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Abstract
Under mild assumptions, we establish a Liouville theorem for the “Laplace” equation
Au = 0 associated with the infinitesimal generator A of a Lévy process: If u is a
weak solution to Au = 0 which is at most of (suitable) polynomial growth, then u
is a polynomial. As a by-product, we obtain new regularity estimates for semigroups
associated with Lévy processes.
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1 Introduction

The classical Liouville theorem states that any bounded solution u : Rd → R to the
Laplace equation Δu = 0 is constant. There is an extension for unbounded functions:
If Δu = 0 and u is at most of polynomial growth, say, |u(x)| ≤ C(1+ |x |k) for some
constants C > 0 and k ∈ N0, then u is a polynomial of degree at most k. In this paper,
we extend this result to a wide class of integro-differential operators. More precisely,
we establish a Liouville theorem for equations Au = 0 where A is of the form

A f (x) = b · ∇ f (x) + 1

2
tr(Q · ∇2 f (x))

+
∫

y �=0
( f (x + y) − f (x) − y · ∇ f (x)1(0,1)(|y|)) ν(dy), f ∈ C∞

c (Rd),
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998 F. Kühn

for some b ∈ Rd , a positive semi-definite matrix Q ∈ Rd×d and a measure ν on
(Rd\{0},B(Rd\{0})) satisfying ∫

y �=0 min{1, |y|2} ν(dy) < ∞. Equivalently, A can
be written as a pseudo-differential operator,

A f (x) = −ψ(D) f (x) := −
∫
Rd

ψ(ξ)eix ·ξ f̂ (ξ) dξ, f ∈ C∞
c (Rd ), x ∈ Rd , (1)

where f̂ (ξ) = (2π)−d
∫
Rd f (x)e−i x ·ξ dx denotes the Fourier transform of f and the

symbol ψ is a continuous negative definite function with Lévy–Khintchine represen-
tation

ψ(ξ) = ib · ξ + 1

2
ξ · Qξ +

∫
y �=0

(
1 − eiy·ξ + iy · ξ1(0,1)(|y|)

)
ν(dy), ξ ∈ Rd . (2)

Since A is the infinitesimal generator of a Lévy process, see below, we also call A a
Lévygenerator. The family ofLévygenerators includesmany interesting and important
operators, e.g. the Laplacian Δ, the fractional Laplacian −(−Δ)α/2, α ∈ (0, 2), and
the free relativistic Hamiltonian m − √−Δ + m2, m > 0. If A is a local operator,
i.e. ν = 0, then the Liouville theorem is classical, and so the focus is on the non-
local case ν �= 0. For Lévy generators with a sufficiently smooth symbol, there is a
Liouville theorem by Fall andWeth [5]; the required regularity ofψ increases with the
dimension d ∈ N. Ros-Oton and Serra [19] established a general Liouville theorem
for symmetric stable operators,

A f (x) =
∫
Sd−1

∫
(0,∞)

( f (x + θr) + f (x − θr) − 2 f (x))
dr

rd+α
μ(dθ), (3)

where α ∈ (0, 2) and μ is a non-negative finite measure on the unit sphere Sd−1

satisfying an ellipticity condition. Liang and Wang [16, Corollary 1.3] established
a Liouville theorem under the assumption that ν is bounded below and above by a
stable measure. The recent papers [1,11] give necessary and sufficient conditions for
the Liouville property, i.e. conditions under which the implication

u ∈ L∞(Rd), Au = 0 weakly 	⇒ u is constant (4)

holds. Choquet and Deny [4] characterized the bounded solutions u to convolution
equations of the form u = u ∗μ; these equations play a central role in the study of the
“Laplace” equation Au = 0, see Lemma 1. Since the Liouville theorem is an assertion
on the smoothness of harmonic functions, there is a close connection between the
Liouville theorem and Schauder estimates; see [13,19] and the references therein for
recent results. We would like to mention that there are also Liouville theorems in the
half-space, see e.g. [3,19], and Liouville theorems for certain Lévy-type operators, see
e.g. [2,17,18,23].

In this paper, we use a probabilistic approach, inspired by [19], to prove a Liouville
theorem for a wide class of Lévy generators. Before stating the result, let us briefly
recall somematerial from probability theory. It is well known, cf. [8,9,20], that there is
a one-to-one correspondence between continuous negative definite functions and Lévy
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A Liouville theorem for Lévy generators 999

processes, i.e. stochastic processes with càdlàg (right-continuous with finite left-hand
limits) sample paths and stationary and independent increments. Given a continuous
negative definite function ψ : Rd → C, there exists a Lévy process (Xt )t≥0 with
semigroup Pt f (x) := E f (x + Xt ) satisfying

−ψ(D) f (x) = lim
t→0

Pt f (x) − f (x)

t
, f ∈ C∞

c (Rd), x ∈ Rd ,

which means that A = −ψ(D) is the infinitesimal generator of (Xt )t≥0. The Lévy
process (Xt )t≥0 is uniquely determined by ψ , the so-called characteristic exponent of
(Xt )t≥0, and by the associated Lévy triplet (b, Q, ν). The following theorem is our
main result.

