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Abstract We pose a number of questions and problems about Banach lattice alge-
bras. These concern: What should the definition be? How to add an identity. Order
theoretic properties of the multiplication. Order theoretic properties of the left regular
representation.
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1 Introduction

As part of theOrdered Banach Algebrasworkshop that was held at the Lorentz Center
in Leiden during the week 21–25 July, 2014 I gave a presentation on Banach lattice
algebras. My motivation was the realization that although there are scattered results
in the literature that refer to Banach lattice algebras, there has been no systematic
study of them and indeed the literature is not even consistent as to what one of these
objects is! The results in the literature that I am aware of seem to concentrate either
on spectral properties, usually with a view to answering questions about operators on
Banach lattices, or to characterising some of the concrete examples mentioned below.
I hoped with my presentation, and in this article, to point out the wealth of rather
fundamental open problems that are out there, at least some of which should be fairly
elementary for someone with the right background. In order to avoid undue repetition,
I will not recap the basic theory either of Banach algebras, which may be found in
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[2,9,15,24,25,35] amongst other places, or of Banach lattices, for which I refer the
reader to [1,23,26,33,34].

What is worth pointing out at this stage is the wealth of examples of objects which
possess both of these structures in a natural way. In the following examples, I will be
deliberately vague as to what scalar field is involved.

Example 1.1 (1) If� is a locally compactHausdorff space thenC0(�), the continuous
scalar functions which vanish at infinity, is a Banach space under the supremum
norm. It is a Banach algebra under the pointwise multiplication

( f � g)(σ ) = f (σ )g(σ )

and if � is compact then the identity (the constantly one function) has norm one.
For the pointwise order,

f ≥ g ⇔ f (σ ) ≥ g(σ ) ∀σ ∈ �,

it is a Banach lattice. It is also clear that if f, g ≥ 0 then f � g ≥ 0.
(2) A topological group G is a Hausdorff space which is also a group with the map

(g, h) �→ gh−1 : G × G → G being continuous. If G is locally compact then
it is automatically completely regular so there are many continuous real-valued
functions on it. If G is locally compact there is always a left invariant Haar
measure μ on G, i.e. μ(gA) = μ(A) for all g ∈ G and all Borel subsets A of G,
where gA = {ga : a ∈ A}. Such a μ is unique to within a positive multiplicative
constant. If G is compact it is usual to choose μ(G) = 1. If G is either compact
or abelian then μ is also right invariant, i.e. μ(Ag) = μ(A) for all g ∈ G and all
Borel subsets A of G, but that is not true in general. If φ is a real-valued function
onG then I will write

∫
φ(g) dg for the integral ofφ with respect toHaarmeasure.

The Banach space L1(G) is normed by ‖φ‖1 = ∫ |φ(g)| dg. If we define φ ≥ ψ

to mean that φ(g) ≥ ψ(g) (μ-almost everywhere) then L1(G) becomes a Banach
lattice. The convolution multiplication on L1(G) is defined by

(φ � ψ)(g) =
∫

φ(gh)ψ(h−1) dh

and this makes L1(G) into a Banach algebra. L1(G) is commutative if and only
if the group G is abelian. L1(G) has a multiplicative identity if and only if G is
discrete, in which case the identity certainly has norm equal to one. Again, it is
clear that if φ,ψ ≥ 0 then φ � ψ ≥ 0.

(3) The space of bounded regular Borel measures on a locally compact topological
group G, M(G), with norm ‖μ‖ being the total variation of μ, is a Banach space.
With the order μ ≥ ν meaning that μ(E) ≥ ν(E) for all Borel sets E , it is a
Banach lattice. The convolution multiplication defined for Borel sets E by

