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Abstract
The paper contains a systematic study of the lateral partial order � in a Riesz space
(the relation x � y means that x is a fragment of y) with applications to nonlinear
analysis of Riesz spaces. We introduce and study lateral fields, lateral ideals, lateral
bands and consistent subsets and show the importance of these notions to the theory
of orthogonally additive operators, like ideals and bands are important for linear oper-
ators. We prove the existence of a lateral band projection, provide an elegant formula
for it and prove some properties of this orthogonally additive operator. One of our
main results (Theorem 7.5) asserts that, if D is a lateral field in a Riesz space E with
the intersection property, X a vector space and T0 : D → X an orthogonally additive
operator, then there exists an orthogonally additive extension T : E → X of T0. The
intersection property of E means that every two-point subset of E has an infimum
with respect to the lateral order. In particular, the principal projection property implies
the intersection property.

Keywords Riesz spaces · Fragments · Orthogonally additive operators · Laterally
continuous operators

Mathematics Subject Classification Primary 46A40; Secondary 47H30 · 47H99

1 Introduction

The main idea of the paper is to show the importance of the so called lateral partial
order � on a Riesz space for analysis of Riesz spaces, especially for the study of
orthogonally additive operators. By the relation x � y between elements of a Riesz
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space we mean that x is a fragment1 of y, that is, x ⊥ (y − x). To the best of our
knowledge, we present here the first systematic study of the lateral order.

Among well known results on the subject, it is worth mentioning that the set Fe of
all fragments of an element e of aRiesz space E is a Boolean algebrawith respect to the
lateral order with zero 0 and unit e. A prominent role ofFe was discovered in the classi-
cal Freudenthal Spectral Theorem. First the importance of lateral order was mentioned
by Abramovich in 1971 [1], where the author showed that, in a Dedekind complete
(respectively, order σ -complete) normed lattice every norm bounded increasing net
(respectively, sequence) of positive elements has a supremum, provided so does every
norm bounded laterally increasing net (respectively, sequence); see also [2] for another
application of laterally increasing nets.

While the present paper was being prepared over the last couple of years, several
papers were published by the authors and their co-authors which used some of the
tools developed here concerning lateral order. (see [10,11,17–19,21,23]).

Organization of the paper. In Sect. 2 we give necessary information on Riesz
spaces and orthogonally additive operators. In Sect. 3 we develop elementary tech-
niques for investigation of the lateral order. Since every subset of a Riesz space is
laterally bounded from below by zero, if we speak of a laterally bounded subset we
mean that it is laterally bounded from above. We show that every laterally bounded
finite set has a lateral supremum and provide with a formula for it. If a Riesz space E
has the principal projection property then any finite set has a lateral infimum. More-
over, the lateral infimum xy of a two-point set {x, y} satisfiesFx∩Fy = Fxy . However,
in an arbitrary Riesz space a two-point set need not have a lateral infimum. We do
not know whether every Riesz space without the principal projection property admits
such an example. We define in an obvious way and investigate the set-theoretical
operations on the set Fe of all fragments of an element e ∈ E . If the lateral infimum
xy of a two-point set {x, y} exists then we define the set-theoretical difference x\\\y
for arbitrary elements x, y ∈ E . We also prove a number of natural properties of the
defined operations for the sake of the other sections.

Section 4 is devoted to lateral convergence of nets in Riesz spaces and different
types of lateral continuity. One of the main messages is to show that, as was first noted
in [10], the standard notion of the lateral convergence considered in a number of papers
by different authors is unnatural and too restrictive.More precisely, laterally increasing
order convergent netswere defined to be laterally convergent. The newnotion proposed
in [10] and developed in the present paper naturally generalizes the lateral convergence
from laterally increasing nets to arbitrary laterally bounded nets. Due to this idea,
the main result of [10] asserts that the lateral continuity of an orthogonally additive
operator T at zero implies the lateral continuity of T at any point, which is even
impossible to formulate for the old notion because there is no nontrivial laterally
increasing net which laterally converges to zero. Our contribution to the subject in this
section consists of providing with the following examples. Example 4.15 contains a
construction in L p[0, 1] with 1 ≤ p ≤ ∞ of an orthogonally additive laterally-to-
norm continuous operator which is not order-to-norm continuous. We also prove that
the norm of a Dedekind σ -complete Banach lattice is a laterally-to-norm continuous

1 A component, if one follows another, much less apposite terminology.
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function if and only if it is an order-to-normcontinuous function. Finally, Example 4.18
shows that the lateral continuity of an orthogonally additive operator at one (nonzero)
point does not imply its lateral continuity at all other points (e.g., at zero).

In Sect. 5 we introduce and study the notion of a consistent set in a Riesz space. We
say that a subset G of a Riesz space E is called consistent if every two-point subset of
G is laterally bounded in E . The idea of the notion is to generalize laterally bounded
sets to consistent sets, which is much more general. For instance, let 0 < p ≤ ∞ and
let e be any element of L0[0, 1]which does not belong to L p[0, 1]. Then Fe∩L p[0, 1]
is a consistent set in L p[0, 1] which is not laterally bounded in L p[0, 1]. We show
that consistent sets can be useful in different contexts. The main result of the section
Theorem 5.4 asserts that a Riesz space E is laterally complete if and only if every
consistent set A ⊂ E has a lateral supremum.

In Sect. 6 we introduce the notions of a lateral field, a lateral ideal and a lateral band
in a Riesz space. During the paper have being written, these notions were already used
in some other papers by the authors and their co-authors, confirming their importance.
We must say that, lateral ideals and lateral bands are so important for orthogonally
additive operators, as the usual ideals and bands are important for linear operators on
Riesz spaces. We show that the kernel of a positive orthogonally additive operator is
a lateral ideal, however not every lateral ideal equals the kernel of some orthogonally
additive operator. Theorem 6.9 gives an elegant formula for the lateral band projection
which is a disjointness preserving laterally continuous orthogonally additive operator
and has some additional properties. Theorem 6.10 and its corollary assert that the
lateral field (ideal, band) generated by a consistent set is consistent, and that any
maximal consistent subset of a Riesz space is a lateral band.

Section 7 is devoted to extensions of orthogonally additive operators. It contains a
survey on the subject and a positive solution of a problem posed in [11]. We say that
a Riesz space E has the intersection property if every two-point subset of E has the
infimumwith respect to the lateral order� (for instance, the principal projection prop-
erty implies the intersection property). The main result of the section (Theorem 7.5)
asserts that, if D is a lateral field in a Riesz space E with the intersection property, X
a vector space and T0 : D → X an orthogonally additive operator then there exists an
orthogonally additive extension T : E → X of T0.

2 Preliminaries

In this sectionwe give some preliminary information onRiesz spaces and orthogonally
additive operators. For the terminology and notation that are familiarly used in the
paper, we refer the reader to [5]. All Riesz spaces considered in the paper are assumed
to be Archimedean.

There are two types of order convergence of nets in Riesz spaces.

Definition 2.1 Following terminology from [12] and notation from [3], we say that a
net (xα)α∈A in a Riesz space E is

• strongly order convergent to a limit x ∈ E if there is a net (yα)α∈A in E such that

yα ↓ 0 and |xα − x | ≤ yα for some α0 ∈ A and all α ≥ α0 (write xα
s−o−→ x);
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• weakly order convergent to a limit x ∈ E if there is a net (yβ)β∈B in E such that
yβ ↓ 0 and for every β ∈ B there exists α0 ∈ A such that |xα − x | ≤ yβ for all

α ≥ α0 (write xα
w−o−→ x).

Obviously, every strongly order convergent net is weakly convergent net to the same
limit, but the converse is not true [3]. However, the two types of order convergence
are equivalent if E is Dedekind complete (because both are equivalent to the equality∧

α

∨
γ>α |xγ − x | = 0). Another case, where the weak order convergence implies

strong one, is monotonicity of (xα)α∈A. In these two cases we write xα
o−→ x .

The equality x =
n⊔

i=1
xi means that x =

n∑

i=1
xi and xi ⊥ x j if i �= j .

Definition 2.2 Let E be aRiesz space and F a real vector space.A function T : E → F
is said to be an orthogonally additive operator if T (x + y) = T (x)+ T (y) for every
disjoint elements x, y ∈ E .

It is clear that T (0) = 0. The set of all orthogonally additive operators is a real
vector space with respect to the natural linear operations.

Definition 2.3 Let E and F be Riesz spaces. An orthogonally additive operator T :
E → F is called:

• positive if T x ≥ 0 holds in F for all x ∈ E ;
• order bounded if T sends order bounded subsets of E to order bounded subsets
of F .

An order bounded orthogonally additive operator T : E → F is called an abstract
Uryson operator.

Observe that if T : E → F is a positive orthogonally additive operator and x ∈ E is
such that T (x) �= 0 then T (−x) �= −T (x) (otherwise both T (x) ≥ 0 and T (−x) ≥ 0
would imply T (x) = 0). Thus, the positivity of orthogonally additive operators is
completely different from that for linear operators, and so the only linear operator
which is positive in the above sense is zero. However, there are lots of natural positive
orthogonally additive operators: the positive, negative parts, modulus of an elements
x → x+, x → x−, x → |x |, the pth power of the norm of an element of L p(μ)-space
x → ‖x‖p and many others.

A positive orthogonally additive operator need not be order bounded. Indeed, every
function T : R → R with T (0) = 0 is an orthogonally additive operator, and obvi-
ously, not all of such functions are order bounded.

Another useful observation is that, if T : E → F is a positive orthogonally additive
operator and x � y in E then T (x) ≤ T (y), no matter whether y is positive or not.
Indeed, x � y implies y = x � (y − x) and hence T (y) = T (x)+ T (y − x) ≥ T (x)
because T (y − x) ≥ 0.

Orthogonally additive operators in Riesz spaces were introduced and studied in
1990 by Mazón and Segura de León (see [13,14]). Today this class of operators is an
object of active investigations (see e.g. [6–8,10,11,17,19–23]).

The set of all abstract Uryson operators from E to F is denoted by U(E, F).
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Consider the following order on U(E, F): S ≤ T whenever (T − S) ≥ 0. Then
U(E, F) becomes an ordered vector space.

Theorem 2.4 [13, Theorem 3.2] Let E and F be Riesz spaces with F Dedekind
complete. Then U(E, F) is a Dedekind complete Riesz space. Moreover, for any
S, T ∈ U(E, F) and f ∈ E the following assertions hold

(1) (T ∨ S)( f ) := sup{Tg1 + Sg2 : f = g1 � g2}.
(2) (T ∧ S)( f ) := inf{Tg1 + Sg2 : f = g1 � g2}.
(3) T+( f ) := sup{Tg : g � f }.
(4) T−( f ) := − inf{Tg : g; g � f }.
(5) |T f | ≤ |T |( f ).

3 The lateral order and set-theoretical operations on a Riesz space

Let E be a Riesz space. Consider the binary relation � on E defined at the very
beginning of the paper. We need the following simple (most likely, known) properties
of this relation which we provide with a proof for the sake of completeness.

Proposition 3.1 Let E be a Riesz space and x, y ∈ E.

(1) If x � y then

(a) x+ � y+ and x− � y−;
(b) x+ ≤ y+ and x− ≤ y−;
(c) x− ⊥ y+ and x+ ⊥ y−;
(d) |x | � |y|.

(2) x � y if and only if x+ � y+ and x− � y−.

Proof Assume x � y, that is, y = x � (y − x). Then y+ = x+ � (y − x)+, which
implies x+ ≤ y+ and (y − x)+ = y+ − x+. Hence y+ = x+ � (y+ − x+), i.e.,
x+ � y+. Analogously, x− ≤ y− and x− � y−. Thus, (a), (b) and the “only if” part
of item (2) is proved.

(c) By (b), 0 ≤ x− ∧ y+ ≤ y− ∧ y+ = 0. The second part of (c) is proved
analogously.

