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Abstract
For amonotone Orlicz functionΦ taking only values 0 and∞, it is showed that in both
cases, the s-homogeneous norm ‖ · ‖Φ,s , if Φ is s-convex (0 < s ≤ 1) and the Mazur–
Orlicz F-norm ‖ · ‖Φ , if Φ is non-decreasing on R+, we have that LΦ(μ) = L∞(μ)

and both these norms are proportional to ‖ · ‖∞. The problems of existence of order
linearly isometric copy of �∞\B�∞(0, ε) for any ε > 0 as well as an order linearly
isometric copy of the whole �∞ in Orlicz F-normed function and sequence spaces are
considered. In the last section the problem of the existence of order linearly isometric
copies of L p(ν) with 0 < p ≤ 1 in F-normed Orlicz spaces are considered.
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1 Introduction

In 1976, Turett [35] proved that Orlicz spaces over a non-atomic finite measure space,
generated by convexOrlicz functions and equippedwith the Luxemburg norm, contain
an order isometric copy of �∞ if and only if the generating convex Orlicz functions do
not satisfy theΔ2-condition at infinity. This result was later extended to other measure
space cases by other mathematicians (see [7] and its references, and [17]).

The aim of Sect. 3 is to extend those results to the case of Orlicz spaces generated
by non-decreasing (non-convex, in general) Orlicz functions and equipped with the
Mazur–Orlicz F-norm.

First, in Theorem 1, it is proved that if a monotone Orlicz function Φ takes only
values 0 and ∞, then in both cases, the s-homogeneous F-norm ‖ · ‖Φ,s , if Φ is s-
convex (0 < s ≤ 1), and the Mazur–Orlicz F-norm ‖ · ‖Φ , if Φ is non-decreasing on
R+, the equality LΦ(μ) = L∞(μ) holds and the respective norms are proportional to
the norm ‖ · ‖∞.

Let us recall that if the F-norm on a σ -Dedekind complete F-lattice X is not
order continuous, then X contains an order-isomorphic copy of the space �∞, see
[3, Theorem 10.8]. However, in a concrete case we may have even a more unusual
situation. Namely, in Theorems 2 and 3 it is proved that if Φ is a non-decreasing
Orlicz function, vanishing only at zero and not fulfilling the suitable Δ2-condition,
then for every ε > 0, there is a linear order isomorphism Pε: �∞ → LΦ(μ) such that
‖Pεx‖Φ = ‖x‖∞ for every x ∈ LΦ(μ) with ‖x‖∞ ≥ ε. For a non-atomic infinite
measure space, aswell as for the countingmeasure space, it is proved that ifΦ vanishes
outside 0, then the Orlicz space (LΦ(μ), ‖ · ‖Φ) contains an order linearly isometric
copy of the whole �∞.

Next, are given two remarks concerning the characterization of the open balls
B‖·‖Φ (0, ε) for the Mazur–Orlicz F-norm ‖ · ‖Φ in Orlicz function and sequence
spaces, for any ε > 0, in terms of the modular IΦ . Moreover, the problem of the
openness of the modular balls BΦ,ε := {x ∈ LΦ(μ) : IΦ

( x
ε

)
< ε} in the metric

topology, in both cases: the s-homogeneous norm ‖ ·‖Φ,s (0 < s ≤ 1) and theMazur–
Orlicz F-norm ‖ · ‖Φ is solved. For the s-homogeneous norm this is done for ε = 1
and for the F-norm this is done for any ε > 0.

In the last section of this paper, we study the problem when X embeds order-
isometrically into Y whenever X embeds isometrically into Y . In Proposition 2 we
show that this is the case for X = L p(ν), for some p ∈ (0, 1], extending a similar result
proved in 2003 by the fourth present author [36, Theorem 1′] for a class of Banach
lattices. As an application, we obtain that, for a (non-convex) strictly monotone Orlicz
functionΦ, for any measure space (Γ ,Θ, ν) and any p ∈ (0, 1], the order continuous
part EΦ(μ) of the Orlicz space LΦ(μ), endowedwith theMazur–Orlicz F-norm, does
not contain an isometric copy of L p(ν). This is in contrast with the Banach lattice
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case where a strictly monotone Banach lattice E contains an order-isometric copy of
L1(ν) iff E contains an isometric copy of L1(ν); see [36, Corollary 2].

2 Preliminaries

In the whole paper (Ω,Σ,μ) denotes a σ -finite and complete measure space with a
non-atomic measure μ on Σ or the counting measure space (N, 2N, μ) with μ(A) =
Card(A) for any A ⊆ N, and it is assumed that all operators acting between two given
spaces considered in the paper are linear. Moreover, the word isomorphism will mean
a linear topological isomorphism and the expression an order isomorphism will mean
a topological isomorphism preserving the order.

A function x 
→ ‖x‖ defined on a linear (real) space X and with values in R+ :=
[0,∞) is said to be an F-norm if it satisfies the following conditions:

1. ‖x‖ = 0 if and only if x = 0,
2. ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X ,
3. ‖x‖ = ‖ − x‖ for any x ∈ X ,
4. if ak → a and ‖xk − x‖ → 0 as k → ∞, where ak, a ∈ R and xk, x ∈ X , then

‖akxk − ax‖ → 0 as k → ∞.

If an F-normed space X is ‖·‖-complete, then (X , ‖·‖) is said to be an F-space. If a
lattice E is endowedwith amonotone F-norm ‖·‖ (i.e., the condition |x | ≤ |y| implies
that ‖x‖ ≤ ‖y‖ for any x, y ∈ E), under which E is complete, then E = (E, ‖ · ‖) is
said to be an F-lattice.

We will consider two kinds of Orlicz functions. All of them are denoted by Φ and
they are functions from R+ := [0,∞) into R

e+ = [0,∞] vanishing at zero with
b(Φ) ∈ (0,∞], where b(Φ) := sup{u ≥ 0: Φ(u) < ∞}. The first class of Orlicz
functions is the class of s-convex (0 < s ≤ 1) continuous Orlicz functions, that
is, such functions Φ that Φ(αu + βv) ≤ αsΦ(u) + βsΦ(v) for all α, β ≥ 0 with
αs + βs = 1 and all u, v ≥ 0. The second class of Orlicz functions is the class
of non-decreasing functions Φ:R+ → R

e+, which are continuous on [0, b(Φ)) and
Φ(b(Φ)) := limx→b(Φ)− Φ(x), Φ(u) → 0 as u → 0+ and with limu→∞ Φ(u) > 0,
called shortly non-decreasing Orlicz functions.