(μ � ν)(E) = (μ × ν)({(g, h) ∈ G × G : gh ∈ E})

makes it into a Banach algebra. Again, it is clear that if μ, ν ≥ 0 then μ � ν ≥ 0.
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(4) If E is a Banach lattice then a linear operator T : E → E is positive if x ≥
0 ⇒ T x ≥ 0. Positive operators are automatically bounded for the usual operator
norm. The linear span of the positive operators is the space of regular operators,
denoted by Lr (E). It is rare that this is the same as L(E). Two important cases
where it holds are if E = C(�), where � is a Stonean space, i.e. � is a compact
Hausdorff space in which the closure of every open set is open, or if E is an
L-space. The first of these cases dates back to [20] whilst the second is in [21]. In
general, Lr (E) is not complete for the operator norm. We define S ≥ T to mean
that S− T is a positive operator. In general Lr (E) is not a lattice under this order.
The regular norm (or r-norm) on Lr (E) is

‖T ‖r = inf{‖S‖ : S ≥ T,−T }.

Lr (E) is complete under the regular norm. If E isDedekind complete, i.e. if every
non-empty set that is bounded above has a supremum, thenLr (E)with the regular
norm is actually a Banach lattice and the norm may be more simply described by
‖T ‖r = ∥

∥|T |∥∥. The composition of two positive operators is certainly positive so
that Lr (E) is closed under composition. This makes Lr (E)with the regular norm
into a Banach algebra, and the identity has norm one.

All of these examples share the features of being at the same time both a Banach
algebra and a Banach lattice with at least the minimum connection between the two
structures that the product of positive elements is positive. Schaefer phrases this in a
more suggestive manner that is easily seen, at least in the real case, to be equivalent,
namely that (writing � for the multiplication) |x � y| ≤ |x | � |y| for all x, y. If we were
to ignore the norm, this is saying that we have a Riesz algebra.

The left regular representation of a Banach algebra A is the mapping π : a �→ La

where La is the bounded linear operator on A defined by La(x) = a �x . This is always
a multiplication preserving map of A into L(A), the algebra of bounded operators on
A under composition. If A has an identity then π is a unital algebra isomorphism,
and if we assume that the identity has norm one then it is an isometry. So the study
of Banach algebras with an identity of norm one is just the study of closed unital
subalgebras of the bounded operators on a Banach space.

In the remainder of this paper, I will pose explicit questions and problems where
possible, but much of the discussion will (of necessity at this stage) be rather vague
and not such as to admit of explicit questions. The reader who really wants to work in
this area should be aware that some suggestions for further research are embedded in
the text rather than explicitly displayed as questions.

2 What is a Banach lattice algebra?

From the literature on Banach lattice algebras (and that on ordered Banach algebras)
there does not appear to be a consensus on a definition.

What is agreed is that one should be a Banach lattice, be an associative algebra with
a sub-multiplicative norm and that the product of positive elements should be positive.



806 A. W. Wickstead

Where authors differ is on the matter of the multiplicative identity, if there is one.
Must it be positive? Must it have norm equal to one? Scheffold, in an unpublished
result, showed that if an identity has norm one then it must be positive. A nice proof of
this may be found in [7]. A Banach algebra with an identity that does not have norm
one can always be re-normed so that the identity does have norm one. That is not
possible here as this re-norming may destroy the lattice property of the norm. To cover
as wide a range of examples as possible and in an effort to standardise terminology
we propose that a Banach lattice algebra simply be at the same time a Banach lattice,
an algebra with sub-multiplicative norm and with the product of positive elements
being positive. If there is an identity which has norm one we call it a 1-Banach lattice
algebra.

At this stage, let me record one important feature of the relationship between the
multiplication and order.

Proposition 2.1 In any Banach lattice algebra A (whether real or complex), with
multiplication �, |x � y| ≤ |x | � |y| for all x, y ∈ A.

In the real case, this is routine. For Banach algebras this was first proved in the com-
plex case by Arendt, [3, Lemma 1.5], whilst a more accessible proof for Archimedean
relatively uniformly complete Riesz algebras may be found in Theorem 2 of [16].

We mentioned above that if the identity in a Banach lattice algebra has norm one
then it is positive. In fact [7] proves positivity under rather weaker hypotheses. It is
worth noting that, whilst a direct converse is not possible, it is modulo a re-norming.