(d) By (a), x+ ⊥ y+−x+, and by (c), x+ ⊥ y−. Moreover, x+ ⊥ x−. Hence x+ ⊥
|y| − |x |. Analogously, x− ⊥ |y| − |x |. The latter two relations yield |x | ⊥ |y| − |x |,
that is, |x | � |y|.

The “if” part of (2). Suppose x+ � y+ and x− � y−. Then the first relation implies
x+ ≤ y+. Then 0 ≤ x+ ∧ y− ≤ y+ ∧ y− = 0, and hence x+ ⊥ y−. Taking into
account x+ ⊥ (y+ − x+) and x+ ⊥ x−, one gets x+ ⊥ (y+ − x+ − y− + x−), i.e.,
x+ ⊥ (y − x). Analogously, x− ⊥ (y − x), and thus, x ⊥ (y − x). ��

The following statement is an easily exercise.

Proposition 3.2 Let E be a Riesz space. Then � is a partial order on E.
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Definition 3.3 Let E be a Riesz space. The partial order � on E we call the lateral
order on E . A subset G ⊆ E is said to be laterally bounded in E if G ⊆ Fx for some
x ∈ E . We do not mention here “from above” because every subset is automatically
laterally bounded from below by zero. The lateral supremum and infimum are defined
as usual in a partially ordered set, using the order � on E .

Item (1) of the following proposition is well known for e ≥ 0, [5, Theorem 3.15].

Proposition 3.4 Let E be a Riesz space and e ∈ E. Then

(1) the set Fe of all fragments of e is a Boolean algebra with zero 0, unit e with
respect to the operations x ∪∪∪ y = (x+ ∨ y+)− (x− ∨ y−) and x ∩∩∩ y = (x+ ∧
y+)− (x− ∧ y−);

(2) if e ≥ 0 then the lateral order � on Fe coincides with the lattice order ≤, and
hence the lateral supremum (infimum) of an arbitrary set A ⊆ Fe equals its
lattice supremum (infimum);

(3) x ∪∪∪ y equals the supremum, and x ∩∩∩ y equals the infimum of a two-point set
{x, y} ⊆ Fe with respect to the lateral order � both in Fe and E.

Proof (1) By [5, Theorem 3.15], Fe+ and Fe− are Boolean algebras with zero 0, units
e+ and e− respectively and operations∨ and∧, that coincidewith the lattice operations
on E . Consider the direct sum Fe+ ⊕ Fe− , that is, the cartesian product Fe+ × Fe−
with zero (0, 0), unit (e+, e−) and operations (x1, y1)∨ (x2, y2) = (x1 ∨ x2, y1 ∨ y2)
and (x1, y1) ∧ (x2, y2) = (x1 ∧ x2, y1 ∧ y2). Obviously, Fe+ ⊕ Fe− is a Boolean
algebra. Then the bijection τ : Fe+ ⊕ Fe− → Fe given by τ(x, y) = x − y for any
(x, y) ∈ Fe+ ⊕ Fe− (the facts that τ(x, y) ∈ Fe, and that τ is one-to-one follow from
Proposition 3.1), induces a Boolean algebra structure on Fe. It remains to observe that
τ sends (0, 0) to 0, (e+, e−) to e+ − e− = e, and the induces operations are given by
the formulas given in the statement of (1).

(2) Assume e ≥ 0 and x, y ∈ Fe. By Proposition 3.1, x, y ≥ 0.
Let x � y. By (1)(b) of Proposition 3.1, we get x ≤ y.
Let x ≤ y. Then 0 ≤ x ∧ (e− y) ≤ x ∧ (e− x) = 0, and hence x ⊥ (e− y). Since

x ⊥ (e − x) and the disjoint complement is a linear subspace [5, Theorem 3.3], we
obtain x ⊥ (y − x), and hence x � y.

(3) follows from (2) and Proposition 3.1. ��
Let G be a nonempty subset of E . Extending the notation of Proposition 3.4, the

�-supremum and the�-infimum of G in E we denote by
⋃⋃⋃

G and
⋂⋂⋂

G respectively.
We also write

⋃⋃⋃m
k=1xk or x1 ∪∪∪ . . . ∪∪∪ xn for

⋃⋃⋃{x1, . . . , xm}, and similarly for infima
using the symbols ∩∩∩ and

⋂⋂⋂
. This notation is natural due to the following reasons.

First, if we deal with a function lattice then the graph of the lateral supremum equals
the union of the graphs, in their nonzero parts. Analogously, the graph of the lateral
infimum equals the intersection of the graphs, in their nonzero parts. Second reason is
that, by Proposition 3.4 (1), Fe is a Boolean algebra with respect to the lateral order.
Then by Stone’s representation theorem [9, Theorem 7.11], Fe is Boolean isomorphic
to the algebra of subsets of some set. Such a Boolean isomorphism sends the lateral
supremum to the union, and the lateral infimum to the intersection. To distinguish the
lateral supremum from the set-theoretical union, the reader just has to check whether
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the symbol concerns elements or sets of elements of a Riesz space. Another thing
which differs the lateral supremum from the set-theoretical union is the bold style for
lateral suprema and infima.

By 3.2, using the well known equality x + y = x ∨ y + x ∧ y [5, Theorem 1.2],
we obtain the following consequence.

Corollary 3.5 Let E be a Riesz space, e ∈ E and x, y � e. Then x+ y = x∪∪∪ y+x∩∩∩ y.
If, moreover, x ⊥ y then x + y = x ∪∪∪ y.

As a direct consequence of item (2) of Proposition 3.1 one has the following state-
ment.

Corollary 3.6 Let E be a Riesz space and G ⊆ E. Set G+ = {g+ : g ∈ G} and
G− = {g− : g ∈ G}.
(1) G is laterally bounded if and only if both G+ and G− are laterally bounded.
(2)

⋃⋃⋃
G exists if and only if both

⋃⋃⋃
G+ and

⋃⋃⋃
G− exist. Moreover,

⋃⋃⋃
G =⋃⋃⋃

G+ −⋃⋃⋃
G− in the case of the existence.

(3)
⋂⋂⋂

G exists if and only if both
⋂⋂⋂

G+ and
⋂⋂⋂

G− exist. Moreover,
⋂⋂⋂

G =⋂⋂⋂
G+ −⋂⋂⋂

G− in the case of the existence.

UsingProposition3.2 (1), one can easily proveby induction the following statement.

Corollary 3.7 Every laterally bounded finite subset {x1, . . . , xn} of a Riesz space E
has a �-supremum⋃⋃⋃{x1, . . . , xn} = (x+1 ∨ . . . ∨ x+n )− (x−1 ∨ . . . ∨ x−n ).

The next statement reduces the lateral supremum and infimum to the usual ones for
laterally bounded sets.

Corollary 3.8 Let G be a laterally bounded subset of a Riesz space E. Set G+ =
{ f + : f ∈ G} and G− = { f − : f ∈ G}. Then ⋃⋃⋃

G exists if and only if the usual
suprema supG+ and supG− exist. In this case

⋃⋃⋃
G = supG+−supG−. If, moreover,

G ⊆ E+ then
⋃⋃⋃

G exists if and only if the usual suprema supG exists. In this case⋃⋃⋃
G = supG. Analogous assertions are true for the infimum of a laterally bounded

subset G.

Proof By (ii) of Corollary 3.6, it is enough to consider the case where G ⊆ E+. But
in this case the statement follows from Proposition 3.2 (2). ��
Corollary 3.9 Let G be a laterally bounded subset of a Dedekind complete Riesz space
E. Then

⋃⋃⋃
G = supG+ − supG− and

⋂⋂⋂
G = inf G+ − inf G− exist, where G+ =

{ f + : f ∈ G} and G− = { f − : f ∈ G}.
A somewhat different approach is needed for investigation of lateral infima.

Remark 3.10 For simplicity of notation, we set the convention to write xy instead of
x ∩∩∩ y for elements x, y of a Riesz space E . Next, to avoid lots of parentheses, for
example, in the expression (x ∩∩∩ y)− z we get a deal to operate the lateral infimum xy
first. So, we write xy − z instead.
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As alreadymentioned above, every subset of aRiesz space is laterally bounded from
below by zero. However, a two-point set need not have �-infimum, as the following
example shows.

Example 3.11 There exists a Riesz space E and a two-point set {x, y} in E having no
lateral infimum xy.

Proof Let E be the Riesz space of all functions x : [0, 2] → R which are continuous
at the point 1 with the point-wise order: x ≤ y if and only if x(t) ≤ y(t) for all
t ∈ [0, 2]. As the two-point set {x, y} we take any two continuous at each point
t ∈ [0, 2] functions having the following properties.

(1) x(t) = y(t) = 1 for all t ∈ [0, 1];
(2) 0 < x(t) < 1 for all t ∈ (1, 2];
(3) y(t) > 1 for all t ∈ (1, 2].
Now we prove that xy does not exist. Assume on the contrary the existence of

z = xy. We show that z(t) = 1 for all t ∈ [0, 1) and z(t) = 0 for all t ∈ (1, 2], which
contradicts the continuity of z at the point 1. We will use the following property of E
(which is a common property of every Riesz space of functions): if u � v in E then
for each t ∈ R either u(t) = 0 or u(t) = v(t).

Fix any point t ∈ [0, 1). Choose α ∈ R with 0 ≤ t < α < 1. Since 1[0,α] � x and
1[0,α] � y, we get that 1[0,α] � z, hence z(t) = 1.

Fix any point t ∈ (1, 2]. Since z � x , either z(t) = 0 or z(t) = x(t). Analogously,
since z � y, either z(t) = 0 or z(t) = y(t). Finally, since x(t) �= y(t), we obtain
z(t) = 0. ��

Nevertheless, such examples exist only in Riesz spaces without the principal pro-
jection property. Let E be a Riesz space with the principal projection property. By Pv ,
v ∈ E we denote the order projection of E onto the band generated by v.

Lemma 3.12 Let E be a Riesz space with the principal projection property and x, y ∈
E. Then the following assertions are equivalent:

(1) x � y;
(2) Px y = x.

Proof 1) ⇒ 2). We have that y = (y−x)�x and Px y = Px ((y−x)�x) = Px x = x .
2) ⇒ 1). y = Px y � (y − Px y) = x � (y − x) and therefore (y − x) ⊥ x . ��

Theorem 3.13 Every finite set G in a Riesz space E with the principal projection
property has a lateral infimum z =⋂⋂⋂

G in E.Moreover,Fz =⋂⋂⋂
x∈G Fx . In particular,

for any two elements x, y ∈ E one has Fx ∩ Fy = Fxy .

Proof Obviously, it is enough to prove the theorem for a two-point set G = {x, y}.
Set z = x − Px−yx and observe that z = y − Px−y y. Indeed,

Px−yx − Px−y y = Px−y(x − y) = x − y.
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Moreover

Px−yz = Px−y(x − Px−y x) = Px−yx − Px−y x = 0

and hence Px−y ⊥ Pz . Show that both relations z � x and z � y hold. Indeed,

Pzx = Pz(z + Px−y x) = Pzz + Pz ◦ Px−yx = z;
Pz y = Pz(z + Px−y y) = Pzz + Pz ◦ Px−y y = z.

Now take t ∈ E such that t � x and t � y. Then t ⊥ (x − t) and t ⊥ (y − t). Hence
t ⊥ (

(x − t)− (y − t)
)
that is, t ⊥ (x − y). and Pt ⊥ Px−y . Now we may write

Pt z = Pt (x − Px−yx) = Pt x − Pt ◦ Px−yx = Pt x
Lemma 3.12= t .

Thus by the Lemma 3.12 we have t � z and therefore both statements z = xy and
Fx ∩ Fy = Fz are proved. ��
Definition 3.14 We say that a Riesz space E has the intersection property if every
two-point subset {x, y} ⊂ E has a lateral infimum xy.

