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Abstract We study Kadec–Klee properties with respect to global (local) convergence
inmeasure in quasi-Banach function spaces. First,weprove somegeneral resultswhich
canbeof independent interest.Next,we investigate these properties in symmetrizations
E (∗). Finally, we apply general results to study these properties in Marcinkiewicz and
Lorentz spaces.
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1 Introduction

Geometry of Banach spaces has found a lot of applications and has been intensively
developed during the last decades. However, the studies of global properties are not
always sufficient. The geometric structure of a separated point of a Banach space
(Banach lattice) has been intensively investigated recently (see [7,8,14,15,19,24,25,
27,28]). On the other hand, a symmetrization E (∗) of a quasi-Banach function space
E is an important construction covering several classical classes of Banach function
spaces (see [12,13,21,22,24–26]).
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We study Kadec–Klee properties with respect to global (local) convergence in mea-
sure. We concentrate on the structure of the separated point. In Sect. 2 we recall the
necessary terminology. In Sect. 3 we prove some general results concerning quasi-
Banach function spaces which can be of independent interest (the most interesting and
useful in this section are Lemma 3.2, Theorems 3.9, 3.15 and 3.16). Obviously, study-
ing the structure of quasi-normed function spaces, instead of normed function spaces,
often forces the need to use newmethods. Next, in Sect. 4, we investigate Kadec–Klee
properties in symmetrizations E (∗). The natural way is to express properties of E (∗)

by the respective properties of E (see Theorem 4.9). We discuss also whether some
assumptions of Theorem 4.9 are essential and we show that assumptions of Theo-
rem 4.9(i) are independent. It is also worth to mention Proposition 4.14 which gives
a new range of application for some useful characterization of convergence xn → x
in norm. Finally, in Sects. 5 and 6, we apply our general results to characterize the
local structure in Marcinkiewicz and Lorentz spaces. Recall also that the structure of a
separated point has applications in the local best dominated approximation problems
in Banach lattices (see [7,8]).

2 Preliminaries

Given a real vector space X the functional x �→ ‖x‖ is called a quasi-norm if the
following three conditions are satisfied:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖ax‖ = |a|‖x‖, x ∈ X, a ∈ R;
(iii) there exists C = CX ≥ 1 such that ‖x + y‖ ≤ C(‖x‖ + ‖y‖) for all x, y ∈ X .

We call ‖ · ‖ a p-norm where 0 < p ≤ 1 if, in addition, it is p-subadditive, that is,
‖x + y‖p ≤ ‖x‖p + ‖y‖p for all x, y ∈ X .

By the Aoki–Rolewicz theorem (cf. [17, Theorem 1.3 on p. 7] , [32, p. 86]), if
0 < p ≤ 1 is such that C = 21/p−1, then there exists a p-norm ‖ · ‖1 which is
equivalent to ‖ · ‖ so that

‖x + y‖p
1 ≤ ‖x‖p

1 + ‖y‖p
1 and ‖x‖1 ≤ ‖x‖ ≤ 2C‖x‖1 (2.1)

for all x, y ∈ X . The quasi-norm ‖ ·‖ induces a metric topology on X : in fact, a metric
can be defined by d(x, y) = ‖x − y‖p

1 , when the quasi-norm ‖ · ‖1 is p-subadditive.
We say that X = (X, ‖ · ‖) is a quasi-Banach space if it is complete for this metric.

As usual S(X) (resp. B(X)) stands for the unit sphere (resp. the closed unit ball)
of a real quasi-Banach space (X, ‖·‖X ).

We denote by L0 the set of all (equivalence classes of) extended real valued
Lebesgue measurable functions on I = (0, α), where α = 1 or α = ∞. Let m
be the Lebesgue measure on (0, α).

A quasi-Banach lattice (E, ‖ · ‖E ) is called a quasi-Banach function space (or a
quasi-Köthe space) if it is a linear subspace of L0 satisfying the following conditions:

(1) If x ∈ L0, y ∈ E and |x | ≤ |y| m-a.e., then x ∈ E and ‖x‖E ≤ ‖y‖E .
(2) There exists a strictly positive x ∈ E .
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By E+ we denote the positive cone of E , that is, E+ = {x ∈ E : x ≥ 0}. For x ∈ L0

set
supp x = {t ∈ I : x (t) 
= 0} .

Moreover, let E (w) be the weighted quasi-Banach function space, that is

E(w) = {x ∈ L0 : xw ∈ E} with the norm ‖x‖E(w) = ‖xw‖E , (2.2)

where w : I → [0,∞) is a measurable weight function.
Moreover, the p-convexification E (p) of E , for 1 < p < ∞, is defined by

E (p) = {x ∈ L0 : |x |p ∈ E} and ‖x‖E (p) = ‖|x |p‖1/p
E .

If 0 < p < 1, we say about p-concavification E (p) of E .
For x ∈ L0, its distribution function is defined by

dx (λ) = m {s ∈ [0, α) : |x (s)| > λ} , λ ≥ 0,

and its decreasing rearrangement by

x∗ (t) = inf {λ > 0 : dx (λ) ≤ t} , t ≥ 0. (2.3)

Set x∗ (∞) = limt→∞ x∗ (t) if I = (0,∞) and x∗ (∞) = 0 if I = (0, 1). For the
properties of dx and x∗, the reader is referred to [3,29].

Two functions x, y ∈ L0 are called equimeasurable (x ∼ y for short) if dx = dy .
We say that a quasi-normed function space (E, ‖ · ‖E ) is rearrangement invariant (r.i.
for short) or symmetric if whenever x ∈ L0 and y ∈ E with x ∼ y, then x ∈ E and
‖x‖E = ‖y‖E .

For any symmetric quasi-Banach function space (E, ‖ · ‖E ) we have

L p(I ) ∩ L∞(I )
C1
↪→ E

C2
↪→ L p,∞(I ) + L∞(I ), (2.4)

whereC is from theC-triangle inequality for ‖·‖E , the number p satisfies the equality
C = 21/p−1, C1 = 21/p

∥
∥χ(0,1)

∥
∥

E , C2 = 41/p

‖χ(0,1)‖E
and L p,∞ = {x ∈ L0(I ) : ‖x‖ =

supt∈I t1/px∗(t) < ∞} (see Theorem 1 and 3 from [2]). For more details about
symmetric (quasi-)Banach function spaces see [3,20–22,26,29,32].

Recall that a quasi-Banach function space E is called order continuous (E ∈ (OC))
if for each sequence xn ↓ 0, that is xn ≥ xn+1 and infn xn = 0, we have ‖xn‖E → 0
(see [18,31,35]). Moreover, E ∈ (OC) if and only if for every element x ∈ E
and each sequence (xn) in E satisfying conditions inf {xn, xm} = 0 for n 
= m and
0 ≤ xn ≤ |x | we have ‖xn‖E → 0. The sufficiency follows from Proposition 2.2 in
[30]. We prove the necessity. If the condition is not satisfied then we find an element
x ∈ E and a sequence (xn) in E such that inf {xn, xm} = 0 for n 
= m, 0 ≤ xn ≤ |x |
and ‖xn‖E � 0. Letting yn = ∑n

k=1 xk and y = ∑∞
k=1 xk we get y − yn ↓ 0 and

‖y − yn‖ � 0, which means E /∈ (OC).
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The following equivalent conditions are well known for a Banach function space.
We collect them (with a short explanation) in a case of quasi-Banach function space
E for further convenience.

Theorem 2.1 Let E be a quasi-Banach function space and x ∈ E. The following
statements are equivalent:

(i) For every sequence (xn) in E satisfying conditions inf {xn, xm} = 0 for n 
= m
and 0 ≤ xn ≤ |x | we have ‖xn‖E → 0.

(ii) For each sequence (xn) in E such that 0 ≤ xn ≤ |x | and xn → 0 m-a.e. we have
‖xn‖E → 0.

(iii) For any sequence (xn) in E such that 0 ≤ xn ≤ |x | and xn → 0 locally in
measure we have ‖xn‖E → 0.

Proof The implication (ii) ⇒ (i) is clear. The implication (i) ⇒ (ii) can be proved
as Lemma 5 in [15] (the proof works almost the same for a quasi-Banach function
space). The implication (iii) ⇒ (ii) is obvious. The implication (ii) ⇒ (iii). Note
that if xn → 0 locally in measure then xnk → 0 a.e. for some subsequence

(

xnk

)

of
(xn), because the measure space is σ -finite. Applying the double extract subsequence
principle we can finish the proof. ��

The author would like to thank Professor Witold Wnuk for the fruitful discussion
concerning the above theorem, especially for pointing out that the equivalence (i) ⇔
(iii) follows also from a general, deep result from the theory of locally solid Riesz
spaces (see [1, Theorem 12.9]).

Theorem 2.1 gives a natural motivation for the following definition. A point x ∈ E
is said to have an order continuous norm (x is a point of order continuity, x is an
OC point briefly) if for any sequence (xn) in E such that 0 ≤ xn ≤ |x | and xn → 0
m-a.e. we have ‖xn‖E → 0. Consequently, E ∈ (OC) if and only if every element x
in E has an order continuous norm. The symbol Ea stands for the subspace of order
continuous elements of E .

We assume in the paper (unless it is stated otherwise) that E has the Fatou property,
that is, if 0 ≤ xn ↑ x ∈ L0 with (xn)∞n=1 in E and supn∈N ‖xn‖E < ∞, then x ∈ E
and limn ‖xn‖E = ‖x‖E . Recall that in the definition of a semi-Fatou property we
assume additionally that x ∈ E .

A point x ∈ E is said to be an Hg-point (resp. Hl -point) in E if for any (xn) ⊂ E
such that xn → x globally (resp. locally) in measure and ‖xn‖E → ‖x‖E , we have
‖xn − x‖E → 0.We say that the space E has the Kadec–Klee property globally (resp.
locally) in measure if each x ∈ E is an Hg-point (resp. Hl -point) in E .

A point x ≥ 0 is said to be an H+
g -point of E (H+

l -point of E) if for any sequence
(xn) ⊂ E+ such that xn → x globally (resp. locally) in measure and ‖xn‖E → ‖x‖E ,
we have ‖xn − x‖E → 0.

Let 0 < p < ∞. A quasi-Banach lattice E is said to be p-convex whenever there
is a constant C > 0 such that

∥
∥
∥
∥
∥
∥

(
n

∑

i=1

|xi |p

)1/p
∥
∥
∥
∥
∥
∥

E

≤ C

(
n

∑

i=1

‖xi‖p
E

)1/p
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for all x1, . . . , xn ∈ E , n ∈ N . If C = 1, we say that E is p-convex with the constant
1. It is known that if E is p-convex then there is an equivalent norm ‖·‖1 ∼ ‖·‖E
such that (E, ‖·‖1) is p-convex with the constant 1. Moreover, E is p-convex if and
only if E (1/p) is 1-convex (with the same constant). Finally, if E is p-convex with
the constant C and 0 < q < p then E is q-convex with the constant at most C (see
Theorem 4.2 in [32]).

A quasi-Banach lattice X is called L-convex whenever it is p-convex for some
p > 0 (see [16]).

3 Quasi-Banach function spaces

In this section we will prove some general results useful in the sequel which can be
of independent interest. We will discuss also several basic results for quasi-Banach
function spaces which in the case of Banach function spaces are well known (or
even obvious). However, for a quasi-Banach function space the respective proofs need
different techniques.

