a net in P and

x ∈ P. Then xα
o2−→ x if and only if xα

o3−→ x.

Proof Due to Proposition 3.6 it is sufficient to show that xα
o3−→ x implies xα

o2−→ x .
Assume that there are nets (x̂β)β∈B and (x̌γ )γ∈C in P and a map η : B×C → A such
that x̂β ↑ x , x̌γ ↓ x and x̂β ≤ xα ≤ x̌γ for every β ∈ B, γ ∈ C and α ∈ A≥η(β,γ ).
Fix (β0, γ0) ∈ B × C . Set α0 := η(β0, γ0). By Remark 3.8 it is sufficient to prove
that (xα)α∈A≥α0

is o1-convergent to x .
For α ∈ A define Mα := {xκ ; κ ∈ A≥α} ∪ {x}. Note that for (β, γ ) ∈ B × C

and α ∈ A≥η(β,γ ) we have x̂β ≤ Mα ≤ x̌γ . As P is a Dedekind complete lattice,
ŷα := inf Mα and y̌α := supMα exist for α ∈ A≥α0 . Furthermore ŷα ≤ {xα, x} ≤ y̌α
for all α ∈ A≥α0 , ŷα ↑ and y̌α ↓. Let ŷα ≤ z for all α ∈ A≥α0 . For β ∈ B there is
α ∈ A≥α0 such that η(β, γ0) ≤ α. Hence x̂β ≤ inf Mη(β,γ0) ≤ inf Mα = ŷα ≤ z and
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we obtain x = sup{x̂β; β ∈ B} ≤ z. This shows ŷα ↑ x . Analogously we get y̌α ↓ x .
�

If we introduce the order topology τo on the partially ordered set of real numbers
R, we obtain the standard topology on R.

Example 3.13 Let M ⊆ R be an open set with respect to the standard topology τ and
equip M with the standard order of R. We show that τo(M) is the restriction τ(M)

of τ to M and that o2- and o3-convergence in M coincide with the convergence with
respect to τ(M). Note that fromRemark 3.10 (c) it follows that o1-convergence and o2-
convergence inM donot coincide.Wefirst show that convergencewith respect to τ(M)

implies o2-convergence. Indeed, let (xα)α∈A be a net in M such that xα
τ(M)−−−→ x ∈ M .

Since M is open, there is r > 0 such that the open ball Br (x) ⊆ R with center x and
radius r is contained in M . Hence there is α0 ∈ A such that for every α ∈ A≥α0 we
have xα ∈ Br (x). We therefore assume w.l.o.g. that (xα)α∈A is a net in Br (x). Since
Br (x) is a Dedekind complete lattice, by Proposition 3.12 it is sufficient to show that

xα
o3−→ x . For β ∈ B := (0, r) let x̂β := x − β and x̌β := x + β. If we equip B with

the reversed order of R, we obtain nets (x̂β)β∈B and (x̌β)β∈B in Br (x) with x̂β ↑ x
and x̌β ↓ x . For every β ∈ B there is αβ ∈ A such that for every α ∈ A≥αβ we have

|xα − x | ≤ β, i.e. x̂β ≤ xα ≤ x̌β . We set η : B → A, β �→ αβ , and obtain xα
o3−→ x .

We have now shown that convergence with respect to τ(M) implies o2-convergence in
M . Note that o2-convergence implies o3-convergence and that o3-convergence implies
convergence with respect to τo(M) in M by Proposition 3.6. It therefore remains to
establish that convergence with respect to τo(M) implies convergence with respect to
τ(M). To show that τ(M) ⊆ τo(M), let O ∈ τ(M) and x ∈ O . Since M is open
in R with respect to τ and O ∈ τ(M), we conclude O ∈ τ . Thus there is r > 0
such that B2r (x) ⊆ O . To show that O is a net catching set for x let (x̂α)α∈A and
(x̌α)α∈A be nets in M such that x̂α ↑ x and x̌α ↓ x . Thus there is α ∈ A such that
[x̂α, x̌α] ⊆ [x − r , x + r ] ⊆ B2r (x) ⊆ O . This proves O ∈ τo(M).

Order closed sets can be characterised by means of oi -convergence.

Theorem 3.14 Let i ∈ {1, 2, 3} and C ⊆ P. The following statements are equivalent:

(i) C is order closed.

(ii) For every net (xα)α∈A in C with xα
oi−→ x ∈ P it follows that x ∈ C.

Proof In this proof, a set C that satisfies (ii) is called oi -closed. Observe that from
Proposition 3.6 it follows that order closed sets are always o3-closed, o3-closed sets are
o2-closed and that o2-closed sets are o1-closed. It remains to show that o1-closed sets
are order closed. By contradiction, assume thatC ⊆ P is not order closed. Thus P \C
is not order open, i.e. there is x ∈ P \C such that P \C is not a net catching set for x .
This implies the existence of nets (x̂α)α∈A and (x̌α)α∈A in P with x̂α ↑ x and x̌α ↓ x
such that for every α ∈ A we have that [x̂α, x̌α] � P \ C . Hence, for every α ∈ A

there is xα ∈ [x̂α, x̌α] ∩ C . Note that (xα)α∈A is a net in C with xα
o1−→ x ∈ P \ C ,

hence C is not o1-closed. �
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Corollary 3.15 Let M ⊆ P be a lattice with the induced order from P. If M is order
dense in P, then M is dense in P with respect to τo(P).

Proof Let p ∈ P . Let A := M≥p be equipped with the reversed order of M . Since
M is a lattice, we know A to be directed. Setting xα := α for α ∈ A, we obtain a
net (xα)α∈A in M with xα ↓. Since M is order dense in P , we know furthermore
inf{xα; α ∈ A} = inf A = inf M≥p = p, hence xα ↓ p. Thus xα

o1−→ p and Theorem
3.14 shows that p is contained in the closure of M with respect to τo(P). �

For oi -limits, we obtain the following monotonicity property.

Proposition 3.16 Let i ∈ {1, 2, 3} and (xα)α∈A and (yβ)β∈B be nets in P such that

xα
oi−→ x ∈ P and yβ

oi−→ y ∈ P. If for every α0 ∈ A and β0 ∈ B there are α ∈ A≥α0

and β ∈ B≥β0 such that xα ≤ yβ , then x ≤ y.

Proof By Proposition 3.6 it is sufficient to show the statement for i = 3. In this case,
there are nets (x̂γ )γ∈C , (x̌δ)δ∈D , (ŷε)ε∈E , (y̌ϕ)ϕ∈F in P and maps ηx : C × D → A,
ηy : E × F → B such that x̂γ ↑ x , x̌δ ↓ x , ŷε ↑ y, y̌ϕ ↓ y, x̂γ ≤ xα ≤ x̌δ ,
ŷε ≤ yβ ≤ y̌ϕ for every γ ∈ C , δ ∈ D, ε ∈ E , ϕ ∈ F , α ∈ A≥ηx (γ,δ) and
β ∈ B≥ηy(ε,ϕ).

For every γ ∈ C and ϕ ∈ F we have that x̂γ ≤ y̌ϕ . Indeed, let δ ∈ D, ε ∈ E
and note that by assumption there are α ∈ A≥ηx (γ,δ) and β ∈ B≥ηy(ε,ϕ) such that
x̂γ ≤ xα ≤ yβ ≤ y̌ϕ . From x̂γ ↑ x and y̌ϕ ↓ y we conclude that x ≤ y. �
Remark 3.17 Note that Proposition 3.16 immediately implies the uniqueness of the
oi -limits.

The combination of Theorem 3.14 with Proposition 3.16 yields the following state-
ment.

Corollary 3.18 For every p ∈ P the sets P≤p and P≥p are order closed.

Remark 3.19 Corollary 3.18 implies that for every p ∈ P the set {p} is order closed,
thus P with the order topology is T1. Note that the order topology is not Hausdorff, in
general. Indeed, a combination of Proposition 3.6 and Remark 3.7 yields that the order
topology is always σ -compatible in the sense of [5]. Thus, [5, Theorem 1] presents an
example of a complete Boolean algebra on which the order topology is not Hausdorff.

The following statement is a generalisation of the sandwich theorem for sequences
given in [25, Chapter II, §6,c)].

Proposition 3.20 (i) Let (xα)α∈A, (yα)α∈A and (zα)α∈A be nets in P such that xα
o1−→

p ∈ P and zα
o1−→ p. If for every α ∈ A one has xα ≤ yα ≤ zα , then yα

o1−→ p.

(ii) Let (xα)α∈A, (yα)α∈A and (zα)α∈A be nets in P such that xα
o2−→ p ∈ P and

zα
o2−→ p. If there is α0 ∈ A such that for each α ∈ A≥α0 we have xα ≤ yα ≤ zα ,

then yα
o2−→ p.
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(iii) Let (xα)α∈A, (yβ)β∈B and (zγ )γ∈C be nets in P such that xα
o3−→ p ∈ P and

zγ
o3−→ p. If for (α0, γ0) ∈ A×C there is β0 ∈ B such that for all β ∈ B≥β0 there

is (α, γ ) ∈ A≥α0 × C≥γ0 with xα ≤ yβ ≤ zγ , then yβ
o3−→ p.