Theorem 2.2 If A is a Banach lattice algebra with multiplication � and multiplicative
identity e, the following are equivalent:

(1) e ≥ 0
(2) There is an equivalent Banach lattice algebra norm on A, |||·|||, for which |||e||| = 1.

Proof We refer the reader to [7] for the proof that (2) implies (1). Assume that (1)
holds. As products of positive elements are positive, the map x �→ Lx : A → Lr (A)

is positive. Let |||x ||| = ‖L |x |‖. As e is positive, L |e| = Le is the identity operator on
A so certainly |||e||| = 1. It is clear that |||·||| is a lattice norm as |x | ≤ |y| ⇒ L |x | ≤
L |y| ⇒ |||x ||| = ‖L |x |‖ ≤ ‖L |y|‖ = |||y|||. This norm is also sub-multiplicative as if
x, y ∈ A then |x � y| ≤ |x |� |y| by Proposition 2.1 so that L |x�y| ≤ L |x |�|y| = L |x |L |y|
and hence

|||x � y||| = ‖L |x�y|‖ ≤ ‖L |x |L |y|‖ ≤ ‖L |x |‖‖L |y|‖ = |||x ||||||y|||.

It remains only to prove the equivalence of the two norms. As

‖L |x |y‖ = ‖|x | � y‖ ≤ ‖|x |‖‖y‖ = ‖x‖‖y‖,

we have |||x ||| = ‖L |x |‖ ≤ ‖x‖. On the other hand,

|||x |||‖e‖ = ‖L |x |‖‖e‖ ≥ ‖L |x |e‖ = ‖|x | � e‖ = ‖|x |‖ = ‖x‖.

��
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This may be a suitable occasion on which to ask:

Question 2.3 If a Banach lattice algebra has an approximate identity (eγ ) with all
‖eγ ‖ ≤ 1, must it have an approximate identity composed of positive elements?

We separate our questions into two sections. First we deal with variants of matters
that apply to Banach algebras, just modified to take account of the extra order structure
that is available here. After that we ask questions that only make sense because of the
order structure.

3 Algebraic considerations

There are some fundamental constructions in Banach algebra theory that need ana-
logues for Banach lattice algebras.

Completion It is well-known, and routine to prove, that the completion of a normed
lattice is a Banach lattice and that the completion of a normed algebra is a Banach
algebra, after a possible re-norming to cater for an identity that is introduced by the
completion process. It is clear that products of positive elements remain positive in
the completion, so the completion of a normed lattice algebra1 is certainly a Banach
lattice algebra.

Complexification What about complexifying a real Banach lattice algebra? This
is vital and is certainly possible in important concrete examples. The norm in the
complexification of a real Banach lattice is completely specified by the requirement
that ‖z‖ = ∥

∥|z|∥∥ and it follows immediately from Proposition 2.1 that the norm in
the complexification remains submultiplicative. The complexification process cannot
introduce an identity or new positive elements so the complexification of a real Banach
lattice algebra is certainly a complex Banach lattice algebra.

Adding an identity Our first uncertainty comes when we try to add an identity. It is
not that this is difficult to do, in fact it seems far too easy. Given a non-unital Banach
algebra A embedded in a unital Banach algebra B, the linear span of A and the identity
in B is a unital Banach algebra and (up to a re-norming) independent of the choice of
B. Nothing similar works for Banach lattices, let alone Banach lattice algebras. There
is one rather obvious way of adding an identity to any Banach lattice algebra.

If A is a Banach lattice algebra over F, where either F = R or F = C, then F × A
is a unital Banach algebra under the multiplication

(λ, x) � (μ, y) = (λμ, λy + μx + x � y)

and norm ‖(λ, x)‖ = |λ|+‖x‖. Defining (λ, x) to be positive if λ ≥ 0 and x ≥ 0 also
makes it a Banach lattice. Products of positive elements are positive. This is the only
construction that we have come up with which has any claim to being canonical, and
we denote it by Ae. However, in concrete examples, there may be more natural ways
of adding an identity.

Example 3.1 Take A = c0 with pointwise order and multiplication.

