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Abstract
The paper deals with the category analogue of a density point and a density topology
(with respect to a Lebesgue measure) on the real line which is different from the
I-density topology considered in Poreda et al. (Fundam Math 125:167–173, 1985;
Comment Math Univ Carol 26:553–563, 1985). This topology called the intensity
topology, manifests several properties analogous to that of I-density topology, but
there are also differences. The class of function which are continuous as functions
from R equipped with an intensity topology to R equipped with the natural topology
is included in the first class of Baire Darboux functions.

Keywords Density point · Density topology · I-density point · I-density topology ·
Intensity topology · Intensely continuous functions · Baire class

Mathematics Subject Classification 54 A 10 · 26 A 21 · 28 A 05

1 Introduction

In [8] one can find a characterization of a Lebesgue density point which uses only
the σ -ideal of nullsets. This was a starting point for the definition of category density
point, called the I-density point and for the construction of I-density topology, which
was studied later in numerous papers. In this paper we shall formulate another charac-
terization of a Lebesgue density point, again not using a Lebesgue measure but only
the σ -ideal of nullsets. This characterization leads again to a definition of category
density point, which is, however, not equivalent to I-density and to a category density
topology, which is different from the I-density topology.

In the sequel L will denote the σ -algebra of Lebesgue measurable sets on the real
line, N—the σ -ideal of nullsets, B—the σ -algebra of sets having the Baire property,
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I—the σ -ideal of sets of the first category, λ will stand for the Lebesgue measure. We
shall use also the following denotation:

A + x = {t + x : t ∈ A} and x A = {xt : t ∈ A}.

Recall that x0 ∈ R is a density point of A ∈ L if and only if

lim
h→0+

λ(A ∩ [x0 − h, x0 + h])
2h

= 1,

x0 is a right-hand (left-hand) density point if and only if limh→0+ λ(A∩[x0,x0+h])
h = 1

(limh→0+ λ(A∩[x0−h,x0])
h = 1). A point x0 is a dispersion (right-hand dispersion, left-

hand dispersion) point of A ∈ L if and only if it is a density (right-hand density,
left-hand density) point of A′, or, equivalently, if the above limits are equal to 0.
Observe also that x0 is a density point of A if and only if 0 is a density point of A − x0.
The set of all density points of A is denoted by �(A). The operator � : L → 2R has
the following properties (see [7], Ch. 22):

1. ∀A∈L λ(A��(A)) = 0, (the Lebesgue density theorem)
2. ∀A,B∈L (λ(A�B) = 0 �⇒ �(A) = �(B)),
3. �(∅) = ∅, �(R) = R,
4. ∀A,B∈L �(A ∩ B) = �(A) ∩ �(B).

From (1) it follows immediately that � : L → L (in fact � : L → Gδσ ).
The family Td = {A ∈ L : A ⊂ �(A)} is a topology on R (called the density

topology), which is essentially stronger than a natural topology.
Since x0 is a density (resp. dispersion) point of A ∈ L if and only if it is simultane-

ously a left-hand and a right-hand density (resp. dispersion) point of A, we shall deal
in the sequel with the right-hand case, the remaining being obvious. The expression
“in measure” will always mean with respect to the Lebesgue measure restricted to
[0, 1], [−1, 0] or [−1, 1].

In [8] it was observed that x0 is a right-hand density (resp. dispersion) point of
A ∈ L if and only if the sequence {χ(n·(A−x0)∩[0,1])}n∈N of characteristic functions
converges in measure to χ[0,1] (resp. to χ∅). By virtue of theorem of Riesz, x0 is a
right-hand density (resp. dispersion) point of A ∈ L if and only if for each increasing
sequence {nm}m∈N of positive integers there exists a subsequence {nm p }p∈N such that
{χnm p

· (A − x0) ∩ [0, 1]}p∈N converges to χ[0,1] (resp. to χ∅) almost everywhere.
The last condition indeed does not use the Lebesgue measure, only the σ -ideal N is
important.

Definition 1 [8] A point x0 ∈ R is an I-density point of A ∈ B if and only if
{χn·(A−x0)∩[−1,1]}n∈N converges in category to χ[−1,1].

The convergence in category means that for each increasing sequence {nm}m∈N of
positive integers there exists a subsequence {nm p }p∈N such that {χnm p ·(A−x0)∩[−1,1]}p∈N
converges to χ[−1,1] I-almost everywhere (i.e. except on a set belonging to I) (com-
pare [13]).
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I-dispersion points, right-hand I-density or I-dispersion points and left-hand I-
density or I-dispersion points are defined in an obviousway. If�I(A) = {x ∈ R : x is
an I-density point of A} for A ∈ B, then the operator �I has all properties analogous
to properties (1)–(4) of�, also�I : B → B. The family TI = {A ∈ B : A ⊂ �I(A)}
is a topology on R (called the I-density topology), which is essentially stronger than
a natural topology (see [8] or [3]).

2 New characterization

Suppose that A is a Lebesgue measurable set. Put an = λ(A ∩ [ 1
n+1 ,

1
n ]) for n ∈ N

and let bn = n(n + 1)an be an average density of the set A on the interval [ 1
n+1 ,

1
n ].

Definition 2 We shall say that 0 is the right-hand C-density point of A (C-dispersion
point of A) if and only if limn→∞ 1

n

∑n
i=1 bi = 1 (limn→∞ 1

n

∑n
i=1 bi = 0).

The definition of the left-hand C-density point(C-dispersion point) is formulated
in an obvious way. 0 is the C-density (C-dispersion) point of A if and only if it is
simultaneously the right-hand and the left-hand C-density (C-dispersion) point of A.
We say that x0 is the right-hand (left-hand) C-density (C-dispersion) point of A if and
only if 0 is the right-hand (left-hand) C-density (C-dispersion) point of A − x0.

Observe that 0 is the right-handC-density point of A if and only if it is the right-hand
C-dispersion point of A′.
Theorem 3 0 is the right-hand C-dispersion point of A if and only if 0 is the right-hand
dispersion point of A.