Lemma 3.1 Let (E, ‖·‖E ) be a symmetric quasi-Banach function space. If x ∈ Ea

then x∗ (∞) = 0.

Proof This implication is obvious under the assumption that E ↪→ L1 + L∞ which
is true for a symmetric Banach function space and need not be satisfied for arbitrary
symmetric quasi-Banach function space.Wewill prove this fact in generality applying
the condition (2.4). Suppose a := x∗ (∞) > 0. Denoting A = {t ∈ I : |x (t)| ≥ a/2}
we have m (A) = ∞. Take a sequence (An) of pairwise disjoint sets with An ⊂ A and
m (An) = ∞. Set xn = xχAn . For each partition xn = yn + zn with yn ∈ L p,∞ and
zn ∈ L∞ we have ‖zn‖∞ ≥ a/4, because otherwise y∗

n (∞) ≥ a/4 and consequently
yn /∈ L p,∞. Thus ‖xn‖L p,∞+L∞ ≥ a/4, whence, by condition (2.4), we get ‖xn‖E ≥
a/4C2, where is C2 is the constant from condition (2.4). This means that x /∈ Ea . ��
Lemma 3.2 Let (E, ‖·‖E ) be an L-convex quasi-Banach function space. If ‖xn‖E →
0 then there is a subsequence

(

xnm

)

m of (xn)n, an element x ∈ E+ and a sequence
0 ≤ βm → 0 such that

∣
∣xnm

∣
∣ ≤ βm x for each m.

Proof Clearly, if E is aBanach function space the result follows from [18, IV.2, Lemma
2, p. 138]. Since E is L-convex so it is p-convex for some p > 0. Consequently
F = E (1/p) is 1-convex, it means there exists a norm ‖·‖0 on F which is equivalent to
the quasi-norm ‖·‖0 ∼ ‖·‖F , where ‖z‖F = (∥

∥|z|1/p
∥
∥

E

)p
. Suppose ‖xn‖E → 0 and

set yn = |xn|p. Then yn ∈ E (1/p) and ‖yn‖F = (∥
∥|yn|1/p

∥
∥

E

)p → 0. Consequently,
‖yn‖0 → 0, whence there is a subsequence

(

ynm

)

m of (yn)n , an element y ∈ F+ and

a sequence 0 ≤ αm → 0 such that
∣
∣xnm

∣
∣p = ∣

∣ynm

∣
∣ ≤ αm y for each m (see [18, IV.2,

Lemma 2, p. 138]). Thus
∣
∣xnm

∣
∣ = ∣

∣ynm

∣
∣1/p ≤ α

1/p
m y1/p ∈ E . We finish the proof by

taking x = y1/p and βm = α
1/p
m . ��

Remark 3.3 Clearly, if ‖·‖E is a norm then the implication ‖xn − x‖E → 0 ⇒
‖xn‖E → ‖x‖E is trivial by the triangle inequality. If ‖·‖E is a quasi-norm then this
is no longer true. Consider the space R2 with the functional
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‖x‖ =
{ 1

2 |x1| if x2 = 0,
|x1| + |x2| if x2 
= 0,

for x = (x1, x2). Clearly, ‖x + y‖ ≤ 2 (‖x‖ + ‖y‖). Note also that for u, v ∈
(

R2, ‖·‖) with |u| ≤ |v| we have ‖u‖ ≤ ‖v‖. Moreover, taking xn = (1, 1/n) and
x = (1, 0) we get ‖xn − x‖ = ‖(0, 1/n)‖ = 1/n → 0, but ‖xn‖ = 1 + 1/n �

‖x‖ = 1/2.

A necessary and sufficient condition for the implication ‖xn − x‖E → 0 ⇒
‖xn‖E → ‖x‖E , where E is a quasi-Banach space, has been proved by Aoki (see
Theorem 3 in [33]). We will show some useful sufficient condition for the above
implication, a conditionwhich is often applied in the studies of E (∗). Namely, in the fol-
lowing Lemma we assume that E is a quasi-Banach function space which is p-convex
with the constant 1 for some p > 0. Note that in the classical examples of sym-
metrization E (∗) (the Lorentz space E (∗) = �p,w, E (∗) = �φ with φ

(

0+) = 0, the

Marcinkiewicz space E (∗) = M (∗)
φ —see Sects. 4 and 6 for definitions, the generalized

Orlicz-Lorentz space which is a symmetrization of the Musielak–Orlicz space—see
[12,13]) the respective space E satisfies trivially this condition.

Lemma 3.4 Suppose E is a quasi-Banach function space which is p-convex for some
p > 0 with the constant 1. If ‖xn − x‖E → 0 then ‖xn‖E → ‖x‖E .

Proof If p ≥ 1 and E is p-convex with the constant 1, then E is 1-convex with the
constant 1 (see Theorem 4.2 in [32]), whence ‖·‖E is a norm. Consequently, we may
assume that 0 < p < 1. By the assumption F = E (1/p) is 1-convex with constant 1,
that is the functional ‖z‖F = (∥

∥|z|1/p
∥
∥

E

)p
is a norm. Suppose ‖xn − x‖E → 0 and

set yn = |xn|p, y = |x |p. Then yn, y ∈ E (1/p). Since 0 < p < 1 then the function
ϕ (u) = u1/p, u ≥ 0 is a convex function whence it is superadditive on R+, that is
ϕ (|u − v|) ≤ |ϕ (u) − ϕ (v)|, u, v ∈ R+. Consequently, by yn, y ≥ 0,

‖yn − y‖F =
(∥
∥
∥|yn − y|1/p

∥
∥
∥

E

)p ≤
(∥
∥
∥y1/p

n − y1/p
∥
∥
∥

E

)p

= (‖|xn| − |x |‖E )p ≤ (‖|xn − x |‖E )p → 0.

By the triangle inequality, ‖yn‖F → ‖y‖F . Thus

‖xn‖p
E = ‖|xn|‖p

E =
(∥
∥
∥|yn|1/p

∥
∥
∥

E

)p →
(∥
∥
∥|y|1/p

∥
∥
∥

E

)p = ‖x‖p
E ,

which finishes the proof. ��
Lemma 3.5 If xn → x globally in measure then x∗

n → x∗ globally in measure. In
particular, x∗

n (∞) → x∗ (∞).

Proof This fact has been shown in the proof of Theorem 3.5 in [8] under assumption
that x∗ (∞) = 0. Let a = x∗ (∞) > 0. By the assumption, x∗

n → x∗ a.e. (see property
11◦ in [29], page 67). First we claim that

x∗
n (∞) → x∗ (∞) . (3.1)
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Suppose this is not the case. Suppose b := lim sup x∗
n (∞) > a. Passing to a sub-

sequence if necessary we conclude that there is N0 such that x∗
n (∞) > 3

4b + 1
4a

for n > N0. Moreover, there is t0 ∈ I such that x∗ (t) < a+b
2 for t ≥ t0. Then

x∗
n (t) − x∗ (t) ≥ b−a

4 for t ≥ t0 and n > N0. This is a contradiction with the fact that
x∗

n → x∗ a.e.
If c := lim inf x∗

n (∞) < a then there is N0 such that x∗
n (∞) < a+c

2 for n ≥ N0
(passing to a subsequence if necessary). Consequently,

m

{

t ∈ I : xn (t) >
a + c

2

}

= m

{

t ∈ I : x∗
n (t) >

a + c

2

}

< ∞ for n ≥ N0.

Moreover, m
{

t ∈ I : x (t) > 3a+c
4

} = m
{

t ∈ I : x∗ (t) > 3a+c
4

} = ∞, whence

m

{

t ∈ I : |xn (t) − x (t)| >
a − c

4

}

= ∞ for n ≥ N0.

Thus xn � x globally in measure, which proves the claim (3.1).
Let ε > 0. There exists tε > 0 and N0 ∈ N such that

x∗(t) < x∗ (∞) + ε/4 for all t ≥ tε and
∣
∣x∗

n (tε) − x∗(tε)
∣
∣ < ε/4 for n ≥ N0.

Furthermore, by (3.1), there is N1 such that

∣
∣x∗

n (∞) − x∗ (∞)
∣
∣ < ε/4 for n ≥ N1.

Since x∗
n , for n ∈ N , and x∗ are nonincreasing functions,

m
({

t ∈ [tε,∞) : |x∗
n (t) − x∗(t)| > ε

}) = 0 for n ≥ max {N0, N1} .

Since x∗
n → x∗ a.e., x∗

n converges to x∗ locally in measure. Thus

m
({

t ∈ (0, tε] : |x∗
n (t) − x∗(t)| > ε

}) → 0.

Hence x∗
n converges to x∗ in measure. ��

Proposition 3.6 Suppose E is a quasi-Banach function space. If x is an Hl-point
(H+

l -point) of E then x is a point of order continuity.

Proof For a Banach function space the result follows from Proposition 2.1 in [11] (see
also [6, Proposition 1.1]). If x /∈ Ea , by Theorem 2.1, there is a sequence of pairwise
disjoint elements (xn)∞n=1 with 0 ≤ xn ≤ |x | and ‖xn‖ ≥ δ > 0. Taking zn = |x |− xn

we can finish the proof as in [11, Proposition 2.1]. ��
Lemma 3.7 Let E be a quasi-Banach function space. If x ≥ 0 is an H+

g -point of E,
then

∥
∥xχAk

∥
∥

E → 0, where Ak = {t ∈ I : x (t) < 1/k}. Moreover, if x (x ≥ 0) is
an Hg-point of E (H+

g -point of E), then
∥
∥xχBn

∥
∥

E → 0 for each sequence (Bn) of
measurable sets satisfying m (Bn) → 0.
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Proof See the proof of Remark 3.4 in [23]. For the second claim see Lemma 3.2 in
[8], still true for a quasi-norm (the symmetry of E is not necessary in the proof). ��
Remark 3.8 Clearly, the above Lemma is also true for an H+

l -point (Hl -point).

Theorem 3.9 Let E be an L-convex quasi-Banach function space and x ∈ E. Then
the following statements are equivalent:

(i) x is an Hg-point of E.
(ii) |x | is an Hg-point of E.
(iii) |x | is an H+

g -point of E.

Remark 3.10 For an Hl -point one can prove similarly the analogous result.

Proof of Theorem The implication (i) ⇒ (ii) follows the same way as in the proof of
Lemma 3.1 in [8] (also for a quasi-normed space, the assumption that E is L-convex
is not needed in this part). The implication (ii) ⇒ (iii) is obvious.
The implication (iii) ⇒ (i). We apply the proof of Lemma 3.5 from [23]. However,
we need to modify it essentially, so we present the details for reader’s convenience.
Let ‖xn‖ → ‖x‖ and xn → x in measure. Since for each η > 0 we have

m {t ∈ I : ||xn (t)| − |x (t)|| ≥ η} ≤ m {t ∈ I : |xn (t) − x (t)| ≥ η} → 0,

so |xn| → |x | in measure. By the assumption we conclude that

‖|xn| − |x |‖ → 0.

Applying Lemma 3.2, we find a subsequence
(∣
∣xnm

∣
∣
)

m of (|xn|)n , an element y ∈ E+
and a sequence 0 ≤ βm → 0 such that

∣
∣
∣
∣xnm

∣
∣ − |x |∣∣ ≤ βm y for each m. Let ε > 0.

