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Abstract
We consider the question of when is every positive compact operator, between two
given Banach lattices, approximable regular. An immediate consequence of our main
result is that, within the class of uniformly convex Banach lattices, the purely atomic
ones are completely characterized by the fact that every positive compact operator on
them is approximable regular.
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Secondary 46B42 · 47B65

1 Introduction

Given a Banach lattice X , let Ar (X) be the Banach algebra of approximable regular
operators on X (see below for definition), and let Kr (X) be the linear span of the
positive compact operators on X . One readily sees that Ar (X) ⊆ Kr (X), and it is
known that if X and X ′ are order continuous, then Ar (X) and Kr (X) are both closed
order and algebra ideals of the Banach algebra Lr (X) of regular operators on X .

It was first discovered by Fremlin [4], thatAr (L2[0, 1]) � Kr (L2[0, 1]). This was
later extended by Wickstead to arbitrary non-atomic L p-spaces, for 1 < p < ∞ [7,
Theorem 3.4]. (For p = 1 or ∞, the corresponding algebra Lr (X) coincides with the
Banach algebra of all bounded operators on X , so the result no longer holds).

Since Ar (X) = Kr (X) whenever X is order continuous and atomic, one easily
obtains, combining this latter fact with the above result, that within the class of L p-
spaces with 1 < p < ∞, the equality Ar (X) = Kr (X) completely characterizes
the atomic ones [7, Corollary 3.5]. It is one of the main purposes of this short note

B A. Blanco
a.blanco@qub.ac.uk

1 Mathematical Sciences Research Centre, Queen’s University Belfast, Belfast, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11117-018-0619-9&domain=pdf


486 A. Blanco

to further extend this last result to the class of uniformly convex Banach lattices. We
shall consider, though, the more general question of when is every positive compact
operator, between two Banach lattices, approximable regular.

2 Some preliminaries

Throughout, we write X ′ for the topological dual of a Banach space X , T ′ for the
topological adjoint of a linear operator T between Banach spaces and ‖T ‖ for its
operator norm.

Recall a Banach lattice X is said to satisfy an upper (resp. a lower) p-estimate
for some 1 < p < ∞ if for some constant C and every finite disjoint sequence
x1, . . . , xn ∈ X ,

∥
∥
∥
∥

n
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i=1

xi

∥
∥
∥
∥

≤ C

( n
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i=1

‖xi‖p
) 1

p
(
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i=1

‖xi‖p
) 1

p

≤ C

∥
∥
∥
∥

n
∑

i=1

xi

∥
∥
∥
∥

)

.

The lower (resp. upper) index of X , denoted s(X) (resp. σ(X)), is then defined by
s(X) := sup

{

p ∈ [1,∞] : X satisfies an upper p-estimate
}

(resp. σ(X) := inf
{

p ∈
[1,∞] : X satisfies a lower p-estimate

}

). For anyBanach lattice X , s(X) ≤ σ(X) and
σ(X)−1 + s(X ′)−1 = σ(X ′)−1 + s(X)−1 = 1 (with the convention that ∞−1 = 0).
Furthermore, if σ(X) < ∞ then X is order continuous. It is also known that a Banach
lattice X is uniformly convex with respect to some equivalent lattice norm if and only
if 1 < s(X) ≤ σ(X) < ∞ (see for instance [5, Theorems 1.f.1 & 1.f.7]).

Recall a linear operator T from a Banach lattice X to a Banach lattice Y is said
to be p-convex (resp. p-concave) for some 1 ≤ p < ∞ if for some constant C and
every finite sequence x1, . . . , xn ∈ X ,

∥
∥
∥
∥

( n
∑

i=1

|T xi |p
) 1

p
∥
∥
∥
∥

≤ C

( n
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i=1

‖xi‖p
) 1

p
(

resp.

( n
∑

i=1

‖T xi‖p
) 1

p ≤ C

∥
∥
∥
∥

( n
∑

i=1

|xi |p
) 1

p
∥
∥
∥
∥

)

.

A Banach lattice X is said to be p-convex (resp. p-concave) for some 1 ≤ p < ∞ if
idX (:= the identity operator on X ) is p-convex (resp. p-concave).

As customary, a linear map T between Banach lattices X and Y shall be said to be
positive if T (X+) ⊆ Y+ and regular if it can be written as a linear combination of
positive maps. We shall write Lr (X ,Y ) for the Banach space of all regular maps from
X to Y , endowed with the regular norm ‖ · ‖r .