Proof “⇒” Take ε > 0. There exists n0 ∈ N such that for n ≥ n0 we have 1
2n−1 ·

∑2n−1
i=1 bi < ε

4 . Hence also
1

2n−1 · ∑2n−1
i=n bi < ε

4 . Since 2n ≤ 4 · n(n+1)
2n−1 ≤ 4 · i(i+1)

2n−1

for i ≥ n, then
λ(A∩[ 1

2n , 1n ])
( 1n − 1

2n )
= 2n · ∑2n−1

i=n ai ≤ 4
2n−1 · ∑2n−1

i=n i(i + 1)ai = 4
2n−1 ·

∑2n−1
i=n bi < 4 · ε

4 = ε for n ≥ n0. So we have shown that limn→∞
λ(A∩[ 1

2n , 1n ])
( 1n − 1

2n )
= 0.

This implies limn→∞
λ(A∩[0, 1n ])

1
n

= 0 and 0 is the right-hand dispersion point of A.

“⇐” Take ε > 0. Fix a positive integer k > 3
ε
+1. Then we have n

nk−1 < ε
3 for each

n ∈ N. Since limn→∞
λ(A∩[0, 1n ])

1
n

= 0, then also limn→∞
λ(A∩[ 1

nk , 1n ])
1
n − 1

nk
= limn→∞ nk

k−1 ·
λ(A ∩ [ 1

nk , 1
k ]) = 0. There exists n1 ∈ N such that nk

k−1λ(A ∩ [ 1
nk , 1

k ]) < ε
3k for

n ≥ n1. Since
i(i+1)
nk−1 ≤ (nk−1)nk

nk−1 = nk for i ≤ nk − 1, then 1
nk−1

∑nk−1
i=n bi =

1
nk−1

∑nk−1
i=n i(i + 1)ai ≤ nk

∑nk−1
i=n ai = nkλ(A ∩ [ 1

nk , 1
n ]) < ε

3k · (k − 1) < ε
3 .

Let n2 ∈ N be such that k
nk−1 < ε

3 for n ≥ n2. Then for n ≥ n0 = max(n1, n2)

and nk − 1 < m ≤ (n + 1)k − 1 we have 1
m

∑m
i=n bi = 1

m

∑nk−1
i=n bi + 1

m

∑m
i=nk bi ≤

1
nk−1

∑nk−1
i=n bi + 1

nk−1

∑m
i=nk bi < ε

3 + 1
nk−1

∑m
i=nk 1 ≤ ε

3 + k
nk−1 < ε

3 + ε
3 = 2 ε

3 .

At last for n ≥ n0 and m between nk − 1 and (n + 1)k − 1 we have 1
m

∑m
i=1 bi =

1
m

∑n−1
i=1 bi + 1

m

∑m
i=n bi < n−1

nk−1 + 2
3ε < ε

3 + 2
3ε = ε. Hence 1

m

∑m
i=1 bi < ε for

m ≥ n0k − 1, which means that 0 is the right-hand C-dispersion point of A. ��
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Remark 4 Obviously similar theorem holds also for the left-hand C-dispersion point
of A. Also 0 is the right-hand (or left-hand) C-density point of A if and only if it is
the right-hand (or left-hand) density point of A.

3 Intensity topology

Now we shall formulate the definition of C-dispersion (and C-density) point without
using the Lebesguemeasure. By virtue of Theorem 3 it will be another characterization
of the dispersion (and density) point. This will enable us to introduce the category
analogue of the density and dispersion point.

Put An = [n(n + 1) · (A − 1
n+1 )] ∩ [0, 1]. Then bn = λ(An) = ∫ 1

0 χAn (t)dt , so
1
n

∑n
i=1 bi = 1

n

∫ 1
0

∑n
i=1 χAi (t)dt . If we denote fn = 1

n

∑n
i=1 χAi for n ∈ N, then

we have 0 ≤ fn(t) ≤ 1 for each n ∈ N and t ∈ [0, 1].
So 0 is a right hand C-dispersion point (dispersion point) of A if and only if

∫ 1
0 fn →

n→∞ 0, which means fn →
n→∞ 0 in L1 norm. Since the sequence { fn}n∈N is

commonly bounded this is equivalent to fn →
n→∞ 0 in measure (compare [2], p. 245,

Th. 5.36 and p. 246 Th. 5.37).

Definition 5 We say that 0 is the right-hand rarefaction (intensity) point of A ∈ B if
and only if the sequence { fn}n∈N defined above converges to 0 = χ∅ (converges to
χ[0,1]) in category.

The left-hand rarefaction (intensity) point is defined in the obviousway. 0 is rarefaction
(intensity) point of A ∈ B if and only if it is simultaneously the right-hand and the
left-hand rarefaction (intensity) point of A. A point x0 is the right-hand rarefaction
(intensity) point of A if and only if 0 is the right-hand rarefaction (intensity) point of
A − x0.

In the sequel we shall use the following denotation:

An(x) =
[

n(n + 1)(A − x) − 1

n + 1

]

∩ [0, 1].

If x = 0 we shall write An rather than An(0).
Let �i (A) = {x ∈ R : x is the intensity point of A} for A ∈ B.

Theorem 6 �i is a lower density operator, i.e.

1. ∀A∈B �i (A)�A ∈ I,
2. ∀A,B∈B (A�B ∈ I �⇒ �i (A) = �i (B)),
3. �i (∅) = ∅, �i (R) = R,
4. ∀A,B∈B �i (A ∩ B) = �i (A) ∩ �i (B).

Proof Ad 1. Observe that if A = G�P , where G is open and P ∈ I, then G ⊂
�i (A) ⊂ Ḡ and Ḡ\G is nowhere dense.

Proofs of 2, 3 and 4 are standard. ��
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Theorem 7 The family Ti = {A ∈ B : A ⊂ �i (A)} is a topology essentially stronger
than a natural topology on the real line.

Proof Exactly the same as in [8] for TI . ��
We shall show that the notion of intensity point is not equivalent to that of I-density

point. However, the topology Ti shares most of the properties (but not all) with the
topology TI .

Theorem 8 There exists a set A ⊂ [0, 1] such that 0 is a right-hand rarefaction point
of A but not the right-hand I-dispersion point of A.