Theorem 1 Let (Xt )t≥0 be a Lévy process with Lévy triplet (b, Q, ν) and characteristic
exponent ψ , and denote by A f = −ψ(D) f the associated Lévy generator. Assume
that

(C1) Xt has for each t > 0 a density pt ∈ C1
b(Rd) with respect to Lebesgue measure,

(C2) there exists some β > 0 such that
∫
|y|≥1 |y|β ν(dy) < ∞.

If u : Rd → R is a weak solution to

Au = 0 in Rd

satisfying |u(x)| ≤ M(1 + |x |γ ), x ∈ Rd , for some M > 0 and γ ∈ [0, β), then u is
a polynomial of degree at most γ �. In particular, A has the Liouville property (4).

Remark 1 (i). Weak solutions to Au = 0 are only determined up to a Lebesgue
null set, cf. Sect. 2. When we write “u is a polynomial”, this means that u has a
representative which is a polynomial, i.e. there is a polynomial ũ such that u = ũ
Lebesgue almost everywhere.

(ii). A sufficient condition for (C1) is the Hartman–Wintner condition,

lim|ξ |→∞
Reψ(ξ)

log(|ξ |) = ∞, (5)

see [10] for a thorough discussion.
(iii). Condition (C2) is equivalent to assuming that E(|Xt |β) = ∫

Rd |x |β pt (x) dx is
finite for some (all) t > 0, cf. [20]. Consequently, (C2) implies, in particular, that
Pt u(x) = Eu(x + Xt ) is well defined for any measurable function u satisfying
the growth condition |u(x)| ≤ M(1 + |x |β).

(iv). In Theorem 1 we impose an integral condition on ν and a pointwise growth
condition on u. One can also think of imposing a pointwise growth condition on
(the density of) ν and an integral condition on u, see [5] for a result in this direction.

(v). The conditions (C1) and (C2) are quite mild assumptions, which hold for a
large class of pseudo-differential operators. The recent paper [11] does, however,
indicate that our conditions are not sharp; it is shown that A = −ψ(D) has the
Liouville property (4) iff {ψ = 0} = {0}. By the Riemann–Lebesgue lemma, (C1)
implies {ψ = 0} = {0} but the converse is not true.
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1000 F. Kühn

Example 1 (i). If (Xt )t≥0 is a Brownian motion, then (C1) is trivial and (C2) holds
for all β > 0. The associated Lévy generator is the Laplacian and, consequently,
we recover the classical Liouville theorem for the Laplacian.

(ii). Consider an α-stable operator A of the form (3) for a finite spectral measureμ on
Sd−1 which is non-degenerate, in the sense that its support is not contained in any
proper linear subspace ofRd . Then the assumptions of Theorem 1 are satisfied for
β < α, and we recover the Liouville theorem for stable operators in [19, Theorem
2.1].

(iii). Let α1, . . . , αd ∈ (0, 2). The anisotropic operator Au = −∑d
k=1(−∂2xk

u)αk/2

appears as Lévy generator of theLévy processwith characteristic exponentψ(ξ) =∑d
k=1 |ξk |αk , ξ = (ξ1, . . . , ξd) ∈ Rd . Since ψ satisfies the Hartman-Wintner

condition (5), it follows that (C1) holds; moreover, the associated Lévy measure
ν satisfies the moment condition (C2) for β < mink αk .

(iv). If the Lévy measure ν of a Lévy generator satisfies

ν(B) ≥
∫

|y|<1

1

|y|d+α
1B(y) dy, B ∈ B(Rd\{0}),

for some α > 0, then (5) holds and, in consequence, (C1) is satisfied. A sufficient
condition for (C2) is, for instance, that ν(dy) = g(y) dy with g(y) ≤ C |y|−d−γ ,
|y| � 1, for some constants C > 0 and γ > β.

Let us sketch the idea of the proof of Theorem 1. First, we show under mild assump-
tions that every weak solution to the equation Au = 0 gives rise to a (continuous)
solution to the convolution equation Pt u = u. The intuition behind this result comes
from Dynkin’s formula: If Au = 0 and u is, say, twice differentiable and bounded,
then Dynkin’s formula, cf. [8, Lemma 4.1.14], shows

Pt u − u =
∫ t

0
Ps Au ds = 0 for all t ≥ 0.

Secondly, we use that the convolution operator Pt has smoothing properties, i.e. Pt u
has a higher regularity than u. If u is a solution to Au = 0, and hence to Pt u = u, then
these regularizing properties of Pt allow us to establish suitable Hölder estimates for
u which lead, by iteration, to the conclusion that u is smooth; thus a polynomial.