Fix m0 satisfying ∥
∥βm0 y

∥
∥ < ε/16C4 (3.2)

where C = CE is from the C−triangle inequality for ‖·‖. Denote (∣
∣xnm

∣
∣
)∞

m=m0
still by

(|xn|)∞n=1 and (βm)∞m=m0
by (βn)∞n=1. We may assume that βn is decreasing, whence

||xn| − |x || ≤ βn y ≤ β1y and ‖β1y‖ < ε/16C4 (3.3)

for all n = 1, 2. Set u = |x | + β1y and

Bk = {t ∈ I : u (t) < 1/k} .

Since Bk ⊂ {t ∈ I : |x (t)| < 1/k}, by Lemma 3.7, we take k big enough to satisfy

∥
∥xχBk

∥
∥ < ε/16C3.

Applying the second inequality from (3.3) we conclude that

∥
∥uχBk

∥
∥ ≤ C

(∥
∥xχBk

∥
∥ + ∥

∥β1yχBk

∥
∥
)

< ε/8C2.
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Moreover, ‖|xn| − |x |‖ < ε/8C3 for sufficiently large n. Setting

Cn = {t ∈ I : 0 ≤ sgn [x (t) xn (t)] ≤ 1} and Dn = {t ∈ I : sgn [x (t) xn (t)] = −1} ,

we get

‖x − xn‖ ≤ C
∥
∥(|x | − |xn|) χCn

∥
∥+C2

∥
∥(x − xn) χDn∩Bk

∥
∥+C2

∥
∥(x − xn) χDn\Bk

∥
∥ .

Note that

C2
∥
∥(x − xn) χDn∩Bk

∥
∥ = C2

∥
∥(|x | + |xn|) χDn∩Bk

∥
∥

≤ C3 (∥
∥(|xn| − |x |) χDn∩Bk

∥
∥ + ∥

∥2 |x | χDn∩Bk

∥
∥
)

≤ C3
(

ε/8C3 + ε/8C3
)

.

Consequently,
‖x − xn‖ ≤ 3ε/8 + C2

∥
∥(x − xn) χDn\Bk

∥
∥ . (3.4)

Take

0 < δ <
ε

16kC4 min

{
1

‖β1y‖ ,
1

‖x‖
}

. (3.5)

Denote

Fk
n = {t ∈ Dn\Bk : |xn (t) − x (t)| > δ} ,

Gk
n = {t ∈ Dn\Bk : |xn (t) − x (t)| ≤ δ} .

Note that xn
m→ x and consequently m

(

Fk
n

) → 0 as n → ∞. Since |x | is H+
g -point,

by Lemma 3.7, we get
∥
∥
∥|x | χFk

n

∥
∥
∥ < ε/32C4 for sufficiently large n. Thus, by (3.3),

∥
∥(x − xn) χDn\Bk

∥
∥ ≤ C

∥
∥
∥(x − xn) χFk

n

∥
∥
∥ + C

∥
∥
∥(x − xn) χGk

n

∥
∥
∥

≤ C
∥
∥
∥(2 |x | + β1y) χFk

n

∥
∥
∥ + C

∥
∥
∥(x − xn) χGk

n

∥
∥
∥

< C2
(

2
∥
∥
∥|x | χFk

n

∥
∥
∥ +

∥
∥
∥β1yχFk

n

∥
∥
∥

)

+ C
∥
∥
∥(x − xn) χGk

n

∥
∥
∥ < ε/8C2 + C

∥
∥
∥(x − xn) χGk

n

∥
∥
∥

(3.6)

for sufficiently large n. Finally, divide set Gk
n in two subsets

Hk
n =

{

t ∈ Gk
n : |x (t)| ≥ 1

2k

}

and I k
n =

{

t ∈ Gk
n : β1y (t) ≥ 1

2k

}

.
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Note that Gk
n ⊂ Hk

n ∪ I k
n , because if t /∈ Hk

n ∪ I k
n then u (t) < 1/k so t ∈ Bk and

t /∈ Gk
n . Therefore, by (3.5),

∥
∥
∥(x − xn) χGk

n

∥
∥
∥ ≤ δC

(∥
∥
∥χHk

n

∥
∥
∥ +

∥
∥
∥χI k

n

∥
∥
∥

)

≤ δC
(∥
∥
∥2k |x | χHk

n

∥
∥
∥ +

∥
∥
∥2kβ1yχI k

n

∥
∥
∥

)

≤ 2kδC
(∥
∥
∥|x | χHk

n

∥
∥
∥ +

∥
∥
∥β1yχI k

n

∥
∥
∥

)

< ε/4C3. (3.7)

Combining (3.4), (3.6) and (3.7) we get

‖x − xn‖ ≤ 3ε/8 + C2
∥
∥(x − xn) χDn\Bk

∥
∥

≤ 3ε/8 + C2
(

ε/8C2 + C
∥
∥
∥(x − xn) χGk

n

∥
∥
∥

)

≤ ε/2 + C3ε/4C3 ≤ ε

for sufficiently large n. ��
Lemma 3.11 Suppose E is a symmetric quasi-Banach function space which is p-
convex with the constant 1 for some 0 < p < 1. Let F = E (1/p). If x is an Hg-point
of E then x p is an Hg-point of F.

Proof By Theorem 3.9 it is enough to show that |x |p is an H+
g -point of F . Assume

that 0 ≤ xn → |x |p globally in measure and ‖xn‖F → ∥
∥|x |p

∥
∥

F . Thus x1/p
n → |x |

globally in measure by Lemma 3.9 (i) from [23] (note that F is symmetric). Moreover,

∥
∥
∥x1/p

n

∥
∥
∥

p

E
= ‖xn‖F → ∥

∥|x |p
∥
∥

F = ‖|x |‖p
E ,

whence
∥
∥
∥x1/p

n

∥
∥
∥

E
→ ‖|x |‖E . Since |x | is an Hg-point of E (see Theorem 3.9), so

∥
∥
∥x1/p

n − |x |
∥
∥
∥

E
→ 0. Consequently,

∥
∥xn − |x |p

∥
∥

F =
∥
∥
∥

∣
∣xn − |x |p

∣
∣1/p

∥
∥
∥

p

E
≤

∥
∥
∥

∣
∣
∣x

1/p
n − |x |

∣
∣
∣

∥
∥
∥

p

E
→ 0,

because ϕ (u) = u1/p, u ≥ 0, is a convex function whence it is superadditive on R+.
��

The following Proposition has been proved in [8, Lemma 3.8] for a symmetric
Banach function space.

Proposition 3.12 Suppose E is a symmetric quasi-Banach function space which is
p-convex with the constant 1 for some p ∈ (0, 1). If x is an Hg-point of E and xn → x
globally in measure then ‖x‖E ≤ lim inf ‖xn‖E .

Proof Suppose xn → x globally in measure and xn, x ∈ E . Let F = E (1/p). Set
yn = |xn|p , y = |x |p. Then y, yn ∈ F . Moreover, |xn| → |x | in measure, whence
yn → y globally in measure, by Lemma 3.9 (ii) from [23] with ϕ (u) = u1/p. By
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Lemma 3.11, y is an Hg-point of F . We assume in the paper that E ∈ (F P), where
F P denotes the Fatou property defined in Sect. 2. Consequently, F ∈ (F P). Since F
is a symmetric Banach function space, by Lemma 3.8 in [8], we conclude that

‖|x |‖p
E = ‖y‖F ≤ lim inf ‖yn‖F = lim inf ‖|xn|‖p

E .

��
Lemma 3.13 Let E be a symmetric quasi-Banach function space.

(i) If x∗ (∞) = 0 and x ∈ E is an Hg-point in E, then x∗ is an Hg-point in E.
(ii) If x ∈ E is an Hl-point in E, then x∗ is an Hl-point in E.

Proof (i) We follow as in the proof of Theorem 3.3 in [8], applying additionally
Theorem 3.9, the implication (i) ⇒ (ii), which is true without the assumption that
E is L-convex. (ii) If x is an Hl -point, by Proposition 3.6 and Lemma 3.1, we have
x∗ (∞) = 0. Then the proof is analogous as in (i). ��
Lemma 3.14 Let E be a symmetric quasi-Banach function space on I . If x ∈ E is an
Hg-point, then for each sequence (dn) in L0 with 0 ≤ dn ≤ |x | and dn → 0 globally
in measure we have ‖dn‖E → 0.

Proof We follow as in the proof of Lemma 3.7 in [8], applying additionally Lem-
mas 3.13 and 3.7. ��
Theorem 3.15 Let E be a quasi-Banach function space and 0 ≤ x ∈ E. Consider
the following statements:

(1) The point x is an H+
g -point of E.

(2) (i) for each sequence (dn) ⊂ E+ such that dn ≤ x and dn → 0 globally in
measure we have ‖dn‖E → 0.

(ii) for each sequence (yn) ⊂ E+ such that x ≤ yn, yn → x globally in measure
and ‖yn‖E → ‖x‖E , we have ‖yn − x‖E → 0.

The implication (1) ⇒ (2) is satisfied provided E is symmetric. If E is p-convex with
the constant 1 for some p > 0, then the implication (2) ⇒ (1) holds.

Proof The implication (1) ⇒ (2) is true by Lemma 3.14.
The implication (2) ⇒ (1). Suppose 0 ≤ xn → x globally in measure, ‖xn‖E →
‖x‖E and xn, x ∈ E . Set

An = {t ∈ I : x (t) ≥ xn (t)} .

Then 0 ≤ (x − xn) χAn ≤ x . By (i) , we have
∥
∥(x − xn) χAn

∥
∥

E → 0. Clearly, we
may assume that 0 < p ≤ 1, since otherwise E is just 1-convex with the constant 1
(by Theorem 4.2 in [32]), whence it is a normed space and the proof below is simpler.
We have

xn ≤ max {xn, x} ≤ xn + (x − xn) χAn = [(

xn + (x − xn) χAn

)p]1/p

≤ [

x p
n + (

(x − xn) χAn

)p]1/p
,
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because the function ϕ (u) = u p for 0 < p ≤ 1 is subadditive on R+. Taking into
account that E is p-convex with the constant 1 we get

‖xn‖E ≤ ‖max {xn, x}‖E ≤
∥
∥
∥

[

x p
n + (

(x − xn) χAn

)p]1/p
∥
∥
∥

E

≤ (‖xn‖p
E + ∥

∥(x − xn) χAn

∥
∥p

E

)1/p
,

whence ‖max {xn, x}‖E → ‖x‖E . Since max {xn, x} → x globally in measure, by
(ii),

∥
∥(xn − x) χI\An

∥
∥

E = ‖max {xn, x} − x‖E → 0.

Thus ‖x − xn‖E → 0. ��
Theorem 3.16 Let E be a quasi-Banach function space and 0 ≤ x ∈ E. Consider
the following statements:

(1) The point x is an H+
l -point of E.

(2) (i) for each sequence (dn) ⊂ E+ such that dn ≤ x and dn → 0 locally in measure
we have ‖dn‖E → 0.

(ii) for each sequence (yn) ⊂ E+ such that x ≤ yn, yn → x locally in measure
and ‖yn‖E → ‖x‖E , we have ‖yn − x‖E → 0.

Then the implication (1) ⇒ (2) is true. If E is p-convex with the constant 1 then the
implication (2) ⇒ (1) holds.