Proof Let {φn}n∈N be a standard example of a sequence of functions defined on [0, 1]
which converges in measure and diverges everywhere on (0, 1], i.e. φ1 = χ(0,1],
φ2 = χ(0, 12 ], φ3 = χ( 12 ,1], . . . , φ2k = χ(0, 1

2k ], . . . , φ2k+1−1 = χ(1− 1
2k ,1]. Put En =

{x ∈ (0, 1] : φn(x) = 1}.
Let A = ⋃∞

n=1 An , where An = 1
n(n+1) · En + 1

n+1 . Observe that for each k ∈ Nwe

have
∑2k+1−1

n=2k χ(n(n+1)(A− 1
n+1 )∩[0,1])(x) = ∑2k+1−1

n=2k χEn (x) = 1 for each x ∈ (0, 1].
Hence limn→∞ 1

n

∑n
i=1 χ(n(n+1)(A− 1

n+1 )∩[0,1])(x) = 0 for each x ∈ (0, 1] and 0 is a

right-hand rarefaction point of A.
At the same time the set A∩[ 1

n+1 ,
1
n ] includes a non-empty open set for each n ∈ N,

from which it follows easily that 0 is not a right-hand I-dispersion point of A. ��
Theorem 9 There exists a set A ⊂ [0, 1] such that 0 is the right-hand I-dispersion
point of A but not the right-hand rarefaction point of A.

Proof Put C1 = [ 16 , 1]\( 14 , 1
3 ). Let I 11 and I 21 be closed components of C1 numbered

from the left to the right. Suppose that we have defined C1, C2, . . . , Cn−1 such that
Cn−1 ⊂ [ 1

6n−1 ,
1

6n−2 ] and I 1n−1, . . . , I 2
n−1

n−1 is the sequence of closed components of

Cn−1 numbered from the left to right.We shall defineCn ⊂ [ 1
6n , 1

6n−1 ] in the following
way: let J i

n−1 for i = {1, . . . , 2n−1} be an open interval of the form ( 1
m+1 ,

1
m ), where

m is a positive integer such that the center of 1
6 · I i

n−1 belongs to [ 1
m+1 ,

1
m ). Put

Cn = 1
6Cn−1\⋃2n−1

i=1 J i
n−1. Then Cn is the union of 2n closed intervals I 1n , . . . , I 2

n

n .
At last put A = ⋃∞

n=1 Cn . Observe that B = ⋂∞
n=1 6

n−1A∩[ 16 , 1] is a perfect nowhere
dense subset of [ 16 , 1]. Observe also that the interval [ 1

6n , 1
6n−1 ] is the union of 5 · 6n−1

intervals of the form [ 1
m+1 ,

1
m ], namely [ 1

6n , 1
6n−1 ] = ⋃6n−1

m=6n−1[ 1
m+1 ,

1
m ] while the set

Cn is the union of 5 · 6n−1 − (6n−1 + 2 · 6n−2 + · · · + 2n−2 · 6 + 2n−1) among these
intervals. Since Ak = [k(k + 1)(A − 1

k+1 )] ∩ [0, 1] = [k(k + 1)(Cn − 1
k+1 )] ∩ [0, 1]

for k ∈ {6n−1, . . . , 6n − 1}, we have 1
5·6n−1 · ∑6n−1

k=6n−1 χAk (t) > 7
10 for each n ∈ N

and t ∈ [0, 1] and 0 is not a right-hand rarefaction point of A. Indeed observe that
1

5·6n−1 (6
n−1 + 2 · 6n−2 + · · · + 2n−2 · 6 + 2n−1) = 1

5 (1 + 2
6 + 22

62
+ · · · + 2n−1

6n−1 ) <
1
5 · 1

1− 1
3

= 3
10 .

To show that 0 is a right-hand I-dispersion point of A take an increasing
sequence {nm}m∈N of positive integers. For each m ∈ N there exists km ∈ N
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such that 1
nm

∈ [ 1
6km , 1

6km−1 ). Since the sequence 6km

nm
is bounded (1 ≤ 6km

nm
< 6),

there exists a convergent subsequence
{
6km p

nm p

}
. Put c = limp→∞ 6km p

nm p
. We have

lim supp→∞(nm p · A)∩[0, 1] = (c · B)∩[0, 1]. Since this is a perfect nowhere dense
set, the proof is finished. ��

Now we shall present some basic properties of the topology Ti . The proofs go
exactly in the same way as for the topology TI , so we shall give only references at the
end of the following theorem.

Theorem 10 The topology Ti on R has the following properties:

1. a subset A of R is closed and discrete with respect to Ti if and only if A ∈ I,
2. a subset A of R is Ti -nowhere dense if and only if it is Ti —of the first category if

and only if A ∈ I,
3. Ti is neither first countable, nor separable, nor has the Lindelöf property,
4. Ti is not regular,
5. a subset A of R is compact with respect to Ti if and only if A is finite,
6. the family of Ti —Borel sets coincides with the family of sets having the Baire

property (in the natural topology), each set which is a Ti —Borel set is the union
of Ti -open and Ti -closed set,

7. if A ⊂ R, then Inti (A) = A ∩ �i (B), where B ⊂ A is a Baire kernel of A.

For the proofs of 1, 3, 5 see [3], p. 37, proof of 2, 6 see [9], proof of [4] see [14] and
of 7 see [4].

The following property of Ti needs a separate proof.

Theorem 11 Each interval [a, b] ⊂ R is connected in Ti .

Proof Suppose that [a, b] = A ∪ B, where A �= ∅, B �= ∅, A ∩ B = ∅ and A, B ∈ Ti

(it means that A, B are open in the subspace topology Ti |[a,b]). We have A ⊂ �i (A)

and B ⊂ �i (B), where at the endpoints of [a, b] one sided intensity is considered.
At the same time A = G1�P1, B = G2�P2, where G1, G2 are regular open and
P1, P2 are of the first category (all in the natural topology). Let (c, d) ⊂ [a, b] be
a component of G1 (in the natural topology). We shall prove that [c, d] ⊂ A. First
observe that P1 ∩ (c, d) = ∅. Indeed, if there exists x0 ∈ P1 ∩ (c, d), then x0 ∈ B, so
x0 ∈ �i (B). It is impossible because A is residual in some neighbourhood of x0 (in
the natural topology) and x0 ∈ �i (A). A point d is a left-hand point of intensity of A,
so it cannot belong to B and similarly for a point c. Obviously if (c, d) is a component
of G2, then [c, d] ⊂ B.