1 We have not actually defined these, but the definition should be clear.
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(1) Ae as defined above is lattice isomorphic to c0 (although not isometrically so).
(2) The “obvious” way to add an identity is to embed A in c. Although Ae and c are

isomorphic Banach algebras, they are certainly not isomorphic Banach lattices.
For example Ae has an order continuous norm but c does not.

(3) Proposition 8.3 of [31] shows that there is a Banach lattice algebra norm on F
2

when equipped with the pointwise multiplication and ordered by the positive cone
{(x, y) : x/2 ≥ y ≥ 0}. In this Banach algebra the identity (1, 1) is not positive.
Consider the product of this algebra with c0 with order specified as the direct sum
of the two orders and (commutative) multiplication of (x, y) ∈ F

2 with (zn) ∈ c0
defined to be

(xz1, yz2, xz3, yz4, xz5, yz6 . . . )

As the positive cone in F
2 is contained in the standard one, this extended mul-

tiplication still has products of positive elements being positive. Possibly after
renorming, this will be a Banach lattice algebra with (1, 1) ⊕ (0) being the (non-
positive) identity. The linear span of the identity plus the original c0 is not a
sublattice. This shows that adding an identity need not be reducible to a one-
dimensional extension and that the added identity need not be positive.

If B is a unital Banach algebra then any algebra homomorphism T : A → B
extends to unital algebra homomorphism of Ae into B. We would desire something
similar in a Banach lattice algebra setting.

Question 3.2 Is there a canonical way of adding an identity to a Banach lattice
algebra A such that if B is a unital Banach lattice algebra then every linear : A → B
which is both an algebra and lattice homomorphism extends (uniquely) to a unital
lattice and algebra homomorphism of this augmented version of A into B?

It will follow from Proposition 3.4 that none of our extensions of c0 have this
property. The existence of the third example in Example 3.1 shows that the added
identity will not in general be positive. That observation prompts:

Question 3.3 Is there a canonical way of adding an identity to a Banach lattice
algebra A to produce a 1-unital Banach algebra such that if B is a unital 1-Banach
lattice algebra then every linear : A → B which is both an algebra and lattice
homomorphism extends (uniquely) to a unital lattice and algebra homomorphism of
this augmented version of A into B?

If it exists, such an extension will be quite complicated, even in the 1-Banach lattice
algebra case. In particular, we cannot take A to be a lattice ideal in its augmented
algebra. In general, what we seem to be looking for seems to be some kind of free
unital extension of A.

Proposition 3.4 There is no lattice and algebra embedding of c0 onto a lattice ideal
in a unital Banach lattice algebra A such that, for every 1-Banach lattice algebra B,
every lattice and algebra homomorphism T : c0 → B extends to a unital lattice and
algebra homomorphism of A into B.



Banach lattice algebras: some questions, but very few answers 809

Proof Let e be the identity in A. For the first step, take B = c with the usual
order and multiplication and assume that T : A → B is a unital lattice and
algebra homomorphism extending the identity embedding of c0 into c. Certainly,
T e = (1). If e1 is the usual first basic coordinate vector in c0 and |e| ∧ e1 = 0 then
0 = T |e| ∧ T e1 = |T (e)| ∧ e1 = (1) ∧ e1 = e1 giving a contradiction. As c0 is
assumed to be an ideal in A, |e| ≥ αe1 for some α > 0.

Now suppose that S : A → (c0)e is a unital lattice and algebra homomorphism
extending the identity embedding of c0 into (c0)e. As |e| ≥ αe1, S(|e|) = |S(e)| ≥
αe1, which contradicts the fact that Se is disjoint from e1. ��

Apart from the fundamental question of the existence of a categorical unitization,
there is also the following question to consider.

Question 3.5 Suppose that A is a non-unital Banach lattice algebra. Let B1 and B2
be unital Banach lattice algebras, containing A as a sublattice and subalgebra, such
that the smallest unital sublattice and subalgebra of Bk containing A is the whole of
Bk (k = 1, 2). Is it true that for all x ∈ A, σB1(a) = σB2(x)? The same question is of
interest if B1 and B2 are restricted to be 1-Banach lattice algebras.