Proof To show (i), let xα
o1−→ p ∈ P and zα

o1−→ p. Thus there are nets (x̂α)α∈A and
(žα)α∈A in P such that x̂α ↑ p, žα ↓ p and x̂α ≤ xα ≤ yα ≤ zα ≤ žα for every

α ∈ A, hence we obtain yα
o1−→ p. The proof of (ii) is similar.

To show (iii), assume xα
o3−→ p ∈ P and zγ

o3−→ p. Hence there are nets (x̂δ)δ∈D ,
(x̌κ)κ∈K , (ẑλ)λ∈L and (žε)ε∈E in P and maps ηx : D × K → A and ηz : L × E → C
such that x̂δ ↑ p, x̌κ ↓ p, ẑλ ↑ p, žε ↓ p, x̂δ ≤ xα ≤ x̌κ for all (δ, κ) ∈ D × K
and α ∈ A≥ηx (δ,κ), and ẑλ ≤ zγ ≤ žε for all (λ, ε) ∈ L × E and γ ∈ C≥ηz(λ,ε). Fix
κ ∈ K and λ ∈ L . By assumption, for (δ, ε) ∈ D× E there is β(δ,ε) ∈ A such that for
all β ∈ B≥β(δ,ε)

there exists (α, γ ) ∈ A≥ηx (δ,κ) ×C≥ηz(λ,ε) with xα ≤ yβ ≤ zγ , hence
also x̂δ ≤ xα ≤ yβ ≤ zγ ≤ žε. Thus ηy : D × E → B with ηy(δ, ε) := β(δ,ε) defines
a map such that x̂δ ≤ yβ ≤ žε holds for every (δ, ε) ∈ D× E and β ∈ B≥ηy(δ,ε). This

proves yβ
o3−→ p. �

If all three nets have the same index set, we can simplify (iii) to the statements
given in the following Corollary.

Corollary 3.21 Let (xα)α∈A, (yα)α∈A and (zα)α∈A be nets in P such that xα
o3−→ p ∈ P

and zα
o3−→ p.

(i) If there is δ ∈ A such that for each α ∈ A≥δ we have xα ≤ yα ≤ zα , then yα
o3−→ p.

(ii) If for every δ ∈ A there is is αδ ∈ A such that for every α ∈ A≥αδ we have

xδ ≤ yα ≤ zδ , then yα
o3−→ p.

Proof For (α0, γ0) ∈ A × A there is β0 ∈ A with β0 ≥ δ, β0 ≥ α0 and β0 ≥ γ0. For
β ∈ A≥β0 the inequality xβ ≤ yβ ≤ zβ is valid. If we set α := β and γ := β, we
obtain (α, γ ) ∈ A≥α0 × C≥γ0 with xα = xβ ≤ yβ ≤ zβ = zγ . Hence Proposition
3.20(iii) implies the statement (i).

For (α0, γ0) ∈ A × A there is β0 ∈ A with β0 ≥ α0 and β0 ≥ γ0. Now the
assumption implies the existence of αβ0 ∈ A with xβ0 ≤ yβ ≤ zβ0 for every β ∈
A≥αβ0

. For β ∈ A≥β0 we set α := β0 and γ := β0 to get (α, β) ∈ A≥α0 × A≥γ0 with
xα = xβ0 ≤ yβ ≤ zβ0 = zγ . Hence Proposition 3.20(iii) implies the statement (ii) as
well. �

In distributive lattices the lattice operations are compatible with the order conver-
gences.

Proposition 3.22 Let P be a distributive lattice and let (xα)α∈A and (yβ)β∈B be nets

in P. Let A × B be ordered component-wise and let i ∈ {1, 2, 3}. If xα
oi−→ x ∈ P

and yβ
oi−→ y ∈ P, then the net (xα ∧ yβ)(α,β)∈A×B satisfies xα ∧ yβ

oi−→ x ∧ y. An
analogous statement is valid for the supremum.
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Proof We show the result for i = 1; the cases i = 2 and i = 3 are similar. Let
(x̂α)α∈A, (x̌α)α∈A, (ŷβ)β∈B and (y̌β)β∈B be nets in P such that x̂α ↑ x , x̌α ↓ x ,
ŷβ ↑ y, y̌β ↓ y, x̂α ≤ xα ≤ x̌α for every α ∈ A, and ŷβ ≤ yβ ≤ y̌β for every β ∈ B.
We get immediately that x̂α ∧ ŷβ ≤ xα ∧ yβ ≤ x̌α ∧ y̌β for every (α, β) ∈ A × B
and that the net

(
x̌α ∧ y̌β

)
(α,β)∈A×B satisfies x̌α ∧ y̌β ↓ x ∧ y. Furthermore, (1) with

M = {x̂α; α ∈ A} and N = {ŷβ; β ∈ B} implies x̂α ∧ ŷβ ↑ x ∧ y. �
Remark 3.23 Let (xα)α∈A be a net in P and let (yβ)β∈B be a subnet of (xα)α∈A. Let

x ∈ P and fix i ∈ {1, 2, 3}. If xα
oi−→ x , then yβ

oi−→ x . This will be useful in
combination with the following statement. Let Q be a partially ordered set. For a net
(xα)α∈A in P and (yα)α∈A in Q and a map f : P × Q → Q the net ( f (xα, yα))α∈A

is a subnet of ( f (xα, yβ))(α,β)∈A×A.

In particular, if (xα)α∈A and (yα)α∈A are nets in a distributive lattice P with xα
oi−→

x ∈ P and yα
oi−→ y ∈ P , then Proposition 3.22 shows that the net (xα ∧ yα)α∈A

satisfies xα ∧ yα
oi−→ x ∧ y.

This techniquewill also be applied to the addition of nets in partially ordered abelian
groups and the multiplication of a scalar net and a net in a partially ordered vector
space in the subsequent discussion.

4 Continuousmaps on partially ordered sets

In this section, P and Q are partially ordered sets. For o1-, o2-, o3- and τo-convergence,
we will introduce the corresponding concepts of continuity. It will be shown that for
monotone maps these concepts are equivalent.

Definition 4.1 A map f : P → Q is called

(i) oi -continuous in x ∈ P , if for every net (xα)α∈A with xα
oi−→ x we have that

f (xα)
oi−→ f (x) (where i ∈ {1, 2, 3}).

(ii) order continuous in x ∈ P , if it is continuous in x with respect to the order
topologies τo(P) and τo(Q), respectively.

f is called oi -continuous (order continuous, respectively) if it is oi -continuous (order
continuous, respectively) in x for every x ∈ P .

Theorem 4.2 Let i ∈ {1, 2, 3}. Every oi -continuous map f : P → Q is order contin-
uous.

Proof We show that for every order closed set C ⊆ Q the preimage [C] f is order
closed in P . Indeed, let C ⊆ Q be order closed. By Theorem 3.14 it suffices to show

that for every net (xα)α∈A in [C] f with xα
oi−→ x ∈ P we have that x ∈ [C] f . Since

f is oi -continuous, we obtain f (xα)
oi−→ f (x). Since ( f (xα))α∈A is a net in C and C

is order closed, Theorem 3.14 implies that f (x) ∈ C , hence x ∈ [C] f . �
To show that all concepts introduced in Definition 4.1 coincide for monotone maps,

we need the following lemma.
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Lemma 4.3 Let (xα)α∈A be a net in P with xα
τo−→ x ∈ P.

(i) If inf{xα;α ∈ A} exists, then inf{xα;α ∈ A} ≤ x.
(ii) If for every α ∈ A we have xα ∈ P≥x , then inf{xα;α ∈ A} exists and satisfies

inf{xα;α ∈ A} = x.

Proof Note that for both statements it is sufficient to show that for every lower bound
p of {xα;α ∈ A} we have p ≤ x .

Let p be a lower bound of {xα;α ∈ A}, i.e. for every α ∈ A we have xα ∈ P≥p.

Since xα
τo−→ x and P≥p is order closed by Corollary 3.18, we conclude x ∈ P≥p, i.e.

p ≤ x . �
Theorem 4.4 Let f : P → Q be amonotonemap and i ∈ {1, 2, 3}. Then the following
statements are equivalent:

(i) f is oi -continuous.
(ii) f is order continuous.
(iii) For every net (xα)α∈A in P and x ∈ P the following implications are valid:

(a) If xα ↓ x then inf{ f (xα);α ∈ A} exists and satisfies inf{ f (xα);α ∈ A} =
f (x).