The remaining article is structured as follows. In Sect. 2 we introduce the notion
of weak solutions and study the connection between the “Laplace” equation Au = 0
and the convolution equation Pt u = u. In Sect. 3 we establish regularity estimates for
the semigroup (Pt )t≥0, which are of independent interest. The Liouville theorem is
proved in Sect. 4.

2 Weak solutions

Let A = −ψ(D) be a pseudo-differential operator with continuous negative definite
symbol ψ : Rd → C, cf. (2). Since ψ(ξ) = ψ(−ξ) for all ξ ∈ Rd , an application of
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A Liouville theorem for Lévy generators 1001

Plancherel’s theorem shows that the pseudo-differential operator A∗ f := −ψ(D) f
is the adjoint of A in L2(dx). Indeed, if ϕ, f ∈ C∞

c (Rd), then

〈A f , ϕ〉L2 = 〈 Â f , ϕ̌〉L2 = 〈−ψ f̂ , ϕ̌〉L2 = 〈 f̂ ,−ψϕ̌〉L2 = 〈 f̂ ,

̂

A∗ϕ〉L2 = 〈 f , A∗ϕ〉L2 ,

where ϕ̌ denotes the inverse Fourier transform of ϕ.

Definition 1 Let A be a pseudo-differential operator with continuous negative definite
symbol ψ : Rd → C. Let U ⊆ Rd be open and f ∈ L1

loc(U ). A measurable function
u : Rd → R is a weak solution to

Au = f in U

if

∀ϕ ∈ C∞
c (U ) :

∫
Rd

u(x)A∗ϕ(x) dx =
∫

U
f (x)ϕ(x) dx . (6)

In (6) we implicitly assume that the integrals exist. For the integral on the right-hand
side, the existence is evident from ϕ ∈ C∞

c (U ) and f ∈ L1
loc(U ). The other integral is

harder to deal with because A∗ is a non-local operator, i.e. decay properties of ϕ (e.g.
compactness of the support) do not carry over to A∗ϕ. Our first result in this section
shows that the decay of A∗ϕ is closely linked to the existence of fractional moments∫
|y|≥1 |y|β ν(dy) of the Lévy measure ν, associated with ψ via (2); see [5, Lemma
2.1] for a related result.

Proposition 1 Let ψ : Rd → C be a continuous negative definite function with triplet
(b, Q, ν). If β > 0 is such that

∫
|y|≥1 |y|β ν(dy) < ∞, then the pseudo-differential

operator A = −ψ(D) satisfies

∫
Rd

(1 + |x |β)|Aϕ(x)| dx < ∞ for all ϕ ∈ C∞
c (Rd). (7)

More precisely, there is for all R > 0 a constant C > 0 such that every ϕ ∈ C∞
c (Rd)

with suppϕ ⊂ B(0, R) satisfies

∫
Rd

(1 + |x |β)|Aϕ(x)| dx

≤ C‖ϕ‖C2
b (Rd )

(
|b| + |Q| +

∫
|y|≤1

|y|2 ν(dy) +
∫

|y|>1
|y|β ν(dy)

)
.

(8)

Let us mention that
∫
|y|≥1 |y|β ν(dy) < ∞ is actually equivalent to (7). Here, we need

(and prove) only sufficiency for (7); for the converse implication see [6, Theorem 4.1].
Proposition 1 gives a sufficient condition such the integral on the left-hand side of
(6) exists: Since the adjoint A∗ is a pseudo-differential operator with symbol ψ and
triplet (−b, Q, ν(−·)), Proposition 1 shows that

∫
Rd |u(x)| |A∗ϕ(x)| dx is finite for
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1002 F. Kühn

every measurable function u satisfying |u(x)| ≤ M(1 + |x |β) for some β ≥ 0 with∫
|y|≥1 |y|β ν(dy) < ∞.

Proof of Proposition 1 Since the assertion is obvious for the local part of A, we may
assume without loss of generality that b = 0 and Q = 0. Fix ϕ ∈ C∞

c (Rd) with
suppϕ ⊂ B(0, R). For x ∈ Rd with |x | ≥ 2R, we have

|x |β |Aϕ(x)| ≤ |x |β
∫

|y+x |<R
|ϕ(x + y)| ν(dy)

≤
∫

|y|≥|x |−R
|ϕ(x + y)| |x |β

(|x | − R)β
|y|β ν(dy)

≤ C
∫

|y|≥R
|ϕ(x + y)| |y|β ν(dy)

for some constant C = C(R). Integrating with respect to x , we find by Tonelli’s
theorem that

∫
|x |≥2R

|x |β |Aϕ(x)| dx ≤ C‖ϕ‖∞(2R)d
∫

|y|≥R
|y|β ν(dy).