Proof The implication (1) ⇒ (2) (i) follows from Proposition 3.6 and Theorem 2.1.
The proof of implication (2) ⇒ (1) follows as for H+

g -point in the above theorem. ��

4 Kadec–Klee properties in symmetrizations

For a quasi-Banach function space E on I = (0, 1) or I = (0,∞) define a space E (∗)

(symmetrization of E) as

E (∗) = {x ∈ L0(I ) : x∗ ∈ E},

with the functional ‖x‖E (∗) = ‖x∗‖E .
The dilation operator Ds, s > 0, is defined by Ds x(t) = x(t/s), t ∈ I if I =

(0,∞) and

Ds x(t) =
{

x(t/s) if t < min {1, s} ,

0 if s ≤ t < 1,

for t ∈ I = (0, 1). The operator Ds is bounded in any symmetric space E on I and
‖Ds‖E→E ≤ max(1, s) (see [34, Lemma 1] in the case I = (0, 1), [29, pp. 96–98]
for I = (0,∞) and [31, p. 130] for both cases). A. Kamińska and Y. Raynaud showed
that ‖ · ‖E (∗) is a quasi-norm if and only if there is a constant K > 0 such that

‖D2x∗‖E ≤ K ‖x∗‖E for all x∗ ∈ E, (4.1)
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(see Lemma 1.4 in [22]). In this case the quasi-norm constant CE (∗) is equal to K CE ,
where CE is the respective quasi-norm constant for the space E (see [22]). Therefore
we always assume in this section that the condition (4.1) is satisfied.

Let φ : I → (0,∞) be a quasi-concave function, that is, φ is positive, nondecreas-
ing and φ(t)/t is nonincreasing for t ∈ (0, m(I )). Then theMarcinkiewicz space M (∗)

φ

is defined as

M (∗)
φ = M (∗)

φ (I ) = {x ∈ L0(I ) : ‖x‖
M(∗)

φ

= sup
t∈I

φ(t)x∗(t) < ∞}.

Moreover, if φ : I → (0,∞) is a concave function, φ is positive and nondecreasing,
then the Lorentz function space �φ is given by the norm

‖x‖�φ =
∫

I
x∗(t)dφ(t) = φ(0+)‖x‖L∞(I ) +

∫

I
x∗(t)φ′(t)dt.

The Marcinkiewicz spaces M (∗)
φ and Lorentz spaces �φ are symmetric quasi-Banach

function spaces, symmetric Banach function spaces on I , respectively (see [3,29]).

Clearly, M (∗)
φ = (L∞ (φ))(∗). Moreover, �φ = (

L1
(

φ′))(∗)
provided φ

(

0+) = 0

(see [25] for some properties and more references). Clearly, L∞ (φ) , L1
(

φ′) are the
respective weighted spaces according to the definition (2.2), for example ‖x‖L1(φ′) =
∫

I |x(t)| φ′(t)dt .
The spaces E (∗) have been studied among others in the papers [12,13,21,22,24–

26]. Kamińska and Raynaud studied the relationships between the structure of E (∗)

and the structure of E (see [22]). The nature of our consideration is analogous.
Let P be a local property of a point x ∈ E (an Hg-point, an Hl -point, etc.). We say

that x = x∗ is a P∗-point provided it is a P-point but restricted to nonnegative and
nonincreasing elements only.

For example, a point x = x∗ is said to be an H∗
g -point of E (H∗

l -point of E)
whenever for any sequence (xn) ⊂ E, xn = x∗

n such that xn → x globally (resp.
locally) in measure and ‖xn‖E → ‖x‖E , we have ‖xn − x‖E → 0.

Similarly, for a global property G, we say that E has a property G∗ if E satisfies
the property G but restricted to nonnegative and nonincreasing elements only.

Namely, a space E is said to have H∗
g (H∗

l ) property provided each x = x∗ ∈ E is
an H∗

g -point of E (H∗
l -point of E).

Obviously, if E ∈ (G), then E ∈ (G∗). The natural question of the converse
implication has been considered in [5] (for rotundity properties) and in [24,25] (for
monotonicity properties and for an order continuity).

Lemma 4.1 Let E be a quasi-Banach function space.

(i) Suppose x = x∗ ∈ E is an H∗
g -point. Then

∥
∥xχAk

∥
∥

E → 0 as k → ∞, where
Ak = {t ∈ I : x (t) < 1/k}. In particular, if x∗ (∞) = 0 then

∥
∥xχ(n,∞)

∥
∥

E → 0
as n → ∞.

Proof See the proof of Remark 3.4 in [23]. ��
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The following remark will be important for the main results in this section.

Remark 4.2 Let E be a quasi-Banach function space and x = x∗ ∈ E . Each of the
following implications is not true in general:

(i) x is an H∗
g -point of E ⇒ x is an Hg-point of E .

(ii) x is an H∗
g -point of E ⇒ ∥

∥xχ(0,an)

∥
∥

E → 0 for any sequence an → 0.

(iii) x is an H∗
g -point of E ⇒ x is an Hg-point of E (∗).

Consider E = L∞ (w) with w (t) = 1 − t on I = (0, 1). Then E has no Hg-points.
Indeed, if 0 
= x ∈ E then there is a number δ > 0 and a measurable set A of
positive measure such that |x (t)| ≥ δ for t ∈ A. Moreover, we can assume that
A ⊂ [λ1, λ2] with λ1 < λ2 < 1. Take a sequence (An) of measurable subsets of
A with 0 < m (An) → 0. Then

∥
∥xχAn

∥
∥

E ≥ δ (1 − λ2) > 0, whence x is not an
Hg-point by Lemma 3.7. Let

x = χ(0,1).

Clearly,
∥
∥xχ(0,1/n)

∥
∥

E � 0. We will show that x is an H∗
g -point of E . Consider a

sequence (xn) ⊂ E,xn = x∗
n such that xn → x globally in measure and ‖xn‖E →

‖x‖E . Note that ‖x‖E = 1. Moreover, xn
(

0+) → 1 because otherwise ‖xn‖E �

‖x‖E . Let ε > 0. Take a number η satisfying 1 − ε/2 < η < 1. Since xn → x
globally in measure and xn = x∗

n , so xn (η) → 1. Thus xn → x uniformly in (0, η].
Consequently,

∥
∥(xn − x) χ(0,η]

∥
∥

L∞ < ε/2 for sufficiently large n and

‖xn − x‖E ≤ ∥
∥(xn − x) χ(0,η]

∥
∥

E +∥
∥(xn − x) χ(η,1)

∥
∥

E ≤ (

w
(

0+)

ε/2 + 1 − η
)

< ε

for sufficiently large n.
Note also that condition (4.1) is satisfied for the space E , because for each x =

x∗ ∈ E we have ‖D2x‖E = ‖x‖E .
Finally, x is not an Hg-point of E (∗). Indeed, let xn = χ(0,1/2] + χ(1/2+1/n,1). Then
xn → x globally in measure, ‖xn‖E (∗) = ‖x‖E (∗) . On the other hand, ‖xn − x‖E (∗) =
1.

In view Remark 4.2, two assumptions in the below lemma are independent. More-
over, without the second assumption this lemma is not true in general.

Lemma 4.3 Let E be a quasi-Banach function space on I (not necessary symmetric).
If x = x∗ ∈ E is an H∗

g -point and
∥
∥xχ(0,an)

∥
∥

E → 0 for any sequence an → 0, then

for each sequence (dn) in L0 with 0 ≤ dn = d∗
n ≤ x and dn → 0 globally in measure

we have ‖dn‖E → 0.

Proof An analogous result for an Hg-point has been proved in [8, Lemma 3.7] under
the assumption that E is a symmetric Banach function space on I . Although the below
proof is similar we present it for the reader’s convenience (because of the essential
change in the assumptions). Assume for the contrary that 0 ≤ dn = d∗

n ≤ x , dn → 0
globally in measure and ‖dn‖E � 0. Passing to a subsequence if necessary, we have
‖dn‖E ≥ δ > 0 for some δ > 0. Setting An (ε) = {t ∈ I : dn (t) > ε}, we have
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m (An (ε)) → 0 for each ε > 0, whence An (ε) = (0, an (ε)) for some sequence
an → 0. By the assumption,

∥
∥dnχAn(ε)

∥
∥

E ≤ ∥
∥xχ(0,an(ε))

∥
∥

E → 0

for each ε > 0. Passing to a subsequence if necessary, we may assume that

∥
∥dnχAn(εn)

∥
∥

E < 1/n and m (An (εn)) < 1/n,

where εn = 1/n.
Suppose x∗ (∞) > 0. Then ‖χI ‖E < ∞. Notice that

∥
∥dnχI\An(εn)

∥
∥

E ≥ δ/2CE for
sufficiently large n ∈ N . Therefore

δ/2CE ≤ ∥
∥dnχI\An(εn)

∥
∥

E ≤ 1

n
‖χI ‖E

for n ∈ N large enough, a contradiction.
Consequently, x∗ (∞) = 0. For each εn there is tεn satisfying x∗ (

tεn

) ≤ εn . Set

tεn = inf
{

t : x∗ (t) ≤ εn
}

.

First we claim that
∥
∥εnχ(0,tεn )

∥
∥

E → 0. (4.2)

Otherwise, set zn = (x∗ − εn) χ(0,tεn ). Then zn is a nonincreasing function, that is
z∗

n = zn for each n. Moreover, |zn − x∗| = εnχ(0,tεn ) + x∗χ[tεn ,∞). Note that tεn →
∞ when m (supp x∗) = ∞ and tεn → m (supp x∗) if m (supp x∗) < ∞. In both
cases we conclude that zn ↑ x∗ globally in measure. Consequently, by E ∈ (F P),
‖zn‖E → ‖x∗‖E . On the other hand,

∥
∥zn − x∗∥∥

E ≥ ∥
∥εnχ(0,tεn )

∥
∥

E � 0,

a contradiction with x∗ is an H∗
g -point. This proves the claim. Note that

∥
∥dnχ(0,tεn )∩An(εn)

∥
∥

E ≤ ∥
∥dnχAn(εn)

∥
∥

E → 0.

Therefore, by (4.2)

∥
∥dnχ(0,tεn )

∥
∥

E ≤ CE
∥
∥dnχ(0,tεn )∩An(εn)

∥
∥

E + CE
∥
∥dnχ(0,tεn )\An(εn)

∥
∥

E → 0.

Consequently,
δ/2CE ≤ ∥

∥dnχ(tεn ,∞)

∥
∥

E ≤ ∥
∥x∗χ(tεn ,∞)

∥
∥

E

for sufficiently large n ∈ N . Taking yn = x∗χ(0,tεn ), we conclude that yn = y∗
n → x∗

globally in measure and ‖yn‖E → ‖x∗‖E . On the other hand, ‖yn − x∗‖E ≥ δ/2CE

for sufficiently large n ∈ N . This means x∗ is not an H∗
g -point, a contradiction. It

finishes the proof. ��
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Definition We say that E satisfies the condition (+) if for each sequence (yn) in E
with

(

y∗
n

)

in E the condition
∥
∥y∗

n

∥
∥

E → 0 implies ‖yn‖E → 0.

Examples 1. Let E = L p (ϕ) , p > 0 with ϕ : R+ → R+ such that ϕ ↓ and
∫ t
0 ϕ (s) ds < ∞ for t > 0. Then, applying Hardy-Littlewood inequality, we
conclude that E ∈ (+).