For any Orlicz function Φ let us define a(Φ) = sup{u ≥ 0: Φ(u) = 0}. We say
that Φ satisfies the Δ2(∞)-condition (Φ ∈ Δ2(∞) for short) if b(Φ) = ∞ and
lim supu→∞

Φ(2u)
Φ(u)

< ∞. We say that Φ satisfies the Δ2(0)-condition (Φ ∈ Δ2(0) for

short) if a(Φ) = 0 and lim supu→0
Φ(2u)
Φ(u)

< ∞, and we will write Φ ∈ Δ2(R+) if
Φ ∈ Δ2(∞) and Φ ∈ Δ2(0). By the suitable Δ2-condition we will mean the Δ2(∞)-
condition in the case of a non-atomic finite measure space, the Δ2(R+)-condition in
the case of a non-atomic infinite measure space and the Δ2(0)-condition in the case
of the counting measure space.

If Φ is an Orlicz function from one of the above two classes, then the modular
generated by Φ on the space L0(Ω,Σ,μ) of all abstract classes of Σ-measurable
real functions defined on Ω , where the functions which are equal μ-a.e. in Ω are
identified, is a functional defined by the formula
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944 H. Hudzik et al.

IΦ(x) =
∫

Ω

Φ(|x(t)|)dμ(t)
(
∀ x ∈ L0(Ω,Σ,μ)

)
.

Obviously, if (Ω,Σ,μ) is the counting measure space with Ω = N and Σ = 2N,
then IΦ(x) = ∑∞

n=1 Φ(|x(n)|) for all x = (x(n))∞n=1 ∈ �0, where �0 is the space of
all real sequences (since in this case L0(μ) = �0).

In any of the above two kinds of Orlicz function Φ, the Orlicz space LΦ(μ) :=
LΦ(Ω,Σ,μ) is defined by the formula

LΦ(μ) =
{
x ∈ L0(Ω,Σ,μ): IΦ(λx) < ∞ for some λ > 0

}

and in the case when (Ω,Σ,μ) is the counting measure space, the Orlicz space �Φ(μ)

is denoted simply by �Φ . In the case of an s-convex (0 < s ≤ 1) Orlicz function Φ

we define in the Orlicz space LΦ(μ) or �Φ the s-norm

‖x‖Φ,s = inf
{
λ > 0: IΦ

( x

λ1/s

)
≤ 1

}
.

Note that for s = 1,Φ is a convex Orlicz function and ‖x‖Φ,1 is the Luxemburg norm.
Finally, when Φ is a non-decreasing Orlicz function, we define in the Orlicz space
LΦ(μ) or �Φ the Mazur–Orlicz F-norm (see [29])

‖x‖Φ = inf
{
λ > 0: IΦ

( x
λ

)
≤ λ

}
.

It is known that in the case of both Orlicz functions the convergence in LΦ(μ) or
�Φ of a sequence (xn)∞n=1 in the Orlicz space to its element x is equivalent to the
condition IΦ(λ(xn − x)) → 0 as n → ∞ for any λ > 0 (see [19] or [38]). For more
information about Orlicz normed (also s-normed, 0 < s < 1) spaces we refer, for
instance, to [7,24,27,28,30,34,38].

If (xn)∞n=1 is a pairwise disjoint sequence in L0(μ) and (an)∞n=1 is a sequence of
scalars, then the symbol

∑∞
n=1 anxn denotes the formal pointwise sum of the functions

anxn in L0(μ).
An F-space (E, ‖ · ‖E ) is called an F-normed Köthe space if it is a linear subspace

of L0 satisfying the following conditions:

(i) If x ∈ L0, y ∈ E and |x | ≤ |y| μ-a.e., then x ∈ E and ‖x‖E ≤ ‖y‖E .
(ii) There exists a strictly positive x ∈ E (called a weak unit).

For a Köthe space E , let E+ := {x ∈ E : x ≥ 0} and S+(E) := S(E) ∩ E+.
An element x of a Köthe space E over (Ω,Σ,μ) is said to be order continuous if

for any sequence (xn)∞n=1 in E such that 0 ≤ xn ≤ |x | for any n ∈ N and xn → 0
μ-a.e., we have ‖xn‖E → 0. The subspace of E that consists of all order continuous
elements from E is denoted by Ea and it is called the subspace of order continuous
elements of E .

123



Problems of existence of order copies of �∞ and Lp(ν) in some… 945

It is known that for the Orlicz spaces LΦ(μ) over a non-atomic measure space, we
have that (LΦ(μ))a = {0} if and only if b(Φ) = ∞, and

(LΦ(μ))a = EΦ(μ) :=
{
x ∈ L0(Ω,Σ,μ): IΦ(λx) < ∞ for any λ > 0

}

(see [19], cf. [37,38]). Moreover, in the case of the counting measure space,

(�Φ)a = hΦ :=
{

x = (x(n))∞n=1 ∈ �0 : ∀
λ>0

∃
nλ∈N

∞∑

n=nλ

Φ(λ|x(n)|) < ∞
}

(see again [19], cf. [37,38]). In case when the distinguishing of the function and
sequence Orlicz spaces would not be necessary, we will write just LΦ(μ) in both
kinds of measure spaces.

If A is a non-empty subspace of �∞, then a linear operator P: A → LΦ(μ) (resp.
P: A → �Φ(μ)) is said to be a linear order isometry (or shortly an order isometry)
if P keeps the order (i.e. Px ≥ 0 for any x ∈ A, x ≥ 0) and ‖Px − Py‖Φ =
‖P(x − y)‖Φ = ‖x − y‖∞ for any x, y ∈ A.

A Köthe function space E is said to contain an order-isometric copy of �∞ if there
exists in E+ a sequence (xn)∞n=1 of pairwise orthogonal elements (i.e., μ(supp xn ∩
supp xm) = 0 for any m, n ∈ N, m = n) such that

∥∥∥
∥∥

∞∑

n=1

cnxn

∥∥∥
∥∥
E

= ‖c‖∞ (∀ c = (cn)
∞
n=1 ∈ �∞).

An s-normed Köthe space E (0 < s ≤ 1) is said to contain an order-isometric copy
of (�∞)s if there exists in E+ a sequence (xn)∞n=1 with μ(supp xn ∩ supp xm) = 0 for
any m, n ∈ N, m = n, such that

∥
∥∥∥∥

∞∑

n=1

cnxn

∥
∥∥∥∥
E

= ‖|c|s‖∞ (∀ c = (cn)
∞
n=1 ∈ �∞),

where |c|s := (|c1|s, . . . , |cn|s, . . .).
If E,G are two linear lattices then the symbolLr (E,G) denotes the linear space of

all regular linear operators T : E → G, i.e. operators of the form T = U − V , where
U , V ∈ L+(E,G), the cone of positive (i.e. non-negative) linear operators; hence
we also have that the space Lr (E,G) is partially ordered by L+(E,G). We say that
a linear operator T : E → G preserves disjointness if the condition |x1| ∧ |x2| = 0
in E implies that |T x1| ∧ |T x2| = 0 (notice that such an operator T need not to be
regular, in general: see, e.g., [1, Examples 1, 2]). If T is injective, it is said to be an
order isomorphism if both T and T−1 are positive; equivalently, |T x | = T (|x |) for
every x ∈ E . An endomorphism J on a linear space X is said to be an involution if
its square J 2 is the identity on X .