On the other hand, it is immediate from Taylor’s formula that

‖Aϕ‖∞ ≤ 2‖ϕ‖C2
b (R)

∫
y �=0

min{1, |y|2} ν(dy),

and this yields the required estimate for
∫
|x |<2R(1 + |x |β)|Aϕ(x)| dx . ��

Next we establish a connection between the “Laplace” equation Au = 0 and the
convolution equation Pt u = u.

Lemma 1 Let (Xt )t≥0 be a Lévy process with Lévy triplet (b, Q, ν), infinitesimal
generator (A,D(A)) and semigroup (Pt )t≥0. Assume that Xt has for t > 0 a
density pt ∈ Cb(R

d) with respect to Lebesgue measure, and let β ≥ 0 be such
that

∫
|y|≥1 |y|β ν(dy) < ∞. If u : Rd → R is a measurable function with

|u(x)| ≤ M(1 + |x |β), x ∈ Rd , solving

Au = 0 weakly in Rd ,

then there exists ũ ∈ C(Rd) such that u = ū Lebesgue almost everywhere and ũ = Pt ũ
for all t > 0.
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A Liouville theorem for Lévy generators 1003

Note that the exceptional null set {ũ �= Pt ũ} does, in general, depend on t ; for the
application which we have in mind, that is, for the proof of Liouville’s theorem, this
is not a problem since we will use the result only for t = 1.

Proof Take ϕ ∈ C∞
c (Rd) such that ϕ ≥ 0 and

∫
Rd ϕ(x) dx = 1. Set ϕε(x) :=

ε−dϕ(x/ε) and

uε(x) := (u ∗ ϕε)(x) :=
∫
Rd

u(x − y)ϕε(y) dy, x ∈ Rd ,

for ε > 0. Using
(a + b)β ≤ cβ(aβ + bβ), a, b ≥ 0,

it follows that

|uε(x)| ≤ M
∫
Rd

(1 + |x − y|β)|ϕε(y) dy

≤ Mcβ(1 + |x |β)

(∫
Rd

|ϕε(y)| dy +
∫
Rd

|y|β |ϕε(y)| dy

)

≤ C1(1 + |x |β) (9)

for a constant C1 > 0 not depending on ε, x and u. As
∫
|y|≥1 |y|β ν(dy) < ∞, the

Lévy process has fractional moments of order β, i.e. E(|Xt |β) = ∫ |y|β pt (y) dy is
finite, see e.g. [20, Theorem 25.3] or [12, Theorem 4.1], and so Pt u and Pt uε are
well-defined. We have

|Pt u(x) − Pt uε(x)| ≤ ‖pt‖∞
∫

|y|≤R
|u(y) − uε(y)| dy

+ 2M
∫

|y|>R
(1 + |y|β)pt (y − x) dy.

For fixed x ∈ Rd , it follows from the dominated convergence theorem that the second
term on the right-hand side is less than, say, � > 0, for R large enough. Since uε → u
in L1

loc(dx), the first term is less than � for small ε > 0. Hence, Pt uε(x) → Pt u(x)

as ε → 0 for each x ∈ Rd . Next we show that

Pt uε(x) = uε(x) for all t > 0, x ∈ Rd , ε > 0. (10)

By the definition of Pt u and uε,we have

Pt uε(x) =
∫
Rd

(∫
Rd

u(z)ϕε(y − z) dz

)
pt (y − x) dy.

Because of the growth estimate in (9), we may apply Fubini’s theorem:

Pt uε(x) =
∫
Rd

(∫
Rd

ϕε(y − z)pt (y − x) dy

)
u(z) dz
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1004 F. Kühn

= uε(x) +
∫
Rd

u(z) (Eϕε(x − z + Xt ) − ϕε(x − z)) dz =: uε(x) + Δ.

It remains to show that Δ = 0. As ϕε ∈ C∞
c (Rd), an application of Dynkin’s formula

gives

Δ =
∫
Rd

u(z)
∫ t

0
E((Aϕε)(x − z + Xs)) ds dz.

Applying Lemma 1, using the growth condition on u and the fact that
∫ t
0 E(|Xs |β) ds

is finite, cf. [20, Theorem 25.18] or [12, Theorem 4.1], we find that

E

(∫ t

0

∫
Rd

|u(z + Xs)| |(Aϕε)(x − z)| dz ds

)
< ∞,

and therefore we may apply once more Fubini’s theorem:

Δ = E

(∫ t

0

∫
Rd

(Aϕε)(x − z + Xs)u(z) dz ds

)
.