Take a closed component [c1, d1] ⊂ [a, b] of A. Obviously c1 > a or d1 < b.
Suppose that the second case holds. Consider the interval I1 = [c1, d1 + (d1 − c1)] =
[c1, 2d1 − c1]. Observe that there exists a point x1 ∈ B ∩ (d1, 2d1 − c1). Since B ⊂
�i (B), in each neighbourhood of x1 one can find a closed component of B. In particu-
lar there exists a closed component [c2, d2] of B such that c2 ∈ (d1,min(b, 2d1−c1)).
Similarly as above we can find a point x2 ∈ A ∩ (2c2 − d2, c2) and a closed com-
ponent [c3, d3] of A such that d3 ∈ (2c2 − d2, c2). Continuing in this way we obtain
a sequence of disjoint intervals {[cn, dn]}n∈N such that

⋃∞
n=1[c2n−1, d2n−1] ⊂ A,
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⋃∞
n=1[c2n, d2n] ⊂ B, dn −cn →

n→∞ 0 and there exists x0 ∈ (a, b) such that cn →
n→∞ x0

and dn →
n→∞ x0. Observe also that the sequence {c2n−1}n∈N is increasing and {c2n}n∈N

is decreasing. From the construction it follows that dn − cn ≥ dist(x0, [cn, dn]). Con-
sider the sequence {[c2n, d2n]}n∈N. Let kn and mn for n ∈ N be positive integers such
that

mn⋃

i=kn

[

x0 + 1

i + 1
, x0 + 1

i

]

⊂ [c2n, d2n] ⊂ B.

Both sequences {kn}n∈N, {mn}n∈N are increasing and tend to infinity. Moreover
lim infn→∞ mn

kn
≥ 2. Then lim supn→∞ 1

mn

∑mn
i=1 χi(i+1)((B−x0)− 1

i+1 )(x) ≥ 1
2 for each

x ∈ [0, 1] and the same holds for each subsequence {mn p }p∈N of {mn}n∈N. Hence x0
is not a right-hand rarefaction point of B. Similarly we see that x0 is not a left-hand
rarefaction point of A. Then x0 ∈ (a, b) is neither intensity point of A, nor of B—a
contradiction. ��
Corollary 12 The family of all Ti —connected subsets of R coincides with the family
of intervals of all kinds (open, closed, half-open, bounded and unbounded).

4 Intense continuity

To introduce the notion of intense continuity (right- or left intense continuity we shall
need the notion of interior intensity point of an arbitrary set A ⊂ R. Recall that the
Baire kernel of A ⊂ R is a set B ⊂ A having the Baire property such that for each
set C having the Baire property if C ⊂ A, then C\B ∈ I. For each set A ⊂ R there
exists the Baire kernel of A (compare [11] or [6], §11.IV, Cor. 1, p. 90).

Definition 13 We shall say that a function f : R → R is intensely continuous at a
point x0 ∈ R if and only if x0 is an intensity point of a Baire kernel of f −1(( f (x0) −
ε, f (x0) + ε)), in another words x0 is an interior intensity point of f −1(( f (x0) −
ε, f (x0)+ε)) for each ε > 0. The right- or left intense continuity of f at x0 is defined
in an obvious way.

Definition 14 We shall say that a function f : R → R is intensely continuous if for
each set G open in the natural topology (Tnat ) f −1(G) ∈ Ti , i.e. f is continuous as
a function from (R, Ti ) to (R, Tnat ). The right- or left intense continuity as well as
intense continuity I-almost everywhere is defined in an obvious way.

Theorem 15 A function f : R → R is intensely continuous (right intensely continu-
ous) if and only if is intensely continuous (right intensely continuous) at each point
x ∈ R.

Proof We shall prove first that if for each point x ∈ A there exists a set Bx ⊂ A
having the Baire property such that x ∈ �i (Bx ), then A has the Baire property.
Suppose that it is not the case. Then there exists an interval (a, b) ⊂ R such that for
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each (c, d) ⊂ (a, b) the set A ∩ (c, d) is of the second category but not residual in
(c, d). If B is an arbitrary Baire kernel of A ∩ (a, b), then B is of the first category,
so for each x ∈ A ∩ (a, b) a point x is not an intensity point of B, a contradiction.
The rest of the proof is routine. The proof in the case of right intense continuity is
analogue. ��

To prove basic properties of intensely continuous functions we shall need some
lemmas. In the sequel {(ai , bi )}i∈N will denote the basis of the natural topology on
(0, 1).

Lemma 16 If 0 is a right-hand intensity point of a regular open set A, then for each
m ∈ N there exists a positive integer nm such that for each i ∈ {1, 2, . . . , m} there
exists an open interval (cm

i , dm
i ) ⊂ (ai , bi ) such that

1

nm

∑nm

j=1
χA j (t) ≥ m − 1

m
for each t ∈

m⋃

i=1

(cm
i , dm

i ).

The sequence {nm}m∈N can be chosen to be increasing. Here A j = j( j + 1)(A −
1

j+1 ) ∩ (0, 1), as before.

Proof This is obvious for m = 1. Suppose that the thesis holds for some m ∈ N.
Let {rp}p∈N be an arbitrary increasing sequence of natural numbers such that r1 >

nm ≥ m. There exists a subsequence {rpk }k∈N such that limk→∞ 1
rpk

∑rpk
j=1 χA j (t) = 1

I-almost everywhere on (0, 1). Hence for each i ∈ {1, 2, . . . , m, m + 1} there exists
ti ∈ (ai , bi ) and pki such that for each p ≥ pki we have 1

rp

∑rp
j=1 χA j (ti ) ≥ m

m+1 .
Let p(m + 1) = max{pk1, pk2 , . . . , pkm , pkm+1} and nm+1 = rp(m+1). Then for each
i ∈ {1, 2, . . . , m, m + 1} we have 1

nm+1

∑nm+1
j=1 χA j (ti ) ≥ m

m+1 and obviously nm+1 >

nm ≥ m.