Let X and Y be two real F-lattices, and let the F-norm ‖ · ‖ on Y be strictly
monotone, i.e. ‖y1‖ < ‖y2‖ whenever y1, y2 ∈ Y , |y1| ≤ |y2| and y1 = y2. The
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946 H. Hudzik et al.

classical F-space L p(ν), 0 < p < 1, endowed with the F-norm ‖x‖p := ∫
Γ

|x |pdν
and the standard (ν-a.e.) partial ordering, is a simple nontrivial example of a strictly
monotone non-Banach F-lattice. Other examples, within the class of non-Banach
Orlicz spaces, are given in the recent paper [19].

3 Results

Let us start with the following

Theorem 1 Assume that u0 ∈ (0,∞) and Φ:R+ → R
e+ is defined by the formula

Φ(u) = 0 if 0 ≤ u ≤ u0 and Φ(u) = ∞ if u > u0. Then LΦ(μ) = L∞(μ),
|||x |||Φ = 1

u0
‖x‖∞ and ‖x‖Φ,s = 1

(u0)s
‖x‖s∞ for any x ∈ LΦ(μ), any 0 < s ≤ 1 and

any measure space (Ω,Σ,μ).

Proof First,wewill easily prove that LΦ(μ) = L∞(μ). Let us assume that x ∈ LΦ(μ).
There exists λ > 0 such that IΦ(λx) < ∞, whence λ|x(t)| ≤ u0 μ-a.e., that is,
‖x‖∞ ≤ u0

λ
μ-a.e., whichmeans that x ∈ L∞(μ). Now, let us assume that x ∈ L∞(μ).

Then u0‖x‖∞ |x(t)| ≤ u0 μ-a.e., whence IΦ
(

u0‖x‖∞ x
)

< ∞, that is, x ∈ LΦ(μ). In such

a way we have proved two inclusions LΦ(μ) ⊆ L∞(μ) ⊆ LΦ(μ), which gives the
equality LΦ(μ) = L∞(μ).

Let us assume that 0 < s ≤ 1. If x = 0, then ‖x‖Φ,s = ‖x‖∞ = 0, whence
in this case the desired equality holds. So, let us now assume that x ∈ LΦ(μ)\{0}.
Then ‖x‖∞ > 0. It is obvious by the formula for Φ that IΦ

(
x

‖x‖∞/u0

)
= 0, whence

‖x‖Φ,s ≤
(

1
u0

‖x‖∞
)s

and |||x |||Φ ≤ 1
u0

‖x‖∞. For any λ ∈ (0, 1) we have that
|x(t)|

λ‖x‖∞/u0
> u0 on a set of positive measure, whence

IΦ

(
x

λ‖x‖∞/u0

)
= ∞ (∀ λ ∈ (0, 1)).

Consequently, ‖x‖Φ,s ≥
(

λ
u0

)s ‖x‖s∞ and |||x |||Φ ≥ λ
u0

‖x‖∞. By the arbitrariness of

λ ∈ (0, 1), we obtain

‖x‖Φ,s ≥ 1

(u0)s
‖x‖s∞ and |||x |||Φ ≥ 1

u0
‖x‖∞,

which finishes the proof. ��
In two theorems below we will deal with isometric copies of �∞ in non-Banach

Orlicz spaces. It is well known (see [3]) that a σ -Dedekind complete F-lattice E is
not order continuous if and only if E contains an order-isomorphic copy of �∞. In the
Banach lattice case, there are function spaces E with amuch stronger property: E is not
order continuous if and only if E contains an order-isometric copy of �∞ (for Orlicz
spaces see, e.g., [7,8,21,34,38], for Marcinkiewicz spaces see [22], for Orlicz–Lorentz
spaces see [6] and for some class of general Banach lattices see [17]). The problem
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of existence in Banach spaces of almost isometric, asymptotically isometric or even
isometric copies was considered in various papers (see for example [8,10,11,20,21]).
In Theorems 2 and 3 we will show that non-Banach Orlicz spaces LΦ(μ), endowed
with the Mazur–Orlicz F-norm, have a nearing property.

Theorem 2 Let �Φ := �Φ(μ) be the Orlicz sequence space over the counting measure
space (N, 2N, μ) generated by a non-decreasing Orlicz function Φ:R+ → R

e+ and
equipped with the Mazur–Orlicz F-norm ‖ · ‖Φ . Then the following holds:

(i) If a(Φ) = 0 (i.e., Φ vanishes only at 0) and Φ does not satisfy condition Δ2(0),
then for any ε > 0 there is an order-isomorphism Pε: �∞ → �Φ such that

(a) ‖Pεc‖Φ ≥ ‖c‖∞ for every c ∈ �∞, and
(b) ‖Pεc‖Φ = ‖c‖∞ for every c ∈ �∞ with ‖c‖∞ ≥ ε, i.e., if ‖x − y‖∞ ≥ ε then

‖Pεx − Pε y‖Φ = ‖Pε(x − y)‖Φ = ‖x − y‖∞, for any x, y ∈ �Φ .

(ii) If a(Φ) > 0, then (�Φ, ‖ · ‖Φ) contains an order-isometric copy of �∞.

Proof Statement (i). Let us assume first that a(Φ) = 0 and that Φ does not satisfy

condition Δ2(0). Then for any K > 0 and any a ∈
(
0, b(Φ)

2

)
there exists a sequence

(un)∞n=1 of positive numbers such that

Φ(un) ≤ Φ(a) and Φ

((
1 + 1

n

)
un

)
> KΦ(un) (∀ n ∈ N). (1)

Consequently, given any ε ∈ (0, 1), there exists a sequence (un)∞n=1 of positive num-
bers such that

Φ(un) ≤ ε

2n+1 and Φ

((
1 + 1

n

)
un

)
> 2n+1Φ(un) (∀ n ∈ N). (2)

Let, for any n ∈ N, kn be the biggest natural number such that knΦ(un) ≤ ε/2n . Then
(kn + 1)Φ(un) > ε

2n , whence knΦ(un) > ε
2n − Φ(un) ≥ ε

2n+1 . Consequently, the
couple (un, kn) satisfies the inequalities

ε

2n+1 < knΦ(un) ≤ ε

2n
(∀ n ∈ N). (3)

Defining

x =
⎛

⎝
k1 times

︷ ︸︸ ︷
u1, . . . , u1, . . . ,

kn times
︷ ︸︸ ︷
un, . . . , un, . . .