From

(Aφ)(y − z) = (Aφ(• + y))(−z) and (Aφ)(−z),= (A∗φ(−•))(z).

we conclude that

Δ = E

(∫ t

0

∫
Rd

(A∗ϕε(x + Xs − •))(z)u(z) dz ds

)
.

Since z �→ ϕε(x + Xs(ω) − z) ∈ C∞
c (Rd) for each fixed ω ∈ �, s ∈ [0, t] and

x ∈ Rd , it follows from Au = 0 weakly that the inner integral on the right-hand side
is zero, and so Δ = 0. This finishes the proof of (10). As uε → u in L loc

1 , there exists
a subsequence converging Lebesgue almost everywhere. Letting ε → 0 in (10) along
this subsequence, we get Pt u = u Lebesgue almost everywhere. If we set ũ := P1u,
then u = P1u = ũ Lebesgue almost everywhere and

ũ = u = Pt u = Pt ũ a.e.

where the latter equality follows from the fact that Pt does not see Lebesgue null
sets since Xt has a density with respect to Lebesgue measure. Finally, we note that
ũ ∈ C(Rd). Indeed, given ε > 0 and r > 0, there is some R > r such that

sup
x∈B(0,r)

∫
|y|≥R

(1+ |y|β)p1(y − x) dy = sup
x∈B(0,r)

∫
|y|≥R

(1+ |y + x |β)p1(y) dy ≤ ε.
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A Liouville theorem for Lévy generators 1005

Hence, for all x, z ∈ B(0, r)

|ũ(x) − ũ(z)| ≤
∫

|y|≤R
|u(y)| |p1(y − x) − p1(y − z)| dy

+
∫

|y|≥R
|u(y)| |p1(y − x) − p1(y − z)| dy

≤ M(1 + Rβ)Rd sup
|u−v|≤|x−z|
u,v∈B(0,2R)

|p1(u) − p1(v)| + 2Mε

|x−z|→0−−−−−→ 2Mε
ε→0−−→ 0,

i.e. ũ is continuous. Since ũ and Pt ũ are continuous, it follows from ũ = Pt ũ Lebesgue
almost everywhere that ũ(x) = Pt ũ(x) for all x ∈ Rd . ��

3 Regularity estimates for semigroups associated with Lévy
processes

Let (Xt )t≥0 be a Lévy process with transition density pt , t > 0, and semigroup

Pt u(x) := Eu(x + Xt ) =
∫
Rd

u(x + y)pt (y) dy, t > 0, x ∈ Rd .

If u : Rd → R is bounded and Borel measurable, then Pt u is continuous, being
convolution of a bounded function with an integrable function, cf. [21, Theorem 15.8].
In this section, we study the regularity of x �→ Pt u(x) for unbounded functions u. If u
is unbounded, then we need some assumptions to make sense of the integral appearing
in the definition of Pt u. It is natural to assume that there exists a constant β > 0 such
that the associated Lévy measure ν satisfies

∫
|y|≥1 |y|β ν(dy) < ∞. This condition

ensures that E(|Xt |β) < ∞ for all t ≥ 0, cf. Sato [20], and so Pt u is well-defined for
any function u satisfying |u(x)| ≤ M(1+ |x |β), x ∈ Rd , for some M > 0. Under the
assumption that pt ∈ C1

b(Rd), we will show that Pt u is locally Hölder continuous for
every function u satisfying |u(x)| ≤ M(1 + |x |γ ), x ∈ Rd , for some γ < β. Before
stating the result, let us give a word of caution. As

Pt u(x) =
∫
Rd

u(y)pt (y − x) dy,

a naive differentiation yields

∇ Pt u(x) = −
∫
Rd

u(y)∇ pt (y − x) dy,

and therefore one might suspect that Pt u is differentiable (and not only locally Hölder
continuous). In general, it is not possible to make this calculation rigorous, even if u is
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1006 F. Kühn

bounded. To startwith, it is not clear that the integral
∫
Rd |u(y)| |∇ pt (y−x)| dy is finite

since the decay of pt does not necessarily carry over to its derivatives. However, there
is an interesting—and wide—class of Lévy processes for which the above reasoning
can be made rigorous, and we will work out the details in the second part of this
section.