Since A is regular open and all An’s are regular open too, for each i ∈
{1, 2, . . . , m, m + 1} there exists a neighbourhood (cm+1

i , dm+1
i ) ⊂ (ai , bi ) of ti

such that 1
nm+1

∑nm+1
j=1 χA j (t) ≥ m

m+1 for each t ∈ ⋃m+1
i=1 (cm+1

i , dm+1)
i ).

Indeed, let Cm+1,i = { j : 1 ≤ j ≤ nm+1 ∧ ti ∈ A j } for i ∈ {1, 2, . . . , m + 1}.
If j ∈ Cm+1,i , then there exists εm+1

i, j > 0 such that (ti − εm+1
i, j , ti + εm+1

i, j ) ⊂
(ai , bi ) ∩ A j . Put εm+1

i = min{εi, j : j ∈ Cm+1,i }. We have (cm+1
i , dm+1

i ) = (ti −
εm+1

i , ti + εm+1
i ) ⊂ (ai , bi ) ∩ A j for each i ∈ {1, 2, . . . , m, m + 1} and j ∈ Cm+1,i ,

so 1
nm+1

∑nm+1
j=1 χA j (t) ≥ m

m+1 for each t ∈ ⋃m+1
i=1 (cm+1

i , dm+1
i ).

Hence there exists an increasing sequence {nm}m∈N of positive integers fulfilling
all requirements. ��

Lemma 17 If 0 is a right-hand intensity point of a regular open set A if {nm}m∈N is
a sequence of positive integers and {(cm

i , dm
i )}m∈N,i∈{1,2,...,m}—a sequence of inter-

vals constructed in the previous lemma, then for each m ∈ N there exist intervals
(em

i , f m
i ) ⊂ (cm

i , dm
i ) for i = {1, 2, . . . , m} and a neighbourhood Om of 0 such that
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1

nm

nm∑

j=1

χA j (x)(t) ≥ m − 1

m
for each x ∈ Om and each t ∈

m⋃

i=1

(em
i , f m

i ).

Proof Fix m ∈ N. Put Cm,i = { j : 1 ≤ j ≤ nm ∧ (cm
i , dm

i ) ⊂ Ai } for
i ∈ {1, 2, . . . , m}. Observe that A j (x) = ( j( j + 1)(A − 1

j+1 ) − j( j + 1)x) ∩ (0, 1),

so if εm
i, j < 1

3 j( j+1) (d
m
i − cm

i ) for i = {1, 2, . . . , m} and j ∈ Cm,i , then

(em
i , f m

i ) = ( 23cm
i + 1

3dm
i , 1

3cm
i + 2

3dm
i ) ⊂ A j (x) for x ∈ (−εm

i, j , ε
m
i, j ). Put now

εm
i = min{εm

i, j : j ∈ Cm,i } and εm = min{εm
i : i ∈ {1, 2, . . . , m}}. Then for

x ∈ (−εm, εm) = Om we have 1
nm

∑nm
j=1 χA j (x)(t) ≥ m−1

m for t ∈ ⋃m
i=1(e

m
i , f m

i ). ��
Since the intensity of a set at points different from zero is defined with the use of

the translation, we obtain immediately:

Corollary 18 If x0 ∈ R is a right-hand intensity point of a regular open set A, then
for each m ∈ N there exists a natural number nm(x0) ≥ m such that there exists
a neighbourhood Om(x0) of x0 and for each i = {1, 2, . . . , m} there exists an open
interval (em

i , f m
i ) ⊂ (ai , bi ) such that

1

nm(x0)

nm (x0)∑

j=1

χA j (x)(t) ≥ m − 1

m

for each m ∈ N, each x ∈ Om(x0) and each t ∈
m⋃

i=1

(em
i , f m

i ).

Theorem 19 If a function f : R → R is right intensely continuous at each point, then
f is of the first Baire class.

Proof Suppose that this is not the case. Then there exists a perfect set P ⊂ R and
two real numbers a, b (a < b) such that the sets T1 = {x ∈ P : f (x) < a} and
T2 = {x ∈ P : f (x) > b} are both dense in P in the natural topology (see for
example [10] or [6], p. 395). Let Ci < Ti be a countable set, dense in Ti (thus also
dense in P) for i = 1, 2. Consider first the set C1 = {x1, x2, . . . , xk, . . .}. For each
m, k ∈ N let Om,k be the neighbourhood of xk such that

1

nm(xk)

nm (xk)∑

j=1

χA j (x)(t) ≥ m − 1

m

for each x ∈ Om,k and each t ∈
m⋃

i=1

(
em

i,k, f m
i,k

)
,

where {nm(xk)}m∈N , a sequence associated with xk is described in the above corollary
and {(em

i,k, f m
i,k)}m∈N,i∈{1,2,...,m} also depends on xk .

Put Om = P ∩ ⋃∞
k=1 Om,k and Oa = P ∩ ⋂∞

m=1 Om . The set Oa is residual in P ,
since each Om is open and dense in P .
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From the assumption it follows that each point of T1 is a right intensity point of
T1. We shall show that if x ∈ Oa ∩ P and Ga is a regular open part of T1, then x is
not a rarefaction point of Ga . Indeed, for each m ∈ N there exists km ∈ N such that
x ∈ ⋂∞

m=1 Om,km .
Let nm = nm(xkm ) be a number associated with m ∈ N and xkm ∈ C1. We can (and,

choosing a subsequence if necessary, shall) suppose that {nm}m∈N is an increasing
sequence. For each m ∈ N we have

1

nm

nm∑

j=1

χGa, j(x)
(t) ≥ m − 1

m
for each t ∈

m⋃

i=1

(
em

i,km
, f m

i,km

)
,

where

Ga, j (x) = j · ( j + 1)

(

(Ga − x) − 1

j + 1

)

∩ (0, 1),

as usual. So

lim sup
m→∞

1

nm

nm∑

j=1

χGa, j (x)(t) = 1 for t ∈ lim sup
m→∞

m⋃

i=1

(
em

i,km
, f m

i,km

)

and the last set is residual in (0, 1). The sameargumentworks also for each subsequence
{nm p }p∈N of {nm}m∈N. That means that x is not a right-hand rarefaction point of Ga .
Since Ga�T1 is the set of the first category, x is not a right-hand rarefaction point of
T1. Similarly, considering the set C2 ⊂ T2 one can prove the existence of the set Ob

residual in P such that if x ∈ Ob ∩ T , then x is not a right-hand rarefaction point of
T2.