We shallwriteAr (X ,Y ) for theapproximable regular operators from X toY (i.e.,
the norm-closure of the finite-rank operators inLr (X ,Y )), andKr (X ,Y ) for the linear
span of the positive compact operators from X to Y . Clearly, Ar (X ,Y ) ⊆ Kr (X ,Y ).
Furthermore, if X ′ and Y are order continuous, thenAr (X ,Y ) andKr (X ,Y ) are both
order ideals of Lr (X ,Y ) and Kr (X ,Y ) is norm closed. As customary, if X = Y , we
writeAr (X),Kr (X) and Lr (X) forAr (X ,Y ),Kr (X ,Y ) and Lr (X ,Y ), respectively.

Lastly, we assume all our Banach lattices to be real.
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3 When isAr(X,Y) ��� Kr(X,Y)?

Our main result, Theorem 1 below, shall provide conditions on a pair X , Y of Banach
lattices under which the inclusion Ar (X ,Y ) ⊆ Kr (X ,Y ) is strict. The extension
announced in the introduction will follow readily from this.

It is easy to see that if either one of X or Y is order continuous and atomic, or if
Lr (X ,Y ) = L(X ,Y ) (e.g., if X is an AL-space and Y is Levi, or if Y is order complete
with a strong order unit [1, Theorem 9]) and Y has the (Grothendieck) approximation
property, then Ar (X ,Y ) = Kr (X ,Y ). In the opposite direction, we now prove the
following:

Theorem 1 Let X and Y be non-atomic Banach lattices such that s(X) > 1, σ(Y ) <

∞ and either X or Y ′ is order continuous. Then Ar (X ,Y ) � Kr (X ,Y ).

Proof Suppose first X is order continuous. Then, since X and Y are non-atomic,
they both contain non-trivial bands without atoms and with weak order units (see for
instance [5, Proposition 1.a.9]). We shall continue to denote these bands by X and Y ,
respectively. Furthermore, we shall assume (as we can, by [5, Theorem 1.b.14]) that
there are probability spaces (Λ,ΣΛ, λ) and (Ω,ΣΩ,μ) such that X and Y are norm-
dense order ideals of L1(λ) and L1(μ), respectively, and also that ‖x‖1 ≤ ‖x‖ ≤
2‖x‖∞ (x ∈ L∞(λ)) and ‖y‖1 ≤ ‖y‖ ≤ 2‖y‖∞ (y ∈ L∞(μ)).

Since s(X) > 1, X is p-convex for some 1 < p ≤ 2 (see [5, Theorem 1.f.7]), and
therefore, the embedding X ↪→ L1(λ) is p-convex. It follows easily from the proof
of [5, Theorem 1.d.11] (recall L1(λ) is r -concave for every r ≥ 1) that there is a
p-additive norm � · �p on X such that both inclusion maps, ı1 : X → (X ,� · �p)

and ı2 : (X ,� · �p) → L1(λ), are continuous. It is not hard to see that the map
ν : ΣΛ → [0,+∞), A 
→ �χA�

p
p, defines a measure on Λ (its σ -additivity follows

easily from the order continuity of� ·�p), which is absolutely continuous with respect
to λ (for ‖χA‖1 = 0 ⇒ ‖χA‖ = 0) and satisfies �x�p

p = ∫

Λ
|x |pdν (x ∈ X). Then

a standard application of [5, Theorem 2.c.9] allows one to construct a collection
{Λi,n : 1 ≤ i ≤ 2n, n ∈ N ∪ {0}} ⊂ ΣΛ such that Λ1,0 = Λ and for every n ∈ N: (i)
Λi,n ∩Λ j,n = ∅whenever i �= j ; (ii)

⋃2n
i=1 Λi,n = Λ; (iii)Λ2i−1,n ∪Λ2i,n = Λi,n−1

(1 ≤ i ≤ 2n−1); and (iv)
( ∫

Λi,n
ı ′2(χΛ)q dν

)1/q = 2−n/q � ı ′2(χΛ)�′
p (1 ≤ i ≤ 2n),

where we have written � · �′
p for the norm on (X ,� · �p)

′ and χΛ for the linear
functional x 
→ ∫

Λ
x dλ (x ∈ L1(λ)).

Also, since σ(Y ) < ∞, Y is r -concave for some r < ∞ (see [5, Theorem 1.f.7]),
and in turn, the embedding L∞(μ) ↪→ Y is r -concave. Once again, the proof of [5,
Theorem 1.d.11] (this time, taking into account that L∞(μ) is s-convex for every
s ≥ 1) yields the existence of an r -additive norm � · �r on L∞(μ) such that the
inclusion maps j1 : L∞(μ) → (L∞(μ),� · �r ) and j2 : (L∞(μ),� · �r ) → Y are
both continuous. In turn, A 
→ �χA�r

r (A ∈ ΣΩ) defines a μ-absolutely continuous
measure, and therefore, for some g ∈ L1(μ)+, we have that

‖y‖ ≤ ‖j2‖
( ∫

Ω

|y|r g dμ

)1/r

(y ∈ L∞(μ)). (1)
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Note that we can assume
∫

Ω
g dμ = 1, for �χΩ�r ≤ ‖j1‖ ≤ the convexity constant

of L∞(μ) (see [5, Theorem 1.d.11]), which is 1. As in the previous paragraph, choose
a family {Ωi,n : 1 ≤ i ≤ 2n, n ∈ N ∪ {0}} ⊂ ΣΩ satisfying Ω1,0 = Ω , the same
conditions (i)–(iii) as {Λi,n}, and also

∫

Ωi,n
g dμ = 2−n (1 ≤ i ≤ 2n, n ∈ N).