Lemma 2 Let (Xt )t≥0 be a Lévy process with Lévy triplet (b, Q, ν) and semigroup
(Pt )t≥0. Let β > 0 be such that

∫
|y|≥1 |y|β ν(dy) < ∞, and assume that Xt has

for some t > 0 a density pt ∈ C1
b(Rd) with respect to Lebesgue measure. If u is a

measurable function satisfying |u(x)| ≤ M(1+|x |γ ) for some M > 0 and γ ∈ [0, β),
then

|Pt u(r x + rh) − Pt u(r x)| ≤ C Mrγ |h|�, |x |, |h| ≤ 1, r ≥ 1, (11)

where � := β−γ
d+β

∈ (0, 1) and C = C(t, β) < ∞ is a constant which does not depend
on u. In particular, x �→ Pt u(x) is Hölder continuous of order � on any compact set
K ⊆ Rd and

‖Pt u‖C�
b (B(0,r)) ≤ (C + 2)Mrγ for all r ≥ 1.

Proof Because of the growth assumption on u, it follows from E(|Xt |β) < ∞ that
Pt u is well-defined. Fix r , R ≥ 1 and x, h ∈ Rd with |h|, |x | ≤ 1. By the definition
of the semigroup,

Δh := Pt u(r x + rh) − Pt u(r x)

=
∫
Rd

u(y) (pt (y + r x + rh) − pt (y + r x)) dy

= r−d
∫
Rd

u(r z) (pt (r z + r x + rh) − pt (r z + r x)) dz.

Thus, Δh = Δ1
h + Δ2

h , where

Δ1
h := r−d

∫
|z|≤R

u(r z) (pt (r z + r x + rh) − pt (r z + r x)) dz,

Δ2
h := r−d

∫
|z|>R

u(r z) (pt (r z + r x + rh) − pt (r z + r x)) dz.

Applying the mean value theorem and using the growth condition on u, we find that

|Δ1
h | ≤ |h|r−d+1‖∇ pt‖∞

∫
|z|≤R

|u(r z)| dz ≤ 2M |h|r−d+1+γ ‖∇ pt‖∞ Rd+γ .

For the second term, we use again the growth condition on u:

|Δ2
h | ≤ 4Mr−d+γ sup

|h|≤1

∫
|z|>R

|z|γ pt (r z + r x + rh) dz
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A Liouville theorem for Lévy generators 1007

≤ 4Mr−d+γ Rγ−β sup
|h|≤1

∫
Rd

|z|β pt (r z + rh + r x) dz.

Performing a change of variables and using the elementary estimate

(a + b)β ≤ cβ(aβ + bβ), a, b ≥ 0,

we get

|Δ2
h | ≤ 4Mrγ−β Rγ−β sup

|h|≤1

∫
Rd

|y − (r x + rh)|β pt (y) dy

≤ 4 2βcβ Mrγ Rγ−β

(
1 +

∫
Rd

|y|β pt (y) dy

)
.

Note that the integral on the right-hand side is finite since E(|Xt |β) < ∞. Conse-
quently, we have shown that there exists a constant C = C(β, t) > 0 such that

|Pt u(r x + rh) − Pt u(r x)| = |Δh | ≤ C Mrγ Rd+γ |h| + C Mrγ Rγ−β

for all |h|, |x | ≤ 1, r ≥ 1. Choosing R := |h|−1/(d+β) gives (11). The remaining
assertion is obvious from (11). ��

If (Pt )t≥0 is the semigroup associated with a subordinated Brownian motion
(Xt )t≥0, then the regularity estimate from Proposition 2 can be improved. We do
not need this strengthened version for the proof of the Liouville theorem, but we
present the proof since we believe that the result is of independent interest. Recall that
a Lévy process (St )t≥0 is a subordinator if (St )t≥0 has non-decreasing sample paths.

Proposition 2 Let (Xt )t≥0 be a Lévy process which is of the form Xt = BSt for
some d-dimensional Brownian motion (Bt )t≥0 and a subordinator (St )t≥0 satisfying
P(St = 0) = 0 for all t > 0. Denote by (b, Q, ν) the Lévy triplet of (Xt )t≥0, and let
β > 0 be such that

∫
|y|≥1 |y|β ν(dy) < ∞. If u : Rd → R is a measurable function

satisfying |u(x)| ≤ M(1 + |x |γ ), x ∈ Rd , for some M > 0 and γ ∈ [0, β], then
x �→ Pt u(x) is smooth for all t > 0 and

‖Pt u‖Ck
b (B(0,r)) ≤ Ck Mrγ for all r ≥ 1, k ≥ 1, (12)

where Ck = Ck(t) is a finite constant, which does not depend on u and r.

Let us mention that P(St = 0) = 0 is equivalent to assuming that (Xt )t≥0 has a
density with respect to Lebesgue measure, cf. [14, Lemma 4.6].

Proof of Proposition 2 For k ≥ 1 let (B(k)
t )t≥0 be a k-dimensional Brownian motion.