⎞

⎠ ,
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948 H. Hudzik et al.

by the second inequality in (3), we obtain that IΦ(x) ≤ ε. Moreover, taking any
λ ∈ (0, 1), one can find nλ ∈ N such that 1

λ
≥ 1 + 1

n for any n ≥ nλ. Consequently,

IΦ
( x

λ

)
≥

∞∑

n=nλ

knΦ
(un

λ

)
≥

∞∑

n=nλ

knΦ

((
1 + 1

n

)
un

)

≥
∞∑

n=nλ

kn2
n+1Φ (un) ≥

∞∑

n=nλ

2n+1 ε

2n+1 = ε

∞∑

n=nλ

1 = ∞.

This inequality together with IΦ(x) ≤ ε < 1, gives the equality ‖x‖Φ = 1.
Let us note that the technique presented above gives us the possibility of building

for any ε > 0 a sequence (xn,ε)
∞
n=1 of positive elements in �Φ with pairwise disjoint

supports such that IΦ(xn,ε) ≤ 2−nε and IΦ
( xn,ε

λ

) = ∞ for any λ ∈ (0, 1). In order
to do this, it is enough to divide the set N into a countable family (Nn)

∞
n=1 of infi-

nite and pairwise disjoint subsets of N and consider the sequence of Orlicz sequence
spaces (�Φ(Nn, 2Nn , μ/2Nn )). Applying the technique presented above for building
the element x , one can build for any n ∈ N and ε ∈ (0, 1) an element xn,ε such that
supp xn,ε ⊆ Nn , IΦ(xn,ε) ≤ ε2−n and IΦ(xn,ε/λ) = ∞ for any λ ∈ (0, 1). Conse-
quently, ‖xn,ε‖Φ = 1 for any n ∈ N. Moreover, if xε := supn≥1 xn,ε = ∑∞

n=1 xn,ε,
then IΦ(xε) = ∑∞

n=1 IΦ(xn,ε) ≤ ∑∞
n=1 ε2−n = ε and IΦ

( xε

λ

) ≥ IΦ
( xn,ε

λ

) = ∞ for
any λ > 1 and any n ∈ N, whence ‖xε‖Φ = 1.

Let us now define an operator Pε: �∞ → �Φ by

Pεc =
∞∑

n=1

cnxn,ε (∀ c = (cn)
∞
n=1 ∈ �∞).

Since the elements xn,ε are positive and pairwise disjoint, the operator is non-negative,
so continuous as well (see [3, Theorem 16.6]). Moreover, for any c = (cn)∞n=1 ∈ �∞,
c = 0, we have

IΦ

(
Pεc

‖c‖∞

)
=

∞∑

n=1

IΦ

( |cn|
‖c‖∞

xn,ε

)
≤

∞∑

n=1

IΦ(xn,ε) ≤
∞∑

n=1

ε

2n
= ε, (4)

which shows that Pεc ∈ �Φ(μ) for any c ∈ �∞ as well as that if c ∈ �∞ and ‖c‖∞ ≥ ε,

then IΦ
(

Pεc‖c‖∞

)
≤ ‖c‖∞, whence ‖Pεc‖Φ ≤ ‖c‖∞ for any c ∈ �∞ with ‖c‖∞ ≥ ε.

Moreover, for any c ∈ �∞\{0} and any λ ∈ (0, 1), taking nλ such that
∣
∣cnλ

∣
∣

λ‖c‖∞ > 1, we
get

IΦ

(
Pεc

λ‖c‖∞

)
≥ IΦ

( |cnλ |xnλ

λ‖c‖∞

)
= ∞,

whence ‖Pεc‖Φ ≥ λ‖c‖∞ and, by the arbitrariness of λ ∈ (0, 1), we get that
‖Pεc‖Φ ≥ ‖c‖∞ for any c ∈ �∞\{0}, so also for any c ∈ �∞ because ‖Pε0‖Φ =
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‖0‖Φ = 0 = ‖0‖∞. Since the operators Pε are linear and, by the fact that the elements
xn,ε that are used in the definition of Pε are non-negative, Pε are also non-negative, so
they preserve the order, whence we conclude that the obtained copies of �∞\B�∞(0, ε)
are order copies. Therefore, we have proved that

‖Pεc‖Φ ≥ ‖c‖∞ for any c ∈ �∞. (5)

In particular, the operator P−1
ε is continuous at 0, thus Pε is an order-isomorphism.

From inequality (4) we also obtain that if c ∈ �∞ and ‖c‖∞ ≥ ε, then IΦ
(

Pεc‖c‖∞

)
≤

‖c‖∞, whence

‖Pεc‖Φ ≤ ‖c‖∞ for any c ∈ �∞ with ‖c‖∞ ≥ ε. (6)

Thus, by (5) and (6), the proof of statement (i) of our theorem is complete.
(ii) Since the proof can be proceeded analogously as in the case when a(Φ) = 0

and Φ /∈ Δ2(0) (cf. also [8] in the case of normed Orlicz spaces), it is omitted. ��
Theorem 3 Let (Ω,Σ,μ) be a complete σ -finite non-atomic measure space and let
Φ be a non-decreasing Orlicz function from R+ into Re+. Then:
(i) If μ(Ω) < ∞ or μ(Ω) = ∞ and a(Φ) = 0, then for any ε > 0 satisfying

inequality ε < limu→∞ Φ(u)μ(Ω) whenever μ(Ω) < ∞ and for arbitrary
ε > 0 if μ(Ω) = ∞, there is an order-isomorphism Pε: �∞ → LΦ(μ) such that
‖Pεc‖Φ ≥ ‖c‖∞ for any c ∈ �∞ and ‖Pεc‖Φ ≤ ‖c‖∞ for any c ∈ �∞ with
‖c‖∞ ≥ ε (i.e., ‖Pεx − Pε y‖Φ = ‖Pε(x − y)‖Φ = ‖x − y‖∞ for all x, y ∈ �∞
with ‖x − y‖∞ ≥ ε) if and only if Φ does not satisfy the suitable Δ2-condition.

(ii) If μ(Ω) = ∞ and a(Φ) > 0, then there is an order isometry P : �∞ → LΦ(μ).

Proof Statement (i). Necessity. IfΦ satisfies the suitableΔ2-condition then the Orlicz
space (LΦ(μ), ‖ · ‖Φ) is order continuous (i.e., the space LΦ(μ) has the Lebesgue
property), so LΦ(μ)does not contain an order-isomorphic copyof �∞ (see [3, Theorem
10.8]).

Sufficiency. Following the idea from the proof of Theorem 2, it is enough to prove
the existence, for any ε > 0, of a sequence (xn)∞n=1 of non-negative functions with
pairwise disjoint supports and with ‖xk‖Φ = ∥

∥∑∞
n=1 xn

∥
∥

Φ
= 1 for any k ∈ N and

IΦ
(∑∞

n=1 xn
) ≤ ε.