Morphisms, sub-objects and quotients As with studying any any mathematical
object, we ought to set Banach lattice algebras in a categorical setting by specifying
the morphisms between them. The linear maps that are both algebra and lattice homo-
morphisms are the obvious ones to work with (and preserving multiplicative identities
if they exist), although the restraint of having to preserve both structures will mean that
there are relative few examples. Nevertheless, in some important cases there are impor-
tant examples of such maps. If X and Y are compact Hausdorff spaces and C(X) and
C(Y ) are given the pointwise lattice and algebra operations, then T : C(X) → C(Y )

is a unital algebra homomorphism if and only if it maps 1X to 1Y and is a lattice
homomorphism. This is likely to be a rather atypical behaviour!

The (closed) kernels of such morphisms will be both algebra and lattice ideals.
Again, although these two kinds of (closed) ideals coincide in the C(X) case, in
general there will be few such subsets. For example Arendt and Sourour [5] have
shown that in Lr (
2) there is precisely one such subset, namely the closure in Lr (
2),
for the regular norm, of the finite rank operators. The images of these morphisms will
be both subalgebras and sublattices. It is not clear to the author that there is much
more to say on this topic. One, possibly rather fanciful, possibility is that certain
multiplicatively defined subsets of a Banach lattice algebra, such as the centre, might
automatically be sublattices as well.

There is an extensive literature looking at conditions on a unital Banach algebra A
such that if A is a unital subalgebra of a larger Banach algebra B then σA(x) = σB(x)
for all x ∈ A. These prompt:

Problem 3.6 Find conditions on a unital Banach lattice algebra A such that if A is a
sublattice and unital subalgebra of a larger Banach lattice algebra B then σA(x) =
σB(x) for all x ∈ A. It would be of particular interest if some familiar order theoretic
property of A, such as Dedekind completeness, were sufficient.
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Biduals There is a substantial literature on the bidual of a Banach algebra and it is
classical (and not very deep) that the bidual of a Banach lattice can naturally be given
a Banach lattice structure.

The twoArensmultiplications on the bidual of a Banach lattice algebra are certainly
Banach algebra multiplications and themethod of Theorem 4.1 of [18] shows that they
are Riesz algebramultiplications. The first question to ask is whether or not the algebra
need be Arens regular, in the sense that both multiplications coincide? Arens gave an
example in [6] to show that this is not always true, whilst Buskes and Page [13] show
that if 
1 does not embed into the algebra then it must be Arens regular. Of course
the multiplication on a Banach lattice algebra may be Arens regular even if it does
contain a copy of 
1. For example a Banach f -algebra is always Arens regular even if
it does contain a copy of 
1, e.g. 
1 with its pointwise multiplication. The same is even
true for almost f -algebras, [12]. The usual Banach algebra questions, e.g. whether or
not the bidual is semi-prime, has an identity, commutativity etc., are relevant and the
results in the f -algebra setting are of interest. One additional feature of the Banach
lattice algebra setting is the existence of the order continuous dual, E ′

n of a Banach
lattice E . There is a natural embedding of E into (E ′)′n , so all the questions about the
bidual, A′′, of a Banach lattice algebra A also apply to (A′)′n . Many questions may be
easier to answer in this setting. Results known in special Riesz algebra settings, such
as [8,17,18,27], are certainly of significance in our setting.

MultipliersWhen A is merely a Banach algebra, the right multiplier algebra of A is
the space of bounded linear operators T : A → A such that T (a �b) = a �T (b) for all
a, b ∈ A. In the case of a Banach lattice algebra we should replace bounded by either
regular or order bounded. Does this give us a Banach lattice algebra? Hopefully it will
not be necessary to assume Dedekind completeness in order to obtain positive results.
It is even possible that the order theoretic assumption could be dropped. There are,
of course, similar questions to be asked about left multiplier algebras and two-sided
multiplier algebras. The motivating example of C0(�), where the Banach algebra
multiplier algebra may be identified with Cb(�), the continuous bounded functions
on �, prompts us to pose:

Problem 3.7 Characterise those Banach lattice algebras A for which the multiplier
algebra coincides with the ideal centre in the Banach lattice sense, i.e. the space of
orthomorphisms on A.