Now, for every n ∈ N ∪ {0}, let Σn be the σ -algebra generated by {Λi,n × Ω j,n :
1 ≤ i, j ≤ 2n}; let En be the conditional expectation with respect toΣn ; letMn be the
space of Σn-measurable functions on Λ×Ω , and given k ∈ Mn , let Int(k) : X → Y ,
x 
→ ∫

Λ
k(ω, t)x(t) dλ(t). For each pair m, n ∈ N ∪ {0}, with m < n, set

Mm,n := {

k ∈ Mn : |k| ≡ 1 and Em(k) = 0
}

.

The key fact needed in the proof of Theorem 1 (established in [4] for L2[0, 1] and
then in [7] for any L p-space with 1 < p < ∞) can now be stated as follows:

Lemma 1 Let {Λi,n : 1 ≤ i ≤ 2n, n ∈ N∪{0}} and {Ωi,n : 1 ≤ i ≤ 2n, n ∈ N∪{0}}
be as above. Then for every m ∈ N ∪ {0} and h ∈ Mm,

inf
n : n>m

min
k∈Mm,n

‖Int(hk)‖ = 0.

Proof Let rn := ∑2n
i=1(−1)iχΩi,n (n ∈ N). Fix n and define k : Λ × Ω → R by

k(ω, t) :=
2n
∑

i=1

χΛi,n (t)rn+i (ω) (t ∈ Λ, ω ∈ Ω).

Note that k ∈ Mm,N (0 ≤ m ≤ 2n, N ≥ 2n+2n ). For each 1 ≤ i ≤ 2n let λi,n be
the linear functional on X , defined by λi,n(x) := ∫

Λi,n
x dλ (x ∈ X). Then, for every

x ∈ X ,

∥
∥Int(k)(x)

∥
∥ =

∥
∥
∥
∥

2n
∑

i=1

λi,n(x)rn+i

∥
∥
∥
∥

≤ ‖j2‖
( ∫

Ω

∣
∣
∣
∣

2n
∑

i=1

λi,n(x)rn+i

∣
∣
∣
∣

r

g dμ

)1/r

≤ C

( 2n
∑

i=1

∣
∣λi,n(x)

∣
∣2

)1/2

, (2)

for some constant C independent of n [by (1) above and Khintchine’s inequalities].
Next, set xi := χΛi,n x (1 ≤ i ≤ 2n), let λ̂i,n be the norm continuous extension of λi,n

to L1(λ) (1 ≤ i ≤ 2n), and let ı : X → L1(λ) be the inclusion map, so ı = ı2 ◦ ı1.
Then

|λi,n(x)| = |λi,n(xi )| = ∣
∣λ̂i,n(ı(xi ))

∣
∣ = ∣

∣
(

ı ′2(λ̂i,n)
)

(ı1(xi ))
∣
∣

≤ �ı ′2(λ̂i,n) �′
p �ı1(xi )�p ≤ �ı ′2(χΛ)�′

p

2n/q
� ı1(xi )�p,
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where we have used that ı ′2(λ̂i,n) = χΛi,n ı
′
2(χΛ), which is easy to verify. In turn,

letting M := �ı ′2(χΛ)�′
p, we obtain that

2n
∑

i=1

|λi,n(x)|2 ≤ M2

22n/q

2n
∑

i=1

�ı1(xi )�
2
p

≤ M2

22n/q

( 2n
∑

i=1

�ı1(xi ) �
p
p

)2/p

= M2

22n/q
� ı1(x)�

2
p,

and combining this last estimate with (2), we arrive at

∥
∥Int(k)

∥
∥ ≤ C

M

2n/q
‖ı1‖.

To finish, simply note that if h = ∑

i, j hi jχΛi,m×Ω j,m ∈ Mm and k ∈ MN , with
m < N , then

∥
∥Int(hk)

∥
∥ ≤

∑

i, j

|hi j |
∥
∥Int(χΛi,m×Ω j,m k)

∥
∥ ≤

(
∑

i, j

|hi j |
)

∥
∥Int(k)

∥
∥.