Assume that Φ /∈ Δ2(∞). We can restrict our proof to the case of finite measure
because if μ(Ω) = ∞, then we can work on a subset A ⊆ Ω with 0 < μ(A) < ∞
instead of Ω .

Case I Assume additionally that b(Φ) = ∞. By Φ /∈ Δ2(∞), given any ε ∈ (0, 1)
there exists a sequence (un)∞n=1 of positive numbers such that un ≤ un+1 for any
n ∈ N, Φ(un) → ∞ as n → ∞, Φ(u1)μ(Ω) ≥ ε and

Φ

((
1 + 1

n

)
un

)
> 2nΦ(un) (∀ n ∈ N). (7)
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Since the measure space (Ω,Σ,μ) is non-atomic and Φ(un)μ(Ω) ≥ Φ(u1)μ(Ω) ≥
ε for any n ∈ N, we can find in Σ a sequence (An)

∞
n=1 with pairwise disjoint supports

such that Φ(un)μ(An) = ε
2n . Define

x =
∞∑

n=1

unχAn . (8)

Then, IΦ(x) = ∑∞
n=1 Φ(un)μ(An) = ∑∞

n=1
ε
2n = ε < 1. Given any λ ∈ (0, 1), there

exists nλ such that 1
λ

> 1 + 1
n for any n ≥ nλ. Consequently, by (7),

IΦ
( x

λ

)
=

∞∑

n=1

Φ
(un

λ

)
μ(An) ≥

∞∑

n=nλ

Φ

((
1 + 1

n

)
un

)
μ(An)

≥
∞∑

n=nλ

2nΦ(un)μ(An) =
∞∑

n=nλ

2n · 2−n =
∞∑

n=nλ

1 = ∞,

whence ‖x‖Φ = 1. Now, we will divide x into a sum
∑∞

n=1 xn of the elements
of a sequence (xn)∞n=1, where xn are non-negative functions with pairwise disjoint
supports and with ‖xn‖Φ = 1 for any n ∈ N. We will made this division by the
following induction

x1 = u1χA1 + u3χA3 + u5χA5 + u7χA7 + u9χA9 + · · ·
x2 = u2χA2 + u6χA6 + u10χA10 + u14χA14 + u18χA18 + · · ·
x3 = u4χA4 + u12χA12 + u20χA20 + u28χA28 + · · ·
...

In general, xn+1 is the sum of every second term uiχAi of the function x − ∑n
k=1 xk .

Then it is obvious that for any n ∈ N, IΦ(xn) ≤ IΦ(x) = ε < 1. Repeating the
method from x into xn (n ∈ N), we can prove that IΦ

( xn
λ

) = ∞ for any λ ∈ (0, 1),
whence ‖xn‖Φ = 1 for any n ∈ N. We can prove in the same way as for the sequence
spaces �Φ in Theorem 2 that the operator Pε defined by the formula

Pεc =
∞∑

n=1

cnxn (∀ c = (cn)
∞
n=1 ∈ �∞)

is the desired operator.

Case II Assume now that b(Φ) < ∞. Let us take any ε ∈ (0, 1) and any sequence
(un)∞n=1 such that 0 < un < b(Φ) for any n ∈ N and un → b(Φ) as n → ∞. Let
(An)

∞
n=1 be any sequence inΣ such thatμ(An) > 0 andΦ(un)μ(An) ≤ ε

2n . Defining
x = ∑∞

n=1 unχAn , we have IΦ(x) ≤ ε and IΦ
( x

λ

) = ∞ for any λ ∈ (0, 1). Dividing
the set N into an infinite family (Nk)

∞
k=1 of pairwise disjoint and infinite subsets of

N and defining xk = ∑
n∈Nk

unχAn , we get IΦ(xk) ≤ IΦ(x) ≤ ε. Since given any
λ ∈ (0, 1), by un < b(Φ) and un → b(Φ), we obtain that un

λ
> b(Φ) for n large
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enough, so IΦ
( xk

λ

) = ∞ for any λ ∈ (0, 1), whence ‖xk‖Φ = ‖x‖Φ = 1 for any
k ∈ N. We can easily show that the operator Pε: �∞ → LΦ(μ) defined as

Pεc =
∞∑

k=1

ckxk

has the required properties.
Assume now that μ(Ω) = ∞, a(Φ) = 0 and Φ /∈ Δ2(0). Since μ is non-atomic,

there exists a sequence (An)
∞
n=1 inΣ such that Am ∩ An = ∅ for anym, n ∈ N,m = n

and μ(An) = 1 for any n ∈ N. Now, we can repeat the proof of Theorem 2 to build
for any ε > 0 the desired operator Pε: �∞ → LΦ(μ).

Statement (ii). If μ(Ω) = ∞, we can divide the set Ω into a sequence (An)
∞
n=1

of pairwise disjoint sets such that μ(An) = ∞ for any n ∈ N. Let us define xn =
a(Φ)χAn . Then

∑∞
n=1 xn = a(Φ)χΩ =: x and IΦ(x) = IΦ(xn) = 0 as well as

IΦ
( x

λ

) = IΦ
( xn

λ

) = ∞ for any n ∈ N and any λ ∈ (0, 1), whence it follows that
x, xn ∈ LΦ(μ) and ‖x‖Φ = ‖xn‖Φ = 1 for any n ∈ N. Now, we can repeat the
respective part of the proof of Theorem 2 to show that the operator P: �∞ → LΦ(μ)

is an order isometry. Namely, defining the operator P: �∞ → LΦ(μ) by

Pc =
∞∑

n=1

cnxn, (∀ c = (cn)
∞
n=1 ∈ �∞),

we get that the operator P is positive, so continuous as well. The inequality ‖Pc‖Φ ≤
‖c‖∞ follows from that for any c ∈ �∞ and any ε > 0, we have

IΦ

(
Pc

‖c‖∞ + ε

)
= IΦ

( ∞∑

n=1

|cn|a(Φ)χAn

‖c‖∞ + ε

)

≤ IΦ

( ∞∑

n=1

a(Φ)χAn

)

= 0 ≤ ‖c‖∞ + ε.

Moreover, the inequality ‖Pc‖Φ ≥ ‖c‖∞ for any c ∈ �∞ can be proved in the same
way as for the operator Pε above. ��
Remark 1 Note that if E is a Köthe space E and Es is its s-concavification with
0 < s < 1, then (Es, ‖ · ‖Es ) contains an order-isometric copy of (�∞)s if and only
if E contains an order-isometric copy of �∞.

The easy proof is omitted.