Tensor products A less straightforward project would be to develop a theory of
tensor products of Banach lattice algebras. There are well developed theories of tensor
products of Banach algebras and of Banach lattices, but they are rather different. One
way to tackle tensor products of (sufficiently nice) Banach lattice algebras would
be to use the left regular representation of the two factors A and B, tensor these as
Banach lattices to produce A⊗ B (presumably the Fremlin tensor product), then look
at the closed lattice-algebra generated by the induced operators La ⊗Lb for a ∈ A and
b ∈ B. A lot of work would need to be done even if this were possible. However, it will
only be in rather special cases that the left regular representation will be sufficiently
well-behaved for this approach to work!
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4 Order theoretic considerations

Order continuity of multiplication An important existing theory is that of f -algebras,
where the multiplication is order continuous. Can one develop a general theory of
Banach lattice algebras with order continuous multiplication? Will it be much nicer
than the general theory? Can we characterize Banach lattice f -algebras in some way?
Are there other interesting examples? If the norm is order continuous, e.g. L1(G),
then multiplication will at least be separately order continuous.

Dedekind completion It is natural to study the Dedekind completion of a Banach
lattice, although even that theory is not straightforward.

Question 4.1 Is it possible, in general, to extend the multiplication from a Banach
lattice algebra to its Dedekind completion?

On f -algebras this is straightforward because of the order continuity of the mul-
tiplication and the extension is even unique. Buskes and van Rooij [14] have shown
that the extension is possible, although not uniquely, for almost f -algebras. Will the
assumption of being a Banach lattice algebra, as opposed to a Riesz algebra, help at
all?

Classical spaces There are existing results characterizing the classical Banach lat-
tice algebras of the formC(�), dating back to [19], or L1(G), [22,30]. What about the
most general possible Banach lattice algebra structure on unital AM-spaces or on AL-
spaces? For example there is a complete description of d-algebra multiplications, i.e.
Riesz algebra multiplications with |x � y| = |x |�|y|, on unital AM-spaces, [10,11,22].
It would even be of interest to know what the unital algebra multiplications were.

5 Representations

Order left regular representations If A is a Banach lattice algebra then the left regular
representation takes values in Lr (A), the algebra of regular operators on A. The fact
that products of positive elements in A are positive means that if a ∈ A+ then La is
a positive operator on A. I will (provisionally) call a Banach lattice algebra A order
left regular if a ≥ 0 ⇔ La ≥ 0. Not all Banach lattice algebras are order left regular,
e.g. put the zero multiplication on any Banach lattice then the image of every element
will be the zero operator which is certainly a positive operator.

Even if the left regular representation of A is faithful, i.e. injective, it is possible
that A is not order left regular. Recall, from Theorem 2.2 of [32], that L(c0) = Lr (c0)
and that the operator and regular norms coincide. Let W be the operator on c0 with
matrix

⎛

⎜
⎜
⎜
⎜
⎝

1
2

1
4

1
8 . . .

0 1
8

1
16 . . .

0 0 1
32 . . .

...
...

...

⎞

⎟
⎟
⎟
⎟
⎠
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which has norm one. If we define S �T = SWT onLr (c0) then ‖S �T ‖ = ‖SWT ‖ ≤
‖S‖‖W‖‖T ‖ = ‖S‖‖T ‖, and as W ≥ 0 we also have S � T ≥ 0 if S, T ≥ 0.

This makes Lr (c0) a Banach lattice algebra, which will be denoted by A. Looking
at the action of W on the standard basis vectors, we see that W is not bounded below,
so is not invertible and thus A has no identity. It is simple to verify that if SW = 0
then S = 0 so that the map S �→ LS ∈ Lr (A) is injective.

If S is the operator represented by the matrix

⎛

⎜
⎜
⎜
⎝

1 −1 0 0 ...

0 1 −1 0 ...

0 0 1 −1 ...