2. Let E = L∞ (ϕ) with ϕ : R+ → R+ such that ϕ ∈ L∞, ϕ is continuous on R+
and ϕ

(

0+)

> 0. Then E ∈ (+). Indeed, if
∥
∥y∗

n

∥
∥

E → 0 then y∗
n

(

0+) → 0. Thus
‖yn‖L∞ → 0, whence

‖yn‖E = supess
t

yn (t) ϕ (t) ≤ ‖yn‖L∞ ‖ϕ‖L∞ → 0.

3. We have also L∞ (t) /∈ (+).

Proposition 4.4 Let E be a quasi-Banach function space. Suppose x = x∗ ∈ E and
∥
∥x∗χ(0,an)

∥
∥

E → 0 for any sequence an → 0. If x is an H∗
g -point of E then:

(i) for each sequence (dn) ⊂ E+ such that dn = d∗
n ≤ x and dn → 0 globally in

measure we have ‖dn‖E → 0.
(ii) for each sequence (xn) ⊂ E+ such that x ≤ xn = x∗

n , xn → x globally in measure
and ‖xn‖E → ‖x‖E , we have ‖xn − x‖E → 0.

If, additionally, E ∈ (+) and E is p-convex with the constant 1 for some p > 0, then
the converse implication is true.

Proof The necessity follows from Lemma 4.3 (point (i)) and from the definition-point
(ii).
The sufficiency. Suppose 0 ≤ xn = x∗

n → x globally in measure and ‖xn‖E → ‖x‖E .
Set

An = {t ∈ I : x (t) ≥ xn (t)} .

Then0 ≤ (x − xn) χAn ≤ x anddn := [

(x − xn) χAn

]∗ ≤ x . Thendn → 0 globally in
measure, by Lemma 3.5. By (i), we have ‖dn‖E → 0, whence

∥
∥(x − xn) χAn

∥
∥

E → 0,
because E ∈ (+). Finally, we follow as in the proof of Theorem 3.15. ��

Applying Lemma 3.4 we conclude immediately.

Remark 4.5 Suppose E is a quasi-Banach function space which is p-convex with
the constant 1 for some p > 0. If x is an Hg-point of E , xn → x globally in
measure and ‖xn‖E → ‖x‖E , then

∥
∥xnχAn

∥
∥

E → ∥
∥xχAn

∥
∥

E for each sequence (An)

of measurable sets. Similarly, if x = x∗ is an H∗
g -point of E , xn = x∗

n , xn → x
globally in measure and ‖xn‖E → ‖x‖E , then

∥
∥xnχAn

∥
∥

E → ∥
∥xχAn

∥
∥

E for each
sequence (An) of measurable sets.

Remark 4.6 Let E be a quasi-Banach function space. If x∗ is an H∗
g -point of E then

ax∗ is an H∗
g -point of E for each a > 0. Indeed, suppose xn = x∗

n → ax∗ globally in
measure and ‖xn‖E → ‖ax∗‖E . Set yn = xn/a. Then ‖yn‖E → ‖x∗‖E and yn → x∗
globally in measure. By the assumption, ‖yn − x∗‖E → 0. Thus ‖xn − ax∗‖E → 0.
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Lemma 4.7 Suppose E is a quasi-Banach function space and x ∈ E (∗)\ {0}. If x is
an Hg-point of E (∗) then

∥
∥x∗χ(0,an)

∥
∥

E → 0 for any sequence an → 0.

Proof Let an → 0. We will prove that
∥
∥x∗χ(0,an)

∥
∥

E → 0. Set

C = {t : |x(t)| > x∗(∞)}.

We divide the proof into parts.
(a) Suppose m (C) > 0. Then there exists a measure preserving transformation
σ : C → (0, m(C)) such that x∗ ◦ σ = |x | m-a.e. on C (see Lemma 2.2 in [7]).
Passing to a subsequence if necessary, we may assume that an ≤ m (C) for each
n. Take a sequence (An) in C such that m (An) = an and x∗χ(0,an) ◦ σ = |x |χAn .
Moreover,

∥
∥x∗χ(0,an)

∥
∥

E = ∥
∥
(

x∗χ(0,an)

)∗∥
∥

E = ∥
∥
(

x∗χ(0,an) ◦ σ
)∗∥

∥
E

= ∥
∥
(|x |χAn

)∗∥∥
E = ∥

∥|x |χAn

∥
∥

E (∗) .

By the assumption, |x | is an Hg-point of E (∗) (see Theorem3.9, this part workswithout
the assumption that E is L-convex ). Then

∥
∥|x |χAn

∥
∥

E (∗) → 0, by Lemma 3.7.

(b) Assume that m (C) = 0. Then I = (0,∞) and x∗ = cχI .
(b1) If xχA = c for some set A with m (A) > 0, we choose sequence (An) in A such

that m (An) = an and

∥
∥x∗χ(0,an)

∥
∥

E = ∥
∥
(|x |χAn

)∗∥
∥

E = ∥
∥|x |χAn

∥
∥

E (∗) → 0.

(b2) Assume that x (t) < c for all t ∈ I . Then we find a sequence (An) such that
m (An) = an and |x |χAn → cχAn uniformly, whence

(|x |χAn

)∗ → x∗χ(0,an)

uniformly. Moreover,

∥
∥
(|x |χAn

)∗∥
∥

E = ∥
∥|x |χAn

∥
∥

E (∗) → 0

as above. Since χI ∈ E , we get

∥
∥x∗χ(0,an)

∥
∥

E ≤ CE
(∥
∥x∗χ(0,an) − (|x |χAn

)∗∥
∥

E + ∥
∥
(|x |χAn

)∗∥
∥

E

) → 0.

��
Definition Let E be a quasi-Banach function space. We say that an element x = x∗ ∈
E satisfies the condition (∗), we write x ∈ (∗), if for all (yn) , y in E the conditions
0 ≤ y ≤ x , 0 ≤ yn ≤ x , yn → y globally in measure imply that ‖yn‖E → ‖y‖E .

Example 4.8 Suppose E is a quasi-Banach function space which is p-convex with the
constant 1 for some p > 0 and x = x∗ ∈ E . Note that we may apply Lemma 3.4.
Consequently,
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(i) If x ∈ Ea , then x ∈ (∗). Indeed, taking elements y, yn as in the definition we
get 0 ≤ |yn − y| ≤ x , |yn − y| → 0 globally in measure. Since x ∈ Ea , applying
Theorem 2.1 we obtain ‖yn − y‖ → 0. Thus, ‖yn‖E → ‖y‖E , by Lemma 3.4.

(ii)Suppose E ∈ (+). If x is an H∗
g -point of E ,

∥
∥x∗χ(0,an)

∥
∥

E → 0 for any sequence
an → 0, then x ∈ (∗) (see Remark 4.10 below).

(iii) If x is an Hg-point and E is symmetric then, by Lemma 3.14, x ∈ (∗).
Remark 4.2 shows that in the following theorem:

(1) the implication (i) ⇒ (ii) is not true in general without the assumption that
∥
∥x∗χ(0,an)

∥
∥

E → 0 for any sequence an → 0,
(2) two assumptions in condition (i) below are independent.

Theorem 4.9 Let E be a quasi-Banach function space and x ∈ E (∗)\ {0}. Consider
the following statements:

(i) (a)
∥
∥x∗χ(0,an)

∥
∥

E → 0 for any sequence an → 0.
(b) The point x∗ is an H∗

g -point of E.

(ii) The point x is an Hg-point of E (∗).
(1) Suppose E is p-convex with the constant 1 for some p > 0. Assume that

x∗ ∈ (∗) when χI /∈ E. Then (i) ⇒ (ii).
(2) The implication (ii) ⇒ (i) (a) is true. If, additionally, E ∈ (+) and x∗ (∞) =

0, then (ii) ⇒ (i) (b).

Remark 4.10 If we assume additionally in the implication (i) ⇒ (ii) that E ∈ (+)

then the condition x∗ ∈ (∗) follows from (i) automatically. Indeed, suppose condition
(i) holds, E is p-convex with the constant 1 for some p > 0 and E ∈ (+). We prove
that x∗ ∈ (∗). Let 0 ≤ y ≤ x∗, 0 ≤ yn ≤ x∗, yn → y globally in measure. Then
|yn − y| ≤ x∗ and |yn − y| → 0 globally in measure. Thus (yn − y)∗ → 0 globally
in measure by Lemma 3.5. By Lemma 4.3 and the assumption that x∗ is an H∗

g -point
of E ,

∥
∥(yn − y)∗

∥
∥

E → 0 and, since E ∈ (+), ‖yn − y‖E → 0. Finally, Lemma 3.4
implies that ‖yn‖E → ‖y‖E .

Proof of Theorem (i) ⇒ (ii). Suppose (xn) ⊂ E (∗), xn → x globally in measure and
‖xn‖E (∗) → ‖x‖E (∗) . Thus

∥
∥x∗

n

∥
∥

E → ‖x∗‖E . We need to show that

‖xn − x‖E (∗) → 0.

Set ε > 0. We divide the proof into several parts.
I. Suppose χI ∈ E . Denote

An (ε) =
{

t ∈ I : |xn (t) − x (t)| >
ε

4CE (∗) ‖χI ‖E

}

.

Then

‖xn − x‖E (∗) ≤ CE (∗)

[∥
∥(xn − x) χAn(ε)

∥
∥

E (∗) +
∥
∥
∥(xn − x) χA′

n(ε)

∥
∥
∥

E (∗)

]

,
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where A
′
n (ε) = I\An (ε). Note that

∥
∥
∥(xn − x) χA′

n(ε)

∥
∥
∥

E (∗)
< ε/4CE (∗) for each n.

Moreover,

∥
∥(xn − x) χAn(ε)

∥
∥

E (∗) ≤ CE (∗)

[∥
∥
(

xnχAn(ε)

)∗∥∥
E + ∥

∥
(

xχAn(ε)

)∗∥∥
E

]

.

By the assumption m (An (ε)) → 0. Then
∥
∥x∗χ(0,m(An(ε)))

∥
∥

E → 0, by (i) (a).

Note that
(

xχAn(ε)

)∗ ≤ x∗χ(0,m(An(ε))). Consequently, there is N0 such that
∥
∥
(

xχAn(ε)

)∗∥∥
E < ε/

(

4C2
E (∗)

)

for n ≥ N0. Similarly,
(

xnχAn(ε)

)∗ ≤ x∗
nχ(0,m(An(ε))).

Note that x∗
n → x∗ globally in measure (see Lemma 3.5). By Remark 4.5,

∥
∥x∗

nχ(0,m(An(ε)))

∥
∥

E → ∥
∥x∗χ(0,m(An(ε)))

∥
∥

E , since x∗ is an H∗
g -point. Thus there is

N1 such that
∥
∥
(

xnχAn(ε)

)∗∥∥
E < ε/

(

4C2
E (∗)

)

for n ≥ N1. Finally, ‖xn − x‖E (∗) < ε

for n ≥ max {N0, N1}.
II. Assume that χI /∈ E . It means u∗ (∞) = 0 for each u ∈ E (∗). Denote

Ak = {t ∈ I : |x (t)| < 1/k} and Ãk = {

t ∈ I : x∗ (t) < 2/k
}

.