Remark 2 LetΦ be a non-decreasing Orlicz function and the Orlicz space LΦ(μ) over
a non-atomic σ -finite measure space or over the counting measure space (N, 2N, μ)

be equipped with the Mazur–Orlicz F-norm and let Φ(b(Φ)) = ∞ (note that in the
case of a non-atomic and σ -finite measure this condition is automatically implied by
Φ ∈ Δ2). If Φ satisfies the suitable Δ2-condition, then for any x ∈ LΦ(μ) and any
ε > 0, we have that ‖x‖Φ < ε if and only if IΦ

( x
ε

)
< ε.
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Proof Under the assumptions on Φ we know that IΦ
(

x
‖x‖Φ

)
= ‖x‖Φ for any x ∈

LΦ(μ)\{0} (see [9, Corollary 2.17 and Lemma 2.18]). Assume that x ∈ LΦ(μ)\{0}
and ‖x‖Φ < ε. Then IΦ

( x
ε

) ≤ IΦ
(

x
‖x‖Φ

)
= ‖x‖Φ < ε. For x = 0 the equivalence

is obvious.
Assume now that IΦ

( x
ε

)
< ε and ‖x‖Φ = ε. Then, we obtain that x = 0 and ε >

IΦ
( x

ε

) = IΦ
(

x
‖x‖Φ

)
= ‖x‖Φ = ε, a contradiction, which proves that if IΦ

( x
ε

)
< ε,

then ‖x‖Φ < ε. ��
Remark 3 In Remark 2 the assumptions that Φ satisfies the suitable Δ2-condition and
thatΦ(b(Φ)) = ∞ are necessary for the equivalence of the conditions IΦ

( x
ε

)
< ε and

‖x‖Φ < ε for any ε > 0 and any x ∈ LΦ(μ)\{0} (equivalently, for any x ∈ LΦ(μ)).

Proof Assume that Φ /∈ Δ2. Then, there exists x ∈ LΦ(μ)\{0} such that IΦ(x) < 1
and IΦ

( x
λ

) = ∞ for any λ ∈ (0, 1), whence ‖x‖Φ = 1, which proves the necessity
of Φ ∈ Δ2 for the equivalence mentioned in the remark. If the measure space is non-
atomic, complete and σ -finite, then b(Φ) = ∞ (so also Φ(b(Φ)) = ∞) is necessary
for Φ ∈ Δ2, so also for the equivalence. If μ is the counting measure on 2N and
ε := Φ(b(Φ)) < ∞, then defining x = b(Φ)e1, we have

IΦ

(
2εx

2ε

)
= IΦ(x) = Φ(b(Φ)) = ε < 2ε

and for any λ ∈ (0, 1), we get

IΦ

(
2εx

2λε

)
= IΦ

( x
λ

)
= ∞ > 2λε,

whence IΦ
( 2εx
2ε

)
< 2ε and‖2εx‖Φ = 2ε, so thenecessity of the conditionΦ(b(Φ)) =

∞ for the equivalence is also proved. ��
Remark 4 Let μ be an arbitrary complete and σ -finite measure space. Then

(i) if Φ is a non-decreasing Orlicz function, then all the sets

BΦ,ε :=
{
x ∈ LΦ(μ) : IΦ

( x
ε

)
< ε

}
,

corresponding to all ε > 0, are open in the metric ‖ · ‖Φ -topology, where ‖ · ‖Φ

is the Mazur–Orlicz F-norm, if and only if Φ satisfies the suitable Δ2-condition
and Φ(b(Φ)) = ∞.

(ii) if Φ is an s-convex Orlicz function and the Orlicz space LΦ(μ) is considered
with the s-homogeneous norm ‖ · ‖Φ,s (0 < s ≤ 1), then the modular unit ball
BΦ := {x ∈ LΦ(μ): IΦ(x) < 1} is open in the metric ‖ · ‖Φ,s-topology if and
only if Φ satisfies the suitable Δ2-condition and Φ(b(Φ)) ≥ 1.

Proof We will present a proof only for case (i) because the proof for case (i i) is
similar.
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Sufficiency. Under our assumptions about Φ, by virtue of Remark 2, we know that
‖x‖Φ < ε if and only if IΦ

( x
ε

)
< ε for any x ∈ LΦ(μ) and any ε > 0. Since

the ball B‖·‖Φ (0, ε) = {x ∈ LΦ(μ): ‖x‖Φ < ε} is an open set under the metric
topology in LΦ(μ) generated by the F-norm ‖ · ‖Φ and under our assumptions we
have BΦ,ε = B‖·‖Φ (0, ε), the desired result follows.

Necessity. Assume thatΦ does not satisfy the suitableΔ2-condition orΦ(b(Φ)) <

∞. Then, by the proofs of Theorems 2 and 3, there exist ε > 0 and x ∈ LΦ(μ)\{0}
such that IΦ(x) < ε and IΦ(λx) = ∞ for any λ > 1. Assume that BΦ,ε is an
open set in the F-norm topology. Since εx ∈ BΦ,ε, there exists δ > 0 such that
B‖·‖Φ (x, δ) ⊂ BΦ,ε. Since ‖λnεx − εx‖Φ → 0 for any sequence (λn)

∞
n=1 in R+ such

that as λn > 1 for any n ∈ N and λn → 1 as n → ∞, there exists σ > 1 such that
σεx ∈ B‖·‖Φ (x, δ), whence σεx ∈ BΦ,ε. Consequently, IΦ(σ x) = IΦ

(
σεx
ε

)
< ε,

which contradicts the fact that IΦ(λx) = ∞ for any λ > 1.

Note Let us note that from Remarks 2, 3 and 4 as well as from their proofs, it follows
that if b(Φ) = ∞, then given any ε > 0, the openness of the set BΦ,ε in the F-norm
‖ · ‖Φ topology is equivalent to the fact that Φ satisfies the suitable Δ2-condition.

Remark 5 Consider the same Orlicz spaces as in Theorems 2 and 3 and define, for any
x ∈ LΦ(μ), the function fΦ,x (λ) := IΦ(λx) for all λ ∈ R+. Then, for all cases with
respect to the kinds of the generating Orlicz functions as well as for both kinds of the
measure spaces, the function fΦ,x (·) is continuous on R+ if and only if b(Φ) = ∞
and Φ satisfies suitable Δ2 condition.

Proof We can restrict ourselves to x ∈ LΦ(μ)\{0} only. The sufficiency follows from
Lemma 4.1 in [9].

Necessity. Assuming that either b(Φ) < ∞ or b(Φ) = ∞ and Φ does not satisfy
the suitable condition Δ2, one can find x ∈ LΦ(μ)\{0} such that IΦ(x) < ∞ and
IΦ(λx) = ∞ for any λ > 1 (see the proofs of Theorems 2 and 3). This means that the
function fΦ,x (·) is not then continuous at the point λ0 = 1. ��

4 Problems of order copies of Lp(�) in F-normed Orlicz spaces

Throughout this section, (Ω,Σ,μ) and (Γ ,Θ, ν) denote σ -finite and complete mea-
sure spaces with μ, ν non-atomic on Σ and Θ , respectively, or the counting measure
on 2N. The lattices considered here are real (in particular, this assumption deals with
the classical space L p(ν), 0 < p ≤ 1).