(b) If xα ↑ x then sup{ f (xα);α ∈ A} exists and satisfies sup{ f (xα);α ∈ A} =
f (x).

Proof The implication (i)⇒(ii) is contained in Theorem 4.2. We show (ii)⇒(iii). Let
(xα)α∈A be a net in P such that xα ↓ x ∈ P . Due toRemark 3.7 andProposition 3.6 this

implies xα
τo−→ x . Since f is order continuous,weobtain f (xα)

τo−→ f (x). Furthermore,
the monotony of f yields for every α ∈ A that f (xα) ∈ Q≥ f (x). Thus Lemma 4.3 (ii)
implies that inf{ f (xα);α ∈ A} exists and satisfies inf{ f (xα);α ∈ A} = f (x). The
second statement in (iii) is shown analogously.

It remains to show (iii)⇒(i).We proof this implication for i = 3; the argumentation

for i ∈ {1, 2} is similar. Let (xα)α∈A be a net such that xα
o3−→ x ∈ P , i.e. there are

nets (x̂β)β∈B and (x̌γ )γ∈C in P and a map η : B × C → A such that x̂β ↑ x , x̌γ ↓ x
and x̂β ≤ xα ≤ x̌γ for every β ∈ B, γ ∈ C and α ∈ A≥η(β,γ ). The monotony of
f and condition (iii) implies that f (x̂β) ↑ f (x) and f (x̌γ ) ↓ f (x). Furthermore
the monotony of f yields f (x̂β) ≤ f (xα) ≤ f (x̌γ ) for every β ∈ B, γ ∈ C and

α ∈ A≥η(β,γ ). Thus f (xα)
o3−→ f (x). �

Combining Theorem 4.4 and Proposition 1.3, we obtain the following statement.

Corollary 4.5 Every order embedding f : P → Q for which f [P] is order dense in
Q is order continuous (and, hence, oi -continuous, where i ∈ {1, 2, 3}).
Remark 4.6 Assume thatM ⊆ P is order dense in P . Then the embedding f : M → P
is order continuous by Corollary 4.5, therefore the induced topology of τo(P) on M
satisfies

{O ∩ M; O ∈ τo(P)} ⊆ τo(M). (2)

Thus for every order closed set N ⊆ P we obtain that N ∩M is order closed in M . By
means of Theorem 3.14 this generalises [6, Proposition 5.1(iii)]. Example 8.4 below
shows that the converse implication in (2) is not valid, in general.
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The next statement follows from Proposition 3.12.

Proposition 4.7 Let f : P → Q be a map.

(i) If P is a Dedekind complete lattice and f is o2-continuous, then f is also o3-
continuous.

(ii) If Q is a Dedekind complete lattice and f is o3-continuous, then f is also o2-
continuous.

Remark 4.8 (i) Note that by Remark 3.8 every o1-continuous map is o2-continuous.
The converse implication is not true, in general, see Example 4.16 below, but it is
open whether it is true in partially ordered abelian groups.

(ii) In [1, Example 1.8] it is shown that o3-continuity of maps between vector lattices
does not imply o2-continuity, in general. In Corollary 7.9 below we present a
setting where o2-continuity implies o3-continuity. It is an open question whether
this implication is valid in more general situations. Moreover it is not clear under
which conditions the converse implications in Theorem 4.2 are true.

(iii) In Theorem 7.7 we will present a situation where all concepts introduced in Defi-
nition 4.1 coincide.

In [1, Proposition 1.5] it is shown that the o3-convergence in a vector lattice X is
equivalent to the o2-convergence in the Dedekind completion X δ of X . To show that
a generalisation2 to lattices holds, we need the following technical statement.

Lemma 4.9 Let P be a lattice, Q a partially ordered set and f : P → Q an order
embedding such that f [P] is order dense in Q. Let (y̌α)α∈A be a net in Q such that
y̌α ↓ f (x) for x ∈ P. If

B := {v ∈ P; ∃α ∈ A : f (v) ≥ y̌α}

is equipped with the reversed order of P, then B is directed and inf B = x. Thus
x̌β := β for all β ∈ B defines a net in P with x̌β ↓ x.

Proof For v1, v2 ∈ B there are α1, α2 ∈ A such that f (v1) ≥ y̌α1 and f (v2) ≥ y̌α2 .
Since A is directed there is α ∈ Awith α ≥ {α1, α2}. We use y̌α ↓ and get f (v1) ≥ y̌α
and f (v2) ≥ y̌α . By Proposition 1.3 we conclude f (v1 ∧ v2) = f (v1) ∧ f (v2) ≥ y̌α .
Thus v1 ∧ v2 ∈ B, and we have shown B to be directed.

It is left to show that inf B = x . For v ∈ B we have f (v) ≥ y̌α ≥ f (x) for some
α ∈ A. Since f is order reflecting we know x to be a lower bound of B. In order to
show that x is the greatest lower bound of B let z ∈ P be another lower bound. For
α ∈ A the monotony of f implies

f (z) ≤ f [B] ⊇ f [{v ∈ P; f (v) ≥ y̌α}] = {y ∈ f [P]; y ≥ y̌α}.

Since f [P] is order dense in Q we conclude f (z) ≤ inf{y ∈ f [P]; y ≥ y̌α} = y̌α .
Thus y̌α ↓ f (x) yields f (z) ≤ f (x). Since f is order reflecting we conclude z ≤ x .
This proves x to be the greatest lower bound of B. �
2 To link our notions with the one in [1], use Proposition 5.6 below.
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Proposition 4.10 Let Q be a partially ordered set and f : P → Q an order embedding
such that f [P] is order dense in Q. Let (xα)α∈A be a net in P and x ∈ P.

(i) If Q is a Dedekind complete lattice, then xα
o3−→ x implies f (xα)

o2−→ f (x).

(ii) If P is a lattice, then f (xα)
o2−→ f (x) implies xα

o3−→ x.

Proof To show (i), let xα
o3−→ x . Corollary 4.5 implies f (xα)

o3−→ f (x). Thus Propo-

sition 3.12 yields f (xα)
o2−→ f (x).

To prove (ii), let f (xα)
o2−→ f (x). Hence there are nets (ŷα)α∈A and (y̌α)α∈A with

ŷα ↑ f (x), y̌α ↓ f (x) and ŷα ≤ f (xα) ≤ y̌α for all α ∈ A. Let (x̌β)β∈B be defined as
in Lemma 4.9 and note that x̌β ↓ x . By the definition of B, for β ∈ B there is αβ ∈ A
such that f (xα) ≤ y̌α ≤ y̌αβ ≤ f (β) = f (x̌β) for all α ∈ A≥αβ . Since f is order
reflecting we obtain xα ≤ x̌β . An analogous construction shows the existence of a net
(x̂γ )γ∈C with x̂γ ↑ x and such that for γ ∈ C there exists αγ ∈ A with x̂γ ≤ xα

for all α ∈ A≥αγ . For (β, γ ) ∈ B × C let α(β,γ ) ∈ A be such that α(β,γ ) ≥ αβ and
α(β,γ ) ≥ αγ . Thus η : B ×C → A, (β, γ ) �→ α(β,γ ) yields a map as in the definition
of the o3-convergence. �

Proposition 4.10 in combination with Remark 3.10(a) yields the following.

Corollary 4.11 Let Q be a partially ordered set that is directed upward and downward,
and f : P → Q an order embedding such that f [P] is order dense in Q. Let (xα)α∈A

be a net in P such that { f (xα); α ∈ A} is bounded, and let x ∈ P.

(i) If Q is a Dedekind complete lattice, then xα
o3−→ x implies f (xα)

o1−→ f (x).

(ii) If P is a lattice, then f (xα)
o1−→ f (x) implies xα

o3−→ x.

Remark 4.12 Note that the implications in Proposition 4.10(ii) and inCorollary 4.11(ii)
are not valid, in general. In Example 8.4 below a partially ordered vector space P = X
and a vector lattice Q = Y are provided which lead to a counterexample, where
f : P → Q is the inclusion map.

One can characterise o3-convergence in lattices by means of o3-convergence in a
cover.

Proposition 4.13 Let P be a lattice, let Q be a partially ordered set and let f : P → Q
be an order embedding such that f [P] is order dense in Q. Let (xα)α∈A be a net in

P and x ∈ P. Then xα
o3−→ x if and only if f (xα)

o3−→ f (x).