...
...

...
...

⎞

⎟
⎟
⎟
⎠

then SW is positive so that LS ∈ Lr (A) is positive even though S is not.
If our Banach lattice algebra A has a positive identity e then matters are much

simpler, as then

La ≥ 0 ⇒ a = ae = La(e) ≥ 0.

Lattice left regular representations If A is order left regular then it is both algebra
and order isomorphic to its image in Lr (A), but this does not mean that the image is
a sublattice. If it is I propose to call A lattice left regular.

Some important examples of Banach lattice algebras A do have the left regular
representation being a lattice homomorphism, although it is not trivial to prove that.
For example Schep [28] and Synnatzschke [29] have explicitly pointed out that if E
is a Dedekind complete Banach lattice and A = Lr (E) then |LT | = L |T |.

For C(K ) under the pointwise lattice and algebra operations, the left regular repre-
sentation mapsC(K ) onto the ideal centre ofC(K ), Z

(
C(K )

)
i.e. the linear operators

T on C(K ) for which there is λ > 0 with −λI ≤ T ≤ λI . That the left regular rep-
resentation is a lattice isomorphism is well known, at least it would be if Lr

(
C(K )

)

were a lattice!
It is routine that if G is a locally compact group then L1(G) is a subalgebra and

sublattice of M(G). Thus if μ ∈ M(G) and f ∈ L1(G) then Lμ( f ) = μ � f makes
sense and actually lies in L1(G). In Proposition 3.3 of [4], Arendt showed that the
mapping μ �→ Lμ is an isometric lattice and algebra homomorphism of M(G) into
Lr

(
L1(G)

)
.2 Restricting this map to L1(G) shows that L1(G) is lattice left regular.

Question 5.1 Is M(G) always lattice left regular? If not, find conditions on G under
which it is.

In spite of these rather natural cases which are lattice left regular, it is actually rare
for the left regular representation to map onto a sublattice. In [31] we showed that for
the pointwise multiplication on R

2 with positive cone P1
α = {(x, y) : x ≥ 0, αx ≤

y ≤ x}, which can be normed to be a unital 1-Banach lattice algebra, the left regular
representation is only a lattice isomorphism when α = −1.

2 Actually the same is true into Lr (L p(G)
)
, for p ∈ (1, ∞) as long as G is amenable.
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Problem 5.2 Find an intrinsic characterization of lattice left regular Banach lattice
algebras.

Other representations We could, of course, seek maps of a Banach lattice algebra
into Lr (E), other than the left regular representation, which preserve both the algebra
and lattice operations. Just because the obvious choice doesn’t work doesn’t mean that
no other choice will either. Again, our two dimensional examples show that matters
are far from obvious.

For the two dimensional algebra just discussed, if α = − 1
n then there is such a

representation onRn+1 (and that is the smallest dimension) even when the left regular
representation is not a lattice isomorphism. In no other case is there a representation on
a finite dimensional space. If α = 0 there is a representation on an infinite dimensional
Dedekind complete Banach lattice but in all other cases, I am unable to show whether
or not there is an infinite dimensional representation, although I suspect not.

Given the very subtle differences between these algebras there is no obvious crite-
rion to use which might imply the existence of a nice representation. Of course, we
have not definitively answered:

Question 5.3 Is every Banach lattice algebra (isometrically) isomorphic to a closed
subalgebra and sublattice of some algebra of regular operators Lr (E)?

It the answer to that is negative, or if the problem proves difficult, there would be
interest in the (possibly) more tractable problem.

Problem 5.4 Find simple conditions on a Banach lattice algebra which guarantee
that it is isomorphic to a closed subalgebra and sublattice of some algebra of regular
operators Lr (E).

We might have expected closed unital subalgebras and sublattices of Lr (E) to
play the same rôle in the theory of Banach lattice algebras as closed subalgebras of
the bounded operators do for Banach algebra theory. Whilst I can not quite rule that
out, matters are certainly far from obvious. What I certainly do not believe, as some
colleagues hope, is that they will play a similar role to C∗-algebras.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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