By Theorem 3.13, the following holds.

Corollary 3.15 The principal projection property of a Riesz space E implies the inter-
section property of E.

Problem 3.16 Does there exist a Riesz space with the intersection property failing the
principal projection property?

We consider some more set-theoretical operations on the Boolean algebra Fe of
fragments of an element e.

Definition 3.17 Let E be a Riesz space and e ∈ E . We define the set-theoretical
difference \\\ and the symmetric difference ��� on Fe by setting x\\\y = x (e − y) and
x���y = (x\\\y)∪∪∪ (y\\\x) for any x, y ∈ Fe respectively.

The above operations one can define in another way using the following statement.

Proposition 3.18 Let E be a Riesz space and e ∈ E. Then for any x, y ∈ Fe one has

(1) x = xy � (x\\\y);
(2) x\\\y = x − xy;
(3) x���y = (x\\\y) � (y\\\x);
(4) x ∪∪∪ y = x � (y\\\x).
Proof (1) The equality A = (A ∩ B) ∪ (A\B) for subsets of any set X is obvious.

Hence by Proposition 3.2 and Stone’s theorem we obtain x = xy ∪∪∪ (x\\\y).
Analogously, the equality (A ∩ B) ∩ (A\B) = ∅ for sets yields xy(x\\\y) = 0.
In view of Corollary 3.5, one has xy + (x\\\y) = xy ∪∪∪ (x\\\y) = x .
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(2) follows from (1).
(3) The equality for sets (A\B) ∩ (B\A) = ∅ implies (x\\\y) ⊥ (y\\\x). Then use

Corollary 3.5.
(4) The assertion follows from the obvious equalities for sets. ��
Using the lateral infimum,wedefine the set-theoretical difference for not necessarily

laterally bounded elements.

Definition 3.19 Let E be a Riesz space. For any x, y ∈ E such that xy exists we define
the set-theoretical difference by setting

x\\\y def= x\\\xy. (3.1)

Since the two-point set {x, xy} is laterally bounded by x , the operation is well
defined. Observe that, in case of existence, one has

x\\\y = x − xy. (3.2)

Indeed, since x, xy ∈ Fx , by (3.1) and (2) of Proposition 3.18

x\\\y = x\\\xy = x − x(xy) = x − xy.

If E has the intersection property (in particular, if E has the principal projection
property) then x\\\y is well defined for any x, y ∈ E .

Proposition 3.20 Let E be a Riesz space and x, y, u, v ∈ E with x � y and u � v.
Then the following assertions hold.

(i) If xu, yv exist then xu � yv.
(ii) If y ∪∪∪ v exists then x ∪∪∪ u exists and x ∪∪∪ u � y ∪∪∪ v.
(iii) If xv, yu exist then x\\\v � y\\\u.

The proof is obvious.
We need the following statement for the proof of the main result of Sect. 7.

Proposition 3.21 Let E beaRiesz spaceand x, y, z ∈ E.Then the followingassertions
hold under the assumption of existence of operations results.

(i) If x � y then y = x ��� (y\\\x).
(ii) x = xy ��� (x\\\y).
(iii) (x\\\y) y = 0.
(iv) (x\\\y)\\\y = x\\\y.
(v) x (y ��� z) = xy ��� xz (here it is enough to assume the existence of the left hand

side).
(vi) x (y\\\z) = xy\\\xz = xy\\\z.
(vii) (x\\\z)(y\\\z) = xy\\\z.
(viii) (x\\\z)\\\(y\\\z) = (x\\\y)\\\z.
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Remark that all items of Proposition 3.21 are evident for elements of a Boolean
algebra. So, no proof is needed for laterally bounded sets of elements.

Proof (i) follows from the observation that all the terms belong to Fy which is a
Boolean algebra.

(ii) immediately follows from (i).
(iii) Set u = (x\\\y) y. Then u � xy and u � x\\\y. By (ii) u = 0.
(iv) By (iii), (x\\\y)\\\((x\\\y) y) = (x\\\y)\\\0 = x\\\y.
(v) Set u = x (y � z). Since xy � u and xz � u, we have xy � xz � u. To prove

the other side inequality, set v = u\\\(xy � xz). By (i) of Proposition 3.20 and (i)
of Proposition 3.21, vxy � v (xy � xz) = 0. Since v � u � x , one has v = vx
and hence vy = vxy = 0. Analogously, vz = 0. Observe that v, y, z � y � z.
Hence, as for elements of the Boolean algebra Fy�z , we obtain v = vy � vz = 0,
that is, u = xy � xz.

(vi) Set u = x (y\\\z) = x (y\\\yz). Then u � xy implies u ⊥ xy − u and yz � y
implies yz ⊥ y − yz and hence

|u| ∧ |xyz| ≤ |y − yz| ∧ |yz| = 0

by (i). Thus, u ⊥ xy − u − xyz, that is, u � xy − xyz = xy\\\z.
To prove the other side inequality xy\\\xyz � y\\\yz we set x1 = xy and y1 = yz.
Then the desired inequality is x1\\\x1y1 � y\\\y1. Taking into account that all the
terms of the later inequality are laterally bounded by y, we obtain the inequality
from the corresponding inclusion for sets.

(vii) Using twice (v) and then (iv) we get

(x\\\z)(y\\\z) = (x\\\z) y\\\z = (xy\\\z)\\\z = xy\\\z.

(viii) By the definitions and (vii),

(x\\\z)\\\(y\\\z) = (x\\\xz)\\\(x\\\z)(y\\\z)
= (x\\\xz)\\\(xy\\\xyz).

Substituting xy = x1 and xz = x2 we continue the chain of equalities

= (x\\\x2)\\\(x1\\\x2).

Now all the terms are elements of the Boolean algebra Px . Hence we continue
as follows

= (x\\\x1)\\\x2 = (x\\\xy)\\\xz = (x\\\y)\\\(x\\\y) xz.

By (vi), (x\\\y) x = xx\\\y = x\\\y. Hence we continue

= (x\\\y)− (x\\\y) z = (x\\\y)\\\z.

��
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4 Lateral convergence and lateral continuity

Some version of laterally (i.e., horizontally) convergence of nets and corresponding
continuity of maps acting between Riesz spaces was considered in [13,20] and other
papers. A net (xα) in a Riesz space E in the mentioned above papers is said to be
laterally convergent to an element x ∈ E if xα � xβ as α < β and xα

o−→ x
(by (1) of Proposition 3.1, a laterally increasing net equals a difference of two order
increasing nets, and hence, the strong and weak order convergence coincide for a
laterally increasing net).

However, the assumption of lateral increasing on the net in the above definition is too
restrictive and unjustified. It is very natural to replace this restrictionwith the condition
of lateral boundedness of the net. This ideawas realized in a paper byGumenchuk [10].
We modify Gumenchuk’s idea by considering strong and weak order convergence.

Lateral convergence

We introduce several types of lateral convergence of a net to be laterally bounded and
order convergent in the corresponding sense. Since attaching of additional terms at the
beginning of a net cannot spoil its convergence, we define a slightly weaker notion of
lateral boundedness.

Definition 4.1 A net (xα)α∈A in a Riesz space E is said to be eventually laterally
bounded if there is α0 ∈ A such that the net (xα)α≥α0 is laterally bounded.

Definition 4.2 Let E be a Riesz space and x ∈ E . An eventually laterally bounded net
(xα) in E is said to be

• strongly laterally convergent to x (write xα
s−�−→ x) if xα

s−o−→ x ;

• weakly laterally convergent to x (write xα
w−�−→ x) if xα

w−o−→ x .

Observe that the same example showing that the weak order convergence of a net
does not imply its strong order convergence, which is referred as Fremlin’s example
in the literature (see e.g. [25, p. 141]), works for the lateral convergence. We provide
this example for the sake of completeness.

Example 4.3 There exists a Riesz space E and a net in E which is weakly laterally
convergent, but is not strongly laterally convergent.

Indeed, consider the one-point compactification K of an uncountable discrete space,
and let E = C(K ). If (xn)∞n=1 denotes the characteristic functions of a sequence of
distinct singletons in K , the sequence (xn), being laterally bounded from above by the
constant function 1, is weakly laterally convergent but not strongly laterally convergent
to zero.

Surely, if either E is Dedekind complete or the net is laterally monotone then the

relations xα
s−�−→ x and xα

w−�−→ x are equivalent, and we write xα
�−→ x .

To distinguish the laterally convergent nets in the sense of Definition 4.2 from the
laterally convergent nets considered in papers [13,20], we offer another name for the
latter notion.
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Definition 4.4 A net (xα) in a Riesz space E is said to be up-laterally convergent to

x ∈ E (write xα
�↑−→ x) if xα � xβ � x as α < β and xα

o−→ x .

A subset A of a Riesz space E is said to be strongly order closed (respectively,

weakly order closed) if for every net (xα) in A and every x ∈ E the condition xα
s−o−→

x (respectively, xα
w−o−→ x) implies that x ∈ A. Likewise, we say that A ⊆ E is

strongly laterally closed (respectively, weakly laterally closed) if for every net (xα)

in A and every x ∈ E the condition xα
s−�−→ x (respectively, xα

w−�−→ x) implies that
x ∈ A. Obviously, a strongly (respectively, weakly) order closed subset is strongly
(respectively, weakly) laterally closed, however, the set {n−1x0 : n ∈ N} where
x0 ∈ E\{0}, is both strongly and weakly laterally closed but is neither strongly nor
weakly order closed. Among other obvious implications we point our the following
ones: a weakly order closed subset is strongly order closed, and a weakly laterally
closed subset is strongly laterally closed.

It is an easy technical exercise to show that the set Fe is weakly order closed and
hence, weakly laterally closed (see [10] for a short proof that Fe is strongly order
closed, which also can be applied to prove that Fe is weakly order closed). Hence, we
obtain the following useful consequence.

Proposition 4.5 Let E be a Riesz space, e ∈ E and xα
w−�−→ x or xα

s−�−→ x, where
x ∈ E and xα � e for all α ≥ α0. Then x � e.

It is natural that, for a laterally convergent net in a Dedekind complete Riesz space,
a majorizing net (which appears in the definition of the order convergence) could be
found among the fragments of the modulus of the upper lateral bound.

Proposition 4.6 [10] Let E be a Dedekind complete Riesz space, e ∈ E, xα
�−→ x,

where x ∈ E and xα � e for all α ≥ α0. Then there is a net (vα) with the same index
set such that vα � |e| and |xα − x | � vα for all α ≥ α0 and vα ↓ 0.

Another useful fact from [10] describes relationships between the lateral conver-
gence of a net and of its positive and negative parts.

Lemma 4.7 [10] Let E be a Riesz space, (xα) a net in E and x ∈ E. Then the following
assertions are equivalent.

(i) xα
s−�−→ x;

(ii) x+α
s−�−→ x+, x−α

s−�−→ x− and (xα) is eventually laterally bounded;

(iii) The set {x}∪{xα : α ≥ α0} is laterally bounded for some indexα0 and xα���x
s−�−→

0.

Moreover, each of (i)–(iii) implies |xα| s−�−→ |x |.
The same is true for weak lateral convergence.

Actually, the proof in [10] of Lemma 4.7 concerns strong lateral convergence.
However, the same proof is actual for weak lateral convergence.
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There is an example in [10] showing that the eventually laterally boundedness
assumption in (ii) cannot be removed.

It is well known that the order convergence of nets in the classical Banach lattices
L p with 1 ≤ p ≤ ∞ does not coincide with the convergence in any topology on
L p. We remark that the lateral convergence of nets in L p, as well as the up-lateral
convergence, is much farther from topological convergence, because the sum of two
up-lateral convergent nets need not be laterally convergent. Consider, for example,

sequences xn = 1[ 1
n ,1

] and yn = 1[
0,1− 1

n

]. Then xn
�↑−→ 1[0,1] and yn

�↑−→ 1[0,1],
however the sequence xn + yn = 1[

0, 1n

) + 2 · 1[ 1
n ,1− 1

n

] + 1(
1− 1

n ,1
] is not eventually

laterally bounded, and hence, is not laterally convergent.