Proof If xα
o3−→ x , then f (xα)

o3−→ f (x) in f [P], hence also in Q. To show the
converse implication, let Qμ be the Dedekind-MacNeille completion3 and J : Q →
Qμ the canonical embedding. If f (xα)

o3−→ f (x) in Q, then Proposition 4.10(i) shows

J ( f (xα))
o2−→ J ( f (x)). Since J ◦ f [P] is order dense in J [Q] and J [Q] is order

dense in Qμ, by Proposition 1.2 we conclude J ◦ f [P] to be order dense in Qμ. Note
furthermore that J ◦ f : P → Qμ is an order embedding. Hence Proposition 4.10(ii)

shows xα
o3−→ x . �

3 If Q is a partially ordered set, then there is a complete lattice Qμ and an order embedding J : Q → Qμ

such that J [Q] is order dense in Qμ. The set Qμ is called Dedekind-MacNeille completion of Q.
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Remark 4.14 In [1, Example 1.4] an example of a vector lattice X and a net (xα)α∈A

with {xα; α ∈ A} bounded is given that o3-convergences, but does not o2-converge.
Hence, by Proposition 3.6, the net (xα)α∈A does not o1-converge. Since (xα)α∈A is
o3-convergent in X and {xα; α ∈ A} is bounded, Corollary 4.11 implies (xα)α∈A to be
o1-convergent in X δ , and hence o2-convergent in X δ . Thus an analogue of Proposition
4.13 for o1-convergence and o2-convergence is not valid.

In Proposition 4.13, the statement is not valid for arbitrary partially ordered sets P .
Indeed, in Example 8.4 below we will present a partially ordered vector space P = X ,
a vector lattice Q = Y , and a net (xα)α∈A in P such that for the canonical embedding

f : P → Q we have that f (xα)
o3−→ f (x), but (xα)α∈A does not o3-converge.

Next we discuss the link between o1-continuity and order boundedness. The proof
of the subsequent proposition is adopted from [13, Proposition 149].

Proposition 4.15 Every o1-continuous map f : P → Q is order bounded.

Proof Let A := [v,w] be an order interval in P and consider the net (xα)α∈A with
xα := α. Note that xα ↑ w, therefore xα

o1−→ w. Thus f (xα)
o1−→ f (w), hence there

are nets (ŷα)α∈A and (y̌α)α∈A such that ŷα ↑ f (w), y̌α ↓ f (w) and ŷα ≤ f (xα) ≤ y̌α
for every α ∈ A. Consequently f [[v,w]] ⊆ [ŷv, y̌v]. �

The subsequent simple example shows that o2-, o3-, and order continuity do not
imply order boundedness, in general.

Example 4.16 Consider the partially ordered set P := R \ {0} with the standard order
and the map f : P → P , x �→ 1

x2
. Clearly, f is not order bounded and, hence, not o1-

continuous due to Proposition 4.15. Since f is continuous with respect to the standard
topology of P , Example 3.13 yields that f is o2-continuous, o3-continuous and order
continuous.

5 Order convergence and order topology in partially ordered abelian
groups

LetG be a partially ordered abelian group. In this section, we characterise net catching
sets as well as the three concepts of order convergence in partially ordered abelian
groups.

Proposition 5.1 Let U ⊆ G and x ∈ U.

(i) U is a net catching set for 0 if and only if for every net (xα)α∈A in G with xα ↓ 0
there is α ∈ A such that [−xα, xα] ⊆ U.

(ii) U is a net catching set for x if and only if U − x is a net catching set for 0.

Proof (i) Let U be a net catching set for 0. If (xα)α∈A is a net in G with xα ↓ 0, then
−xα ↑ 0, hence [−xα, xα] ⊆ U .

For the converse implication, we have to show that U is a net catching set for 0.
Let (x̂α)α∈A and (x̌α)α∈A be nets in G with x̂α ↑ 0 and x̌α ↓ 0. Thus (x̌α − x̂α) ↓ 0.
By the assumption there is α ∈ A such that [x̂α, x̌α] ⊆ [−(x̌α − x̂α), x̌α − x̂α] ⊆ U .
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The result in (ii) follows from the fact that xα ↓ x if and only if xα − x ↓ 0 (and
the similar statement for increasing nets). �
Remark 5.2 In the case of a partially ordered vector spaces, the concept of O-
neighbourhood is introduced in [11, Definition 3.3]. Proposition 5.1 shows that
O-neighbourhoods are exactly the net catching sets.

Remark 5.3 (a) The set G+ is order closed, due to Corollary 3.18.
(b) The set G+ −G+ is order closed. Indeed, by Theorem 3.14 it is sufficient to show

that G+ −G+ is closed under o1-convergence. Let (xα)α∈A be a net in G+ −G+
such that xα

o1−→ x ∈ G. Then there are nets (x̂α)α∈A and (x̌α)α∈A such that x̂α ↑ x ,
x̌α ↓ x and x̂α ≤ xα ≤ x̌α for every α ∈ A. Thus for every α ∈ A we obtain
x ∈ G+ + x̂α ⊆ G+ + (xα − G+) ⊆ G+ + ((G+ − G+) − G+) = G+ − G+.

(c) The set G+ − G+ is order open. Indeed, by Proposition 5.1 (ii) it is sufficient to
show that G+ − G+ is a net-catching set for 0. Let (xα)α∈A be a net in G with
xα ↓ 0, then for every α ∈ A we have [−xα, xα] ⊆ xα − G+ ⊆ G+ − G+.

Note that for nets (xα)α∈A and (yβ)β∈B in G with xα ↓ x ∈ G and yβ ↓ y ∈ G
the net (xα + yβ)(α,β)∈A×B satisfies xα + yβ ↓ x + y, where A × B is ordered
component-wise. This yields the following statement.

Proposition 5.4 Let G be a partially ordered abelian group and let (xα)α∈A and
(yβ)β∈B be nets in G. Let A × B be ordered component-wise and let i ∈ {1, 2, 3}.
If xα

oi−→ x ∈ G and yβ
oi−→ y ∈ G, then the net (xα + yβ)(α,β)∈A×B satisfies

xα + yβ
oi−→ x + y.

Remark 5.5 Due to Remark 3.19, the order topology is T1 and σ -compatible, hence
the assumptions in [5, Theorem 3] are satisfied. Since the map G → G : g �→ −g is
order continuous for every partially ordered abelian group G, by [5, Corollary] there
is a Dedekind complete vector lattice X endowed with the order topology with the
property that the addition X × X → X , (x, y) �→ x + y is not continuous, where
X × X is equipped with the product topology.

As the order bound topology introduced in [15, p. 20] is always a linear topology,
this shows that τo does not coincide with the order bound topology of X .

The order convergences in vector lattices investigated in [1] are special cases of the
oi -convergences, as the next proposition shows.

Proposition 5.6 Let (xα)α∈A be a net in G. Then

(i) xα
o1−→ 0 if and only if there is a net (x̌α)α∈A in G such that x̌α ↓ 0 and ±xα ≤ x̌α

for every α ∈ A,

(ii) xα
o2−→ 0 if and only if there is a net (x̌α)α∈A in G and α0 ∈ A such that x̌α ↓ 0

and ±xα ≤ x̌α for every α ∈ A≥α0 ,

(iii) xα
o3−→ 0, if and only if there is a net (x̌β)β∈B and a map η : B → A such that

x̌β ↓ 0 and ±xα ≤ x̌β for every β ∈ B and α ∈ A≥η(β),

(iv) for every i ∈ {1, 2, 3} and x ∈ G we have that xα
oi−→ x if and only if xα − x

oi−→ 0.
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Proof Weshow (iii), observe that (i) and (ii) are similar. Let xα
o3−→ 0. Then Proposition

3.5 yields the existence of nets (ŷβ)β∈B and (y̌β)β∈B and a map η : B → A such that
ŷβ ↑ 0, y̌β ↓ 0 and ŷβ ≤ xα ≤ y̌β for every β ∈ B and α ∈ A≥η(β). For β ∈ B define
x̌β := y̌β − ŷβ . Observe that y̌β − ŷβ ↓ 0. Furthermore −x̌β ≤ ŷβ ≤ xα ≤ y̌β ≤ x̌β

holds for allβ ∈ B andα ∈ A≥η(β). The converse implication in (iii) is straightforward.
The statement in (iv) is a direct consequence of Proposition 5.4. �

Order closed subgroups of lattice-ordered abelian groups are characterised as fol-
lows.

Proposition 5.7 Let M be a subgroup of a lattice-ordered abelian group G such that
M is closed under the lattice operations of G (i.e. for every x, y ∈ M the element
x ∨ y ∈ G belongs to M). Then M is order closed if and only if M ∩ G+ is order
closed.

Proof Let M be order closed. Since G+ is order closed, we obtain that M ∩ G+ is
order closed.

For the converse implication, we use Theorem 3.14. Let (xα)α∈A be a net in M

with xα
o1−→ x ∈ G. By Proposition 3.22 we obtain x+

α

o1−→ x+ and x−
α

o1−→ x−. Since
x+
α , x−

α ∈ M ∩ G+, we conclude x = x+ − x− ∈ M . �

6 The Riesz-Kantorovich formulas for group homomorphisms

In this section, we study conditions on partially ordered abelian groups G and H such
that the set Ab(G, H) of all order bounded additive maps turns out to be a lattice-
ordered abelian group. The arguments are straightforward adaptations of the classical
Riesz-Kantorovich theorem, see [19] and [12]. We include the proofs here for sake of
completeness.