Our first result is a more detailed version than the known polar decomposition
theorem, published in 1983 by Abramovich [1, Propositions A, B, C], and extended
subsequently to more general settings by Abramovich et al. [2, Section 3], Grobler
and Huijsmans [15], and Boulabiar and Buskes [4]. The result is included implicitly
in the proof of [36, Theorem 1] for the case when X ,Y are Banach lattices. For the
convenience of the reader, we outline its proof focusing on an argument showing that
the involution S, decomposing an operator T , is an isometry. Here we consider a
general case and we work on the Dedekind completion of an F-lattice Y (instead of
the bidual Y ∗∗ [36, pp. 5–6], which may be trivial for Y non-Banach), but in the proof
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for Köthe function F-lattices, which are just Dedekind complete, such assumption is
superfluous.

Proposition 1 Let X, Y be two F-lattices, and let T : X → Y be an operator preserving
disjointness. Then its modulus |T |(= T ∨ −T ) exists in Lr (X ,Y ), it is an order
homomorphism X → Y , and there is an isometric involution S on the closed sublattice
of Y generated by T (X) such that T = S|T | and |T | = ST (showing that S acts on
Y with |S| = identity on Y when T is surjective).

Moreover, if T is a surjective isometry then |T | is an order surjective isometry, too.
Proof Similarly as in the proof of [36, Theorem 1], by [1, Proposition B] and [12,
Theorem], T has the decomposition T = T+ − T−, where T+, T− are continuous
lattice homomorphisms X → Y , and |T | = T+ + T− is a lattice homomorphism. We
have

T±x = (T x)± for all x ≥ 0 and |T |(|x |) = |T x | for all x ∈ X . (9)

Since the sublattices B± := T±(X) of Y are disjoint, the bands (B+)dd and (B−)dd in
the Dedekind completion Ŷ of Y are also disjoint. Let Q denote the order projection
from Ŷ onto (B+)dd , and let I be the identity operator on Ŷ . Since the projections Q
and I − Q are evidently disjoint, the operator J on Ŷ of the form J := 2Q − I is an
involution. Further, from the form of Q, we obtain

QT+x = T+x and QT−x = 0 for all x ∈ X . (10)

Since for every y ∈ Ŷ the elements Qy and (I − Q)y are disjoint, we obtain

|J y| = |Qy − (I − Q)y| = |Qy + (I − Q)y| = |y|, y ∈ Ŷ . (11)

Now, from (10) and the equality J 2 = I , we get the formulas JT = |T | and J |T | = T .
Let S denote the restriction of J to the sublattice H of Y generated by T (X). From
(11) we obtain that S is an isometric involution on H with |S| = identity on H , and
from the latter formulas, we obtain the required identities T = S|T | and |T | = ST .

Moreover, by (9), the modulus |T | is an isometry whenever T is, and the above
identities imply that T and |T | are surjective simultaneously. ��
Proposition 2 Let Y = (Y , ‖ ‖) be a strictly monotone F-lattice, let (Γ ,Θ, ν) be an
arbitrary completemeasure space, and let p ∈ (0, 1]befixed.Weconsider X := L p(ν)

endowed with the standard p-homogeneous F-norm ‖ ‖p. If T : L p(ν) → Y is an
isometry then:

(i) T preserves disjointness,
(ii) Y contains a lattice-isometric copyUp of L p(ν) (more exactly,Up = |T |(L p(ν)),

where the operator |T |: L p(ν) → Y fulfills the second identity in (9), and |T | is
a lattice isometry), and

(iii) The spaces Vp := T (L p(ν)) and Up are isometric via a mapping S: Vp → Up

of the form ST x = |T |x, where S is an isometric involution defined in the proof
of Proposition 1.
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Proof The proof of part (i) goes the same lines as in the proof of part (a′) in [36, The-
orem 1′], where the lattice L1(ν) should be replaced by 3L p(ν). For the convenience
of the reader, we present its F-lattice modification. Let x, y be two disjoint elements
of L p(ν), i.e. |x ± y| = |x | + |y|. Then

‖T x ± T y‖ = ‖x ± y‖p = ‖ |x | + |y| ‖p = ‖x‖p + ‖y‖p = ‖T x‖ + ‖T y‖.
(12)

From (12) and the inequality |T x ±T y| ≤ |T x |+ |T y|we obtain the identity ‖ |T x ±
T y| ‖ = ‖ |T x | + |T y| ‖. Hence, since Y is strictly monotone, we obtain that |T x +
T y| = |T x − T y|(= |T x | + |T y|), which implies that the elements T x and T y are
disjoint. Thus T preserves disjointness.

Now parts (ii) and (iii) follow easily from Proposition 1 (cf. the Banach lattice case
[36, p. 6]). ��

From Proposition 2 we immediately obtain the following, more general version of
Corollary 2 from [36], proved for p = 1 in the Banach lattice-case.

Corollary 1 Let Y be a strictly monotone F-lattice, and let p ∈ (0, 1] be fixed. Then
the following two conditions are equivalent.

(i) Y contains an isometric copy of L p(ν).
(ii) Y contains a lattice-isometric copy of L p(ν).

Motivated by the above corollary, we shall present our main results. In the first
theorem, we study the possibility of the existence of order-isometric copies of L p(ν)

in the general case for LΦ(μ), and next, we apply Corollary 1 to the order continuous
part EΦ(μ) of LΦ(μ).

Theorem 4 Let Φ be a non-decreasing Orlicz function and p ∈ (0, 1]. Then LΦ(μ),
endowed with the Mazur–Orlicz F-norm, does not contain an order-isometric copy
of �

p
(2). Consequently, L

Φ(μ) does not contain an order-isometric copy of L p(ν) for
every measure space (Γ ,Θ, ν), either.

Proof Fix p ∈ (0, 1], and let e1, e2 denote the standard unit vectors in �
p
(2). Let us note

that every lattice isometry T : �p(2) → LΦ(μ) is of the form T (ei ) = xi , i = 1, 2, where
the elements x1, x2 are disjoint and of F-norm 1, with ‖ax1 + bx2‖Φ = |a|p + |b|p
for all real numbers a, b. We will show that there are no such x1, x2 in LΦ(μ).

Let x, y be two arbitrary disjoint and positive elements in LΦ(μ) with ‖x‖Φ =
‖y‖Φ = 1. We will consider two cases separately.
Case p = 1. For two real numbers a, b > 2, choose ε ∈ (0, 1) such that, for λ :=
(1 − ε)(a + b), we have

a/λ < 1 and b/λ < 1. (13)

Then, since λ/a > 1, λ/b > 1 and a, b > 2, from the definition of the Mazur–Orlicz
F-norm, we obtain

IΦ

(
ax + by

λ

)
= IΦ(ax/λ) + IΦ(bx/λ) ≤ λ

a
+ λ

b
< λ.
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Hence
‖ax + by‖Φ ≤ λ = (1 − ε)(a + b) < (a + b). (14)

Notice also that if a = b > 2 then, setting ε = 0.5 + δ with δ ∈ (0, 0.5) arbitrary
fixed, we obtain that ‖ax + by‖Φ ≤ (0.5 + δ)2a, whence ‖a(x + y)‖Φ ≤ a.