Take now a point x0 ∈ Oa∩Ob and ε such that 0 < ε < b−a
3 . Put T = f −1( f (x0)−

ε, f (x0) + ε). A point x0 is a right-hand intensity point of T and is a right-hand
rarefaction point neither of T1 nor of T2. Hence T ∩ T1 �= ∅ and T ∩ T2 �= ∅. Let
x ′ ∈ T ∩ T1 and x ′′ ∈ T ∩ T2. We have | f (x ′)− f (x0)| < ε and | f (x ′′)− f (x0)| < ε,
Recall that f (x ′) < a and f (x ′′) > b, so f (x ′′) − f (x ′) > b − a > 3ε, but
simultaneously | f (x ′′) − f (x ′)| < 2ε, a contradiction. ��
Theorem 20 If f : R → R is intensely continuous at each point, then f is of the first
Baire class and has the Darboux property.

Proof The first part follows from the previous theorem. The second is an immediate
consequence of the following result of Z. Zahorski: if f : R → R is Baire one and
for each a ∈ R the sets {x : f (x) > a} and {x : f (x) < a} are bilaterally dense in
itself, then f has the Darboux property ([16], see also [1], Th. 1.1 (8)). ��
Theorem 21 A function f : R → R has the Baire property if and only if it is intensely
continuous I-almost everywhere.

Proof Suppose that f has the Baire property. Then there exists a residual set E ⊂ R

such that the restriction f |E is continuous. Then f is intensely continuous at each
point of E , so it is intensely continuous I-almost everywhere.

123



A category analogue of the density topology… 479

Suppose now that f is intensely continuous I-almost everywhere. Consider the
set A = {x ∈ R : f (x) < a} for a ∈ R. Let E be the set of points where f
is intensely continuos. Since A\E is of the first category, it is enough to show that
E ∩ A has the Baire property. If x ∈ E ∩ A, then there exists a Ti -neighbourhood
A(x) of x such that A(x) ⊂ A. Then A(x) ∩ E is also a Ti -neighbourhood of x and
E ∩ A = ⋃

x∈E∩A(A(x) ∩ E), so E ∩ A ∈ Ti and obviously it has the Baire property.
��

5 Restrictional intense continuity

Until now we have considered “topological” intense continuity of a function f : R →
R at a point x0 ∈ R. One can also consider a kind of “restrictional” or “path” intense
continuity defined in the following way (compare [9] or [12]).

Definition 22 We say that a function f : R → R is restrictively intensely continuous
at a point x0 if and only if there exists a Ti -neighbourhood U of x0 such that f (x0) =
lim

x→x0
x∈U

f (x).

According to [5] if a topology T on the real line is invariant with respect to trans-
lations, then the topological and restrictional continuities (both with respect to T ) are
equivalent if and only if the following condition (called (J2) in [12]), pp. 28–30) holds:

(J2) For each descending sequence {Un}n∈N of right-hand T -neighbourhoods of 0
there exists a decreasing sequence {hn}n∈N tending to 0 such that {0}∪⋃∞

n=1(Un∩
[hn+1, hn)) is also a right-hand T -neighbourhood of 0 and the analogous condi-
tion for the left-hand case (with necessary changes) holds.

For the topology Ti the above condition for the right-hand case can be formulated
in the following more suitable way:

For each ascending sequence {An}n∈N of sets having the Baire property such that
0 is a right-hand rarefaction point of each An there exists a decreasing sequence
{hn}n∈N of positive numbers tending to 0 such that 0 is a right-hand rarefaction point
of

⋃∞
n=1(An ∩ [hn+1, hn)). The formulation for the left-hand case is analogous.

Observe that restrictional continuity for the above mentioned topologies always
implies the topological continuity.

It iswell known ([1], Th. 5.6, p. 23or [12], Ex. 14.1, p. 27) that a function f : R → R

is approximately continuous at a point x0 if and only if it is restrictively approximately
continuous at that point. In [9] it was proved that for I-approximately continuous the
situation is different, namely the condition (J2) does not hold. Now we shall prove
that for intensely continuous functions restrictional and topological continuities at a
point also are different because (J2) fails for Ti .

Lemma 23 There exists a double sequence {En,m}n,m∈N of subsets of the interval
(0, 1) having the Baire property such that En,m ⊂ En,m+1 for each n, m ∈ N,
limn→∞ 1

n

∑n
i=1 χEn,m (x) = 0 for each x ∈ (0, 1) and each m ∈ N and for each

increasing sequence {km}m∈N∪{0} of positive integers (where k0 = 0) if Fn = En,m

for km−1 ≤ n < km, then lim supn→∞ 1
n

∑n
i=1 χFi (x) = 1 on a set residual in (0, 1).
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Proof For (a, b) ⊂ (0, 1) let {Bn(a, b)}n∈N be a descending sequence of intervals
defined in the following way: Bn(a, b) = (a, a + 1

n (b − a)) for n ∈ N. It is not
difficult to see that limn→∞ 1

n

∑n
i=1 χBi (a,b)(x) = 0 everywhere on (0, 1). Put En,1 =

Bn(0, 1), En,2 = Bn(0, 1) ∪ Bn(0, 1
2 ) ∪ Bn(

1
2 , 1) = En,1 ∪ Bn(0, 1

2 ) ∪ Bn( 12 , 1) for

n ∈ N and generally En,m+1 = En,m ∪⋃m+1
i=1 Bn(

i−1
m+1 ,

i
m+1 ) for n ∈ N. Immediately,

we have limn→∞ 1
n

∑n
i=1 χEi,m (x) = 0 for each x ∈ (0, 1) and each m ∈ N.