Proposition 6.1 Let G and H be partially ordered abelian groups such that G is
directed. Let f : G+ → H be a semigroup homomorphism. Then there exists a unique
additive map g : G → H such that f = g on G+. Moreover, if f [G+] ⊆ H+, then g
is monotone.

Proof First observe that for u, v, x, y ∈ G+ with v − u = y − x we have that
f (v)− f (u) = f (y)− f (x). Indeed, from v+x = u+y it follows that f (v)+ f (x) =
f (v + x) = f (u + y) = f (u) + f (y).
For x ∈ G there are u, v ∈ G+ such that x = u − v. Define g(x) := f (u) − f (v)

and note that the definition is independent of the choice of u and v.
g is additive. Indeed, let x, y ∈ G be such that x = v − u and y = z − w with

u, v, w, z ∈ G+. Since f (v) + f (z) + f (u + w) = f (v + z) + f (u) + f (w), we
have

g(x + y) = g(v − u + z − w) = f (v + z) − f (u + w)

= f (v) − f (u) + f (z) − f (w) = g(v − u) + g(z − w)

= g(x) + g(y).
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Moreover, g is unique. �
The next proposition contains the crucial conditions under which the partially

ordered abelian group Ab(G, H) is a lattice.

Proposition 6.2 Let G be a directed partially ordered abelian group with the Riesz
decomposition property and let H be a Dedekind complete lattice-ordered abelian
group. For f ∈ Ab(G, H) and x ∈ G+ define

g(x) := sup{ f (u); u ∈ [0, x]}.

Then there exists a unique additive map h ∈ A+(G, H) such that h = g on G+.
Moreover, the supremum of f and 0 exists in Ab(G, H) and equals h.

Proof As f is order bounded and H is Dedekind complete, g : G+ → H+ is well-
defined.

To show that g is a semigroup homomorphism, let x, y ∈ G+. For u ∈ [0, x] and
v ∈ [0, y]we have u+v ∈ [0, x + y] and f (u+v) = f (u)+ f (v), hence g(x + y) ≥
f (u)+ f (v). Then, by taking the supremumover allu,wehave g(x+y) ≥ g(x)+ f (v).
Similarly, the supremumover v yields g(x+y) ≥ g(x)+g(y). Next, forw ∈ [0, x+y]
the Riesz decomposition property of G provides us with u ∈ [0, x] and v ∈ [0, y]
such that w = u+v. Then f (w) = f (u)+ f (v) ≤ g(x)+ g(y). The supremum over
w results in g(x + y) ≤ g(x) + g(y).

According to Proposition 6.1, there exists h ∈ A+(G, H) such that h = g on G+.
Now we show that h is the supremum of f and 0. Indeed, for x ∈ G+ we have

h(x) = g(x) ≥ f (x), hence h is an upper bound of f and 0. Let q ∈ A+(G, H) be
an upper bound of f . Then for x ∈ G+ and u ∈ [0, x] we have q(x) ≥ q(u) ≥ f (u),
so that q(x) ≥ g(x) = h(x), thus q ≥ h. Hence h = f ∨ 0. �

In fact, Proposition 6.2 yields the positive part f + := h of f , hence Ab(G, H) is
a lattice.

Theorem 6.3 LetG beadirectedpartially orderedabeliangroupwith theRiesz decom-
position property and let H be a Dedekind complete lattice-ordered abelian group.
Then Ab(G, H) is a Dedekind complete lattice-ordered abelian group.

Proof It remains to show that Ab(G, H) is Dedekind complete. Let A be a non-empty
subset of Ab(G, H) that is bounded from above. Let q be an upper bound of A. Denote
by B the set of all suprema of finite non-empty subsets of A. Note that q is also an
upper bound of B. For x ∈ G+ define

g(x) := sup{ f (x); f ∈ B}. (3)

To show that g is a semigrouphomomorphism, let x, y ∈ G+. For every f ∈ Bwehave
f (x + y) = f (x)+ f (y) ≤ g(x)+ g(y), hence g(x + y) ≤ g(x)+ g(y). Conversely,
for every f , h ∈ B we have f ∨ h ∈ B, hence g(x + y) ≥ ( f ∨ h)(x + y) =
( f ∨ h)(x) + ( f ∨ h)(y) ≥ f (x) + h(y). By taking supremum first over f and
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then over h we obtain g(x + y) ≥ g(x) + g(y). We conclude that g is a semigroup
homomorphism.

According to Proposition 6.1 there exists a unique map h ∈ A(G, H) with h = g
on G+. From the definition of g it is clear that h is an upper bound of B, and hence
of A. As A is non-empty, there is f ∈ A such that f ≤ h. Moreover, h ≤ q, hence
h ∈ Ab(G, H).

As q is an arbitrary upper bound of A, it follows that h is the supremum of A. �

Remark 6.4 Under the conditions of Theorem 6.3, the lattice operations in Ab(G, H)

are given by the following formulas. For every x ∈ G+ and f , g ∈ Ab(G, H) we
have

f +(x) = sup{ f (u); u ∈ [0, x]},
f −(x) = sup{− f (u); u ∈ [0, x]},
| f |(x) = sup{| f (u)|; u ∈ [−x, x]},

( f ∨ g)(x) = sup{ f (x − u) + g(u); u ∈ [0, x]},
( f ∧ g)(x) = inf{ f (x − u) + g(u); u ∈ [0, x]}.

These formulas are called the Riesz-Kantorovich formulas.

Corollary 6.5 Under the conditions of Theorem 6.3 the following statements are valid.

(i) If A ⊆ Ab(G, H) is upward directed and bounded from above, then for every
x ∈ G+ we have

(sup A)(x) = sup{ f (x); f ∈ A}.

A similar statement is valid for the infimum of a downward directed set that is
bounded from below.

(ii) For a net ( fα)α∈A in Ab(G, H) we have fα ↓ 0 if and only if for every x ∈ G+ it
holds fα(x) ↓ 0.

(iii) Let i ∈ {1, 2, 3}, ( fα)α∈A be a net inAb(G, H) and f ∈ Ab(G, H)with fα
oi−→ f .

Then for every x ∈ G one has fα(x)
oi−→ f (x).

Proof To prove the statement in (i), let B be as in the proof of Theorem 6.3. Equation
(3) shows that for every x ∈ G+ we have (sup A)(x) = sup{ f (x); f ∈ B}. Since A
is a majorising subset of B, we obtain that { f (x); f ∈ A} is a majorising subset of
{ f (x); f ∈ B}. Thus we conclude (sup A)(x) = sup{ f (x); f ∈ A} by Lemma 1.1.

The statement (ii) follows from (i). To show (iii), let the net ( f̌α)α∈A in Ab(G, H)

be such that ±( fα − f ) ≤ f̌α ↓ 0. By (ii), for x ∈ G+ we get ±( fα(x) − f (x)) ≤
f̌α(x) ↓ 0. As G is directed, Proposition 5.4 yields the statement for x ∈ G. �

123



Order continuity from a topological perspective 1843

7 Properties of the set of order continuous homomorphisms of
partially ordered abelian groups

In this section, let G, H be partially ordered abelian groups. We show that under the
conditions of the Riesz-Kantorovich Theorem 6.3 for an order bounded map f : G →
H the four concepts of continuity from Sect. 5 coincide. We furthermore show that
under the same conditions the set of order continuous maps is an order closed ideal
in the lattice-order abelian group Ab(G, H) of all order bounded additive maps. For
i ∈ [1, 2, 3], we denote the set of all oi -continuous maps in Ab(G, H) by Aoi

b (G, H).
The set of all order continuous maps in Ab(G, H) is denoted by Aτo

b (G, H). Theorem
4.4 reads then as

Aoi
b (G, H) ∩ A+(G, H) = Aτo

b (G, H) ∩ A+(G, H) =: Aoc+ (G, H). (4)

The set Aoc+ (G, H) of positive order continuous additive maps is characterised as
follows.

Proposition 7.1 For every f ∈ A(G, H), we have f ∈ Aoc+ (G, H) if and only if for
every net (xα)α∈A with xα ↓ 0 it holds f (xα) ↓ 0.

Proof Let f ∈ A(G, H) be such that for every net (xα)α∈A with xα ↓ 0 it holds
f (xα) ↓ 0. First we show that f is monotone. Indeed, let x ∈ G+, then for the net
(xα)α∈[−x,0] with xα = −α we have xα ↓ 0 and hence f (xα) ↓ 0, which implies
f (x) = f (x−x ) ≥ 0.
To show that f is order continuous, note that the assumption implies that for every

net (xα)α∈A with xα ↑ 0 we have f (xα) ↑ 0. Then Theorem 4.4 yields the order
continuity of f , due to the translation invariance of infimum and supremum.