Lateral boundedness

We show that an orthogonally additive operator is lateral bounded if and only if it
preserves disjointness.

Definition 4.8 An orthogonally additive operator T : E → F between Riesz spaces
E and F is said to be laterally bounded if T sends laterally bounded subsets of E to
laterally bounded subsets of F .

In other words, T is laterally bounded provided for every e ∈ E there exists f ∈ F
such that T (Fe) ⊆ F f .

Theorem 4.9 For an orthogonally additive operator T : E → F betweenRiesz spaces
E and F the following assertions are equivalent:

(1) T is laterally bounded;
(2) T preserves disjointness;
(3) (∀e ∈ E) T (Fe) ⊆ FT (e);
(4) T is lateral order preserving, that is, for every x, y ∈ E the relation x � y

implies T (x) � T (y).

For the proof, we need the following lemma.

Lemma 4.10 For any elements x, y of a Riesz space E the following are equivalent:

(i) x ⊥ y;
(ii) the set {x, y, x + y} is laterally bounded.
Proof of Lemma 4.10 (i)⇒ (ii). Observe that if (i) is true then the set {x, y, x + y} is
laterally bounded by x + y from above.

(ii)⇒ (i). Let e ∈ E be such that {x, y, x+ y} ⊆ Fe. Using (1) of Proposition 3.18,
represent x + y as a disjoint sum x + y = (x\y)� 2xy � (y\x). Then every summand
of the disjoint sum is a fragment of x + y, and hence, a fragment of e. Thus, xy and
2xy are fragments of e. Hence, xy ⊥ (e − xy) and 2xy ⊥ (e − 2xy). By [25, p. 64],
2xy ⊥ (

(e − xy)− (e − 2xy)
) = xy. This yields xy = 0, and hence, x ⊥ y. ��
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Proof of Theorem 4.9 (1) ⇒ (2). Assume x, y ∈ E and x ⊥ y. By Lemma 4.10, the
set {x, y, x + y} is laterally bounded in E . By (1), the set

{T (x), T (y), T (x + y)} = {T (x), T (y), T (x)+ T (y)}

is laterally bounded in F . Again, by Lemma 4.10, T (x) ⊥ T (y).
(2) ⇒ (3). Fix any e ∈ E and x ∈ Fe. Since x ⊥ (e − x), by (2) one has

T (x) ⊥ T (e−x). By the orthogonal additivity of T , we obtain T (e) = T (x)+T (e−x)
and hence T (x) ⊥ (

T (e)− T (x)
)
, that is, T x ∈ FT (e).

(3)⇔ (4) and (3)⇒ (1) are obvious. ��

Lateral continuity

One of the motivations to consider the lateral convergence is to generalize theorems
in a natural way. For instance, Theorem 5.1 from [15] (see also [24, Theorem 10.17])
asserting that every AM-compact order-to-norm continuous linear operator from an
atomless Dedekind complete Riesz space to a Banach space is narrow, was then gen-
eralized in [20, Theorem 3.2] simultaneously in three directions: every C-compact
up-laterally-to-norm continuous orthogonally additive operator acting from an atom-
less Dedekind complete Riesz space to a Banach space is narrow. One of the directions
is due to the fact that the class of up-laterally-to-normcontinuousmaps iswider than the
class of order-to-norm continuous maps, because the up-lateral convergence implies
the order convergence.

Definition 4.11 Let E, F be Riesz spaces. A function f : E → F is said to be

• strongly laterally continuous at a point x ∈ E provided for every net (xα) in E , if

xα
s−�−→ x then f (xα)

s−�−→ f (x);
• weakly laterally continuous at a point x ∈ E provided for every net (xα) in E , if

xα
w−�−→ x then f (xα)

w−�−→ f (x);
• up-laterally continuous at a point x ∈ E provided for every net (xα) in E , if

xα
�↑−→ x then f (xα)

�↑−→ f (x).

A function f : E → F is said to be strongly laterally (or weakly laterally, or
up-laterally) continuous provided f is so at every point x ∈ E .

Remark 4.12 The above three notions of lateral continuity are incomparable.
(a) Notice that for any Riesz spaces E and F every function f : E → F is up-

laterally continuous at zero. But there are Riesz spaces E , F and a linear operator
T : E → F which is not strongly and weakly laterally continuous at zero. Indeed, let
Y be an uncountable discrete space, X ⊆ Y be a countable subspace ofY , L = Y �{∞}
be the one-point compactification of Y , K = X � {∞}, E = C(K ) and F = C(L).
Consider the operator T : E → F defined by

T ( f )(y) =
{
f (y), y ∈ K ;
f (∞), y ∈ L\K .
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Then T is not strongly and weakly laterally continuous at zero. Thus, the up-lateral
continuity does not imply the strong lateral continuity and does not imply the weak
lateral continuity.

(b) Let E = F = c0. We consider the linear operator T : E → F defined by

T (ξ1, ξ2, ξ3, ξ4, . . . ) =
(

ξ1+ξ2
2 ,

ξ3+ξ4
2 , . . .

)
.

It is easy to see that T is both strongly and weakly laterally continuous. However, T
is not up-laterally continuous at the point x0 = (1,−1, 1

2 ,− 1
2 ,

1
3 ,− 1

3 , . . .). Thus, the
strong lateral continuity and the weak lateral continuity do not imply the up-lateral
continuity.

(c) Let E = c be the Banach lattice of all converging sequences and F = C(K ),
where K is the one-point compactification of an uncountable discrete space X , (xn)∞n=1
be a sequence of distinct points xn ∈ X and yn = 1{xn} ∈ F for every n ∈ N. We
consider the linear operator T : E → F defined by

T (u) =
∑

n∈N
ξn(yn − yn+1) = ξ1y1 +

∑

n≥2
(ξn+1 − ξn)yn,

where u = (ξn)n∈N ∈ E . Since lim
n→∞(ξn+1 − ξn) = 0 for every u = (ξn)n∈N ∈ E , T

is well defined.
Show that T is weakly laterally continuous at 0. Denote by A the system of all

finite sets

A ⊆ X\{xk : k ∈ N}.

Consider the following order ≤ on the set B = N×A:

(n1, A1) ≤ (n2, A2) ≡ n1 ≤ n2 and A1 ⊆ A2.

For every β = (n, A) ∈ B we put

yβ = max
{ 1
n · 1, 1− 1{xk :1≤k≤n}∪A

}
.

It is easy to see that yβ ↓ 0.Moreover, for every net (uα)α in E such that uα
w−�−→ 0 and

for every β ∈ B there exists α0 such that |T (uα)| ≤ yβ for all α ≥ α0. Consequently,
T is weakly laterally continuous at 0.

On the other hand, we consider the sequence (un)n∈N of elements un = 1 −
1{k:1≤k≤n−1} ∈ E . Then (un)n∈N strongly laterally converges to 0. But T (un) = yn
for every n ∈ N and (T (un))n∈N does not strongly laterally converge to 0. Thus, T is
not strongly laterally continuous at 0. So, the weak lateral continuity does not imply
the strong lateral continuity.

(d) Let E = C(K ), where K is the one-point compactification of an uncountable
discrete space, and F = l∞. It is easy to construct function (not necessarily orthog-
onally additive) f : E → F such that f is strongly laterally continuous and is not
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weakly laterally continuous at 0. So, the strong lateral continuity does not imply the
weak lateral continuity.

In case of Dedekind complete E and F we use the term “laterally continuous”
for both versions “strongly laterally continuous” and “weakly laterally continuous”,
because these versions are equivalent.

We say that a net (xα) is eventually constant if xα = xα0 for some α0 and all
α ≥ α0. Observe that the only eventually constant nets are laterally convergent in the
Riesz space R with the usual order. So, every map f : R → F for every Riesz space
F is both strongly laterally continuous and weakly laterally continuous. On the other
hand, the only laterally continuous functions from an atomless Riesz space E toR are
constant functions. Another drawback of the notion of lateral continuity for linear and
orthogonally additive operators is that the sum of two laterally continuous operators
need not be laterally continuous.

Example 4.13 Let 0 ≤ p ≤ ∞. Then there exist linear operators S, T : L p[0, 1] →
L p[0, 1] that are up-laterally continuous and laterally continuous, however the sum
S + T is not both up-laterally continuous and laterally continuous.

Proof Let S be the identity operator and set (T x)(t) = x(1− t) for all x ∈ L p[0, 1]
and t ∈ [0, 1]. Then obviously S and T are up-laterally continuous and laterally
continuous. To show that the sum S + T is not, consider the sequence xn = 1[ 1

n ,1
].

Thenwe have the convergence in both senses xn
�↑−→ 1[0,1] and xn

�−→ 1[0,1], however
the sequence

(S + T ) xn = 1[
0, 1n

) + 2 · 1[ 1
n ,1− 1

n

] + 1(
1− 1

n ,1
]

is not eventually laterally bounded and hence fails to be convergent both up-laterally
and laterally. ��

This is why it is important to investigate mixed versions of continuity like the
following ones.

Definition 4.14 Let E be a Riesz space and X a normed space. A function f : E → X
is said to be s-order-to-norm continuous (or w-order-to-norm continuous) at a point

x ∈ E if for any net (xα) in E with xα
s−o−→ x (respectively, xα

w−o−→ x) one has
‖ f (xα)− f (x)‖ → 0. The same function f is called s-order-to-norm continuous (or
w-order-to-norm continuous), if it is so at each point x ∈ E .

In a similar way one can define s-laterally-to-norm, w-laterally-to-norm, up-
laterally-to-norm continuous functions from a Riesz space to a normed space.
Moreover, let E, F be Riesz spaces and (ϕ, ψ) be any pair of distinct types of con-
vergence from the following ones: s-order, w-order, s-lateral, w-lateral, up-lateral. A
function f : E → F is said to be ϕ-to-ψ continuous at a point x ∈ E , if for every

ϕ-convergent to x net (xα) in E one has xα
ψ−→ x .
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Since the lateral convergence implies the order convergence, the order-to-norm
continuity of a function f : E → X implies the laterally-to norm continuity of f .
The following example shows that the converse assertion is not true even for linear
operators.

Example 4.15 Let 1 ≤ p ≤ ∞. Then there is a laterally-to-norm continuous orthogo-
nally additive operator T : L p → R which is not order-to-norm continuous.

Proof Given any x ∈ L p, we set

T (x) =
∑

a∈R
a · μ(

x−1({a})).

To see that T is well defined, we set Ax =
{
a ∈ R\{0} : μ

(
x−1({a})) �= 0

}
and

Bx =
⋃

a∈Ax

x−1({a}).

Note that the set Ax is at most countable, Bx is a measurable subset of [0, 1] and

T (x) =
∫

Bx

x dμ.

We will use the following simple observation: Bx ⊆ supp x .
Show that T is an orthogonally additive operator. Assume x, y ∈ L p and x ⊥ y,

that is, supp x ∩ supp y = ∅. Then Bx ∩ By = ∅, Bx+y = Bx ∪ By and hence

T (x + y) =
∫

Bx+y

(x + y) dμ =
∫

Bx

(x + y) dμ+
∫

By

(x + y) dμ

=
∫

Bx

x dμ+
∫

By

y dμ = T (x)+ T (y).