If {km}m∈N∪{0} (k0 = 0) is an increasing sequence of positive integers, we choose
a subsequence {km p }p∈N∪{0} (where km0 = k0 = 0) such that km p ≥ p · km p−1 for
p ∈ N.

Observe that if x ∈ Dp = ⋃m p
i=1(

i−1
m p

, i−1
m p

+ 1
km p −1 · 1

m p
), then x ∈ Fn =

En,m p for each n such that km p−1 ≤ n < km p . Hence
1

km p −1

∑km p −1
n=1 χFn (x) ≥

1
km p −1

∑km p −1
n=km p−1

χFn (x) = (km p − km p−1) · 1
km p −1 ≥ km p −km p−1

km p
≥ (1 − 1

p ) for each

x ∈ Dp.
So, if x ∈ lim supp→∞ Dp, then lim supn→∞ 1

n

∑n
i=1 χFn (x) = 1. Observe that

lim supp→∞ Dp is residual in (0, 1). In fact lim supp→∞ 1
km p −1

∑km p−1
n=1 χFn (x) = 1

for x ∈ lim supp→∞ Dp and the same result holds for each subsequence {k(1)
m p }p∈N of

{km p }p∈N. ��

Theorem 24 There exists an increasing sequence {Am}m∈N of subsets of (0, 1) having
the Baire property such that 0 is a right-hand rarefaction point of Am for each m ∈ N

and for each increasing sequence {km}m∈N of positive integers 0 is not a right-hand
rerefaction point of the set

⋃∞
m=1(Am ∩ ( 1

km
, 1

km−1
)).

Proof Put Am = ⋃∞
n=1

(
1

n(n+1) · En,m + 1
n+1

)
for each m ∈ N, where {En,m}n,m∈N

is a double sequence from Lemma 23.
Then En,m = n(n + 1)(Am − 1

n+1 ) ∩ (0, 1) for n, m ∈ N and 0 is a right-hand
rarefaction point of each Am , so the result follows immediately from the above lemma.

��

Corollary 25 The topology Ti does not fulfil the condition (J2).

Proof Let {Am}m∈N be a sequence of sets from Theorem 11 and let {hm}m∈N∪{0} be
an arbitrary decreasing sequence convergent to 0. If {km}m∈N∪{0} is an increasing
sequence of positive integers such that 1

km
≤ hm for each m ∈ N, then

∞⋃

m=1

(

Am ∩
(

1

km
,

1

km−1

))

\{hm : m ∈ N} ⊂
⋃

(Am ∩ (hm, hm−1))

and the conclusion follows immediately from the above theorem. ��
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6 More properties of the intense topology

It is well known that if A ⊂ [0, 1] is a regular open set such that 0 is a right-hand
I-density point of A, then there exists a right interval set E ⊂ A such that 0 is also a
right-hand I-density point of E (see, for example [3], Lemma 2.2.4, p. 25). We shall
show that for intensity the situation is different.

Recall that a right interval set (open or closed) at a ∈ R is a set of the form⋃∞
n=1(an, bn) (or

⋃∞
n=1[an, bn]) such that bn+1 < an < bn for n ∈ N and a =

limn→∞ an . A left interval set at a is defined in the same way. The set E is an interval
set if it is the union of a right interval set and a left interval set at the same point.

Theorem 26 There exists a sequence {An}n∈N of regular open subsets of [0, 1] such
that lim j→∞ 1

n

∑n
n=1 χa j (x) = 1 I-a.e. and for each sequence {Bn}n∈N of open sets

such that Bn consists of finite number of components of An there exists an increasing
sequence {nk}k∈N of positive integers such that for each subsequence {nkp }p∈N

lim inf
p→∞

1

nkp

nk p∑

j=1

χB j (x) ≤ 1

2

on a residual Gδ subset of [0, 1].
Proof Each positive integer n can be represented uniquely in a form n = 2k + l, where
k ∈ N ∪ {0} and l ∈ {0, 1, . . . , 2k − 1}. Let q ∈ (0, 1).

Put En = (0, 1)\ ⋃∞
m=0[q2k ·m+l+1, q2k ·m+l ] for n = 2k + l and An = ⋃k

i=0(En +
i

k+1 ) ∩ ( i
k+1 ,

i+1
k+1 ) for n ∈ 2k + l.

Observe that for each k ∈ N and l ∈ {0, 1, . . . , 2k−1} we have ∑2k+l
n=2k χAn (x) ≥ l

for all x ∈ (0, 1) except on the set
{

i
k+1 + qm : i ∈ {0, 1, . . . , k}, m ∈ N

}
. Hence it is

not difficult to see that limn→∞ 1
n

∑n
j=1 χA j (x) = 1 except on a setQ∩ (0, 1), which

means that the convergence isI-a.e.which is stronger than the convergence in category.
We shall show that the subsequence nk = 2k is a required subsequence. Indeed, let
Bn ⊂ An for each n ∈ N be a set consisting of a finite number of components of An .
Observe that for each k ∈ N there exists a positive number εk such that

Bn ∩
k⋃

i=0

(
i

k + 1
,

i

k + 1
+ εk

)

= ∅ for each n ∈ {2k, . . . , 2k+1 − 1}.

Hence 1
2k

∑2k+1−1
n=2k χBn (x) = 0 for x ∈ ⋃k

i=0

(
i

k+1 ,
i

k+1 + εk

)
= Dk . From this it fol-

lows immediately that if D = lim supk→∞ Dk , then lim infk→∞ 1
2k−1

∑2k+1−1
n=1 χBn (x)

≤ 1
2 . Obviously D is dense Gδ set in (0, 1), so it is residual in (0, 1).
The same holds for each subsequence of {nk}k∈N, which ends the proof. ��

Theorem 27 There exists a set A ⊂ [0, 1] such that 0 is a right-hand intensity point
of A but it is not a right-hand intensity point of any interval set included in A.
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Proof Let {An}n∈N be a sequence of sets constructed in the above lemma. The set
A = ⋃∞

n=1(
1

n(n+1) An + 1
n+1 ) fulfills all requirements. ��

Theorem 28 Topological spaces (R, TI) and (R, Ti ) are not homeomorphic.