The converse implication follows directly from Theorem 4.4. �
As a consequence of Proposition 7.1, we obtain the following statement.

Proposition 7.2 Under the conditions of Theorem 6.3, the set Aoc+ (G, H) is order
closed in Ab(G, H).

Proof We use Theorem 3.14. Let ( fα)α∈A be a net in Aoc+ (G, H) such that fα
o1−→ f ∈

Ab(G, H). ByRemark 5.3 (a), the set A+(G, H) is order closed, hence f is monotone.
By Proposition 5.6 there is a net ( f̌α)α∈A such that f̌α ↓ 0 and ±( fα − f ) ≤ f̌α for
every α ∈ A. In order to apply Proposition 7.1, let (xβ)β∈B be a net in G such that
xβ ↓ 0. Since f is monotone, f (xβ) ↓ and 0 is a lower bound of { f (xβ); β ∈ B}.
Let z be a lower bound of { f (xβ); β ∈ B}. Let β ∈ B. We will show that for every
α ∈ A we have that z ≤ f̌α(xβ). Indeed, for γ ∈ B≥β we calculate

z ≤ f (xγ ) ≤ ( fα + f̌α)(xγ ) ≤ fα(xγ ) + f̌α(xβ),

and from fα ∈ Aoc+ (G, H) we conclude inf{ fα(xγ ); γ ∈ B≥β} = 0. Hence z ≤
f̌α(xβ). Thus, Corollary 6.5 establishs z ≤ inf{ f̌α(xβ); α ∈ A} = 0. �
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In order to establishAτo
b (G, H) as an ideal inAb(G, H), wefirst show the following.

Proposition 7.3 The set Aoi
b (G, H) is a full subgroup of A(G, H).

Proof Due to Proposition 5.4 the set Aoi
b (G, H) is a subgroup of A(G, H). To prove

that Aoi
b (G, H) is full, it suffices to show that Aoc+ (G, H) is full. Let f , h ∈ Aoc+ (G, H)

and let g ∈ A(G, H) be such that f ≤ g ≤ h. For a net (xα)α∈A with xα ↓ 0 we
have h(xα) ↓ 0. Since 0 ≤ f (xα) ≤ g(xα) ≤ h(xα) (for every α ∈ A) we conclude
g(xα) ↓ 0. �

To show that under the conditions of the Riesz-Kantorovich Theorem 6.3 the sets
Aτo
b (G, H) and Aoi

b (G, H) coincide for i ∈ {1, 2, 3}, we need three technical state-
ments.

Lemma 7.4 Let G be a partially ordered abelian group that satisfies the Riesz decom-
position property. Let x, y, z ∈ G be such that {x, y} ⊆ [0, z]. Then there is w ∈ G
with

(i) ±w ≤ x,
(ii) ±w ≤ y and
(iii) y − w ≤ z − x.

Proof Let A := {−x,−y, x + y − z} and B := {x, y}. Since A ≤ B, the Riesz
decomposition property implies the existence of w ∈ G with A ≤ w ≤ B. It is
straightforward that w satisfies (i), (ii) and (iii). �
Lemma 7.5 Let G be a partially ordered abelian group with the Riesz decomposition
property and let H be a Dedekind complete lattice-ordered abelian group. Let f ∈
Aτo
b (G, H) and (yα)α∈A be a net in G such that yα ↓ 0. For β ∈ A and y ∈ [0, yβ ]

there is a net (wα)α∈A≥β in G such that

(i) 0 ≤ y − wα ≤ yβ − yα for every α ∈ A≥β ,
(ii) inf{ f (wα);α ∈ A≥β} exists and satisfies inf{ f (wα);α ∈ A≥β} ≤ 0.

Proof Let β ∈ A and let y ∈ [0, yβ ]. For α ∈ A≥β we have 0 ≤ yα ≤ yβ . So
{yα, y} ⊆ [0, yβ ]. By Lemma 7.4 there is wα ∈ G such that ±wα ≤ yα , ±wα ≤ y
and y − wα ≤ yβ − yα for every α ∈ A≥β . Thus the net (wα)α∈A≥β satisfies (i).
Next we will show that inf{ f (wα);α ∈ A≥β} exists. Note that {wα;α ∈ A≥β} ⊆
[−y, y]. Since f is order bounded, we know that { f (wα);α ∈ A≥β} is order bounded
in H . Thus the Dedekind completeness of H implies the existence of inf{ f (wα);α ∈
A≥β}.
It is left to prove that inf{ f (wα);α ∈ A≥β} ≤ 0. Note that the net (yα)α∈A satisfies
yα ↓ 0 and that ±wα ≤ yα for every α ∈ A≥β . Thus for the net (wα)α∈A≥β we

have wα
o1−→ 0, and Proposition 3.6 implies wα

τo−→ 0. Since f is order continuous, it

follows that f (wα)
τo−→ 0. Hence Lemma 4.3 implies inf{ f (wα);α ∈ A≥β} ≤ 0. �

Due to Theorem 6.3, the conditions in the subsequent Proposition 7.6 and Theorem
7.7 yield

Ab(G, H) = Ar(G, H).
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The operator f + is the positive part of f in the Dedekind complete lattice-ordered
abelian group Ab(G, H), and f − is the negative part.

Proposition 7.6 Let G be a directed partially ordered abelian group with the Riesz
decomposition property and let H be a Dedekind complete lattice-ordered abelian
group. If f ∈ Aτo

b (G, H), then f +, f − ∈ Aoc+ (G, H).

Proof Let f ∈ Aτo
b (G, H). We will use Proposition 7.1 to show f + ∈ Aoc+ (G, H).

Let (yα)α∈A be a net in X such that yα ↓ 0. From the monotony of f + it follows that
f +(yα) ↓ and that f +(yα) ≥ 0 for every α ∈ A.
To show that inf{ f +(yα);α ∈ A} = 0, let z be a lower bound of { f +(yα);α ∈ A}.

Fix β ∈ A and y ∈ [0, yβ ]. By Lemma 7.5 there is a net (wα)α∈A≥β in G such that
0 ≤ y − wα ≤ yβ − yα for every α ∈ A≥β and such that inf{ f (wα);α ∈ A≥β} exists
and satisfies inf{ f (wα);α ∈ A≥β} ≤ 0. For α ∈ A≥β we can use 0 ≤ y − wα ≤
yβ − yα to see

f (y) − f (wα) = f (y − wα) ≤ f +(y − wα) ≤ f +(yβ − yα) = f +(yβ) − f +(yα).

Therefore we have shown that

z ≤ f +(yα) ≤ f +(yβ) − f (y) + f (wα)

for every α ∈ A≥β . Thus

z ≤ f +(yβ) − f (y) + inf{ f (wα);α ∈ A≥β} ≤ f +(yβ) − f (y) + 0.

The infimum over y yields

z ≤ f +(yβ) + inf{− f (y); y ∈ [0, yβ ]} = f +(yβ) − sup{ f (y); y ∈ [0, yβ ]}
= f +(yβ) − f +(yβ) = 0.

We conclude inf{ f +(yα);α ∈ A} = 0, hence f + ∈ Aoc+ (G, H).
Since for f ∈ Aτo

b (G, H) we have that − f ∈ Aτo
b (G, H), we obtain f − =

(− f )+ ∈ Aoc+ (G, H). �
Now we are in a position to present the main results of the present paper in the

subsequent two theorems.

Theorem 7.7 Let G be a directed partially ordered abelian group that satisfies the
Riesz decomposition property and let H be a Dedekind complete lattice-ordered
abelian group. Then

Ao1
b (G, H) = Ao2

b (G, H) = Ao3
b (G, H) = Aτo

b (G, H)

= Aoc+ (G, H) − Aoc+ (G, H).
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Proof Let i ∈ {1, 2, 3}. By Theorem 4.2 we have

Aoi
b (G, H) ⊆ Aτo

b (G, H).

Proposition 7.6 implies that

Aτo
b (G, H) ⊆ Aoc+ (G, H) − Aoc+ (G, H).

By Proposition 7.3 the set Aoi
b (G, H) is a subgroup of Ab(G, H), hence

Aoc+ (G, H) − Aoc+ (G, H) ⊆ Aoi
b (G, H).

�

Theorem 7.8 Let G be a directed partially ordered abelian group that satisfies the
Riesz decomposition property and let H be a Dedekind complete lattice-ordered
abelian group. Then Aτo

b (G, H) is an order closed ideal in Ab(G, H).

Proof From Proposition 7.3 and Theorem 7.7 it follows that Aτo
b (G, H) is a full sub-

group of Ab(G, H). Proposition 7.6 implies that Aτo
b (G, H) is closed under the lattice

operations in Ab(G, H). In particular, Aτo
b (G, H) is directed, i.e. it is an ideal.