Prove the laterally-to-norm continuity of T . Assume (xα) is a net is L p and xα
�−→

x . Choose e ∈ L p and an indexα0 so that x, xα � e for allα ≥ α0 (seeProposition 4.5).
Fix any ε > 0 and choose δ > 0 so that for anymeasurable set A ⊆ [0, 1] the inequality
μ(A) < δ implies

∫
A |e| dμ < ε/2. Since xα

o−→ x , by [4, Lemma 8.17] xα → x

a.e. on [0, 1], and hence, xα
μ−→ x . Then choose α1 ≥ α0 so that μ(Cα) < δ, where

Cα = {t ∈ [0, 1] : |xα(t)− x(t)| ≥ ε/2} for all α ≥ α1. Then for every α ≥ α1 one
has

|T (xα)− T (x)| =
∣
∣
∣
∣
∣

∫

Bxα

xα dμ−
∫

Bx

x dμ

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫

Bxα

e dμ−
∫

Bx

e dμ

∣
∣
∣
∣
∣
=

∫

Bxα�Bx

|e| dμ.

(4.1)
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Since μ
(
(Bxα�Bx ) ∩ Cα

) ≤ μ(Cα) < δ, we get

∫

(Bxα�Bx )∩Cα

|e| dμ <
ε

2
(4.2)

by the choice of δ. Now observe:

• if t ∈ [0, 1]\Cα then |xα(t)− x(t)| < ε/2;
• if t ∈ Bxα�Bx then one of the values xα(t), x(t) equals e(t) and the other one
equals zero.

Hence, if t ∈ (Bxα�Bx )\Cα then |e(t)| < ε/2. Therefore

∫

(Bxα�Bx )\Cα

|e| dμ ≤ ε

2
. (4.3)

Combining (4.1) with (4.2) and (4.2), we obtain |T (xα)−T (x)| < ε. The laterally-
to-norm continuity of T is proved.

To show that T is not order-to-norm continuous, set xn(t) = 1 + t
n and 1(t) = 1

for all t ∈ [0, 1]. Then T (xn) = 0, xn
o−→ 1 and T (1) = 1. ��

Proposition 4.16 Let (E, ‖ · ‖) be a Dedekind σ -complete Banach lattice. Then the
following statements are equivalent:

(1) ‖ · ‖ is a laterally-to-norm continuous function;
(2) ‖ · ‖ is an order-to-norm continuous function.

Before the proof we remark that a Banach lattice E is Dedekind σ -complete if and
only if E has the principal projection property [16, p. 18], which actually is used in
the proof below.

Proof Implication (2) ⇒ (1) is obvious. We show (1) ⇒ (2). Take a sequence (xn) in
E+ with xn ↓ 0. It is enough to prove that inf

n
‖xn‖ = 0. Fix ε > 0. For every n ∈ N

let πn denote the order projection of E onto the band in E generated by (xn − εx1)+.
Since xn ↓ 0, it follows that πn ↓ 0, where the infimum is taken in the Boolean algebra
B(E) of all order projections on E . For n ≥ n0 we get

xn − εx1 ≤ (xn − εx1)
+ = πn((xn − εx1)

+)

= πn(xn − εx1) = πnxn − επnx1 ≤ πnx1.

Hence, 0 ≤ xn ≤ εx1 + πnx1. Thus,

0 ≤ ‖xn‖ ≤ ε‖x1‖ + ‖πnx1‖

and

0 ≤ inf
n
‖xn‖ ≤ ε‖x1‖ + inf

n
‖πnx1‖.
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Observe that (πnx1)n∈N laterally converges to 0. Since ‖ · ‖ is a laterally-to-norm
continuous function, we have that inf

n
‖πnx1‖ = 0 and

0 ≤ inf
n
‖xn‖ ≤ ε‖x1‖.

Since ε > 0 is arbitrary, we deduce that inf
n
‖xn‖ = 0. ��

It is very natural that the continuity of an orthogonally additive operator is equivalent
to its continuity at zero.

Theorem 4.17 [10] Let E be a Riesz space, F a Riesz space (normed space), T :
E → F an orthogonally additive operator. Let T be s-laterally or s-laterally-to-
order (s-laterally-to-norm, respectively) continuous at zero. Then T is s-laterally or
s-laterally-to-order (s-laterally-to-norm, respectively) continuous.

The following example shows that the lateral continuity of an orthogonally additive
operator at one nonzero point does not imply its lateral continuity at all other points
(e.g., at zero).

Example 4.18 There exists a non-Dedekind σ -complete Riesz space E and an orthogo-
nally additive operator T : E → Rwhich is laterally-to-norm continuous in all senses
(up, s- and w-) at one point and is not laterally-to-norm continuous in all senses at
another point. Hence, the same operator is laterally-to-order continuous in all senses
at one point and is not laterally-to-order continuous in all senses at another point.

Proof Let E = l∞0 be the Riesz space of all real eventually constant sequences, that
is,

l∞0 = {
(xi )i∈N : (∃k ∈ N)(∀i ≥ k)(xi = xk)

}

equippedwith the coordinate-wise order. The sequence xk =
(
1
2 ,

2
3 , . . . ,

k
k+1 , 0, 0, . . .

)

is order bounded from above by 1 = (1, . . . , 1, . . .) and has no supremum in E , so E
is not Dedekind σ -complete.

Observe that F1 = A1 � A2, where

A1 = {(xi )i∈N : ∃ l ∈ N such that ∀i > l : xi = 1 and xi ∈ {0, 1}; 1 ≤ i ≤ l}

and

A2 = {(xi )i∈N : ∃m ∈ N such that ∀i > m : xi = 0 and xi ∈ {0, 1}; 1 ≤ i ≤ m}.

Define a map ϕ : F1 → R by setting

ϕ(u) =
{
1 if u ∈ A1

0 if u ∈ A2.
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Then ϕ : F1 → R is an orthogonally additive map from F1 to R. Now set 2 =
(2, . . . , 2, . . .). Define amapψ : F2 → R by settingψ(v) = ∑∞

i=1
vi
2i
, v = (vi ) ∈ F2.

Observe that ψ is an orthogonally additive operator as well.
Show that �∞0 has the intersection property. For any α, β ∈ R we set α ∗ β = α if

α = β and α∗β = 0 if α �= β. Then for each x = (ξ1, ξ2, . . .), y = (η1, η2, . . .) ∈ �∞0
the element w = (ξ1 ∗ η1, ξ2 ∗ η2, . . .) is the lateral infimum of {x, y}. Indeed, w � x
and w � y by construction. Assume z = (γ1, γ2, . . .) ∈ �∞0 be any element with
z � x and z � y. Then for every n ∈ N, if γn �= 0 then γn = αn and γn = βn ,
and hence αn ∗ βn = γn . Therefore, z � w and the equality w = xy is proved. So,
�∞0 has the intersection property and the lateral infimum xy is well defined for all
x, y ∈ �∞0 (another way to show that �∞0 has the intersection property is to prove that
�∞0 possesses the principal projection property and then use Corollary 3.15).

Observe that for each element e ∈ �∞0 the function Te : �∞0 → �∞0 of taking the
lateral infimum Te(x) = xe is a disjointness preserving operator. Now we define a
map T : �∞0 → R by setting

T (e) = ϕ(e1)+ ψ(e2)

for all e ∈ �∞0 . Remark that T is well defined because e1 ∈ F1 and e2 ∈ F2. Being of a
composition of a disjointness preserving operator by an orthogonally additive operator,
each summand of the above formula defines an orthogonally additive operator. Thus,
so is the sum T .

Consider the sequence of elements xk ∈ �∞0 where xk = (uk,i )i∈N are such that
uk,1 = uk,2 = · · · = uk,k = 1 and ∀i > k : uk,i = 0. It is clear that xk ∈ F1 for all

k ∈ N. Observe that xk
�↑−→ 1 and hence, xk

s−�−→ 1 and xk
w−�−→ 1. On the other hand,

xk2 = 0 and hence ψ(xk) = 0 for all k ∈ N. Thus,

T (xk) = ϕ(xk) = 0 −→ 0 �= 1 = ϕ(1) = T (1),

and so, T is neither up-laterally-to-norm, nor s-laterally-to-norm continuous, nor w-
laterally-to-norm continuous at 1. To show that T is s-laterally-to-norm, w-laterally-
to-norm and up-laterally-to-norm continuous at 2, consider any s-, w- or up-laterally
convergent net (vα) to 2. Say, (vα) is eventually laterally bounded by e ∈ �∞0 . Let
α0 be an index such that vα � e for all α ≥ α0. By Proposition 4.5, 2 � e, which
obviously implies that e = 2. Observe that for any type of lateral convergence of (vα)

one has ψ(2− vα) −→ 0. Then for all α ≥ α0 one has

2 = vα � (2− vα) and T (2)− T (vα) = T (2− vα) = ψ(2− vα) −→ 0,

so T has the desired properties. ��

123



312 V. Mykhaylyuk et al.

5 Consistent sets

The notion of a consistent subset is new. It may be convenient in different contexts.
Consistent sets naturally generalize laterally bounded subsets of a Riesz space and
give principally new tools for investigation of general Riesz spaces.

Definition 5.1 A subset G of a Riesz space E is called consistent if every two-point
subset of G is laterally bounded in E .

Observe that every disjoint set is consistent. Simple examples show that a consistent
set in a Riesz space need not be laterally bounded. For instance, the set G = {1[0,n] :
n ∈ N}, being a lateral chain, is consistent but is not laterally bounded in L1(R).

Proposition 5.2 For a subset G of a Riesz space E the following assertions are equiv-
alent:

(1) G is consistent;
(2) every finite subset of G is laterally bounded;
(3) every finite subset of G has a �-supremum in E.

Proof By Corollary 3.7, (2) and (3) are equivalent. Implication (2)⇒ (1) is obvious.
We prove implication (1) ⇒ (2). By Corollary 3.6, it is enough to consider the case
where G ⊆ E+. Let G ⊆ E+ be consistent and let {x1, . . . , xn} be a finite subset of
G, xi �= x j for i �= j . By Proposition 3.2, xi ∪∪∪ x j = xi ∨ x j for all i, j = 1, . . . , n.
We show that, for all i = 1, . . . , n one has xi � x1 ∨ . . . ∨ xn , which completes the
proof. Fix any i . Since xi ⊥ (xi ∨ x j )− xi for all j , one has

xi ⊥ (xi ∨ x1 − xi ) ∨ . . . ∨ (xi ∨ xn − xi ) = x1 ∨ . . . ∨ xn − xi ,

and hence xi � x1 ∨ . . . ∨ xn . ��
Recall that a Riesz space E is called laterally complete if every disjoint family

from E+ has the supremum. The following simple observation shows that, using
lateral terminology, one can give an equivalent definition for not necessarily positive
disjoint families.

Proposition 5.3 A Riesz space E is laterally complete if and only if every disjoint
family from E has a lateral supremum.

Proof By (2) of Proposition 3.4, if every disjoint family from E has a lateral supremum
then E is laterally complete. Let E be laterally complete and G ⊂ E be a disjoint
family. Obviously,G+ = {g+ : g ∈ G} andG− = {g− : g ∈ G} are disjoint families
from E+ which have suprema supG+ and supG− by the lateral completeness of E .
By (2) of Proposition 3.4, there are lateral suprema

⋃⋃⋃
G+ and

⋃⋃⋃
G−. Finally, by

Corollary 3.6, there exists the lateral supremum
⋃⋃⋃

G =⋃⋃⋃
G+ −⋃⋃⋃

G−. ��
The following theorem characterizes laterally complete Riesz spaces in terms of

consistent sets.
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Theorem 5.4 A Riesz space E is laterally complete if and only if every consistent set
A ⊂ E has a lateral supremum

⋃⋃⋃
A ∈ E.

First we need some lemmas.

Lemma 5.5 Let A be a consistent subset of a Riesz space E, B ⊆ A, a ∈ A. If there
exists

⋃⋃⋃
B then the two-point set {a,

⋃⋃⋃
B} is laterally bounded.

Proof By Corollary 3.6, with no loss of generality, we may and do assume that A ⊂
E+. Hence, b :=⋃⋃⋃

B = ∨
B. We prove that {a, b} is laterally bounded by e = a∨b.