Note that
(

xχAk

)∗ ≤ x∗ and
(

xχAk

)∗ → 0 globally in measure, whence by

Lemma 4.3,
∥
∥
(

xχAk

)∗∥∥
E → 0. Moreover,

∥
∥
∥x∗χ Ãk

∥
∥
∥

E
→ 0 by Lemma 4.1. Thus

there is k0 such that

∥
∥
∥

(

xχAk0

)∗∥∥
∥

E
≤ ε/

(

16C3
E (∗)

)

and
∥
∥
∥x∗χ Ãk0

∥
∥
∥

E
≤ ε

16C3
E (∗)CE

. (4.3)

1. We prove that there is N0 ∈ N such that

∥
∥
∥(xn − x) χAk0

∥
∥
∥

E (∗)
≤ ε/

(

2CE (∗)

)

(4.4)

for all n ≥ N0. Set

An
k0 = {

t ∈ Ak0 : |xn (t) − x (t)| ≥ 1/k0
}

and

Bn
k0 = {

t ∈ Ak0 : |xn (t) − x (t)| < 1/k0
}

.

Then m
(

An
k0

)

→ 0. By the assumption (a), there is N1 such that

∥
∥
∥

(

xχAn
k0

)∗∥
∥
∥

E
≤

∥
∥
∥
∥

x∗χ(

0,m
(

An
k0

)]

∥
∥
∥
∥

E
≤ ε/

(

16C3
E (∗)

)

for n ≥ N1. Note that x∗
n → x∗ globally in measure (see Lemma 3.5). Since

(xnχAn
k0

)∗ ≤ x∗
nχ(

0,m(An
k0

)
] and x∗ is an H∗

g -point, by Remark 4.5, there is N2 ≥ N1

such that ∥
∥
∥

(

xnχAn
k0

)∗∥∥
∥

E
< ε/

(

8C3
E (∗)

)

(4.5)
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for n ≥ N2. Moreover, by (4.3),

∥
∥
∥

(

xχBn
k0

)∗∥∥
∥

E
≤

∥
∥
∥

(

xχAk0

)∗∥∥
∥

E
≤ ε/

(

16C3
E (∗)CE

)

. (4.6)

Now we estimate the norm
∥
∥
∥

(

xnχBn
k0

)∗∥
∥
∥

E
. Note that |xn (t)| < 2/k0 for t ∈ Bn

k0
,

whence

(

xnχBn
k0

)∗
χI\ Ãk0

≤ x∗χI\ Ãk0
and

(

xχBn
k0

)∗
χI\ Ãk0

≤ x∗χI\ Ãk0
.

Moreover, xnχBn
k0

→ xχBn
k0
globally inmeasure, so

(

xnχBn
k0

)∗ →
(

xχBn
k0

)∗
globally

inmeasure (seeLemma3.5). The assumption x∗ ∈ (∗) gives
∥
∥
∥

(

xnχBn
k0

)∗
χI\ Ãk0

∥
∥
∥

E
→

∥
∥
∥

(

xχBn
k0

)∗
χI\ Ãk0

∥
∥
∥

E
. Thus, by (4.6), there is N3 such that

∥
∥
∥

(

xnχBn
k0

)∗
χI\ Ãk0

∥
∥
∥

E
≤ ε

8C3
E (∗)CE

(4.7)

for n ≥ N3. Moreover,
(

xnχBn
k0

)∗
χ Ãk0

≤ x∗
nχ Ãk0

and
∥
∥
∥x∗

nχ Ãk0

∥
∥
∥

E
→

∥
∥
∥x∗χ Ãk0

∥
∥
∥

E
,

by Remark 4.5. Consequently, by (4.3), there is N4 such that

∥
∥
∥

(

xnχBn
k0

)∗
χ Ãk0

∥
∥
∥

E
≤

∥
∥
∥x∗

nχ Ãk0

∥
∥
∥

E
≤ ε

8C3
E (∗)CE

(4.8)

for n ≥ N4. Summing up the above conditions (4.3), (4.5), ( 4.7) and (4.8), taking
N0 = max {N1, N2, N3, N4} we obtain

∥
∥
∥(xn − x) χAk0

∥
∥
∥

E (∗)
≤ CE (∗)

[∥
∥
∥xnχAk0

∥
∥
∥

E (∗)
+

∥
∥
∥xχAk0

∥
∥
∥

E (∗)

]

≤ ε/
(

8CE (∗)

) + C2
E (∗)

[∥
∥
∥xnχAn

k0

∥
∥
∥

E (∗)
+

∥
∥
∥xnχBn

k0

∥
∥
∥

E (∗)

]

≤ ε/
(

4CE (∗)

) + C2
E (∗)

∥
∥
∥xnχBn

k0

∥
∥
∥

E (∗)

= ε/
(

4CE (∗)

) + C2
E (∗)

∥
∥
∥

(

xnχBn
k0

)∗∥
∥
∥

E

≤ ε/
(

4CE (∗)

) + C2
E (∗)CE

[∥
∥
∥

(

xnχBn
k0

)∗
χ Ãk0

∥
∥
∥

E
+

∥
∥
∥

(

xnχBn
k0

)∗
χI\ Ãk0

∥
∥
∥

E

]

≤ ε/
(

4CE (∗)

) + ε/
(

4CE (∗)

) = ε/
(

2CE (∗)

)

for n ≥ N0.

2. Now we estimate

∥
∥
∥
∥

[

(xn − x) χA
′
k0

]∗∥∥
∥
∥

E
, where A

′
k0

= I\Ak0 . Set

Cn =
{

t ∈ A
′
k0 : |xn (t)| ≤ 2 |x (t)|

}

and Dn =
{

t ∈ A
′
k0 : |xn (t)| > 2 |x (t)|

}

.
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Note again that

∥
∥
∥
∥
(xn − x) χA

′
k0

∥
∥
∥
∥

E (∗)

≤ CE (∗)

{∥
∥
[

(xn − x) χCn

]∗∥∥
E + ∥

∥
[

(xn − x) χDn

]∗∥∥
E

}

.

We have
∣
∣(xn (t) − x (t)) χCn

∣
∣ ≤ 3 |x (t)| χCn ≤ 3 |x (t)|, whence (

(xn − x) χCn

)∗ ≤
3x∗. Since (xn − x) χCn → 0 globally in measure, so

(

(xn − x) χCn

)∗ → 0 globally
in measure (see Lemma 3.5). By Lemma 4.3,

∥
∥
(

(xn − x) χCn

)∗∥∥
E → 0, because 3x∗

is an H∗
g -point (see Remark 4.6). Thus, there is N5 such that

∥
∥
(

(xn − x) χCn

)∗∥
∥

E < ε/
(

8C2
E (∗)

)

for n ≥ N5.

We have |(xn − x) (t)| ≥ |x (t)| ≥ 1/k0 for t ∈ Dn . Thus m (Dn) → 0. Since
(

xχDn

)∗ ≤ x∗ and
(

xχDn

)∗ → 0 globally in measure, there is N6 such that
∥
∥
(

xχDn

)∗∥
∥

E < ε/
(

8C3
E (∗)

)

for n ≥ N6, by Lemma 4.3. Furthermore,
[

xnχDn

]∗ ≤
x∗

nχ(0,m(Dn)) and
∥
∥x∗χ(0,m(Dn))

∥
∥ → 0 by the assumption (i) (a). Consequently,

∥
∥x∗

nχ(0,m(Dn))

∥
∥ → 0, by Remark 4.5. Therefore, there is N7 such that

∥
∥
(

xnχDn

)∗∥∥
E

< ε/
(

8C3
E (∗)

)

for n ≥ N7. Consequently, for n ≥ max {N5, N6, N7}, we have
∥
∥
∥
∥
(xn − x) χA

′
k0

∥
∥
∥
∥

E (∗)

≤ ε/
(

8CE (∗)

) + CE (∗)

∥
∥
[

(xn − x) χDn

]∗∥
∥

E

≤ ε/
(

8CE (∗)

) + C2
E (∗)

[∥
∥
[

xχDn

]∗∥∥
E + ∥

∥
[

xnχDn

]∗∥∥
E

]

≤ ε/
(

2CE (∗)

)

.

Summing up cases 1 and 2 we obtain

‖xn − x‖E (∗) ≤ CE (∗)

(∥
∥
∥(xn − x) χAk0

∥
∥
∥

E (∗)
+

∥
∥
∥
∥
(xn − x) χA

′
k0

∥
∥
∥
∥

E (∗)

)

< ε for n ≥ max {N1, . . . , N7} .

(ii) ⇒ (i). The condition
∥
∥x∗χ(0,an)

∥
∥

E → 0 for any sequence an → 0 follows from
Lemma 4.7.
We prove the condition (b). Let (xn) ⊂ E, xn = x∗

n and x∗
n → x∗ globally in

measure and
∥
∥x∗

n

∥
∥

E → ‖x∗‖E . Since x∗ (∞) = 0, there is a measure preserving
transformation:

(I) γ : I → I such that x∗ ◦ γ = |x | a.e. when m (supp x) < ∞,
(II) γ : supp x → (0,∞) such that x∗◦γ = |x | a.e. on supp x whenm (supp x) = ∞

(see Lemma 2 in [19]).

Set x̃n = xn ◦ γ in the case (I) and

x̃n =
{

xn (γ (t)) if t ∈ supp x,

0 if t /∈ supp x,
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in the case (II). Then x̃n → |x | in measure. Moreover,

‖xn‖E = ∥
∥x∗

n

∥
∥

E = ∥
∥(xn ◦ γ )∗

∥
∥

E = ∥
∥(x̃n)∗

∥
∥

E = ‖x̃n‖E (∗) ,

whence ‖x̃n‖E (∗) → ‖|x |‖E (∗) . Since x is an Hg-point of E (∗), by Theorem 3.9, |x | is
an Hg-point of E (∗)(note that this implication is true without the assumption that E is
L-convex). In consequence,

∥
∥
(

x∗
n − x∗)∗∥∥

E = ∥
∥
((

x∗
n − x∗) ◦ γ

)∗∥∥
E = ∥

∥(x̃n − |x |)∗∥∥E = ‖x̃n − |x |‖E (∗) → 0.

Since E ∈ (+), we have
∥
∥x∗

n − x∗∥∥
E → 0 as desired. ��

Remark 4.11 In Theorem 4.9 the implication (ii) ⇒ (i) (b) is not true in general
without the assumption that E ∈ (+). Let E = L1(0, 1/2]⊕L∞(1/2, 1) on I = (0, 1)
with the norm

‖x‖E = ∥
∥xχ(0,1/2]

∥
∥

L1 + ∥
∥xχ(1/2,1)

∥
∥

L∞ .

Clearly, E /∈ (+), it is enough to consider xn = χ[1/2,1/2+1/n]. We need to show that
‖ · ‖E (∗) is a quasi-norm or equivalently that there is a constant C > 0 such that

‖D2x∗‖E ≤ C ‖x∗‖E for all x∗ ∈ E .

Let x = x∗ ∈ E . Then

∫ 1/2

0
(D2x) (s) χ(0,1/2) (s) ds =

∫ 1/2

0
x (s/2) ds = 2

∫ 1/4

0
x (s) ds ≤ 2 ‖x‖E .

Moreover, D2x = (D2x)∗,

∥
∥(D2x) χ(1/2,1]

∥
∥

L∞ ≤ D2x (1/2) = x (1/4)

and
‖x‖E ≥ ∥

∥xχ(0,1/2]
∥
∥

L1 ≥ ∥
∥xχ(0,1/4]

∥
∥

L1 ≥ x (1/4) /4.