The process X (k)
t := B(k)

St
is a Lévy process with Lévy triplet, say, (b(k), Q(k), ν(k)),

cf. [22] or [20]. By definition, Xt = X (d)
t and ν = ν(d). Since (B(k)

t )t≥0 and (St )t≥0
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are independent, cf. [7, Theorem II.6.3], it follows from B(k)
t = √

t B(k)
1 in distribution

that
E(|B(k)

St
|β) = E(|St |β/2)E(|B(k)

1 |β).

Consequently,

∫
|y|≥1

|y|β ν(k)(dy) < ∞ ⇐⇒ E(|B(k)
St

|β) < ∞ ⇐⇒ E(|St |β/2) < ∞,

and so the finiteness of the fractional moment
∫
|y|≥1 |y|β ν(k)(dy) does not depend on

the dimension k. By assumption, the moment is finite for k = d, and hence it is finite
for all k ≥ 1. Thus, E(|X (k)

t |β) < ∞ for all k ≥ 1 and t ≥ 0. As P(St = 0), the
process (X (k)

t )t≥0 has a rotational invariant and smooth density p(k)
t (x) = p(k)

t (|x |),

P(X (k)
t ∈ dx) = p(k)

t (|x |) dx

and

d

dr
p(k)

t (r) = −2π p(k+2)
t (r), k ≥ 1, r > 0, (13)

cf. [14, Corollary 3.2, Lemma 4.6]. Using polar coordinates, we get

∫
|x |≥1

|x |γ |∇ p(k)
t (x)| dx = c

∫
r≥1

rγ+d p(k+2)
t (r) dr ≤ c′E(|X (k+2)

t |γ ) < ∞

for all γ ∈ [0, β] and k ≥ 1. Since the continuous function |∇ p(k)
t | is bounded on

compact sets, this implies

∫
Rk

(1 + |x |γ )|∇ p(k)
t (x)| dx < ∞ for all t ≥ 0, γ ∈ [0, β], k ≥ 1.

Applying iteratively (13) with k = d + 2n, n ∈ N, we find that

∫
Rd

(1 + |x |γ )|∂α p(d)
t (x)| dx < ∞ (14)

for all γ ∈ [0, β], t ≥ 0 and all multi-indices α ∈ Nd
0 . Now we return to our

original problem, i.e. we study the regularity of the semigroup (Pt )t≥0 associated with
Xt = X (d)

t . Fix ameasurable function u with |u(x)| ≤ M(1+|x |γ ) for some constants
M > 0 and γ ∈ [0, β]. By definition,

Pt u(x) = Eu(x + Xt ) =
∫

u(y)p(d)
t (y − x) dy, x ∈ Rd .
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By (14), we have
∫

K

∫
Rd |u(y)| |∂x j p(d)

t (y − x)| dy dx < ∞ for every j = 1, . . . , d
and every compact set K ⊆ Rd . Moreover, it follows by a similar reasoning to that at
the end of the proof of Lemma 1 that the mapping

x �→
∫
Rd

u(y)∂x j p(d)
t (y − x) dy

is continuous. Applying the differentiation lemma for parametrized integrals, cf. [15,
Proposition A.1], we obtain that

∂x j Pt u(x) = −
∫
Rd

u(y)∂x j p(d)
t (y − x) dy, j = 1, . . . , d, x ∈ Rd .

Performing a change of variables y � y + x , it is immediate from (14) and the growth
condition on u that ‖Pt u‖C1

b (B(0,R)) ≤ C M Rβ , R ≥ 1, for some constant C > 0.
Iterating the procedure proves the assertion for higher order derivatives. ��

4 Proof of Liouville’s theorem

In this section, we prove the Liouville theorem, cf. Theorem 1. First, we use a gen-
eral result by Choquet and Deny [4] to show that the only bounded solutions to the
convolution equation Pt u = u are the trivial ones.

Proposition 3 Let (Xt )t≥0 be a Lévy process with characteristic exponent ψ and semi-
group (Pt )t≥0, and denote by A f = −ψ(D) f the associated Lévy generator. Assume
that Xt has a density pt ∈ Cb(R

d) for some t > 0.

(i). If u is a bounded measurable function such that Pt u = u a.e., then u is constant
a.e.

(ii). (Liouville property) If u ∈ L∞(Rd) and Au = 0 weakly, then u is constant a.e.

Proof (i). Without loss of generality, we may assume that Pt u(x) = u(x) for all
x ∈ Rd ; otherwise replace u by ũ := Pt u and note that Pt u = Pt ũ as Xt has a
density with respect to Lebesgue measure. Since

∫
Rd pt (y) dy = 1 and pt ≥ 0 is

continuous, there exist x0 ∈ Rd and r > 0 such that pt (y) > 0 for all y ∈ B(x0, r).
In particular, B(x0, r) is contained in the support of the distribution of Xt . By [4,
Theorem 1], this implies

u(x) = u(x + y) for all x ∈ Rd , y ∈ B(x0, r),

Hence, u is constant.
(ii). This is immediate from Lemma 1 and (i).