Firstwe show that a � e, that is, a ⊥ a∨b−a. Since a∨b−a = 0∨(b−a) = (b−a)+,
one has

|a| ∧ |a ∨ b − a| = |a| ∧
(∨

b∈B
b − a

)+ = |a| ∧
(∨

b∈B
(b − a)

)+ = |a| ∧
∨

b∈B
(b − a)+.

By the infinite distributivity property of any Archimedean Riesz space [26, Theo-
rem III.5.1] we continue the chain of equalities as

=
∨

b∈B
|a| ∧ (b − a)+ =

∨

b∈B
0 = 0,

because for all b ∈ B, a � a∨b and hence a ⊥ a∨b−a, that is, |a| ∧ (b−a)+ = 0.
Nowwe show that b � e, that is, b ⊥ b∨a−b. Fix any b′ ∈ B. Since a−b ≤ a−b′,

one has that (a − b)+ ≤ (a − b′)+ and hence

|b′| ∧ |b ∨ a − b| = |b′| ∧ (a − b)+ ≤ |b′| ∧ (a − b′)+ = 0.

We have proved that, for every b′ ∈ B, b′ ⊥ b ∨ a − b. Since the orthogonal
complement to any element is a band, we obtain that b = ∨

B ⊥ b ∨ a − b. ��
Lemma 5.6 Let ωβ be a cardinal, A = {aα : α < ωβ} be a consistent subset of a
Riesz space E. Assume that for all ordinals α, 0 < α < ωβ there exists

⋃⋃⋃
Aα , where

Aα = {aξ : ξ < α}. Set

b0 = a0 and bα = aα\
⋃⋃⋃

Aα for 0 < α < ωβ. (5.1)

If there exists
⋃⋃⋃ {bα : α < ωβ} = e ∈ E then

⋃⋃⋃
A exists and equals e.

Remark that the set-theoretical difference in (5.1) is well defined by Lemma 5.5.

Proof Set Aωα = A and prove the following claim by transfinite induction.
(∗) For every ordinal α, 0 < α ≤ ωα one has

⋃⋃⋃
Aα =⋃⋃⋃ {bξ : ξ < α}.

For α = 1 we have
⋃⋃⋃

A0 = a0 = b0 = ⋃⋃⋃ {bξ : ξ < 1} and Claim (∗) holds. Fix
any ordinal γ , 1 < γ ≤ ωα . Assume Claim (∗) holds for all α < γ and prove the
claim for α = γ .
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If γ is an isolated ordinal then γ = α + 1 for some α < γ , and by the induction
assumption

⋃⋃⋃
Aγ = aα ∪∪∪

⋃⋃⋃
Aα

by Prop.3.18(4)=
(
aα\\\

⋃⋃⋃
Aα

)
∪∪∪

⋃⋃⋃
Aα

= bα ∪∪∪
⋃⋃⋃

{bξ : ξ < α} =
⋃⋃⋃

{bξ : ξ < γ }.

If γ is a limited ordinal then by the induction assumption

⋃⋃⋃
Aγ =

⋃⋃⋃
{aξ : ξ < γ }

=
⋃⋃⋃

α<γ

⋃⋃⋃
{aξ : ξ < α}

=
⋃⋃⋃

α<γ

⋃⋃⋃
{bξ : ξ < α}

=
⋃⋃⋃

{bξ : ξ < γ }.

So, Claim (∗) is proved. The lemma follows from the claim for γ = ωβ . ��
Proof of Theorem 5.4 Let E be laterally complete. Assume A ⊂ E is consistent. By
Corollary 3.6, with no loss of generality, we may and do assume that A ⊂ E+. So, it
is enough to prove the following claim.

For every ordinal β every consistent set A ⊂ E+ of cardinality < ℵβ has a lateral
supremum.

Forβ = 0 the claim follows fromProposition 5.2.Assume the claim is true for every
ordinal 0 ≤ β < γ and prove the claim for β = γ . Let A ⊆ E+ be a consistent subset
and |A| < ℵγ . If γ is a limit ordinal then there is β < γ such that |A| < ℵβ , and the
lateral boundedness of A follows from the induction assumption. Let γ be an isolated
ordinal, γ = β + 1. Then |A| ≤ ℵβ . If |A| < ℵβ then the lateral boundedness of A
follows again from the induction assumption. So, consider the case where |A| = ℵβ .
Let A = {aα : α < ωβ} be any well ordering of A. Set Aα = {aξ : ξ < α} for all
0 < α < ωβ and observe that |Aα| < ℵβ . By the induction assumption,

⋃⋃⋃
Aα is well

defined for all α < ωβ . Then we define an ωβ -sequence (bα)α<ωβ in E by setting

b0 = a0 and bα = aα\
⋃⋃⋃

Aα for 0 < α < ωβ. (5.2)

The set-theoretical difference in (5.2) is well defined by Lemma 5.5. It is immediate
that (bα)α<ωβ is a disjoint system in E+. By the lateral completeness of E , there exists
e =⋃⋃⋃ {bα : α < ωβ}. By Lemma 5.6,

⋃⋃⋃
A = e.

Assume every consistent set in E has a lateral supremum. Let ai ∈ E+, i ∈ I , be
a disjoint system. Obviously, A = {ai : i ∈ I } is a consistent set. By the assumption,
there exists

⋃⋃⋃
A ∈ E . By (2) of Proposition 3.4, sup A = ⋃⋃⋃

A, and hence, E is
laterally complete. ��
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Theorem 5.4 has an important consequence which concerns the property of a Riesz
space to have a lateral suprema of every laterally bounded set.

Definition 5.7 A Riesz space E is said to be C-complete if every nonempty laterally
bounded subset G of E has a lateral supremum

⋃⋃⋃
G ∈ E .

Corollary 5.8 If a Riesz space E is either Dedekind complete or laterally complete
then E is C-complete.

Proof If a Riesz space E is Dedekind complete then E isC-complete by Corollary 3.9.
If a Riesz space E is laterally complete then E is C-complete by Theorem 5.4. ��

Observe that the Banach lattice C[0, 1] is a C-complete Riesz space which is both
not Dedekind complete and not laterally complete. We do not know whether there is
an atomless example of the kind.

6 Lateral fields, ideals and bands

Definition 6.1 A nonempty subset G of a Riesz space E is called:

• finitely laterally closed if for every laterally bounded two-point subset {x, y} of E
the condition {x, y} ⊆ G implies x ∪∪∪ y ∈ G;

• a lateral field if it is finitely laterally closed, and for every two-point subset {x, y}
of G the existence of xy implies xy ∈ G and x\\\y ∈ G;

• laterally solid if for each x ∈ E and y ∈ G the relation x � y implies x ∈ G;
• a lateral ideal if it is laterally solid and finitely laterally closed;
• up-laterally closed if for each subset G1 ⊆ G the existence of f = ⋃⋃⋃

G1 in E
implies that f ∈ G;

• laterally closed if for every net (xα) in G and every x ∈ E the condition xα
�−→ x

implies that x ∈ G;
• a lateral band if it is a laterally closed lateral ideal.

It is immediate that a lateral band is a lateral ideal, and a lateral ideal is a lateral field,
but the converse assertions are not true. Every laterally closed subset is up-laterally
closed, but, if E contains a nontrivial laterally convergent to zero net (xα) then the
set Fe\{0} is obviously up-laterally closed but is not laterally closed. However, for
laterally solid sets these two notions coincide.

Proposition 6.2 Let G be an up-laterally closed lateral ideal of a Riesz space E. Then
G is a lateral band.

Proof Let (xα) be a net in G, x ∈ E and xα
�−→ x . We claim that x ∈ G. Passing

to positive and negative parts of the elements and using Corollary 3.9, we reduce the
claim to the case where x, xα ≥ 0. Assume xα � e for all α ≥ α0. Since xα

o−→ x ,
by [4, Theorem 8.16]

x =
∨

α

∧

β≥α

xβ. (6.1)

123



316 V. Mykhaylyuk et al.

Fix any α ≥ α0. By (2) of Proposition 3.4,
∧

β≥α xβ = ⋂⋂⋂
β≥αxβ and hence∧

β≥α xβ � xα . Since G is laterally solid,
∧

β≥α xβ ∈ G. Since G is up-laterally
solid, by (6.1) x ∈ G. ��

Remark that in [11] we define a lateral band of a Riesz space E to be laterally
solid up-laterally closed subset of E . Fortunately, this appears to be equivalent to the
definition given above due to Proposition 6.2.

Observe that a nonempty subset G ⊆ E is consistent and finitely laterally closed
if and only if it is directed with respect to the lateral order.

An equivalent definition of a lateral ideal is given in the following simple statement.

Lemma 6.3 Let E be a Riesz space and G ⊂ E. The following assertions are equiva-
lent:

(1) G is a lateral ideal;
(2) G is laterally solid and for every x, y ∈ G with x ⊥ y one has x + y ∈ G.

Proof (1) ⇒ (2). Consider any x, y ∈ G with x ⊥ y. Then the two-point subset
{x, y} is laterally bounded in E by x + y and moreover x + y = x ∪∪∪ y ∈ G.

(2) ⇒ (1). Consider any laterally bounded two-point subset {x, y} of E with {x, y} ⊆
G. By (4) of Proposition 3.18, x ∪∪∪ y = x � (y\\\x). Since G is laterally solid,
y\\\x ∈ G and hence x ∪∪∪ y ∈ G by (2).

��
The importance of lateral ideals for orthogonally additive operators is demonstrated

in the following statement.

Proposition 6.4 Let E, F be Riesz spaces and T : E → F a positive orthogonally
additive operator. Then ker T = {x ∈ E : T x = 0} is a lateral ideal in E.

Proof Assume x ∈ E , y ∈ ker T and x � y hold. Then 0 ≤ T (x) ≤ T (x) + T (y −
x) = T (y) = 0, and hence x ∈ ker T , so ker T is laterally solid. Assume x, y ∈ ker T
and x ⊥ y. Then T (x + y) = T (x)+ T (y) = 0 and x + y = z ∈ ker T . ��

The next statement asserts that not every lateral ideal is the kernel of a positive
orthogonally additive separable valued operator.

Proposition 6.5 Let E be a Dedekind complete Riesz space containing a strictly
increasing up-laterally convergent sequence. Then there is a lateral ideal in E which
cannot be equal the kernel of a positive orthogonally additive operator from E to any
separable Banach lattice F.

Proof Let e ∈ E and let (en)∞n=1 be a sequence with en � en+1, en �= en+1 and

en
�↑−→ e. Set H = ⋃∞

n=1 Fen and prove that H possesses the desired properties.
Since en � en+1, we have that Fen ⊆ Fen+1 for all n, which implies that H is a lateral
ideal.