Thus
∥
∥(D2x) χ(1/2,1]

∥
∥

L∞ ≤ 4‖x‖E . Consequently,

‖D2x‖E = ∥
∥(D2x) χ(0,1/2]

∥
∥

L1 + ∥
∥(D2x) χ(1/2,1]

∥
∥

L∞ ≤ 6‖x‖E .

Set
x = χ(0,1/2] + χ(3/4,1).

Then x∗ = χ(0,3/4] and ‖x‖E (∗) = ‖x∗‖E = 3/2. Taking xn = χ(0,3/4+1/n], we have
xn = x∗

n , ‖xn‖E = 3/2 and x∗
n → x∗ globally inmeasure. However,

∥
∥x∗

n − x∗∥∥
E = 1,

whence x∗ is not an H∗
g -point of E .
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We will prove that x is an Hg-point of E (∗). Let (xn) ⊂ E (∗) be a sequence such
that xn → x globally in measure and ‖xn‖E (∗) → ‖x‖E (∗) . Let ε > 0. Denote

An (ε) =
{

t ∈ I : |xn (t) − x (t)| >
ε

4 ‖χI ‖E (∗)

}

.

Note that
∥
∥(xn − x) χI\An(ε)

∥
∥

E (∗) ≤ ε/4. (4.9)

Moreover,

∥
∥(xn − x) χAn(ε)

∥
∥

E (∗) ≤ 6
(∥
∥xnχAn(ε)

∥
∥

E (∗) + ∥
∥xχAn(ε)

∥
∥

E (∗)

)

.

Since m (An (ε)) → 0, so relabelling, if necessary, we assume that m (An (ε)) ≤
1/2 for each n and consequently both norms above reduce to L1 (0, 1/2]. Then
∥
∥xχAn(ε)

∥
∥

E (∗) → 0. Set

A1
n = {t ∈ An (ε) : xn (t) ≤ 2} and A2

n = {t ∈ An (ε) : xn (t) > 2} .

Then
∥
∥
∥xnχA1

n

∥
∥
∥

E (∗)
→ 0. Furthermore, x∗

n → x∗ globally in measure, by Lemma 3.5.

Consequently, x∗
n (t0) → 1 for each 0 < t0 < 3/4. Thus

∥
∥
∥xnχA2

n

∥
∥
∥

E (∗)
→ 0

because otherwise we would get a contradiction with
∥
∥x∗

n

∥
∥

E → ‖x∗‖E . Summing
up, ‖xn − x‖E (∗) ≤ ε for sufficiently large n.

If E is a symmetric Banach function space then E (∗) ≡ E and all assumptions
of Theorem 4.9 are satisfied. Therefore, from Theorem 4.9 and Remark 4.10, we get
immediately.

Corollary 4.12 Suppose E is a symmetric Banach function space.

(i) If x∗ is an H∗
g -point of E and

∥
∥x∗χ(0,an)

∥
∥

E → 0 for any sequence an → 0 then
x is an Hg-point of E.

(ii) The converse implication is true if we assume additionally that x∗ (∞) = 0.

Remark 4.13 The point (i) in above Corollary is an essential generalization of The-
orem 3.5 in [8], because we don’t need the assumption that x ∈ Ea . Moreover, our
assumption of (i) is weaker than x∗ is an Hg-point of E which is used in Theorem 3.5
in [8].

It is known that the following useful equivalence is true in order continuous sym-
metric Banach function space: ‖xn − x‖ → 0 if and only if xn → x globally in
measure and

∥
∥x∗

n − x∗∥∥ → 0 (see Corollary 1.6 in [6]). Later the same result has
been proved under a weaker assumption that x ∈ Ea ([10, Proposition 2.4]). Now
we will show that such a characterization is also true under the assumptions that x∗
is an H∗

g -point of E and
∥
∥x∗χ(0,an)

∥
∥

E → 0 for any sequence an → 0. Recall that
properties OC and Hg are independent (see the discussion in [8], Section 5).
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Proposition 4.14 Suppose E is a symmetric Banach function space, x∗ is an H∗
g -point

of E and
∥
∥x∗χ(0,an)

∥
∥

E → 0 for any sequence an → 0. The following statements are
equivalent:

(i) ‖xn − x‖E → 0.
(ii) xn → x globally in measure and

∥
∥x∗

n − x∗∥∥
E → 0.

Proof The implication (i) ⇒ (ii). Suppose ‖xn − x‖E → 0. Then, of course, xn → x
globally in measure, since E is symmetric. Moreover,

∥
∥x∗

n

∥
∥

E = ‖xn‖E → ‖x‖E =
‖x∗‖E . On the other hand, x∗

n → x∗ globally in measure, by Lemma 3.5. Thus
∥
∥x∗

n − x∗∥∥
E → 0 because x∗ is an H∗

g -point of E .
The implication (ii) ⇒ (i). By the assumption, xn → x globally in measure and

∥
∥x∗

n

∥
∥

E → ‖x∗‖E . Applying the proof of Theorem 4.9, the implication (i) ⇒ (ii), we
conclude that ‖xn − x‖E → 0. ��
Remark 4.15 Notice that if x∗ is an Hg-point of E then the assumptions of the above
proposition are satisfied. Moreover, if x∗ (∞) = 0, we may replace the assumptions
in the above proposition by x is an Hg-point of E (see Corollary 4.12).

Recall that 0 ≤ x ∈ E is called a point of upper monotonicity (x is a U M-point
briefly) of E whenever for each y ≥ x and y 
= x we have ‖y‖ > ‖x‖ (see for
example [25]). The space E is called strictly monotone (E ∈ (SM)) provided each
point x ∈ E+ is a U M-point of E .

Corollary 4.16 (i) Suppose E and E (∗) are Banach function spaces. Let E ∈ (+)

and 0 ≤ x ∈ E (∗). The following statements are equivalent:

(i) The point x is an Hl-point of E (∗).
(ii) The point x is a point of order continuity of E (∗), x is an Hg-point of E (∗) and x

is a U M-point of E (∗).
(iii) The point x∗ is an OC∗ point of E, x∗ (∞) = 0, x∗ is an H∗

g -point of E and x∗
is an U M∗-point of E.

Proof Theequivalence (i) ⇔ (ii) comes fromTheorem3.10 from [8]. The equivalence
(ii) ⇔ (iii) follows from Theorem 3.8, Theorem 3.9 in [25] and Theorem 4.9. Note
that if x∗ is an OC∗ in E then

∥
∥x∗χ(0,an)

∥
∥

E → 0 for any sequence an → 0. ��
From Theorem 4.9, Remark 4.10 and the above Corollary we conclude

Corollary 4.17 (i) Suppose E is a quasi-Banach function space which is p-convex
with the constant 1 for some p > 0. Let E ∈ (+) and χ(0,∞) /∈ E. Then the following
statements are equivalent:

(a) The symmetrization E (∗) has the property Hg and x∗ ∈ (∗) for all x = x∗ ∈ E.
(b) The space E has the property H∗

g and
∥
∥x∗χ(0,an)

∥
∥

E → 0 for each x∗ ∈ E and
any sequence an → 0.

(ii) Assume that E and E (∗) are Banach function spaces. Let E ∈ (+). The sym-
metrization E (∗) has the property Hl if and only if E ∈ (OC∗), χ(0,∞) /∈ E,

E ∈
(

H∗
g

)

and E ∈ (SM∗).
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5 Kadec–Klee properties in Marcinkiewicz spaces M(∗)
φ

Proposition 5.1 The Marcinkiewicz space M (∗)
φ has no Hg points for any quasi-

concave function φ.

Proof Let 0 
= x ∈ M (∗)
φ . Denote

an = sup
t∈(0,1/n]

x∗ (t) φ (t) for n = 2, 3 . . .

Note that 0 < an+1 ≤ an < ∞ for each n. Thus the limit a = limn→∞ an exists. We
divide the proof into two parts.
(i)Supposea > 0.Then there exists a sequence tn → 0+ such thatφ (tn) x∗ (tn) ≥ a/2
for each n. Thus

∥
∥x∗χ(0,tn)

∥
∥

L∞(φ)
= sup

t∈(0,tn ]
x∗ (t) φ (t) ≥ a/2.

Consequently, by Lemma 4.7, x is not an Hg-point of M (∗)
φ .

(ii) Assume that a = 0. Set C = {t : |x (t)| > x∗ (∞)}. We consider two subcases.
(1) Suppose m (C) > 0. Then, by Lemma 2.2 from [7], there is a measure preserving
transformation σ : C → (0, m (C)) such that x∗ ◦σ = |x | a.e. on C . Since a = 0 and
x 
= 0, there is 0 < δ < m (C) such that

sup
t∈(0,δ]

x∗ (t) φ (t) <
1

2
‖x‖

M(∗)
φ

, (5.1)

whence ‖x‖
M(∗)

φ

≥ 2φ (t) x∗ (t) for t ≤ δ. Let (An) be the sequence of measurable

sets such that An = σ−1 ((0, δ/n)) ⊂ C . Then

‖x‖
M(∗)

φ

≥ 2φ (σ (s)) x∗ (σ (s))

for s ∈ An . Denote

φ̃n (s) = φ (σ (s)) for s ∈ An and xn =
‖x‖

M(∗)
φ

φ̃n
χAn + xχI\An .

Then xn → x globally in measure. Note also that

sup
t∈(0,δ/n]

(‖x‖
M(∗)

φ

φ̃n
χAn + xχI\An

)∗
(t) φ (t)

= sup
t∈(0,δ/n]

‖x‖
M(∗)

φ

φ (t)
χ(0,δ/n] (t) φ (t) = ‖x‖

M(∗)
φ
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and, by (5.1),

sup
t>δ/n

(‖x‖
M(∗)

φ

φ̃n
χAn + xχI\An

)∗
(t) φ (t) = sup

t>δ/n
x∗ (t) χ(δ/n,∞) (t) φ (t)=‖x‖

M(∗)
φ

,

whence ‖xn‖
M(∗)

φ

= ‖x‖
M(∗)

φ

. Notice that

‖x‖
M(∗)

φ

φ̃n (s)
− x (s) ≥

‖x‖
M(∗)

φ

φ̃n (s)
− |x (s)| =

‖x‖
M(∗)

φ

φ (σ (s))
− x∗ (σ (s))

≥
‖x‖

M(∗)
φ

φ (σ (s))
−

‖x‖
M(∗)

φ

2φ (σ (s))
=

‖x‖
M(∗)

φ

2φ̃n (s)

for s ∈ An . Therefore, applying the equality m (An) = m
(

σ−1 ((0, δ/n))
) =

m ((0, δ/n)), we get

‖xn − x‖
M(∗)

φ

= sup
t>0

(xn − x)∗ (t) φ (t) = sup
t∈(0,δ/n]

(‖x‖
M(∗)

φ

φ̃n
χAn − xχAn

)∗
(t) φ (t)

≥ sup
t∈(0,δ/n]

(‖x‖
M(∗)

φ

2φ̃n
χAn

)∗
(t) φ (t) =

‖x‖
M(∗)

φ

2
.

(2) Assume that m (C) = 0. Then x∗ = bχ(0,∞) for some b > 0, because x 
= 0.
Since a = 0, we find a number δ > 0 such that

sup
t∈(0,δ]

x∗ (t) φ (t) = sup
t∈(0,δ]

bφ (t) <
1

2
‖x‖

M(∗)
φ

.