��
We are now ready to prove the Liouville theorem.
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Proof of Theorem 1 By Lemma 1, we may assume without loss of generality that u is
continuous and u(x) = P1u(x) for all x ∈ Rd . Applying Lemma 2, we find that there
exists a constant C > 0 such that

|u(r x ′ + rh′) − u(r x ′)| = |P1u(r x ′ + rh′) − P1u(r x ′)|, |h′|, |x ′| ≤ 1, r ≥ 1

≤ C Mrγ |h′|� (15)

for � := (β − γ )/(d + β) > 0 and some constant C = C(β) > 0. This implies

|u(x + h) − u(x)| ≤ 2C M(1 + |x |γ−�)|h|� for all x ∈ Rd , |h| ≤ 1.

Indeed: If |x | ≤ 1, then this follows from (15) for r = 1, x ′ = x and h′ = h; if |x | > 1
we choose r = |x |, h′ = h/r and x ′ = x/r in (15). This means that for each fixed
h ∈ Rd , 0 < |h| ≤ 1, the function v(x) := |h|−�(u(x + h) − u(x)) satisfies

|v(x)| ≤ 2C M
(
1 + |x |γ−�

)
, x ∈ Rd .

Since the semigroup (Pt )t≥0 is invariant under translations, we have P1v = v, and
therefore we can apply the above reasoning to v (instead of u) to obtain that

|v(x + h) − v(x)| ≤ 4C2M2
(
1 + |x |γ−2�

)
|h|�, x ∈ Rd , |h| ≤ 1.

Define iterativelyΔhu(x) := u(x +h)−u(x) andΔk
hu(x) := Δh(Δk−1

h u)(x), k ≥ 2,
then the previous inequality shows

|Δ2
hu(x)| ≤ 4C2M2

(
1 + |x |γ−2�

)
|h|2�, x ∈ Rd , |h| ≤ 1.

Iterating the procedure, we find that

|Δk
hu(x)| ≤ (2C M)k

(
1 + |x |γ−k�

)
|h|k�, x ∈ Rd , |h| ≤ 1,

for the largest integer k ≥ 1 such that γ − k� ≥ 0; the latter condition ensures that
the constant γ in Lemma 2 is non-negative. Applying once more Lemma 2, we get

|Δk
hu(r x ′ + rh′) − Δk

hu(r x ′)| ≤ (2C M)k+1rγ−k�|h′|�|h|k�, |x ′|, |h′| ≤ 1, r ≥ 1.

If x, h ∈ Rd are such that |x | ≥ 1 and |h| ≤ 1, then we obtain from this inequality
for r = |x |, x ′ = x/r and h′ = h/r that

|Δk
hu(x + h) − Δk

hu(x)| ≤ (2C M)k+1|x |γ−(k+1)�|h|(k+1)�.

As γ − (k + 1)� < 0, this gives

sup
|x |>r

|Δk+1
h u(x)| ≤ (2C M)k+1rγ−(k+1)�|h|(k+1)� r→∞−−−→ 0.
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Consequently, x �→ w(x) := Δk+1
h u(x) is for each fixed |h| ≤ 1 a continuous function

which vanishes at infinity and which satisfies P1w = w. The Liouville property, cf.
Proposition 3, yields w = 0, i.e. Δk+1

h u(x) = 0 for all x ∈ Rd and |h| ≤ 1. We
claim that this implies that u is a polynomial. Take ϕ ∈ C∞

c (Rd) with ϕ ≥ 0 and∫
Rd ϕ(x) dx = 1, and set ϕn(x) := ndϕ(nx). The convolution un := u ∗ ϕn satisfies

Δk+1
h un(x) = 0 for all x ∈ Rd and |h| ≤ 1. Since un is smooth, we have

∂k+1
x j

un(x) = lim
r↓0

Δk+1
re j

un(x)

rk+1 = 0

for all x ∈ Rd , j ∈ {1, . . . , d} and n ∈ N; here e j denotes the j-th vector in Rd .
Hence, ∂αun = 0 for all |α| ≥ N := (k + 1)d, and so un is a polynomial of degree
at most N for each n ∈ N. Since un converges pointwise to u, it follows that u is a
polynomial of degree at most N . Recalling that u satisfies by assumption the growth
condition |u(x)| ≤ M(1 + |x |γ ) for all x ∈ Rd , we conclude that u is a polynomial
of order at most γ �. ��
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