Assume, on the contrary, that H = ker T , where T : E → F is a positive orthog-
onally additive operator to a separable Banach lattice F . Let M be an uncountable
collection of infinite subsets of N such that

(∀A, B ∈M)
(
(A �= B) ⇒ (|A ∩ B| < ℵ0

))
, (6.2)
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the well known mathematical folklore. Set e′1 = e1 and e′n+1 = en+1 − en for every
n ∈ N. Then e = ⊔

n∈N e′n = ⋃⋃⋃
n∈Ne′n . For any A ∈ M set xA = ⋃⋃⋃

n∈Ae′n (the
lateral supremum exists by Corollary 3.9, because the set under the supremum is
laterally bounded by e). Since every A ∈ M is infinite, xA /∈ H and so, T (xA) �= 0.
By the separability of F , there is a nonzero condensation point f ∈ F of the set
{T (xA) : A ∈ M}, that is, for every ε > 0 one has |Mε| > ℵ0, where Mε = {A ∈
M : ‖T (xA)− f ‖ < ε}. Fix any δ > 0 and m ∈ N. Choose any A1, . . . , Am ∈Mδ .
Then, by (6.2), there is n ∈ N such that for the infinite sets Bk = Ak\{1, . . . , n},
k = 1, . . . ,m one has

Bi ∩ Bj = ∅ for all i, j ∈ {1, . . . ,m}. (6.3)

Set yk = ⋃⋃⋃{e′n : n ∈ Bk} and zk = ⋃⋃⋃{e′n : n ∈ Ak\Bk} for k = 1, . . . ,m. Then
xAk = yk�zk for k = 1, . . . ,m. Since zk ∈ H , by the orthogonal additivity of T weget
T (yk) = T (xAk ), and Ak ∈Mδ yields ‖T (yk)− f ‖ < δ for k = 1, . . . ,m. By (6.3),
(yk)mk=1 is a disjoint sequence. Hence, taking into account that y1 � . . . � ym � e, by
positivity of T we obtain T (y1)+ · · · + T (ym) ≤ T (e). Thus,

‖T (e)‖ ≥ ‖T (y1)+ · · · + T (ym)‖
= ‖m f + T (y1)− f + · · · T (ym)− f ‖
≥ m‖ f ‖ − ‖T (y1)− f ‖ − . . .− ‖T (ym)− f ‖ > m

(‖ f ‖ − δ
)
,

which contradicts the arbitrariness of δ > 0 and m ∈ N. ��
The following statement shows that the separability assumption in Proposition 6.5

is essential.

Proposition 6.6 There exist a lateral ideal H in E = l∞ such that

(i) H cannot be equal the kernel of a positive orthogonally additive operator acting
from E to any separable Banach lattice F;

(ii) H is the kernel of a positive orthogonally additive operator T from E to some
Banach lattice F0.

Proof We consider the lateral ideal

H = {x = (ξn)n∈N ∈ {0, 1}N : (∃m ∈ N) (∀n ≥ m) (ξn = 0)}.

By Proposition 6.5, H cannot be equal the kernel of a positive orthogonally additive
operator from E to any separable Banach lattice F .

Now let F0 be the quotient Banach space l∞/c0 endowed with the norm

‖x̂‖ = lim sup
n→∞

|ξn|,

where x = (ξn)n∈N ∈ l∞ and x̂ = π(x) = {y ∈ l∞ : x − y ∈ c0}. Notice that F0 is a
Banach lattice with respect to the order

x̂ ≤ ŷ ≡ (∃ u = (ξn)n∈N ∈ x̂) (∃ v = (ηn)n∈N ∈ ŷ) (∀ n ∈ N) (ξn ≤ ηn).
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For any A ⊆ N set xA = 1A, where 1 = (1, 1, 1, . . .) ∈ l∞. Moreover, for every
x = (ξn)n∈N ∈ l∞ set Nx = {n ∈ N : ξn �= 1} and Mx = {n ∈ N : ξn = 1}.
Fix any sequence (An)n∈N of disjoint infinite sets An ⊆ N. Consider the operator
T : l∞ → F0 defined by T (x) = π(

⋃⋃⋃
n∈Nx |ξn| · xAn )+ π(1Mx ). It is easy to see that

T is a positive orthogonally additive operator and ker T = H . ��
Problem 6.7 Are there a Riesz space E and a lateral ideal in E which is not equal to
the kernel of any positive orthogonally additive operator T : E → F for any Riesz
space F?

Obviously, the intersection of lateral fields (ideals or bands) is a lateral field (resp.,
ideal or band). So, given any subset G of P , there exists the minimal lateral field
F(G), the minimal lateral ideal I(G) and the minimal lateral band B(G) containing
G, which equals the intersection of all lateral fields (ideals or bands, resp.) containing
G. We say that F(G) (I(G) or B(G), resp.) is the lateral field (ideal or band, resp.)
generated by G.

Obviously, F(G) ⊆ I(G) ⊆ B(G) for any subset G ⊆ E .

Proposition 6.8 Let E be a Riesz space and G ⊆ E. Then the following assertions
hold.

(1) F(G) = ⋃∞
n=0 Gn, where G0 = G and for all n = 0, 1, . . .

Gn+1 = {x ∪∪∪ y : x, y ∈ Gn and x ∪∪∪ y exists}
∪ {xy : x, y ∈ Gn and xy exists}
∪ {x\\\y : x, y ∈ Gn and x\\\y exists}

(2) I(G) =
{⊔n

k=1 xk : (∃ f1, . . . , fn ∈ G)
(
x1 � f1

)
& . . .&

(
xn � fn

)
, n ∈ N

}
.

(3) B(G) =
{⋃⋃⋃

X : X ⊆ ⋃
x∈G Fx and

⋃⋃⋃
X exists

}
.

The proof is straightforward.
Observe that the lateral ideal generated by a single element x ∈ E equals Fx .
There is a natural projection of a Dedekind complete Riesz space onto a lateral

band having nice properties. The following theorem strengthens Theorem 3 of [11].

Theorem 6.9 Let G be a lateral band of a Dedekind complete Riesz space E. Then
the function PG : E → E defined by setting for every x ∈ E

PG(x) =
⋃⋃⋃

(Fx ∩ G), (6.4)

is:

(1) a projection of E onto G such that PG(x) � x for all x ∈ E;
(2) a disjointness preserving operator;
(3) an orthogonally additive operator;
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(4) laterally contractive, that is, |PG(u) − PG(v)| ≤ |u − v| for every laterally
bounded two-point set {u, v} ⊂ E+;

(5) up-laterally continuous;
(6) laterally continuous.

Proof (1) The fact that PG a projection of E onto G is proved in [11, Theorem 3], and
the property PG(x) � x for all x ∈ E is obvious.

Properties (2) and (5) are proved in [11, Theorem 3].
(3) Fix any x, y ∈ E with x ⊥ y and z ∈ Fx+y∩G. ByCorollary 3.9wemay and do

assume that x, y ∈ E+. Then by the Riesz decomposition property [5, Theorem 1.13],
there exists a decomposition z = z1 � z2, where z1 ∈ Fx ∩G and z2 ∈ Fy ∩G. Thus

z = z1 + z2 ≤ PG(x)+ PG(y),

and passing to the lateral supremum over all z ∈ Fx+y ∩G in the left hand side of the
above formula we obtain PG(x + y) ≤ PG(x)+ PG(y). On the other hand, for every
z1 ∈ Fx ∩ G and z2 ∈ Fy ∩ G the sum z1 + z2 belongs to Fx+y ∩ G and therefore

z1 + z2 = z ≤ PG(x + y).

Passing to the lateral supremum in the left hand side first over all z1 ∈ Fx ∩ G and
then over all z2 ∈ Fy ∩ G, we obtain PG(x)+ PG(y) ≤ PG(x + y). Finally, we have
the equality PG(x)+ PG(y) = PG(x + y).

(4) Let {u, v} ⊂ E+ be any laterally bounded two-point set, and let e ∈ E be
such that u, v ∈ Fe. Since u = (u\\\v) � uv, by (2), PG(u) = PG(u\\\v) + PG(uv).
Analogously, PG(v) = PG(v\\\u) + PG(uv). Hence, PG(u) − PG(v) = PG(u\\\v) −
PG(v\\\u). Since (u\\\v) ⊥ (v\\\u), by (2) one has PG(u\\\v) ⊥ PG(v\\\u). Hence,

|PG(u)− PG(v)| = PG(u\\\v)+ PG(v\\\u). (6.5)

Since

|u − v| = |(u\\\v)+ uv − (v\\\u)− vu|
= |(u\\\v)+ uv − (v\\\u)− vu|

= |(u\\\v)− (v\\\u)|
= (u\\\v) � (v\\\u),

by (2),

PG |u − v| = PG(u\\\v)+ PG(v\\\u). (6.6)

Therefore, by (6.5), (6.6) and (1),

|PG(u)− PG(v)| = PG |u − v| ≤ |u − v|.
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(6) Let (xα) be a net in E , x ∈ E and xα
�−→ x . First we assume that xα ∈ E+ for

all α. Then x ∈ E+ as well. Let α0 be an index and e ∈ E be such that xα � e for all
α ≥ α0. Let (uα) be a net in E such that |xα − x | ≤ uα ↓ 0. Since PG(xα) � xα � e
for all α ≥ α0, the net

(
PG(xα)

)
is eventually laterally bounded. It remains to show

that PG(xα)
o−→ PG(x). Fix any α. By Proposition 4.5, x � e, and thus, {xα, x}

is a laterally bounded set. By (4), |PG(xα) − PG(x)| ≤ |xα − x | ≤ uα ↓ 0. So,
PG(xα)

o−→ PG(x).
The case where −xα ∈ E+ for all α is considered similarly.

Consider the general case xα ∈ E for all α. By Proposition 4.7, x+α
�−→ x+ and

x−α
�−→ x−. Let α0 and e ∈ E be such that xα � e for all α ≥ α0. By Proposition 3.1,

x+α � e+ and x−α � e− for all α ≥ α0. Then by the above

PG(xα) = PG(x+α − x−α ) = PG(x+α )+ PG(−x−α )
0−→ PG(x+)+ PG(−x−)

= PG(x+ − x−) = PG(x).

By (1), PG(xα) � xα � e for all α ≥ α0. Thus, PG(xα)
o−→ PG(x). ��

The following theorem and its corollaries concern relationships between consistent
sets and lateral bands.

Theorem 6.10 The lateral band B(G) in a Riesz space E generated by a consistent
set G is consistent.

Proof Let x, y ∈ B(G), say x = ⋃⋃⋃
X and y = ⋃⋃⋃

Y , where X ,Y ⊆ ⋃
g∈G Fg . By

Theorem 3.8, x+ = sup X+ and y+ = sup Y+, where X+ = {u+ : u ∈ X} and
Y+ = {v+ : v ∈ Y }.

Fix any u ∈ X and v ∈ Y . Since G is consistent, the two-point subset {u+, v+} is
laterally bounded, and hence u+ � u+ ∪∪∪ v+ = u+ ∨ v+ by (2) of Proposition 3.4.
Hence

u+ ∧ (u+ ∨ v+ − u+) = 0. (6.7)

Observe that

x+ ∨ v+ − x+ ≤ u+ ∨ v+ − u+. (6.8)

Indeed, u+ ≤ x+ and hence

x+ ∨ v+ − x+ = (−x+ + x+) ∨ (−x+ + y+) = 0 ∨ (−x+ + y+)

≤ 0 ∨ (−u+ + y+) = (−u+ + u+) ∨ (−u+ + y+) = u+ ∨ v+ − u+.

Combining (6.7) with (6.8) we obtain

(∀u ∈ X)(∀v ∈ Y ) 0 ≤ u+ ∧ (x+ ∨ v+ − x+) ≤ u+ ∧ (u+ ∨ v+ − u+) = 0.
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Hence

(∀v ∈ Y ) x+ ∧ (x+ ∨ v+ − x+) = sup
u∈X

(
u+ ∧ (x+ ∨ v+ − x+)

) = 0.

Then

x+ ∧ (x+ ∨ y+ − x+) = sup
v∈Y

(
x+ ∧ (x+ ∨ v+ − x+)

) = 0,

that is, x+ � x+∨ y+. Analogously, y+ � x+∨ y+. Therefore, {x+, y+} is a laterally
bounded two-point set. Analogously, the two-point set {x−, y−} is laterally bounded
as well. By Corollary 3.6, {x, y} is laterally bounded. ��
Corollary 6.11 The lateral field F(G) and the lateral ideal I(G) in a Riesz space E
generated by a consistent subset G ⊆ E is consistent.

Corollary 6.12 Any maximal consistent subset of a Riesz space E is a lateral band in
E.

7 Extensions of orthogonally additive operators

The questions of the extension of orthogonally additive operators from subsets of a
Riesz space to the entire space were considered in [11] and [21]. Here we review
known results and prove our main result (Theorem 7.5) which gives a positive answer
to a problem posed in [11].