Combining Theorem 7.7, Proposition 7.2 and Proposition 5.7, we conclude that
Aτo
b (G, H) is order closed. �

Theorem 7.8 is a generalisation of a theorem by Ogasawara [16] (see also [2,
Theorem 4.4]) for o1-continuous operators on vector lattices.

The following slight generalisation of [1, Proposition 1.6] is obtained due to The-
orem 7.7.

Corollary 7.9 Let G be a directed partially ordered abelian group that satisfies the
Riesz decomposition property and let H be an Archimedean lattice-ordered abelian
group. Then Ao2

b (G, H) ⊆ Ao3
b (G, H).

Proof Let f ∈ Ao2
b (G, H) and (xα)α∈A a net in G such that xα

o3−→ x ∈ G. Further-
more let (Hγ , J ) be the group Dedekind completion4 of H . Due to Corollary 4.5 the
map J is o2-continuous, hence also J ◦ f : G → Hγ . Since J ◦ f is order bounded,

Theorem7.7 yields J◦ f ∈ Ao2
b (G, Hγ ) = Ao3

b (G, Hγ ). Thus J ( f (xα))
o3−→ J ( f (x))

in Hγ . Now Proposition 3.12 yields J ( f (xα))
o2−→ J ( f (x)) in Hγ . Thus Proposition

4.10(ii) shows that f (xα)
o3−→ f (x). �

4 A slight adaptation of arguments given in [25, Theorem IV.11.1] yields that for every Archimedean
lattice-ordered abelian group G there is a Dedekind complete lattice-ordered abelian group Gγ and an
additive order embedding J : G → Gγ such that J [G] is order dense in Gγ . We say that (Gγ , J ) is the
group Dedekind completion of G.
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8 Order convergence and order topology in partially ordered vector
spaces

In this section, let X be a partially ordered vector space. We will show that for i ∈
{1, 2, 3} the scalar multiplication is jointly continuous with respect to oi -convergence
on X and R, respectively, if and only if X is Archimedean and directed. Examples are
presented in which the order convergence concepts differ.

Lemma 8.1 Let i ∈ {1, 2, 3}. Then the following statements are equivalent.

(i) For every x ∈ X the sequence ( 1n x)n∈N satisfies 1
n x

oi−→ 0.

(ii) For every x ∈ X the sequence ( 1n x)n∈N satisfies 1
n x

τo−→ 0.
(iii) X is Archimedean and directed.

Proof The implication (i)⇒(ii) follows from Proposition 3.6. To show (ii)⇒(iii), we
first establish X+ to be generating in X . Let x ∈ X , then for the sequence ( 1n x)n∈N
we have 1

n x
τo−→ 0, hence Remark 5.3 (c) shows the existence of n ∈ N with 1

n x ∈
X+ − X+. Since X+ − X+ is a vector space, we obtain x ∈ X+ − X+.

To show that X is Archimedean, let x ∈ X+. By (ii), we have 1
n x

τo−→ 0. Since
( 1n x) ↓, Lemma 4.3 proves ( 1n x) ↓ 0.

Next we show (iii)⇒(i). Let x ∈ X . By the directedness of X , we have x1, x2 ∈ X+
with x = x1 − x2. Since X is Archimedean, we get 1

n x j ↓ 0 for j ∈ {1, 2}. Thus
1
n x j

oi−→ 0 by Remark 3.7 and Proposition 3.6. Hence Proposition 5.4 implies 1
n x =

1
n x1 − 1

n x2
oi−→ 0. �

Proposition 8.2 Let i ∈ {1, 2, 3}. Then the following statements are equivalent.

(i) X is Archimedean and directed.

(ii) For every net (λα)α∈A in R with λα
oi−→ λ ∈ R and every net (xβ)β∈B in X with

xβ
oi−→ x ∈ X the net (λαxβ)(α,β)∈A×B satisfies λαxβ

oi−→ λx (where A × B is
ordered component-wise).

(iii) For every net (λα)α∈A in R with λα
oi−→ λ ∈ R and every net (xα)α∈A in X with

xα
oi−→ x ∈ X the net (λαxα)α∈A satisfies λαxα

oi−→ λx.

Proof To show (i)⇒(ii), let (λα)α∈A be a net in R with λα
o1−→ λ ∈ R and let (xβ)β∈B

be a net in X with xβ
o1−→ x ∈ X . According to Proposition 5.6, there is a net (λ̌α)α∈A

in R with λ̌α ↓ 0 and ±(λα − λ) ≤ λ̌α for every α ∈ A, and a net (x̌β)β∈B in X
with x̌β ↓ 0 and ±(xβ − x) ≤ x̌β for every β ∈ B. Since X is directed, there is
x̌ ∈ X with ±x ≤ x̌ . The net (λ̌α x̌)(α,β)∈A×B is a subnet of (λ̌α x̌)α∈A, hence X being
Archimedean implies that λ̌α x̌ ↓ 0. A straightforward argument shows that the net
(λ̌α x̌β + λ̌α x̌+|λ|x̌β)(α,β)∈A×B satisfies λ̌α x̌β + λ̌α x̌+|λ|x̌β ↓ 0. For (α, β) ∈ A× B
we have ±λα ≤ λ̌α ∓ λ ≤ λ̌α + |λ| and hence

±(λαxβ − λx) = ±λα(xβ − x) ± (λα − λ)x ≤ (λ̌α + |λ|)x̌β + λ̌α x̌,
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such that the net (λαxβ)(α,β)∈A×B satisfies λαxβ
o1−→ λx . The arguments for o2-

convergence and o3-convergence are similar.
The implication (ii)⇒(iii) follows from Remark 3.23.
By Lemma 8.1 we obtain (iii)⇒(i). �
Next we present an example of a vector lattice in which τo-convergence and o3-

convergence do not coincide.

Example 8.3 Let X be the vector lattice of all real, Lebesgue-measurable, almost
everywhere finite functions on [0, 1]. As usual, we identify almost everywhere equal
functions and order X component-wise almost everywhere. Let ( fn)n∈N be the
sequence of characteristic functions of the intervals

[0, 1], [0, 1
2 ], [ 12 , 1], [0, 1

4 ], [ 14 , 2
4 ], [ 24 , 3

4 ], [ 34 , 1], [0, 1
8 ], . . .

The sequence ( fn)n∈N does not o3-converge to 0. Indeed, assume fn
o3−→ 0. By

Proposition 5.6 there is a net ( f̌α)α∈A in X with f̌α ↓ 0 and a map η : A → N such
that ± fn ≤ f̌α for all α ∈ A and n ∈ N≥η(α). To obtain a contradiction note that
1 = sup{ fn; n ∈ N≥η(α)} ≤ f̌α for all α ∈ A.

We show that fn
τo−→ 0. Let V ⊆ X be order open such that 0 ∈ V . For t ∈ [0, 1]

and ε ∈ R>0 let g
(t)
ε be the characteristic function of the interval [0, 1]∩[t − ε, t + ε].

Note that for every t ∈ [0, 1] the sequence
(
g(t)

1
n

)

n∈N
satisfies g(t)

1
n

↓n 0. As V is a net

catching set for 0, for every t ∈ [0, 1] there is ε(t) ∈ R>0 such that
[
−g(t)

ε(t), g
(t)
ε(t)

]
⊆ V .

Since [0, 1] is compact, there is a finite set I ⊂ [0, 1] such that {[t−ε(t), t+ε(t)]; t ∈
I } is an open cover of [0, 1]. Let δ be a Lebesgue number of this cover. There is n0 ∈ N

such that for every n ∈ N≥n0 the support of fn has diameter less than δ. Therefore for

every n ∈ N≥n0 there is t ∈ I such that fn ∈
[
−g(t)

ε(t), g
(t)
ε(t)

]
⊆ V . This proves that

fn
τo−→ 0.

As a continuation of Remark 4.6, in the subsequent example we present a vector
lattice Y with order topology τo(Y ) and an order dense subspace X such that the
induced topology differs from the order topology τo(X). In the spirit of [6] this means,
in particular, that the Extension property (E) is not satisfied for order closed sets.

Example 8.4 In [6, Example 5.2] the vector lattice

Y =
{
y = (yi )i∈Z ∈ l∞; lim

i→∞ yi exists

}

and its order dense subspace

X =
{
x = (xi )i∈Z ∈ Y ;

∞∑
k=1

x−k

2k
= lim

i→∞ xi

}
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are considered. Moreover, it is shown that the sequence of unit vectors (e(n))n∈N is
o1-convergent to 0 in Y , but is not o1-convergent in X . Here for n, k ∈ Z we set
e(n)
k := 1 for n = k and e(n)

k := 0 otherwise.
Let M := {e(n); n ∈ N}. By Theorem 3.14, M is not order closed in Y . We will

show in (A) that M is order closed in X and in (B) that there is no order closed N ⊆ Y
such that N ∩ X = M . Moreover, in (C) we prove that the sequence (e(n))n∈N is not
convergent with respect to τo(X), and hence not o3-convergent and not o2-convergent.