��
Wenowresume thefirst part of the proof by constructing a positive compact operator

S : X → Y (essentially as in [4]) which is not approximable. First, fix ε ∈ (0, 1/2)
and set h0 := χΛ×Ω . Choose n1 ∈ N big enough so that mink∈M0,n1

‖Int(h0k)‖ ≤ ε

(which exists by the lemma), then choose k1 ∈ M0,n1 (so E0(h0k1) = 0) such that
‖Int(h0k1)‖ ≤ ε and set h1 := h0 + k1. In general, if hi and ni have been chosen
for some i ≥ 1, choose ni+1 > ni so that mink∈Mni ,ni+1

‖Int(hi k)‖ ≤ ε/2i (again

possible by the lemma), choose ki+1 ∈ Mni ,ni+1 such that ‖Int(hi ki+1)‖ ≤ ε/2i and
set hi+1 := hi (h0 + ki+1). (Note that Eni (hi ki+1) = 0.) For every i ∈ N ∪ {0}, let
Ti := Int(hi ) and define S := limi Ti = Int(h0) + ∑∞

i=0 Int(hi ki+1). It is clear from
its definition that S is a non-zero positive compact operator. Furthermore, for every
i ∈ N, ‖Ti+1 − Ti‖r = ‖Ti‖ ≥ ‖Ti (χΛ)‖ = ‖χΩ‖ ≥ 1 (the first equality because
|hi+1 − hi | = |hi ki+1| = hi (i ∈ N)).

It remains to be shown that S /∈ Ar (X ,Y ). To this end, suppose towards a con-
tradiction S ∈ Ar (X ,Y ). At this point one can appeal to the integral representation
of operators in Ar (X ,Y ) (as in [4,7]) to derive a contradiction. Instead, however, we
shall appeal to the fact that if X ′ and Y are order continuous then so is Ar (X ,Y ) [3,
Theorem 2.8]. First note S∧(T0−2−i Ti ) = 0 (i ∈ N), for if ki = ∑

k,l tklχΛk,ni ×Ωl,ni
,

and Pk and Ql (1 ≤ k, l ≤ 2ni ) are the band projections onto the bands generated by
χΛk,ni

and χΩl,ni
, then

S = lim
j
Tj = lim

j

∑

(k,l) : tkl �=0

QlTj Pk =
∑

(k,l) : tkl �=0

Ql SPk .
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Since S ∧ 2i T0 ≤ S ∧ 2i (T0 − 2−i Ti ) + S ∧ Ti , it follows that S ∧ Ti = S ∧ 2i T0
(i ∈ N), and hence that S = supi S ∧ Ti , so limi ‖S − S ∧ Ti‖r = 0 (by the order
continuity of Ar (X ,Y )). But

‖Ti − S‖r ≤ ‖Ti − Ti ∧ S‖ + ‖S − Ti ∧ S‖ ≤ ‖Ti − S‖ + 2‖S − S ∧ Ti‖r ,

and since limi ‖S − S ∧ Ti‖r = 0, we would have that limi ‖Ti − S‖r = 0, which is
clearly impossible since (Ti ) is not Cauchy. This concludes the proof of the theorem
in the case where X is order continuous.

Now suppose Y ′ is order continuous, so Y is reflexive (see for instance [2, Theo-
rems 4.69 and 4.71]). By the previous part of the proof, Ar (Y ′, X ′) � Kr (Y ′, X ′).
Let T ∈ Kr (Y ′, X ′)\Ar (Y ′, X ′), let κ : X → X ′′ be the canonical embedding, and
let S := T ′ ◦ κ . Clearly, S ∈ Kr (X ,Y ), so it will suffice to show S /∈ Ar (X ,Y ).
Suppose towards a contradiction that there is a sequence (Tn) ⊂ F(X ,Y ) (:= the
finite-rank operators in Lr (X ,Y )) such that limn ‖Tn − S‖r = 0. We would have then
that ‖T ′

n − S′‖r ≤ ‖Tn − S‖r (see [6, Corollary on page 231]), and therefore, that
limn ‖T ′

n − S′‖r = 0, which is impossible since S′ = κ ′ ◦ T ′′ = T . ��
As an immediate consequence of Theorem 1, we now have the announced extension

of [7, Corollary 3.5].

Corollary 1 Let X be a Banach lattice such that 1 < s(X) ≤ σ(X) < ∞ (or equiv-
alently, isomorphic to a uniformly convex Banach lattice). Then Ar (X) = Kr (X) if
and only if X is atomic.

Little seems to be known about the ideal structure of Kr (X), where by ideal we
mean order and algebra ideal. We bring this note to a close with what seems to us a
natural question regarding the ideal structure of Kr (X), for which we do not have yet
an answer:

Let 1 < p < ∞. Is Ar (L p[0, 1]) the only closed non-trivial proper order and
(two-sided) algebra ideal of Kr (L p[0, 1])?

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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