One can consider an orthogonally additive operator defined on an arbitrary subset
of a Riesz space. More precisely, let E be a Riesz space, X a vector space and D ⊆ E .
A function T : D → X is called an orthogonally additive operator if for any x, y ∈ D
with x ⊥ y and x+y ∈ D one has T (x+y) = T (x)+T (y). The very general extension
problem ofwhether every orthogonally additive operator defined on an arbitrary subset
D of a Riesz space E has an extension to an orthogonally additive operator on E , has
a negative answer, even for “good lattices” E . Indeed, let E denote the Riesz space
R
5 with the usual coordinate-wise order. Denote by e1, . . . , e5 be the unit vector basis

of E . Let D consists of all sums
∑

k∈A ek over three-point subsets A ⊂ {1, . . . , 5}.
Since D consists of C3

5 = 10 elements, the set F of all functions T : D → R is
a 10-dimensional vector space with respect to the coordinate-wise operations. Since
D contains no orthogonal elements, every element of F is an orthogonally additive
operator. On the other hand, the set of all orthogonally additive operators defined on
the set Fe of all fragments of e = e1 + · · · + e5 is a 5-dimensional vector space.
Hence, not every orthogonally additive operator defined on D can be extended to an
orthogonally additive operator on E . Clearly, such an example exists for every Riesz
space E with dim E ≥ 5.

In [11] and [21] the authors extend orthogonally additive operators from lateral
ideals and lateral bands in a Dedekind complete Riesz space.
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Theorem 7.1 [11,21] Let E, F be Riesz spaces with F Dedekind complete, D a
lateral ideal in E and T0 : D → F a positive order bounded orthogonally additive
operator. Then there exists an abstract Uryson operator T : E → F which extends
T0. Moreover, the operator T : E → F defined by the formula

T (x) = sup T0(D ∩ Fx ) for all x ∈ E (7.1)

is the minimal abstract Uryson extension of T0 in the sense that if S : E → F is
another positive order bounded orthogonally additive operator extension of T0 then
T (x) ≤ S(x) for all x ∈ E.

The first part of Theorem 7.1 is proved in [11] and the second part in [21].
The operator T : E → F defined by (7.1) is called the minimal Uryson extension

of T0. The following result of [21] say that the minimal Uryson extension preserves
different compactness type properties (actually we combine two theorems of [21] in
the following one).

Theorem 7.2 [21] Let E be a Dedekind complete Riesz space, F an order complete
Banach lattice, D a lateral band in E and T0 : D → F an order bounded orthogonally
additive operator with the minimal Uryson extension T : E → F.

(1) If T0 is AM-compact (or C-compact) then so is T .
(2) If, in addition, E is atomless and T0 is narrow (or strictly narrow) then so is T .

The following result is an easy consequence of Theorem 6.9.

Theorem 7.3 (A. Gumenchuk, M. Pliev, M. Popov) Let E, F be Riesz spaces with
E Dedekind complete, E0 a lateral band of E and T0 : E0 → F an orthogonally
additive operator. Then there is an orthogonally additive extension T : E → F of
T0. If, moreover, T0 is positive (laterally bounded, preserves disjointness or laterally
continuous) then so is T .

A more delicate problem is to extend an orthogonally additive operator from a
lateral field.

Problem 7.4 (A. Gumenchuk, M. Pliev, M. Popov, [11]) Let F be a lateral field in
a Riesz space E, X a linear space. Whether every orthogonally additive operator
T0 : F → X can be extended to an orthogonally additive operator T : E → X?

We solve this problem for Riesz spaces with the intersection property which is
much less restrictive than for Dedekind complete ones, as in theorems 7.1 and 7.3.
Moreover, the following theorem, which is the main result of the section, deals with
arbitrary orthogonally additive operators.

Theorem 7.5 Let D be a lateral field in a Riesz space E with the intersection property,
X a vector space and T0 : D → X an orthogonally additive operator. Then there
exists an orthogonally additive extension T : E → X of T0.

First we need some lemmas.
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Lemma 7.6 Let F be a finite laterally bounded field in a Riesz space E. Then there is
a finite disjoint sequence ( f j )mj=1 in F such that

F =
{⊔

j∈J
f j : J ⊆ {1, . . . ,m}

}
.

Proof We say that a nonzero element f0 ∈ F is elementary if for all f ∈ F the
relation f � f0 yields f = 0 or f = f0. Since F is finite, for every nonzero element
f ∈ F there is an elementary element f0 ∈ F with f0 � f . Let ( f j )mj=1 be the
collection of all pairwise distinct elementary elements of F . Evidently, it is a disjoint
sequence. Given any f ∈ F , we set J = { j ≤ m : f j � f }. Then it is immediate
that f = ⊔

j∈J f j . ��

Lemma 7.7 Let E be a Riesz space, x ∈ E, D ⊆ Fx a lateral field in E, X a vector
space and T0 : D → X an orthogonally additive operator. Then there exists an
orthogonally additive extension T : Fx → X.

Proof Denote by Z the linear span of D in E . At the first step, we define a linear

operator S0 : Z → X which extends T0. Let z =
n∑

k=1
αk xk be any element of Z\{0},

where n ∈ N, αk ∈ R and xk ∈ D for k = 1, . . . , n. Let F be the lateral field in E
generated by the set {xk : k = 1, . . . , n}. Since xk ∈ Fx for all k and Fx is a Boolean
algebra, F is finite. Using Lemma 7.6, one can easily show that z can be represented

as z =
s∑

i=1
βi yi where (yi )si=1 is a disjoint sequence in D and βi �= 0 for all i . Then

we define S0 : Z → X by setting S0(0) = 0 and

S0(z) =
s∑

i=1
βi T0(yi ).

Weshow that S0(z) does not depend on the expansion of z. Indeed, let z have another

expansion z =
t∑

j=1
γ j z j , where (z j )tj=1 is a disjoint sequence in D and γ j �= 0 for all

j . Observe that if yi z j �= 0 for given i and j then βi = γ j . Then

s∑

i=1
βi T0(yi ) =

s∑

i=1
βi T0

( t∑

j=1
yi z j

)
=

s∑

i=1

t∑

j=1
βi T0(yi z j )

=
s∑

i=1

t∑

j=1
γ j T0(yi z j ) =

t∑

j=1
γ j T0

( s∑

i=1
yi z j

)
=

t∑

j=1
γ j T0(z j ).

Obviously, S0 extends T0 to Z . Using the well known technique of Hamel’s bases,
one can easily extend S0 to a linear operator S : E → X . Finally we set T = S|Fx . ��
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Lemma 7.8 Let D0 be a lateral field in a Riesz space E with the intersection property,
x0 ∈ E\D0, D the lateral field in E generated by D0 ∪ {x0}, X a vector space and
T0 : D0 → X an orthogonally additive operator. Then there exists an orthogonally
additive extension T : D → X.

Proof Let Y be the lateral field in E generated by Fx0 ∩ D. We set Y0 = D0∩Y . Then
Y0 ⊆ Fx0 and Y0 is a lateral field in E . By Lemma 7.7, there exists an orthogonally
additive extension S : Y → X of S0 = T0|Y0 . Set Z = {x\\\x0 : x ∈ D0} and define an
operator R : Z → X by setting

R(z) = T0(x)− S(xx0),

where x ∈ D0 is such that z = x\\\x0. Show that R is well defined. Assume z ∈ Z and
x1, x2 ∈ D0 satisfy z = x1\\\x0 = x2\\\x0. Denote u1 = x1x0, u2 = x2x0, x = x1x2
and u = u1u2. Observe that x = z + u. Taking into account that ui\\\u = xi\\\u ∈ D0,
we write

T0(x1)− S(u1) = T0(x + u1\\\u)− S(u1) = T0(x)+ T0(u1\\\u)− S(u1)

= T0(x)+ S(u1\\\u)− S(u1) = T0(x)− S(u).

Analogously,

T0(x2)− S(u2) = T0(x)− S(u).

Now we are going to prove the following property of R.

Claim 1 For any finite disjoint sequence (zk)nk=1 in Z with z = z1+ · · ·+ zn ∈ Z one
has R(z) = R(z1)+ . . .+ R(zn).

Note that the claim for n = 2 logically does not imply the claim for an arbitrary n,
because we do not assume here that z1 + z2 ∈ Z .

Let x, x1, . . . , xn ∈ D0 be such that z = x − xx0 and zk = xk − xkx0 for all
k = 1, . . . , n. Setting x̃k = xkx for each k = 1, . . . , n, we obtain zk = x̃k−(x̃k x0) for
every k = 1, . . . , n. The for x̃ = x̃1+· · ·+ x̃n−1 one has z1+· · ·+ zn−1 = x̃− (x̃ x0).
Now the claim is reduced to the case where n = 2, x1 � x and x2 = x − x1.

Set u1 = x1x0, u2 = x2x0 and u = xx0. Then u1 + u2 = u and

R(z1)+ R(z2) = T0(x1)− S(u1)+ T0(x2)− S(u2)

= T0(x)− T0(x2)− S(u1)+ T0(x2)− S(u2) = T0(x)− S(u) = R(z),

which completes the proof of Claim 1.
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Now we need the next property of R.

Claim 2 Let (zk)nk=1 and (w j )
m
j=1 be disjoint sequences in Z with z1 + · · · + zn =

w1 + . . .+ wm . Then R(z1)+ . . .+ R(zn) = R(w1)+ . . .+ R(wm).

Indeed, by item (vii) of Proposition 3.21, Z is closed under intersections. Then by
Claim 1,

R(z1)+ . . .+ R(zn) =
n∑

k=1

m∑

i=1
R(zkwi ) =

m∑

i=1

n∑

k=1
R(zkwi ) = R(w1)+ . . .+ R(wm),

and Claim 2 is proved.

Claim 3 For every d ∈ D there is a unique y ∈ Y and (not necessarily unique) finite
collection z1, . . . , zn ∈ Z such that d = y � z1 � . . . � zn .

First we show that if an element d ∈ E has a representation d = y � z1 � . . . � zn ,
where y ∈ Y and zi ∈ Z , then y = dx0. Indeed, by (v) of Proposition 3.21,

dx0 = yx0 � z1x0 � . . . � znx0 = yx0, (7.2)

because if zi = xi\\\x0 then by (ii) and (v) of Proposition 3.21,

x0xi = x0
(
x0xi � zi

) = x0xi � x0zi ,

which implies that x0zi = 0. On the other hand, y � x0 implies that yx0 = y. Hence
by (7.2), y = dx0. In particular, the uniqueness of y is established.

To complete the proof of the lemma, it is enough to observe that D consists of all
vectors of the form y + z1 + · · · + zn , where y ∈ Y , z1, . . . , zn ∈ Z is a disjoint
sequence, and set

T (y + z1 + · · · + zn) = S(y)+ R(z1)+ · · · + R(zn).

��
Proof of Theorem 7.5 The proof is standard using Zorn’z lemma and Lemma 7.8which
is considered as an extension by one step. ��
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Lateral band – Def. 6.1 s-laterally-to-norm continuous map – Def. 4.14
Lateral field – Def. 6.1 s-order-to-norm continuous map – Def. 4.14
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Minimal Uryson extension – p.28 w-laterally-to-norm continuous – Def. 4.14
Orthogonally additive operator – Def. 2.2 w-order-to-norm continuous – Def. 4.14

� – p.1 \\\ – Def. 3.17, Def. 3.19 xα
�↑−→ x – Def. 4.4

⊔
– p.3 Fe – p.1 xα

s−‘−→ x – Def. 4.2
⋂⋂⋂

– p.6 Pv – p.7 xα
s−o−→ x – Def. 2.1

⋃⋃⋃
– p.6 U(E, F) – p.4 xα

w−‘−→ x – Def. 4.2

��� – Def. 3.17 xy – p.7 xα
w−o−→ x – Def. 2.1
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