(A) To show that M is order closed in X , we use Theorem 3.14. Let (nα)α∈A be
a net in N such that e(nα) o1−→ x ∈ X . Hence there is a net (ěα)α∈A in X such that
ěα ↓ 0 and ± (

e(nα) − x
) ≤ ěα for all α ∈ A. We show in the steps (A1) and (A2)

that (nα)α∈A has exactly one accumulation point l, which implies x = e(l) ∈ M .
(A1) The net (nα)α∈A has an accumulation point.
Indeed, assume the contrary. Let k ∈ Z. Since no element of {0, . . . , k} is an

accumulation point of (nα)α∈A, there is αk ∈ A such that for every α ∈ A≥αk we have

nα > k. Hence e(nα)
k = 0 for every α ∈ A≥αk , and |xk | =

∣∣∣e(nα)
k − xk

∣∣∣ ≤ ěα
k ↓ 0

implies xk = 0. This shows x = 0.
We show that limk→∞ ěα

k ≥ 1 for every α ∈ A. Assuming limk→∞ ěα
k < 1, for

every α ∈ A there is K ∈ N such that for every k ∈ N≥K we have ěα
k < 1. Since

(nβ)β∈A has no accumulation points, there is β ∈ A≥α such that nβ ≥ K , and we

obtain the contradiction 1 > ěα
nβ

≥ ěβ
nβ

≥ e
(nβ)
nβ

= 1.
We do not have ěα

k ↓α 0 for every k ∈ Z\N, since otherwisemonotone convergence

would imply 1 ≤ limk→∞ ěα
k = ∑∞

k=1
ěα−k
2k

↓α 0. Hence there is k ∈ Z \ N and δ > 0

with ěα
k ≥ δ for every α ∈ A. Putw := δe(k) −2δe(k−1) and observe the contradiction

w ≤ ěα ↓α 0. This shows that (nα)α∈A has accumulation points.
(A2) The net (nα)α∈A has at most one accumulation point.
Indeed, let l, k ∈ N be accumulation points of this net. As ěα

l ↓ 0, we obtain
that for every ε > 0 there is an α0 ∈ A such that for every α ∈ A≥α0 we have∣∣∣e(nα)
l − xl

∣∣∣ ≤ ěα
l ≤ ěα0

l ≤ ε. Since l is an accumulation point of (nα)α∈A, there

is α ∈ A≥α0 such that l = nα . Thus |1 − xl | =
∣∣∣e(l)
l − xl

∣∣∣ =
∣∣∣e(nα)
l − xl

∣∣∣ ≤ ε,

consequently xl = 1. Since k is an accumulation point of (nα)α∈A, there is β ∈ A≥α0

such that k = nβ . Hence
∣∣∣e(k)
l − 1

∣∣∣ =
∣∣∣e(nβ)

l − xl
∣∣∣ ≤ ε and we have shown e(k)

l = 1,

i.e. k = l.
(B) To show that there is no order closed set N ⊆ Y such that N ∩ X = M , assume

the contrary. As e(n) o1−→ 0 we obtain 0 ∈ N . Hence 0 ∈ N ∩ X = M , which is a
contradiction.

(C) Assume that e(n) τo(X)−−−→ x ∈ X . Since M is order closed in X , there is l ∈ N

such that x = e(l). Let O := {x ∈ X; xl ∈ (0, 2)} and observe that e(l) ∈ O ∈ τo(X).

Thus e(n) τo(X)−−−→ e(l) implies the existence of N ∈ N such that for every n ∈ N≥N we
have e(n) ∈ O , a contradiction.
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9 Properties of the set of order continuous linear operators in
partially ordered vector spaces

In this section, let X and Y be partially ordered vector spaces. In this setting, we
provide similar statements as in Section 7. The following is a slight generalisation of
[1, Theorem 2.1]. Note that for i = 1 the result is contained in Proposition 4.15.

Proposition 9.1 Let X be Archimedean, G be a partially ordered abelian group and
i ∈ {1, 2, 3}. Every oi -continuous and additive map f : X → G is order bounded.

Proof Note that it is sufficient to show that f [[0, v]] is order bounded in G for every
v ∈ X+. Let A := N × [0, v] be ordered lexicographically and define x(n,w) := 1

nw,
x̂(n,w) := − 1

n v and x̌(n,w) := 1
n v for (n, w) ∈ A. Note that x̂α ↑ 0 and x̌α ↓ 0

and that x̂α ≤ xα ≤ x̌α for all α ∈ A. Thus xα
o1−→ 0. Since f is oi -continuous, by

Proposition 3.6 we obtain f (xα)
o3−→ 0. Therefore by Proposition 5.6(iii) there is a

net (yβ)β∈B and a map η : B → A such that yβ ↓ 0 and ± f (xα) ≤ yβ for every
β ∈ B and α ∈ A≥η(β). Fix β ∈ B. Since η(β) ∈ A there are (m, u) ∈ A such that
η(β) = (m, u). Now let w ∈ [0, v] and observe that (m + 1, w) ≥ (m, u) = η(β).

Thus ± f (w) = ±(m + 1) f
(

1
m+1w

)
= ±(m + 1) f

(
x(m+1,w)

) ≤ (m + 1)yβ . Hence

f [[0, v]] ⊆ [−(m + 1)yβ, (m + 1)yβ ]. �
Remark 9.2 It is an open question whether Proposition 9.1 is valid if X is an
Archimedean partially ordered abelian group.

We denote Loi
b (X ,Y ) = Aoi

b (X ,Y )∩L(X ,Y ), Lτo
b (X ,Y ) = Aτo

b (X ,Y )∩L(X ,Y )

andLoc+ (X ,Y ) = Aoc+ (X ,Y )∩L(X ,Y ). The proof of the following statement is similar
to the one in [3, Lemma 1.26].

Proposition 9.3 If X is directed and Y is Archimedean, then every additive monotone
map is homogeneous, i.e. A+(X ,Y ) = L+(X ,Y ).

An analogue for oi -continuous maps is given next.

Proposition 9.4 Let X ,Y be directed and Archimedean and let i ∈ {1, 2, 3}. Then
every additive oi -continuous map from X to Y is homogeneous, hence Aoi

b (X ,Y ) =
Loi
b (X ,Y ). Furthermore, Aoc+ (X ,Y ) = Loc+ (X ,Y ).

Proof Let T ∈ Aoi
b (X ,Y ). Observe that every additive maps is Q-homogeneous. Let

λ ∈ R and x ∈ X . There is a sequence (λn)n∈N in Q that oi -convergences to λ

(with respect to R, cf. Example 3.13). By Proposition 8.2 we get λnx
oi−→ λx and

λnT (x)
oi−→ λT (x). Since T is oi -continuous, we obtain T (λnx)

oi−→ T (λx). As T is
Q-homogeneous, we get for every n ∈ N that T (λnx) = λnT (x). Due to Remark 3.17
order limits are unique, hence we conclude T (λx) = λT (x). �

Under the conditions of Proposition 9.3, we obtain

A+(X ,Y ) − A+(X ,Y ) = L+(X ,Y ) − L+(X ,Y ) ⊆ Lb(X ,Y ) ⊆ Ab(X ,Y ).
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Hence, if Ab(X ,Y ) is directed, then Ab(X ,Y ) = Lb(X ,Y ). Therefore, Theorem 6.3
yields the following statement.

Theorem 9.5 Let X be a directed partially ordered vector space with the Riesz decom-
position property, and let Y be a Dedekind complete vector lattice. Then every additive
order bounded map is homogeneous, i.e. Ab(X ,Y ) = Lb(X ,Y ).

We reformulate the Theorems 7.7 and 7.8 and obtain a generalisation of the Oga-
sawara theorem.

Theorem 9.6 Let X be a directed partially ordered vector space with the Riesz decom-
position property, and let Y be a Dedekind complete vector lattice. Then

Lo1
b (X ,Y ) = Lo2

b (X ,Y ) = Lo3
b (X ,Y ) = Lτo

b (X ,Y )

= Loc+ (X ,Y ) − Loc+ (X ,Y ).

Moreover, Lτo
b (X ,Y ) is an order closed ideal in Lb(X ,Y ).

If X is, in addition, Archimedean, then by Proposition 9.1 and Theorem 9.6 a linear
operator T : X → Y is oi -continuous if and only if T ∈ Loc+ (X ,Y ) − Loc+ (X ,Y ).

It is an open question whether one obtains similar results to the ones in Theorem
9.6 under weaker assumptions. In particular, if Y is an Archimedean vector lattice, but
not Dedekind complete, then the set of all regular linear operators is an Archimedean
directed partially ordered vector space, and the notion of an ideal is at hand, see [6].
One can ask whether the set of order continuous (or oi -continuous) regular linear
operators is an order closed ideal in the space of regular operators.
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