Proof The families ofTI - andTi - connected sets are equal. Both consist of all intervals.
Suppose that h : (R, Ti ) → (R, TI) is a homeomorphism. Then it is not difficult to
see that if [a, b] ⊂ R is an arbitrary interval, then h([a, b]) is also a closed interval
and since h is one-to-one, it must be a homeomorphism h : (R, Tnat ) → (R, Tnat ).
Suppose that h is increasing. In the remaining case the proof is similar.

Let A ⊂ R be a Ti -open set such that 0 is a right-hand intensity point of A, but it is
not a right-hand intensity point of any interval set included in the regular part G of A.
Such a set exists by virtue of Theorem 27. Then h(A) ∈ TI and h(0) is a right-hand
I-density point of h(G). Let B ⊂ h(G) be an interval set such that h(0) is a right-hand
I-density point of B. Then 0 should be a right-hand intensity point of h−1(B). But
h−1(B) is an interval set included in G—a contradiction. ��
Lemma 29 There exists a sequence {En}n∈N of subsets of (0, 1

2 ) having the Baire
property such that limn→∞ 1

n

∑n
i=1 χEi (x) = 0 except on a set of the first category

but a sequence { 1n
∑n

i=1 χFi }n∈N, where Fn = 2n+1
2n En for n ∈ N, does not converge

to 0 in category.

Proof (Compare the proof of Theorem 4 in [15]) Let Dk = ⋃2k−1

i=1 ( i
2k − εk,

i
2k ) for

k ∈ N, where εk is a positive number small enough to assure that if En = 2n
2n+1 Dk

for 2k−1 ≤ n < 2k − 1, then {En}2k−1≤n<2k−1 is a family of pairwise disjoint sets. To
prove the existence of positive number εk fulfilling the above requirement it suffices to
show that if i, j ∈ {1, 2, . . . , 2k−1} and m, n ∈ {2k−1, . . . , 2k − 1}, then the equality
i
2k · 2n

2n+1 = j
2k · 2m

2m+1 is possible only when i = j and m = n. Indeed, suppose

that i ·2n
2n+1 = j ·2m

2m+1 and i �= j . Then i · 2n · (2m + 1) = j · 2m · (2n + 1), so
2nm(i − j) = mj − ni . Observe that |2nm(i − j)| ≥ 2 · 2k−1 · 2k−1 · |i − j | ≥ 22k−1

and |mj − ni | ≤ (2k − 1) · 2k−1 − 2k−1 = 22k−1 − 2k (since m ≤ 2k − 1, j ≤ 2k−1,
n ≥ 2k−1 and i ≥ 1) for each i, j, m and n from their domains, a contradiction.
Hence i = j and also m = n. So in the set Bk = { i

2k · 2n
2n+1 : i ∈ {1, 2, . . . , 2k−1};

n ∈ {2k−1, . . . , 2k − 1}} ∪ {0, 1
2 } all points are different and each positive εk less than

the smallest distance between points of Bk does the job.
Observe now that for each x ∈ (0, 1)we have limn→∞ 1

n

∑n
i=1 χEi (x) = 0. Simul-

taneously Fn = 2n+1
2n · En = Dk for 2k−1 ≤ n < 2k −1. The set D = lim supk→∞ Dk

is a Gδ set dense in (0, 1
2 ).

If x ∈ D, then for infinitely many k’s x ∈ ⋂2k−1
n=2k−1 Fn = Dk and then

lim supk→∞ 1
2k−1

∑2k−1
i=1 χFi (x) ≥ 1

2 . For each subsequence {2kp−1}p∈N of the

sequence {2k − 1}k∈N we have also lim supp→∞ 1
2k p −1

∑2k p −1
i=1 χFi (x) ≥ 1

2 for

x ∈ D̂ = lim supp→∞ Dkp and the set D̂ is also a Gδ set dense in (0, 1
2 ). ��

Theorem 30 There exists a set A ⊂ (0, 1) such that 0 is a right-hand rarefaction point
of A but not a right-hand rarefaction point of 1

2 A.
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Proof Put An = 1
n(n+1) · En + 1

n+1 for n ∈ N, where {En}n∈N is a sequence of sets

from the lemma 5. Then An ⊂ ( 1
n+1 ,

1
n+1 + 1

2
1

n(n+1) ) = ( 1
n+1 ,

2n+1
2n(n+1) ), which means

that An is included in the left half of the interval ( 1
n+1 ,

1
n ). Let A = ⋃∞

n=1 An . We
have

lim
n→∞

1

n

n∑

i=1

χ
i ·(i+1)·

(
A− 1

i+1

)
∩(0,1)

(x) = 0

I-a.e., because i(i + 1)
(

A − 1
i+1

)
∩ (0, 1) = Ei for i ∈ N. This means that 0 is a

right-hand rarefaction point of A.
Consider now 1

2 A = 1
2

⋃∞
n=1 An = ⋃∞

n=1(
1
2 An). Observe that 1

2 An is included in
(

1
2(n+1) ,

2n+1
4n(n+1)

)
(and not necessarily in

(
1

2(n+1) ,
1

2n+1

)
, because 1

2n+1 < 2n+1
4n(n+1) ).

Further 2(n + 1)(2n + 1)
(
1
2 An − 1

2(n+1)

)
= 1

2 · 2 · (n + 1)(2n + 1)(An −
1

n+1 ) = (n+1)(2n+1)
n(n+1) · En = 2n+1

n En = 2Fn ⊂ (0, 2n+1
2n ). Simultaneously

2(n + 1)(2n + 1)
(
1
2 A − 1

2(n+1)

)
∩ (

0, 2n+1
2n

) = 2(n + 1)(2n + 1)
(
1
2 A − 1

2(n+1)

)
=

2Fn . Since
{ 1
2n

∑n
i=1 χ2Fi

}
n∈N does not converge to 0 in category, the sequence

{ 1
n

∑n
i=1 χ2Fi ∩[0,1]

}
n∈N has the same property, so 0 is not a right-hand rarefaction

point of 1
2 A. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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