Case 0 < p < 1. Now, let a, b ∈ R with 2 < a < b < 21+p. Notice first that
b

a p+bp < 21+p

2a p < 1. Hence, we can choose ε ∈ (0, 1) such that for λ := (1− ε)(a p +
bp), we have

a/λ < b/λ < 1. (15)

Then, similarly as in Case p = 1, we obtain that IΦ(
ax+by

λ
) < λ, whence ‖ax +

by‖Φ ≤ λ = (1 − ε)(a p + bp) < (a p + bp).
Thus, we have obtained that, in both cases, inequality (14) holds for the suitable

a, b > 2 and ε ∈ (0, 1). Consequently, the lattice isomorphism �
p
(2) � (a, b) 
→

ax + by ∈ EΦ(μ), with x, y pairwise disjoint and of F-norm 1, is not an isometry.
This proves the first part of the theorem, and the second part is now obvious. ��

The corollary below is an immediate consequence of Theorem 4, Corollary 1 and
the fact that EΦ(μ) is strictly monotone for Φ strictly increasing [19, Corollary 6.7].

Corollary 2 Let an Orlicz function Φ be strictly increasing, and suppose that the
(strictly monotone) order continuous part EΦ(μ) of LΦ(μ) is nontrivial. Then EΦ(μ)

does not contain an isometric copy of L p(ν) for every p ∈ (0, 1].
Remark 6 There exist Orlicz function spaces LΦ(μ) containing latices-isomorphic
copies of L p for a fixed 0 < p ≤ 1 (see Theorems A and A′ in [16]).

4.1 Remarks on isometries preserving disjointness

In the previous section, we studied the form of an isometry T acting between two
strictly monotone F-lattices by showing that if the domain of T is equal to L p(ν) for
some p ∈ (0, 1], then T preserves disjointness. Let us consider the following problem:

(P) Let X and Y be two F-lattices with X strictly monotone, and suppose that X
and Y are linearly isometric. Does it follow that Y is strictly monotone, too? In
other words, does every surjective isometry preserve strict monotonicity?

Problem (P) is suggested by many results showing that, if X is a real rearrangement
invariant (r.i.) Banach function space on [0, 1] [a r.i. sequence space, resp.],1 not
isometrically equal to L2[0, 1], then every surjective isometry T : X → X preserves
disjointness (see [5], [23, Theorem 1], [31,33] and the references therein; cf. [13]). In
either of these cases, applying our Proposition 1, problem (P) has a positive answer.

However, in 1998 Randrianantoanina [32, Theorem 4 and Remark on p. 324]
obtained a somewhat surprising result: if X and Y are real Banach spaces with
1-unconditional bases (ei )di=1 and ( fi )di=1, respectively, 2 ≤ d ≤ ∞, and either X or
Y is r.i. (in this case all autoisometries of the underlined space preserve disjointness),
then an isometry T : X → Y need not be disjointness-preserving: there is a subset A

1 Such an X may be regarded as a Banach lattice [26, pp. 29–30].
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of N such that the restricted operator T|[ei ]i∈A preserves disjointness and T|[ei ]i∈Ac

does not (here A may be empty or A = N, and Ac := N\A).More exactly, for a pair
i, j ∈ Ac, i = j , there are εi , δi = ±1 and distinct k, l ∈ N such that

T (ei ) = δi

‖ fk + fl‖ ( fk + εi fl) and T (e j ) = δi

‖ fk + fl‖ ( fk − εi fl). (16)

The following two-dimensional example of X , Y and an isometry T0: X → Y illus-
trates well the above-mentioned result of B. Randrianantoanina, and extends easily
to the infinite-dimensional case (the isometry T0 was defined in 1976 by Lacey and
Wojtaszczyk [25], cf. [14, Example 9.5.9]).

Example 1 Let us consider two real spacesU = �1(2) and V = �∞
(2) endowed with their

natural p-normswith p = 1 and p = ∞, respectively, and let ei and fi , i = 1, 2 denote
the natural unit vectors in the respective spaces.Notice that both spaces are alsoBanach
lattices,U is strictlymonotonewhile V is not. Let T0 denote the operator acting fromU
onto V of the form T0(a, b) = (a+b, a−b). Sincemax{|a+b|, |a−b|} = |a|+|b|, T0
is an isometry. Moreover, T0(e1) = f1 + f2 and T0(e2) = f1 − f2, and thus equations
(16) hold with ε1 = δ1 = 1.

Now let X and Y denote the �1-sums of U and V , respectively: X = (⊕∞
s=1Us)1,

Y = (⊕∞
s=1Vs)1, whereUs = U and Vs = V for all indices s. Then the natural norms

on X and Y are monotone, whence X and Y are Banach lattices, X is strictly monotone
and order-isometric to �1. It is now plain that the operator T : X → Y of the form

T ((xs)
∞
s=1) := (

T0(xs)
∞
s=1

)

is a surjective isometry that does not preserve disjointness. It also has the form (16) for
i = k = 2t − 1 and j = l = 2t , t = 1, 2, . . ., where ei and fk denote the respective
unit vectors in X and Y .

Thus, we have constructed in Y , a highly non-strictly monotone, an isometric copy
Y of (the strictly monotone) �1.

The above construction can be modified slightly to obtain a similar example within
the class of non-Banach F-lattices as follows. For p ∈ (0, 1), let X p and Yp denote
the �p sums ofU and V , respectively: X p = (⊕∞

s=1Us)p, Yp = (⊕∞
s=1Vs)p, endowed

with their natural F-norms ‖(ws)‖p = ∑∞
s=1 ‖ws‖p, ws ∈ Us for all s ∈ N, or

ws ∈ Vs for all s ∈ N. Then X p and Yp are isometric, X p is strictly monotone and Yp

is not.

Remark 7 The above example shows us that if the targeted space Y is not strictly
monotone (and X is), then a surjective isometry T : X → Y may not be disjointness
preserving. However, if X is an ALp-space (i.e., an order isometric copy of some
L p(ν)), 0 < p ≤ 1, and Y is strictly monotone then, by Proposition 2, T preserves
disjointness (whence, by Proposition 1, the modulus |T |: X → Y is a surjective
isometry).

Remark 8 There is a class of Banach lattices where problem (P) has a positive answer.
It is known that if a Banach lattice X is uniformly rotund (=uniformly convex), then it
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is strictly monotone; hence, since isometries preserve uniform rotundity, they preserve
(in this case) additionally strict monotonicity (see [18] for details).
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