Taking a sequence of sets An = (0, δ/n) and

xn =
‖x‖

M(∗)
φ

φ
χAn + xχI\An ,

we finish as above. ��

6 Kadec–Klee properties in Lorentz spaces

Here we consider the Lorentz spaces�φ defined in Sect. 4 and also the Lorentz spaces
�p,w, 0 < p < ∞, defined by the norm

‖x‖p,w =
(∫

I

(

x∗)p
w

)1/p

,
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where w : I → (0,∞) is a measurable weight function satisfying the condition

W (t) := ∫ t
0 w < ∞ for all t ∈ I . Then�p,w = (

L p
(

w1/p
))(∗)

. Moreover, ‖ ·‖p,w is
a quasi-norm (equivalently �p,w is a linear space) if and only if W satisfies condition
�2, that is there is a constant K > 0 such that W (2t) ≤ K W (t) for all t ∈ 1

2 I (see
[9,20]). Consequently, we assume always that W ∈ �2. It is also known that ‖ · ‖p,w

is a norm if and only if p ≥ 1 and w is nonincreasing. Note that if w is nonincreasing
then �1,w is a particular case of �φ when φ(0+) = 0.

Corollary 6.1 Let p > 0. The space �p,w has the property Hg that is each point
x ∈ �p,w is an Hg-point.

Proof WeapplyTheorem4.9, the implication (i) ⇒ (ii)with E = L p
(

w1/p
)

. Clearly,
L p

(

w1/p
)

is p-convex with the constant 1. Note that L p
(

w1/p
) ∈ (OC), whence

x∗ ∈ (∗) for each x∗ ∈ L p
(

w1/p
)

(see Example 4.8(i)). Let x ∈ �p,w\ {0}. Then
x∗ ∈ L p

(

w1/p
)

. Take a sequence an → 0. Since L p
(

w1/p
) ∈ (OC), we have

∥
∥x∗χ(0,an)

∥
∥

L p(w1/p)
→ 0.

Now we prove that x∗ is an H+
g -point of E = L p

(

w1/p
)

which is stronger than
H∗

g -point of E . In view of Theorem 3.15 we divide the proof in two parts.

(i) Let (dn) ⊂ E+ be a sequence such that dn ≤ x∗ and dn → 0 globally in measure.
Then, by L p

(

w1/p
) ∈ (OC), we conclude that ‖dn‖E → 0.

(ii) Recall that a quasi-Banach function space E is said to be uniformly mono-
tone (E ∈ (U M) briefly) if for all sequences 0 ≤ yn ≤ xn ∈ E satisfying
‖xn‖E − ‖yn‖E → 0 we have ‖xn − yn‖E → 0 (see [4]). Consider a sequence
(yn) ⊂ E+ such that x∗ ≤ yn , yn → x∗ globally inmeasure and ‖yn‖E → ‖x∗‖E .
Thus ‖yn − x∗‖E → 0, because L p

(

w1/p
) ∈ (U M). Indeed, by the defini-

tion, L1 (w) ∈ (U M). Moreover, (L1 (w))(p) ∈ (U M), by Corollary 4.5 from
[30] (note that L1 (w) satisfies the respective assumption). Since (L1 (w))(p) ≡
L p

(

w1/p
)

, the proof is finished. ��

Remark 6.2 For p ≥ 1, the previous Corollary can be concluded also from [23,
Corollary 3.21] (with a different proof).

Consider theLorentz space�φ = (

L1 (dφ)
)(∗)

withφ being concave. Ifφ
(

0+) = 0

then �φ = (

L1
(

φ′))(∗)
. Recall that

‖x‖L1(dφ) = φ(0+)‖x‖L∞(I ) +
∫

I
|x(t)| φ′(t)dt.

Remark 6.3 (i) If φ
(

0+)

> 0 or φ′ > 0 then ‖ · ‖L1(dφ) is a norm. If φ
(

0+) = 0
and φ′ (t) = 0 for t ≥ a ∈ (0, m (I)) then ‖ · ‖L1(dφ) is only a semi-norm (it satisfies

the triangle inequality, it is homogeneous and ‖0‖L1(dφ) = 0) but still L1 (dφ)(∗) is a
normed space.
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(ii) Note that L1 (dφ) ∈ (+). Indeed, by Hardy-Littlewood inequality,

‖x‖L1(dφ) = φ(0+)‖x‖L∞(I ) +
∫

I
|x(t)| φ′(t)dt ≤ φ(0+)‖x∗‖L∞(I )

+
∫

I
x∗(t)φ′(t)dt = ‖x∗‖L1(dφ),

in view of the fact that φ′ is nonincreasing (see [3,29]).

Note that the point (ii) below has been proved directly in [6, Corollary 1.3], see
also [23, Corollary 3.21].

Corollary 6.4 (i) If φ
(

0+)

> 0 then �φ has no Hg-points.
(ii) Suppose φ

(

0+) = 0. Then �φ ∈ (

Hg
)

that is each x ∈ �φ is an Hg-point.

Proof (i) Let 0 
= x ∈ �φ . Then there is a number δ > 0 such that the set A =
{t ∈ I : |x (t)| ≥ δ} has a positive measure. Take a sequence (An) in A with 0 <

m (An) → 0. Let xn = |x | χAn . Then xn → 0 globally in measure and

‖xn‖�φ ≥ φ(0+)‖x∗
n‖L∞(I ) ≥ φ(0+)δ.

By Lemma 3.14, x is not an Hg-point. Clearly, the space �φ satisfies assumptions of
Lemma 3.14 because it is just a normed space.
(ii) We follow as in the proof of Corollary 6.1. Note that Theorem 4.9, the implication
(i) ⇒ (ii), is true also if (E, ‖·‖) is only a semi-quasi normed space. ��
Remark 6.5 The case φ

(

0+) = 0 and φ′ > 0 above is included in the Corollary 6.1.

Obviously, the notions of Hg-point and Hl -point coincide if I = (0, 1). Conse-
quently, we consider only the case I = (0,∞) below.

Corollary 6.6 (i) Suppose p ≥ 1 and w is nonincreasing. The element 0 ≤ x ∈ �p,w

is an Hl-point of �p,w if and only if x∗ (∞) = 0.
(ii) Assume that φ(0+) = 0. The element 0 ≤ x ∈ �φ is an Hl-point of �φ if and
only if x∗ (∞) = 0 and m

{

t ∈ I : x∗ (t) < x∗ (

γ −)} = 0 whenever γ < ∞ with
γ = m

(

supp φ′).
(iii) If φ(0+) > 0 then �φ has no Hl-points.

Proof (i)By assumptions,�p,w is a symmetric Banach space. By Theorem 3.10 from
[8], x ∈ �p,w is an Hl -point of �p,w if and only if x ∈ (

�p,w

)

a , x is an Hg-point
of �p,w and x is a U M-point of �p,w. Next, x ∈ (

�p,w

)

a if and only if x∗ (∞) = 0
(the necessity follows from Lemma 3.1, the sufficiency from Lebesgue dominated
convergence theorem). Moreover, each x ∈ �p,w is an Hg-point by Corollary 6.1.
Finally, x is a U M-point of �p,w if and only if x∗ is a U M∗-point of L p

(

w1/p
)

and
m {t ∈ I : x∗ (t) < x∗ (∞)} = 0 by Theorem 3.8 in [25]. The condition x∗ (∞) = 0
gives automatically that m {t ∈ I : x∗ (t) < x∗ (∞)} = 0. Finally, each x∗ is a U M∗-
point of L p

(

w1/p
)

, because w > 0.
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(ii) Obviously, �φ is a symmetric Banach space. By Theorem 3.10 from [8], x ∈ �φ

is an Hl -point of �φ if and only if x ∈ (

�φ

)

a , x is an Hg-point of �φ , and x is
a U M-point of �φ . Next, x ∈ (

�φ

)

a if and only if x∗ (∞) = 0 (see for example
Corollary 4.13 in [25]). Moreover, each x ∈ �φ is an Hg-point by Corollary 6.4.
Finally, by Corollary 4.17 in [25], if x∗ (∞) = 0 then x is a U M-point of �φ if and
only if m

{

t ∈ I : x∗ (t) < x∗ (

γ −)} = 0 whenever γ < ∞ with γ = m
(

suppφ′).
(iii) It follows from Corollary 6.4. ��

7 Questions

1. The full characterization of an Hl -point in a symmetric Banach function space
on I = (0,∞) has been given in [8, Theorem 3.10]. Namely, x is an Hl -point if
and only if x ∈ Ea , x is a U M-point and x is an Hg-point. Does it remain true
for a symmetric quasi-Banach function space? If yes, we can get immediately the
characterization of an Hl -point in symmetrizations E (∗) which would be more general
than in Corollary 4.16. Unfortunately, one crucial assumption in the proof of Theorem
3.10 in [8] is the embedding E ↪→ L1 + L∞ which is not satisfied in general if E is
symmetric quasi-Banach function space (see also (2.4)). Although there are examples
of symmetric quasi-Banach function spaces with E ↪→ L1 + L∞, it seems natural
to look for such characterization of Hl -point without this restricted assumption. Thus
new methods should be applied.

2. Recall that x is called ∗-regular if m ({t ∈ supp x : |x (t)| < x∗ (α)}) = 0, where
α = m (I) (in particular this is the case when x∗ (∞) = 0 or I = (0, 1))—see [8].
Does the implication (ii) ⇒ (i) (b) in Theorem 4.9 remain true if we replace the
assumption x∗ (∞) = 0 by a weaker one that x is ∗-regular. Perhaps it is possible,
because we may apply similar techniques as in the proof of Theorem 3.3 in [8], but
someone need to check carefully all details because the case of quasi-normed space is
muchmore delicate than the case of normed space (especially if we consider properties
invariant under isometry).
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10. Czerwińska, M.M., Kamińska, A.: Complex rotundities and midpoint local uniform rotundity in sym-

metric spaces of measurable operators. Stud. Math. 201(3), 253–285 (2010)
11. Dominguez, T., Hudzik, H., Lopez, G., Mastyło, M., Sims, B.: Complete characterization of Kadec–

Klee properties in Orlicz spaces. Houst. J. Math. 29(4), 1027–1044 (2003)
12. Foralewski, P.: Some fundamental geometric and topological properties of generalized Orlicz–Lorentz

function spaces. Math. Nachr. 284(8–9), 1003–1023 (2011)
13. Foralewski, P.:On somegeometric properties of generalizedOrlicz–Lorentz function spaces.Nonlinear

Anal. 75(17), 6217–6236 (2012)
14. Hudzik, H., Kolwicz, P., Narloch, A.: Local rotundity structure of Calderón–Lozanovskiı̆ spaces. Indag.

Math. N.S. 17(3), 373–395 (2006)
15. Hudzik, H., Narloch, A.: Local monotonicity structure of Cardelón–Lozanowskiı̆ spaces. Indag. Math.

N.S. 15(1), 1–12 (2004)
16. Kalton, N.J.: Convexity conditions on non locally-convex lattices. Glasg. Math. J. 25, 141–152 (1984)
17. Kalton, N.J., Peck, N.T., Roberts, J.W.: An F-Space Sampler. London Mathematical Society Lecture

Note Series. Cambridge University Press, Cambridge (1984)
18. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Nauka, Moscow (1984). (in Russian)
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